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Example

Dekker's mutex

Procedure p Procedure q
1 x=1; 1y=1;
2 while y=1 do 2 while x=1 do
3 x = 0; 3 y =0;
4 Sleep(time); 4 Sleep(time);
5 x = 1; 5 y =1,
6 end 6 end
7 Critical Section; 7 Critical Section:
8 x=20; 8y=0;

m goal: Only one process in critical section at a time.

m violation if both processes read 0.
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sequential consistency
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q

write(x,1)
read(y)

write(y,1)
read(x)

Mem

x: 0
y: 0

B sequence:

= result (x,y) = (7,7)
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y: 0

m sequence: p0
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Example

sequential consistency

p q

writebgh) | write(y,1)

read(y) read(x)

Mem

m sequence: p0 pl
= result (x,y) = (7,0)
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Example

sequential consistency

P q
writebg ) | write(y,1)
read(y) read(x)

m sequence: p0 pl q0
= result (x,y) = (7,0)
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Example

sequential consistency

Mem
X:
y: 1

m sequence: p0 pl q0 ql
= result (x,y) = (1,0)
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Example

sequential consistency

m sequence: p0 pl q0 ql

= result (x,y) = (1,0)

= (0,1), (1,0) and (1,1) possible.
(0,0) not possible
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Example

sequential consistency

p q
P q write(x,1) write(y,1)

write[l) | write(y 1) read(y) read(x)

I Mem
Mem L x 0
x: 1 y: 0

y: 1

m sequence: p0 pl q0 q1 = multiprocessor

= result (x,y) = (1,0)

= (0,1), (1,0) and (1,1) possible.
(0,0) not possible

m same behavior as unicore:
sequential interleaving
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Example
weak consistency
P q
write(x,1) write(y,1)
read(y) read(x)
Bufl Mem Buf2
x: 0
: 0

m result (x,y) = (7.7)
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Example

weak consistency

P q
read(y) read(x)
Bufl Me(r)n Buf2
write(x,1) X: 0 write(y,1)

m result (x,y) = (0,0)
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weak consistency

wiitefe 1)
read(y)

wite(y 1}
read)

Bufl Me(r)n Buf2
write(x,1) X: 0 write(y,1)

m result (x,y) = (0,0)

m violates mutual exclusion
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Example

weak consistency

wiitefe 1)
read(y)

wite(y 1}
read)

Bufl Me(r)n Buf2
write(x,1) X: 0 write(y,1)

m result (x,y) = (0,0)

m violates mutual exclusion

m E.g. TSO consistency in SPARC, x86 processors
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State of the Art
Modelling approaches

Textual
Litmus tests
Axiomatic
Operational

View-based
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State of the Art: Textual

Definition (PRAM)

Consider n processes Pi, ..., P, with a local memory My, ..., M,
each. Process k executes a read from location / “by performing a
normal read from location /" of its own memory M. Process k
executes a write to location / with value v “by performing a local
action and initializing a global action. Locally, it does a normal
write to [My] at location i with value v. Globally, it sends a message
<i,v > to all the other processors.”
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POWER and ARM Litmus Tests
http://www.cl.cam.ac.uk/-pes20/ppc-supplemental
Coherence tests
CoRR1: rf,po.fr forbidden | CoRW: rf.po,co forbidden | CoWR: co,po,rf~! forbidden | CoWW: po.co forbidden
Thread 0 Theead 1 Thiesd & Thread 1 Theead 0 Theasd 1 Theead 0
3 Wiklma——=: Rij=z 2 Risjm2* g Whi=2 A W mit ;. W[x]m2 E -1
o
[ pol / pﬂ[ " L T:"
o e Rl be Wixj=1 be Rjgmd b Wid=2
Test CaRRL Test CoRW Test CaWR Test Coww
4-edge 2-thread tests 5-edge along one f edge
One Two Preserved read-read program order
PPO000-019: barrier,rf,intra-thread”,fr
Thiead 0 Thiesd 1
MP: rifr meeds lwsync+RRdep | WRC: . rffr needs lwsync+RRdep =Whi=t s Rivl=1
Thiead 0 Theead 1 Thread 0 Theead 1 Theead 2 basync, data
W=l g Riglet =Wl b Rl Rfyj=1 b: Wyt d Wit
P X_:P“ pe, - ™ rf
B Wiyl=1 o d Rixj=0 = Whl=1 & Rix=0 & Riz=t
Test MP Test WRC P
o Rix=0
Tesz FPOOO
§: ri.co needs lwsync+RWdep | WWC: rfirf.co needs hwsync+RWdep
Thiead 0 Theead 1 Theead 0 Thread 1 Theead 2
2 Wej=2 < Riyl=1 = Wi b Rp=2 4 Riyl=1
B2 P, P,
b Wiyl=1 4 W=t & Whi=1 & Wi=1
Test § Test WWC
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State of the Art: Axiomatic

