- .
INFORMATIK [& GRSERsIAUTERN

Modelling Memory Consistency Models for Formal
Verification

Maximilian Senftleben

Embedded Systems Group
Department of Computer Science
TU Kaiserslautern

07.06.2019

INFORMATIK T ssstssens

Overview

Introduction
m Weak Memory
m Example
m State of the Art
m Motivation

Modelling approaches
m Testing as SAT
m Temporal Logic
m Operational Semantics
m State Transition System
m Comparison

Conclusion

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 2/ 25

Introduction

[]
- .
INFORMATIK [& GRSERsIAUTERN

Introduction
Weak Memory Model

m Sequential memory

m [ntuitive
m Total order

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 3/ 25

Introduction

[d
INFORMATIK T ssstssens

Introduction
Weak Memory Model

m Sequential memory

m Intuitive

m Total order
m Weak memory

m Optimizations
More behavior
Potentially unexpected
Multitude of models

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 3/ 25

Introduction

[d
INFORMATIK T ssstssens

Introduction
Weak Memory Model

SC
= Sequential memory /C—é >C-D
= Intuitive A

m Total order GAO TSO GPO+GDO CAUSAL

! .
m Weak mfam_ory_ PSO PRAM-M
m Optimizations | e
CC
N

m More behavior PRAM GWO
m Potentially unexpected /
= Multitude of models SLOW

LOCAL

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 3/ 25

Introduction

INFORMATIIC [It msenms

Example

Dekker's mutex

Procedure p Procedure q
1 x=1; 1y=1;
2 while y=1 do 2 while x=1 do
3 x = 0; 3 y =0;
4 Sleep(time); 4 Sleep(time);
5 x = 1; 5 y =1,
6 end 6 end
7 Critical Section; 7 Critical Section:
8 x=20; 8y=0;

m goal: Only one process in critical section at a time.

m violation if both processes read 0.

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 4/ 25

Introduction

INFORMATIK

Example

sequential consistency

p

q

write(x,1)
read(y)

write(y,1)
read(x)

Mem

x: 0
y: 0

B sequence:

= result (x,y) = (7,7)

Maximilian Senftleben

Modelling Memory Consistency Models for Formal Ver

07.06.2019

- N
I ' TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

5/ 25

Introduction

INFORMATIK

Example

sequential consistency

p

q

write(x,1)
read(y)

write(y,1)
read(x)

Mem

X:

y: 0

m sequence: p0

= result (x,y) = (7,7)

Maximilian Senftleben

Modelling Memory Consistency Models for Formal Ver

07.06.2019

- N
I ' TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

5/ 25

Introduction

[e] Jo) - .
INFORMATIK [& GRSERsIAUTERN

Example

sequential consistency

p q

writebgh) | write(y,1)

read(y) read(x)

Mem

m sequence: p0 pl
= result (x,y) = (7,0)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 5/ 25

Introduction

[e] Jo) - .
INFORMATIK [& GRSERsIAUTERN

Example

sequential consistency

P q
writebg) | write(y,1)
read(y) read(x)

m sequence: p0 pl q0
= result (x,y) = (7,0)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 5/ 25

Introduction

[e] Jo) - .
INFORMATIK [& GRSERsIAUTERN

Example

sequential consistency

Mem
X:
y: 1

m sequence: p0 pl q0 ql
= result (x,y) = (1,0)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 5/ 25

Introduction

INFORMATIIC [It msenms

Example

sequential consistency

m sequence: p0 pl q0 ql

= result (x,y) = (1,0)

= (0,1), (1,0) and (1,1) possible.
(0,0) not possible

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 5/ 25

Introduction

INFORMATIIC [It msenms

Example

sequential consistency

p q
P q write(x,1) write(y,1)

write[l) | write(y 1) read(y) read(x)

I Mem
Mem L x 0
x: 1 y: 0

y: 1

m sequence: p0 pl q0 q1 = multiprocessor

= result (x,y) = (1,0)

