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Abstract. This paper introduces an efficient and simple implementation of 
management methodology between two RvCores (32-bit) microprocessor to 
manage the parallel processing to support multi-core processor. In hardware 
level, a peripheral unit has been developed to manage timing of operations 
between the two cores without making any disturbance to the default working 
core in addition to some important future work that will be executed on this 
device for more enhancement. Under test techniques: unit, integration and 
system tests, extensive tests and testbenchs have been created for each type 
of test on the corresponding design to check the correctness of operations. On 
system test, a dual core task has been developed by C language to check the 
output correct result. Additionally, the performance of the processor has been 
shown in number of executed clock cycles. 
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1 Introduction 

RISC-V is a microprocessor which refers to “Reduced Instruction Set Computer 
Version Five”. Its instruction set architecture (ISA) has been open and well known 
for its high performance since its appearance in 2011 up till now in addition to other 
properties like: Modular, Flexible, open-source tools and license [1-2]. 

    There are several open-source implementations of the RISC-V ISA [3-4]. Most 
of these implementations are single core [5-6]. Some implementations support 
synchronization instructions; hence can be extended to multi-core implementations. 
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In this paper, a multi-core RISC-V multiprocessor is developed. The available open 
source Taiga processor [7] has been extended to build a dual core multiprocessor. 
This processor is introduced as full design multiprocessor.  

    First, you should have a background on synchronization and parallel processing 
before going on reading. Synchronization and management between working cores 
are important to operate in parallel efficiently [8]. Management process is to divide 
the workloads on the two cores. It was designed based on hardware-scheme and 
software-scheme. In hardware development, a unit called core management has 
been developed as a peripheral device to keep the two cores working in parallel. 
Synchronization process is to keep the two cores updated with new data in case of 
processes sharing the same memory space.  

    The coming work is ordered as follows: section 2 is a preview on Taiga and 
introduces a simple comparison between it and others, section 3 discusses the core 
management unit which controls running or stopping the working cores, section 4 
introduces an example to test intended multi-core operations, section 5 conclude 
what has been achieved, section 6 presents future work. 

2 Related Work 

More processors under RISC-V ISA have been established in various features. A 
comparison among set of these RvCores is introduced below taking into 
consideration the hardware design and performance:  

• SweRV-EH2 [9]: is designed for micro-controller which has small tightly 
coupled memory instead of cache. It is machine mode only. 
• Andes [10]: is multi-core based on RISC-V ISA but it doesn’t have data 

cache neither supports variable latency units. Unfortunately, it isn’t open-
source. 

• RISC-V Processor [6]: this processor is a 32-bit, 5-stage and fixed-length 
pipelined processor. It supports Integer, Multiply, and Atomic instructions. 
It doesn’t support Division operations. Wishbone B.3 bus protocol is the 
only standard bus on-chip. The design achieves peak frequency of 
100MHZ on Virtex-7 (XC7VX485tffg1761-2) board. 

• Taiga Processor [11]:  is a single RvCore 32-bit system. It  
o Provides atomic instruction. 
o Is ready to support operating system (OS). 
o Supports variable-length pipeline. 



 

o Is optional D-Cache, I-Cache, Multiplication unit, Efficient Division 
unit. 

o Is optional to use 2-way set associative (16kB) or 4-set associative 
(32kB). 

o Has implementation of DMMU, IMMU. 
o Provides ITLB and DTLB. 
o Provides branch predictor unit. 
o Supports privileges like machine, supervisor, and user level [12]. 
o Ready for interfaces: Axi interface [13], Avalon interface [14] as well 

as Wishbone interface [15] but the latter two interfaces aren’t used. 
o Can work up to 123MHZ as peak of frequency on a Xilinx Zynq 

Z7CZ020 FPGA on a zedboard. 
 

    So, from the above comparison and the features of Taiga, Taiga has been selected 
to be worked on for dual-core processor implementation. It can be extended and 
configured to support multi-core process. Also, this dual-core is about to be open. 

Its open source design from which we have started, is in Fig. 1 and the 
intended design for dual-core processor is shown in Fig. 2. The two figures show 
the hardware implementation of each one. 

 

 
 

Fig. 1. Taiga Open-Source Single Core Block Diagram 



 

 

Fig. 2. The intended design of dual-core Taiga processor 
 

    As shown in Fig. 2, Core_1 & core_2: is the two Taiga cores. L2_arbiter: is a 
unit used to receive requests from the two cores to the memory system. Axi to 
arbiter: is used to convert the arbiter requests to Axi signals under the Axi protocol 
and vice versa. Core management unit: is a customized peripheral device to 
manage the two cores operations. 

3 Core Management Unit 

Core management unit is an external unit from the core. It was designed to organize 
the timing of concurrent workloads of each core. This unit design has been 
developed based on software and hardware schemes.  