Definition
An execution is TSO if there exists a memory order < which respects:
m Order: (w,i,x,v1) < (w,j,y,v2) Vv (w,j,y,va) < (w,i,x,v)
m Value:
va/((r, i,a,x)) :va/(l\/laxg[
{(W,j,a,y)l(w,j,a,y) <po (ra i,a,x)}u
{(w,j,a,y)(w.j,a,y) < (r,i,a,x)}])
m LoadOp: re (r,i,*,*),0€ (*,i,*,%) r<ppo=r<o

m StoreStore: wy, ws € (write, i, *,%) wy <po wa = wy < Wy
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State of the Art: Operational

module RefPRAM( [...] ) {

for(i=0. P-1)do || {
always { // Dist: broadcasts writes to connected FIFOs & sends reads to own FIFO
if(reqMem([i] & !someFIFOfull[i]) {
emit(ackMemli]);
if(writeMem([i]) { emit(doneMeml[i]); }
for(j=0 . P-1){
if((j==i) | writeMeml[i]) {
FIFOpush[j][i] = true;
FIFOinp[j][i] = (writeMem([i], i, adrBus[i], dataBus[i]);

}
}

}
|| foxr(j =0 .. P-1)do || { // FIFO
always { i£(FIFOisfull[j][i]) { emit(someFIFOfull[i]); } }
|| fifo: FIFO(FIFOpop[i][j]. FIFOpush[i][j], FIFOisempty[i][j], FIFOisfull [i][j], FIFOinp[i][j], —
FIFOoutp[i][j]);

|| always { // Arbiter (Simply choose from N components)
choose(ol =0 .. P-1) {
i£(IFIFOisemptyli][o1]) {
memln[i] = (true, FIFOoutp[i][o1]);
emit(FIFOpopli][ol]);

}

[..]
Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 11/ 25



Introduction

INFORMATIK [ T e

State of the Art: View-based

[ Memory |
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Motivation

m Distribution

m Consumer CPU, Distributed Computing, Cloud, Embedded
m Modelling approaches

m Different, incompatible, limited
m Critical software

m Embedded controllers, Operating system, ...
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Motivation

m Distribution

m Consumer CPU, Distributed Computing, Cloud, Embedded
m Modelling approaches

m Different, incompatible, limited
m Critical software

m Embedded controllers, Operating system, ...

= Formal analysis
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Contributions

Approaches covering multiple models in a uniform way
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Contributions

Approaches covering multiple models in a uniform way

Testing as SAT
Temporal Logic
Operational semantics

State transition system
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Testing Problem

Complexity

m Testing problem:
Is memory trace consistent with memory model?
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Testing Problem

Complexity

m Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1)  write(y,1)
read(y,0)  read(x,0)
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Testing Problem

Complexity

m Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1)  write(y,1)
read(y,0)  read(x,0)

m Complexity analysis

m NP complete for many models
m Testing is in NP (SAT)
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Testing Problem
SAT encoding

m View-based definitions: Serial view
m subset of operations
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m View-based definitions: Serial view
m subset of operations

m Encoding

m Variables: execution, serial view
m EXE(T) : existence of execution

m "writes-to” relation
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Testing Problem
SAT encoding

m View-based definitions: Serial view
m subset of operations

m Encoding

m Variables: execution, serial view
m EXE(T) : existence of execution

m "writes-to” relation
m SV(T,0,<) : serial view property of execution
m total, transitive, extends <

m Experiments
m Z3 SMT solver (SMT-LIBv2 encoding)
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Temporal Logic

Linear temporal logic

m Temporal Logic well suited for concurrency
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Temporal Logic

Linear temporal logic

m Temporal Logic well suited for concurrency

m Linear temporal logic (LTL):
G, Fo, X, Uy
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Temporal Logic

Linear temporal logic

m Temporal Logic well suited for concurrency

m Linear temporal logic (LTL):
Gy, Fo, Xp, pUy
m Event variables:

m Read, Write: Interface
m Observed: Internal
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Temporal Logic