= (0,1), (1,0) and (1,1) possible.
(0,0) not possible

m same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 5/ 25

Introduction

I N FO R M ATI K 000 I‘: TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Example
weak consistency
P q
write(x,1) write(y,1)
read(y) read(x)
Bufl Mem Buf2
x: 0
: 0

m result (x,y) = (7.7)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 6/ 25

Introduction

INFORMATIK

Example

weak consistency

q

write(y,1)
read(x)

P

wite(x,1}

read(y)

Bufl Me(r)n
write(x,1) X: 0

m result (x,y) = (7,7)

Maximilian Senftleben

Buf2

Modelling Memory Consistency Models for Formal Ver

07.06.2019

-)
= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

6/ 25

Introduction

INFORMATIK

Example

weak consistency

q

write(y,1)
read(x)

P

write(x. 1)

read(y)

Bufl Me(r)n
write(x,1) X: 0

m result (x,y) = (?7,0)

Maximilian Senftleben

Buf2

Modelling Memory Consistency Models for Formal Ver

07.06.2019

-)
= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

6/ 25

Introduction

INFORMATIK

Example

weak consistency

P q
read(y) read(x)
Bufl Me(r)n Buf2
write(x,1) X: 0 write(y,1)

m result (x,y) = (?7,0)

Maximilian Senftleben

Modelling Memory Consistency Models for Formal Ver

H

= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

07.06.2019 6/ 25

Introduction

INFORMATIK

Example

weak consistency

P q
read(y) read(x)
Bufl Me(r)n Buf2
write(x,1) X: 0 write(y,1)

m result (x,y) = (0,0)

Maximilian Senftleben

Modelling Memory Consistency Models for Formal Ver

H

= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

07.06.2019 6/ 25

Introduction

INFORMATIK

Example

weak consistency

wiitefe 1)
read(y)

wite(y 1}
read)

Bufl Me(r)n Buf2
write(x,1) X: 0 write(y,1)

m result (x,y) = (0,0)

m violates mutual exclusion

Maximilian Senftleben

Modelling Memory Consistency Models for Formal Ver

H

= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

07.06.2019 6/ 25

Introduction

INFORMATIK

Example

weak consistency

wiitefe 1)
read(y)

wite(y 1}
read)

Bufl Me(r)n Buf2
write(x,1) X: 0 write(y,1)

m result (x,y) = (0,0)

m violates mutual exclusion

m E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben

Modelling Memory Consistency Models for Formal Ver

H

= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

07.06.2019 6/ 25

Introduction

INFORMATIK [T e

State of the Art
Modelling approaches

Textual
Litmus tests
Axiomatic
Operational

View-based

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 7/ 25

Introduction

INFORMATIK IS T rososomane

State of the Art: Textual

Definition (PRAM)

Consider n processes Pi, ..., P, with a local memory My, ..., M,
each. Process k executes a read from location / “by performing a
normal read from location /" of its own memory M. Process k
executes a write to location / with value v “by performing a local
action and initializing a global action. Locally, it does a normal
write to [My] at location i with value v. Globally, it sends a message
<i,v > to all the other processors.”

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 8/ 25

Introduction

INFORMATIK

[e]e] lelele]

State of the Art: Litmus Tests

I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

POWER and ARM Litmus Tests
http://www.cl.cam.ac.uk/-pes20/ppc-supplemental
Coherence tests
CoRR1: rf,po.fr forbidden | CoRW: rf.po,co forbidden | CoWR: co,po,rf~! forbidden | CoWW: po.co forbidden
Thread 0 Theead 1 Thiesd & Thread 1 Theead 0 Theasd 1 Theead 0
3 Wiklma——=: Rij=z 2 Risjm2* g Whi=2 A W mit ;. W[x]m2 E -1
o
[pol / pﬂ[" L T:"
o e Rl be Wixj=1 be Rjgmd b Wid=2
Test CaRRL Test CoRW Test CaWR Test Coww
4-edge 2-thread tests 5-edge along one f edge
One Two Preserved read-read program order
PPO000-019: barrier,rf,intra-thread”,fr
Thiead 0 Thiesd 1
MP: rifr meeds lwsync+RRdep | WRC: . rffr needs lwsync+RRdep =Whi=t s Rivl=1
Thiead 0 Theead 1 Thread 0 Theead 1 Theead 2 basync, data
W=l g Riglet =Wl b Rl Rfyj=1 b: Wyt d Wit
P X_:P“ pe, - ™ rf
B Wiyl=1 o d Rixj=0 = Whl=1 & Rix=0 & Riz=t
Test MP Test WRC P
o Rix=0
Tesz FPOOO
§: ri.co needs lwsync+RWdep | WWC: rfirf.co needs hwsync+RWdep
Thiead 0 Theead 1 Theead 0 Thread 1 Theead 2
2 Wej=2 < Riyl=1 = Wi b Rp=2 4 Riyl=1
B2 P, P,
b Wiyl=1 4 W=t & Whi=1 & Wi=1
Test § Test WWC