    Its interfaces have been developed as shown in Fig. 3. Core management unit has 
been designed to receive control messages and send read data from/to the two cores 
sequentially at positive edge clock. According to the type of these messages (written 
data) it will generate halt signals to each core. Halt signal is used to stop its 
respective core if it is activated. In case of core halt, the core stops at its current 
instruction that has been fetched before the halt signal activation and the program 
counter (PC) keeps its current instruction address value. 



 

 

Fig. 3. Subsystem of core management unit interface with dual-core processor 
 

Figure 3 shows the type of interface (Axi interface) between each core and the core 
management unit. Halt signals have been discussed before. Pwr is an active high 
input to control it to start/stop working but it was fixed written high by hardware to 
stop software from controlling it.  

    On designing this unit, a counter has been developed to make it option for the 
designer to increase or decrease its speed. This counter has been used to count the 
number of clocks, after which it becomes available to execute new transaction. Even 
if it may be available before but it has been designed with this methodology to be 
able to control its speed in the future i.e. you can use lower frequency clock on this 
unit to provide consumption power. So, it is available to make that after making 
some hardware changing on it. 

    The algorithm of management process is declared in some steps which are 
obligatory to be used on any software applied on the dual-processor. Before 
defining these steps, take into consideration some concepts are used in this 
algorithm: 
1- Core2Finished: is a public variable and indicates that if core_2 has finished 

its related task or not. Its location in the main memory (“Axi DDR 
Memory” as shown in Fig. 2). 

2- Core_selection: the core management unit is a peripheral device that has a 
small memory (Fig. 4). The “Core_selection”is a bit at an addressed 
location in the memory of this unit, this bit indicates the state of working 
cores. It is defined and explained more clearly in Table 1. 

 



 

Table 1. Core_selection bit cases and their description 

Core_selection bit case Description 

‘0’ Core_1 is working & core_2 isn’t working 

‘1’ Core_1 and Core_2 are both working  

 

 

Fig. 4. Core management unit memory 
 

The algorithm steps are: 

1- Define Core2Finished as public variable which is initialized by zero. 
2- Define a pointer to address of core_selection bit location which is initialized 

by zero. 
3- Then, in main function, check if core_selection bit is zero, so unhalt core_2 

and execute the task related by core_1 on core_1. 
4- In hardware implementation of core management unit, if Core_2 is unhalted, it 

updates core_selection bit by one. 
5- After Core_1 ends from executing its related task, it waits until core_2 

executes all its related operations. It continuously checks the Core2Finished. If 
Core2Finished is zero, it waits unit it becomes one. 

6- When core_selection is set by one, core_2 executes its related task. 
7- After core_2 ends from executing its related task, it updates Core2Finished by 

one then halt itself. 
8- When core_2 halt itself, core_selection bit is updated by zero. 



 

9- As soon as Core2Finished is set by one, core_1 starts to work. If there are 
some instructions that aren’t related to core_1 neither core_2, core_1 will 
execute them. 

Core_selection bit changes by hardware according to the coming halt1 and halt2 
signals. If halt2 is cleared, core_selection is cleared by zero. If halt2 is set by one, 
core_selection is set by one. 

    Each location in the static ram in core management unit as in Fig. 3 includes three 
variables representing the current case of each working core. They are 32 locations 
but three locations are only used. Two locations of them contain data for each core 
and the third one contains important bit called core selection. This core selection 
control bit is used to define which the last core is running now. Take a look clearly 
into Table 2. 

Table 2. Core management buffer structure format

 31 30 29 28:0 

0 WRV WSA Halt 0x00000000 

1 WRV WSA Halt 0x00000000 

. 

.     

4 

.. 

31 

0 0 0 [0] => core_selection, [28:1] = 0 

 

WRV (Work at reset vector bit): represents that this core is default. 

WSA (Work at specific address bit): represents that this core is not the default. 

Halt bit: controls to stop this core or run if equals 1, the respective core stops at 
the current pc and stop fetching the next instruction. 

 



 

3.1 Data Control 

On writing transaction to the core management, the written data is only control data 
which control the current working core to stop or run. This data is sent on address 
0x80000000. It is designed to receive control data at this location address. 

• On writing operation, if this control data is: 
o 0x00000000: it means halt core1. 
o 0x00000001: run core1. 
o 0x00000002: halt core2. for the future 
o 0x00000003: run core2. for the future 
o 0x00000004: halt core3. for the future 
o 0x00000005: run core3. for the future 
o 0x00000006: halt core0. 
o 0x00000007: run core0. 

3.2 Flow Control 

All needed control circuits are characterized in write control circuit and read control 
circuit. It is shown below the write control circuit in Fig. 5 and the read control 
circuit in Fig. 6 in Pseudocode structure. The design has been established in 
Systemverilog. 