Example

m Local consistency: Observe own writes immediately

G( w — V4 Observedq(w) ) (1)
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Vlodelling approaches
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Temporal Logic

Example

m Local consistency: Observe own writes immediately

G( w — V4 Observedq(w) ) (1)

m Slow consistency: Observe another’s writes to the same location
in the same order

G( Observed(w) = XG3<,pw Observed(w") ) (2)

m Experiments: NuSMV, NuXMV model checker
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Operational Semantics: PRAM

Vp3 <qv= SerialView (<p |(*, %, %, p, *) U (W, *, %, %, *))

m Reference Machine

m Correctness
m Completeness
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Operational Semantics: PRAM

Vp3 <qv= SerialView (<p |(*, %, %, p, *) U (W, *, %, %, *))

m Reference Machine

m Correctness
m Completeness

m Applications

m Simulation
m Synthesis
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State Transition System

m Semantics of programming language & memory model
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State Transition System

m Semantics of programming language & memory model

m State X = (£S1,...,Si,...,Sn)
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State Transition System

m Semantics of programming language & memory model
m State X = (£S1,...,Si,...,Sn)

m Structural operational semantics

(6%
(E[S1y- 1 SprresSn) = (€[S, Shy o, Sn)
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State Transition System

m &: environment suited to express different memory models

X: 3 4 8 7
T T
p q,r
y 0
T
p.q,r
z 0 2
T T
p.r q

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 21/ 25



Vlodelling approaches

- ..
B TECHNISC RS
INFORMATIK [ £ KAiseRSLAUTERN

State Transition System

m Reading

NextVar(e)=v+1 A E(v,p)=d A e’=e|;
(€181, Sprx =e,....Sn) = (E]S1,...,Sfrx = e ,...,5p)

m Writing (SC)

deZ AN veVy A Len(&E,v)=i
A &' =Ins(MovAll(E,v,i+1),v,d,i+1)

(£]S1,..., v=d; ,...,Sp) ~ (€| S1,..., nothing; ,...,Sp)
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Vlodelling approaches

(2]
o 5 o
% S o 3
g o by 2
S T
g S b Q
> ) P
& |5 5
@ &
SAT | trace no - -
LTL | program no min full
OpS | program | yes | full' | optimized?
STS | program | yes | small | optimized
lincluding processor state
2only consistent states
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Conclusion

Modeling approaches for multitude of models
m Testing Problem SAT encoding
m Temporal Logic
m Operational Semantics

m State Transition System
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Thank you for your attention.
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SAT encoding |
(w,x,1).(r,x,2) [| (w,x,2).(r,x,1)

EXE(T2) A SV/(Tas <p0)

(declare—fun ex (Int Int) Bool) ; Varaible ex.i,j
(declare—fun sv (Int Int) Bool) ; Variable sv_.i,j
; ### Execution

; Exists write for read

(assert (ex 0 3)) ; wxl —> rxl

(assert (ex 2 1)) ; wx2 —> rx2

; Only one write for read (same variable & data)
; > none, as only one write matches read

; ###E SerialViews
; ## SV: forall (x,%,%,%,%), respecting <_PO
; Total Order & AntiSymmetry

(assert (xor (not (sv 0 1) ) (not (sv 1 0))))
(assert (xor (not (sv 2) ) (not (sv 2 0))))
(assert (xor (not (sv 0 3) ) (not (sv 3 0))))
(assert (xor (not (sv 1 2) ) (not (sv 2 1))))
(assert (xor (not (sv 1 3) ) (not (sv 3 1))))
(assert (xor (not (sv 2 3) ) (not (sv 3 2))))

; Transitivity

(assert (=> (and (sv 0 1) (sv 1 2)) (sv 0 2) ))
(assert (=> (and (sv 0 1) (sv 1 3)) (sv 0 3) ))
(assert (=> (and (sv 0 2) (sv 2 1)) (sv 0 1) ))
(assert (=> (and (sv 0 2) (sv 2 3)) (sv 0 3) ))
(assert (=> (and (sv 0 3) (sv 3 1)) (sv 0 1) ))
(assert (=> (and (sv 0 3) (sv 3 2)) (sv 0 2) ))
(assert (=> (and (sv 1 0) (sv 0 2)) (sv 1 2)))
(assert (=> (and (sv 1 0) (sv 0 3)) (sv 1 3)))