Maximilian Senftleben

Modelling Memory Consistency Models for Formal Ver

07.06.2019

9/ 25

Introduction

INFORMATIN Iy T ssstssens

State of the Art: Axiomatic

Definition
An execution is TSO if there exists a memory order < which respects:
m Order: (w,i,x,v1) < (w,j,y,v2) Vv (w,j,y,va) < (w,i,x,v)
m Value:
va/((r, i,a,x)) :va/(l\/laxg[
{(W,j,a,y)l(w,j,a,y) <po (ra i,a,x)}u
{(w,j,a,y)(w.j,a,y) < (r,i,a,x)}])
m LoadOp: re (r,i,*,*),0€ (*,i,*,%) r<ppo=r<o

m StoreStore: wy, ws € (write, i, *,%) wy <po wa = wy < Wy

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 10/ 25

Introduction

INFORMATIN Iy T ssstssens

State of the Art: Operational

module RefPRAM([...]) {

for(i=0. P-1)do || {
always { // Dist: broadcasts writes to connected FIFOs & sends reads to own FIFO
if(reqMem([i] & !someFIFOfull[i]) {
emit(ackMemli]);
if(writeMem([i]) { emit(doneMeml[i]); }
for(j=0 . P-1){
if((j==i) | writeMeml[i]) {
FIFOpush[j][i] = true;
FIFOinp[j][i] = (writeMem([i], i, adrBus[i], dataBus[i]);

}
}

}
|| foxr(j =0 .. P-1)do || { // FIFO
always { i£(FIFOisfull[j][i]) { emit(someFIFOfull[i]); } }
|| fifo: FIFO(FIFOpop[i][j]. FIFOpush[i][j], FIFOisempty[i][j], FIFOisfull [i][j], FIFOinp[i][j], —
FIFOoutp[i][j]);

|| always { // Arbiter (Simply choose from N components)
choose(ol =0 .. P-1) {
i£(IFIFOisemptyli][o1]) {
memln[i] = (true, FIFOoutp[i][o1]);
emit(FIFOpopli][ol]);

}

[..]
Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 11/ 25

Introduction

INFORMATIK [T e

State of the Art: View-based

[Memory |

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 12/ 25

Introduction

INFORMATIN I T ssstssens

State of the Art: View-based

N

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 12/ 25

Introduction

- 2
INFORMATIK % 1 = GAisERSCAUTERN

Motivation

m Distribution

m Consumer CPU, Distributed Computing, Cloud, Embedded
m Modelling approaches

m Different, incompatible, limited
m Critical software

m Embedded controllers, Operating system, ...

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 13/ 25

Introduction

- 2
INFORMATIK % 1 = GAisERSCAUTERN

Motivation

m Distribution

m Consumer CPU, Distributed Computing, Cloud, Embedded
m Modelling approaches

m Different, incompatible, limited
m Critical software

m Embedded controllers, Operating system, ...

= Formal analysis

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 13/ 25

Introduction

- 2
INFORMATIK 3 1 = GAisERSCAUTERN

Contributions

Approaches covering multiple models in a uniform way

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 14/ 25

Introduction

- 2
INFORMATIK 3 1 = GAisERSCAUTERN

Contributions

Approaches covering multiple models in a uniform way

Testing as SAT
Temporal Logic
Operational semantics

State transition system

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 14/ 25

Vlodelling approaches

[Jeo)
- .
INFORMATIK [& GRSERsIAUTERN

Testing Problem

Complexity

m Testing problem:
Is memory trace consistent with memory model?