 



 

 
 

Fig. 5. Pseudocode of core management unit’s circuit on write control messages 
 

For writing operation 

Generate 

always_comb begin 

If (reset happens) begin 

clear buffer [0]. halt; 

set buffer [0]. work_reset_vector; 

loop through the rest locations in 
the buffer up to the number of 
connected cores 

set each location. halt; 

end loop  

end 

else begin 

if (pwr is set and there is a valid 
data on write data bus and the write 
address on write address bus equals 
to predefined address) begin 

case (write_data)  

   halt core_2: set buffer [1]. halt 

   unhalt core_2: clear buffer [1]. 
halt 

   halt core_3: set buffer [2]. Halt 

   unhalt core_3: clear buffer [2]. 
Halt 

   halt core_4: set buffer [3]. Halt 

 

   unhalt core_4: clear buffer [3]. Halt 

   halt core_1: set buffer [0]. Halt 

   unhalt core_1: clear buffer [0]. Halt 

endcase 

end   

Loop through each location in the 
buffer 

         if (buffer [index]. halt is cleared) 
begin 

          buffer [index]. 
Work_specific_address is set; 

          if (index equals to zero) 

             buffer [0]. Work_reset_vector 
is set; 

                              end 

        else begin 

        buffer [index]. 
work_reset_vector is cleared; 

        buffer [index]. 
work_reset_vector is cleared; 

           end 

        end loop 

end 

end 

       endgenerate  



 

 

Fig. 6. Pseudocode of core management on read operation 
 

4 C Code Multi-Core Task for Testing 

To check the work of multi-core top design, source C code has been developed to 
work on the two cores. To be able to upload it on memory, a python tool was used 

Reading operation and core_selection changing 

Generate 

always_comb begin 

  if (pwr is set and there is a valid address on read 
address bus) begin 

     update read data bus by data at buffer location 
addressed by the read address channel; 

     set read valid signal; 

end 

     else 

    clear   read valid signal; 

loop through each location at buffer starting from 
position one up to the number of connected cores 

    if (buffer[index]. halt is cleared) begin 

    buffer [4] is set; 

    end 

    else begin 

    buffer [4] is cleared; 

    end 

 end loop 

end 

endgenerate 



 

to convert C code to RV32I[M][A] machine language. This tool was published on 
the open source GitHub link [1] to complete this task correctly. All these works, 
installed tools, simulation and result were on Linux 20.04 OS. The design has been 
written in Systemverilog and the simulation tools have been Verilator [16] and 
Vivado 2020.2.     

    An example C code has been developed to test the work on dual-core RISC-V 
processor. Its task was to add five numbers on core_1 and another five numbers on 
core_2 taking into consideration the addition result by core_1. The source C code is 
shown in Fig. 7 and the output result is shown in Fig. 8. The result is shown in Fig. 
8 at location 0x1000000c (hexadecimal representation) in hexadecimal 
representation. 

    On simulation, the frequency that has been worked on is 500 MHz. The number 
of clock cycles that have been consumed to finish this operation is 233 clock cycles. 
This number of clock cycles includes the time required to store the result in the main 
memory. Each clock cycle is 2 nanoseconds so the total time invested by this 
program is 466 nanoseconds on simulation. 

 



 

 
Fig. 7. C code dual core example 



 

 
 

Fig. 8. Output result in L2 memory destination address  
 

The above figure shows the data content and the result in main memory after the 
simulation ends. Figure 9 shows the waveform of written data bus of the main 
memory. Axi_wdata (Axi written data) bus in Fig. 9 shows the end result of the 
program stored in the main memory. The end result is 0000002d (hexadecimal). It 
has been performed by the two cores following the algorithm of management steps 
discussed in the core management unit section. 

 



 

 
 

Fig. 9 Waveform of written data in the main memory 
 

5 Conclusion  

This work keeps on what others have stopped in multicore processors field (Taiga). 
All the points related to synchronization process discussed in first section have been 
achieved. Synchronization has been provided by synchronization peripheral unit 
which has controlled the operations between the two cores to keep them work 
synchronously keeping on its advantage of modularity. To check the harmony of 
these transmission signals, simple application has been developed and applied on 
the top module. This example was to sum ten numbers, five numbers on core_1 and 
five numbers on core_2, then core_2 after completing its task it loads the previous 
value of core_1 result and stores the new value again in the result location.  

6 Future Work  

Cache coherence problem is a general issue in multi-core processor so it will be 
taken into consideration to be solved in the futuristic implementation. It will be 
shown also type of recommended protocol to solve this problem.  

    Additionally, instead of direct connection between core management unit and 
dual-core processor, an interconnect network can be developed to be in between. 
This unit block is for peripheral devices only. It will be established separately from 
the memory path. Its main function is to deliver some information related to specific 
peripheral device to the correct device.  



 

    More tests also can be used for more enhancement and check if there is any bug 
in the design. More standard benchmarks can be used like CoreMark and others to 
check for any bugs in hardware design. Finally, Coremark as standard software 
benchmark works on single-core systems so it will be modified a bit to divide its 
task on more than one core to support multi-core systems. 
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