SAT encoding Il
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5 wxl <_PO rx2

;o wx2 <_PO rx1
mplies SV & no intermediate write

o« —

;owxl —=> rx1

(assert
(assert
(assert

—_———

—_———

—_———

(or
or
(or

assert
assert
check-sat)

(
(
(
(



LTL (SMV encoding): invariants |

—— INVARIANTS ——

—— read and write only occur if processor is active
[[repeatline %p=MIN_P..MAXP]]

INVAR (!step[%p]) —> (!read[%p] & !write[%p]);
[[/repeatline]]

—— read and write never occur at the same time
[[repeatline %p=MIN_P..MAXP]]

INVAR ! (write[%p] & read[%p]);
[[/repeatline]]

—— readValue is undefined while no read occurs
[[repeatline %i=MIN_P..MAXP]]

INVAR (!read[%i]) —> (readValue[%i]=UNDEFINED);
[[/repeatline]]

—— Fairness: step[p] has to hold infinitely often (for all processors p)
[[repeatline %p=MIN_P..MAXP]]

JUSTICE step[%p];
[[/repeatline]]




LTL (SMV encoding): base |

—— Processing Causality

(

[[forall %p=MIN_P..MAXP]][[ forall %q=MIN_P .. MAXP]]

[[forall %i=MIN_ID..MAXID]][[ forall %I=MIN_LOC .. MAX.LOC]]
(!(proc[%p] & (procProcess[%p] = %q)

%i) & (procLocation[%p] = %l)))
%i) & (writeLocation[%q] = %l)) )

(
& (procld[%p] =
U (write[%q] & (writeld[%q] =
| G(!(proc[%p] & (procProcess[%p] = %q)
& (procld[%p] = %i) & (procLocation[%p] = %l)))
[[/ forall J][[/ forall]]
[[/ forall J][[/ forall]]
)

—— Processing Uniqueness
& (G

[[forall %p=MIN_P..MAXP]][[ forall %qg=MIN_P..MAXP]]
[[forall %i=MIN_ID.. MAX.ID]]

(proc[%p] & (procProcess[%p] = %q) & (procld[%p] = %i))

—> X G !(proc[%p] & (procProcess[%p] = %q) & (procld[%p] = %i))

[[/ forall]]
[[/ forall ]][[/ forall]])
—— Read Initial
& ([[forall %p=MIN_P . .MAXP]][[ forall %I=MIN_LOC..MAXLOC
(read[%p] & (readLocation[%p]=%I) —> (readValue[%p]=UNDEFINED))

(
U (proc[%p] & proclLocation[%p]=%!
| G(read[%p] & (readLocation[%p]=%!) —> (readValue[%p]=UNDEFINED))

[[/ forall J][[/ forall]])

—— Read Causality
& (G
[[ forall %g=MIN_P..MAXP]][[ forall %i=MIN_ID.. MAX_ID]]
[[ forall %I=MIN_LOC..MAXLOC]][[ forall %v=MIN_VAL..MAX_VAL]]
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(write[%q] & (writeld[%q]=%i)
& (writeLocation[%q]=%!) & (writeValue[%q]=%V))
> G [[forall %p=MIN_P..MAXP]]
(proc[%p] & (procProcess[%p] = %q) & (procld[%p]=%i))
—> ( ( ( ( read[%p] & (readLocation[%p]=%I))
—> readValue[%p]=%v )
U (proc[%p] & (procLocation[%p]=%!)
& ( (procProcess[%p] != %q) | (procld[%p] !'= %i) )) )
[ (G (( read[%p] &
(readLocation[%p]=%1)) —> readValue[%p]=%v ) ) )
forall]]
orall]]
orall]])

.y

-

o

=

[
~~
- >
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—— Include Base Spec

(

#include (spec—base. Itl)

—— Local Causality
& ([[forall %p=MIN_P.. MAX_P]]

G ((write[%p]) —>

(proc[%p] & (procProcess[%p]=%p) & (procld[%p]=writeld[%p])))
[[/ forall]])
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—— Petersons Mutual Exclusion Algorithm

—— LOCATIONS: flag0, flagl, turn, data

—— 00: write (0,1) flag[self] <= T
—— 01: write (2,1) turn <- other
—— 02: reg = read (1) if (!flag[other]) goto 6
—— 03: if(reg=0) goto 6 "