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 15/ 25

Vlodelling approaches

[J¢)
INFORMATIK T ssstssens

Testing Problem

Complexity

m Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1) write(y,1)
read(y,0) read(x,0)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 15/ 25

Vlodelling approaches

[J¢)
INFORMATIK T ssstssens

Testing Problem

Complexity

m Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1) write(y,1)
read(y,0) read(x,0)

m Complexity analysis

m NP complete for many models
m Testing is in NP (SAT)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 15/ 25

Vlodelling approaches

oe
- .
INFORMATIK [& GRSERsIAUTERN

Testing Problem
SAT encoding

m View-based definitions: Serial view
m subset of operations

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 16/ 25

Vlodelling approaches

oe
INFORMATIK T ssstssens

Testing Problem
SAT encoding

m View-based definitions: Serial view
m subset of operations

m Encoding

m Variables: execution, serial view
m EXE(T) : existence of execution

m "writes-to” relation

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 16/ 25

Vlodelling approaches

oe
INFORMATIK T ssstssens

Testing Problem
SAT encoding

m View-based definitions: Serial view
m subset of operations

m Encoding

m Variables: execution, serial view
m EXE(T) : existence of execution

m "writes-to” relation
m SV(T,0,<) : serial view property of execution
m total, transitive, extends <

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 16/ 25

Vlodelling approaches

oe
INFORMATIK T ssstssens

Testing Problem
SAT encoding

m View-based definitions: Serial view
m subset of operations

m Encoding

m Variables: execution, serial view
m EXE(T) : existence of execution

m "writes-to” relation
m SV(T,0,<) : serial view property of execution
m total, transitive, extends <

m Experiments
m Z3 SMT solver (SMT-LIBv2 encoding)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 16/ 25

Vlodelling approaches

[Jeo) - .
INFORMATIK [& GRSERsIAUTERN

Temporal Logic

Linear temporal logic

m Temporal Logic well suited for concurrency

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 17/ 25

Vlodelling approaches

INFORMATIK X T sy

Temporal Logic

Linear temporal logic

m Temporal Logic well suited for concurrency

m Linear temporal logic (LTL):
G, Fo, X, Uy

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 17/ 25

Vlodelling approaches

INFORMATIK X T sy

Temporal Logic

Linear temporal logic

m Temporal Logic well suited for concurrency

m Linear temporal logic (LTL):
Gy, Fo, Xp, pUy
m Event variables:

m Read, Write: Interface
m Observed: Internal

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 17/ 25

Vlodelling approaches

INFORMATIK X T sy

Temporal Logic

Example

m Local consistency: Observe own writes immediately

G(w — V4 Observedq(w)) (1)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 18/ 25

Vlodelling approaches

INFORMATIK X T sy

Temporal Logic

Example

m Local consistency: Observe own writes immediately

G(w — V4 Observedq(w)) (1)

m Slow consistency: Observe another’s writes to the same location
in the same order

G(Observed(w) = XG3<,pw Observed(w")) (2)

m Experiments: NuSMV, NuXMV model checker

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 18/ 25

Vlodelling approaches

INFORMATIK : T ssstssens

Operational Semantics: PRAM

Vp3 <qv= SerialView (<p |(*, %, %, p, *) U (W, *, %, %, *))

m Reference Machine

m Correctness
m Completeness

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 19/ 25

Vlodelling approaches

INFORMATIK : T ssstssens

Operational Semantics: PRAM

Vp3 <qv= SerialView (<p |(*, %, %, p, *) U (W, *, %, %, *))

m Reference Machine

m Correctness
m Completeness

m Applications

m Simulation
m Synthesis

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 19/ 25

Vlodelling approaches

-
= TECHNISC RSITA
INFORMATIK e00 1 £ KAisERSUAUTERN

State Transition System

m Semantics of programming language & memory model

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 20/ 25

Vlodelling approaches

- "
= TECHNISC RS
INFORMATIK e00 1 £ KAisERSUAUTERN

State Transition System

m Semantics of programming language & memory model

m State X = (£S1,...,Si,...,Sn)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 20/ 25