—— 04: reg = read (2) if (turn=other) goto 2
—— 05: if(reg=1) goto 2 "

—— 06: reg = read (3) data++;

—— 07: write (3,reg+1)
—— 08: write (0,0) flag[self] <- F
—— 09: goto 9

#define MIN_P 0
#define MAXP 1
#define MIN_LOC
#define MAX_LOC
#define MIN_VAL
#define MAX_VAL
#define UNDEFINED
#define MIN_ID 0
#define MAX.ID 10

ONO WO

—— Processor ——
MODULE Processor(id, step, write, writeLocation, writeValue, read,
readLocation, readValue)
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VAR
reg : MIN_VAL.. MAX_VAL;
pc : 0..9;
other: MIN_P..MAXP;
ASSIGN
other := ((id O)?l:Oﬁ
init(pc) :=
next(pc) :=
case
Istep : pc;
(pc = 3) & (reg = 0) : 6;
(pc = 5) & (reg !'= id) : 2;

pc>=9 : 9;
TRUE : (pc+1);

esac;
init(reg) := UNDEFINED;
next(reg) =
case
Istep : reg;
pc = 2 : readValue;
pc = 4 : readValue;
= 6 : readValue;
TRUE ©oreg;
esac;
write :=
case
Istep: FALSE;
TRUE: (pc =0 | pc =1 | pc 7 | pc = 8);
esac;
writeLocation :=
case
Istep: 0;
pc =0 : id;
pc =1 : 2;
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pc =7 : 3
pc =8 : id;
TRUE : O0;
esac;
writeValue :=
case
Istep: O0;
pc =0 : 1;
pc =1 other;
pc =7 (reg>=MAX_VAL)?reg:(reg+1);
pc = 8 : H
TRUE : O0;
esac;
read :=
case
Istep: FALSE;
TRUE: (pc =2 | pc =4 | pc = 6);
esac;
readLocation :=
case
Istep: 0
pc = 2 : other;
pc =4 : 2;
pc =6 : 3;
TRUE : 0;
esac;
MODULE main

VAR
step: array MIN_P..MAXP of boolean;
write: array MIN_P..MAXP of boolean;
writeld: array MIN_P..MAXP of MIN.ID .. MAX.ID;
writeLocation: array MIN_P..MAX_P of MIN_LOC.. MAX_LOC;
writeValue: array MIN_P..MAXP of MIN_VAL.. MAX_VAL;
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read: array MIN_P..MAXP of boolean;

readValue: array MIN_P..MAXP of MIN_VAL..MAXVAL;
readLocation: array MIN_P..MAX_P of MIN_LOC.. MAX_LOC;
proc: array MIN_P..MAXP of boolean;

procProcess: array MIN_P..MAXP of MIN_P.. MAXP;
procld: array MIN_P..MAXPP of MIN.ID.. MAX.ID;
procLocation: array MIN_P..MAX_P of MIN_LOC.. MAX_LOC;

VAR
[[repeatline %i=MIN_P..MAXP]]
p%i : Processor(%i, step[%i], write[%i], writeLocation[%i],
writeValue[%i], read[%i], readlLocation[%i], readValue[%i]);
[[/ repeatline]]
ASSIGN
[[repeatline %i=MIN_P..MAXP]] init(writeld[%i]) := 0;[[/repeatline]]

[[repeatline %i=MIN_P..MAXP]]
next(writeld[%i]) =
(write[%i] & (writeld[%i]<MAX.D)) ? (writeld[%i]+1) : writeld[%i];
[[/repeatline]]

#include(invariants)

—— First Test: CC
LTLSPEC
(

#include (spec—cc. Itl)

—— Property to check

d

(G !'((p0.pc=6) & (pl.pc=6)) )

——EXPECTED: FALSE (counterexample <=> possible behavior)
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——PROVEN (BMC CounterExample)

—— Second Test: PRAM
LTLSPEC
(

#include (spec—pram. Itl)

—— Property to check

—>

(G !'((p0.pc=6) & (pl.pc=6)) )

——EXPECTED: FALSE (counterexample <=> possible behavior)
——PROVEN (BMC CounterExample)

—— Third Test: SC

LTLSPEC

#include (spec—sc. Itl)
)

—— Property to check
o

(G 1((p0.pc=6) & (p1.pc=6)) )

L—EXPECTED: TRUE (no counterexample)
——PROVEN (BMC Depth 27)
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