Vlodelling approaches

- ..
B TECHNISC RS
INFORMATIK [£ KAiseRSLAUTERN

State Transition System

m Semantics of programming language & memory model
m State X = (£S1,...,Si,...,Sn)

m Structural operational semantics

(6%
(E[S1y- 1 SprresSn) = (€[S, Shy o, Sn)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 20/ 25

Vlodelling approaches

- ..
B TECHNISC RS
INFORMATIK [£ KAiseRSLAUTERN

State Transition System

m &: environment suited to express different memory models

X: 3 4 8 7
T T
p q,r
y 0
T
p.q,r
z 0 2
T T
p.r q

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 21/ 25

Vlodelling approaches

- ..
B TECHNISC RS
INFORMATIK [£ KAiseRSLAUTERN

State Transition System

m Reading

NextVar(e)=v+1 A E(v,p)=d A e’=e|;
(€181, Sprx =e,....Sn) = (E]S1,...,Sfrx = e ,...,5p)

m Writing (SC)

deZ AN veVy A Len(&E,v)=i
A &' =Ins(MovAll(E,v,i+1),v,d,i+1)

(£]S1,..., v=d; ,...,Sp) ~ (€| S1,..., nothing; ,...,Sp)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 22/ 25

INFORMATIK

Comparison

Vlodelling approaches

(2]
o 5 o
% S o 3
g o by 2
S T
g S b Q
>) P
& |5 5
@ &
SAT | trace no - -
LTL | program no min full
OpS | program | yes | full' | optimized?
STS | program | yes | small | optimized
lincluding processor state
2only consistent states
Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

23/ 25

Lonclusion

INFORMATIK T ssstssens

Conclusion

Modeling approaches for multitude of models
m Testing Problem SAT encoding
m Temporal Logic
m Operational Semantics

m State Transition System

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 24/ 25

Lonclusion

- .
INFORMATIK [& GRSERsIAUTERN

Thank you for your attention.

Maximilian Senftleben Modelling Memory Consistency Models for Formal Ver 07.06.2019 25/ 25

SAT encoding |
(w,x,1).(r,x,2) [| (w,x,2).(r,x,1)

EXE(T2) A SV/(Tas <p0)

(declare—fun ex (Int Int) Bool) ; Varaible ex.i,j
(declare—fun sv (Int Int) Bool) ; Variable sv_.i,j
; ### Execution

; Exists write for read

(assert (ex 0 3)) ; wxl —> rxl

(assert (ex 2 1)) ; wx2 —> rx2

; Only one write for read (same variable & data)
; > none, as only one write matches read

; ###E SerialViews
; ## SV: forall (x,%,%,%,%), respecting <_PO
; Total Order & AntiSymmetry

(assert (xor (not (sv 0 1)) (not (sv 1 0))))
(assert (xor (not (sv 2)) (not (sv 2 0))))
(assert (xor (not (sv 0 3)) (not (sv 3 0))))
(assert (xor (not (sv 1 2)) (not (sv 2 1))))
(assert (xor (not (sv 1 3)) (not (sv 3 1))))
(assert (xor (not (sv 2 3)) (not (sv 3 2))))

; Transitivity

(assert (=> (and (sv 0 1) (sv 1 2)) (sv 0 2)))
(assert (=> (and (sv 0 1) (sv 1 3)) (sv 0 3)))
(assert (=> (and (sv 0 2) (sv 2 1)) (sv 0 1)))
(assert (=> (and (sv 0 2) (sv 2 3)) (sv 0 3)))
(assert (=> (and (sv 0 3) (sv 3 1)) (sv 0 1)))
(assert (=> (and (sv 0 3) (sv 3 2)) (sv 0 2)))
(assert (=> (and (sv 1 0) (sv 0 2)) (sv 1 2)))
(assert (=> (and (sv 1 0) (sv 0 3)) (sv 1 3)))

SAT encoding Il

R R T e L e T T e e T e T

OCMOAN-HMOMO——NONO
HHA A NNANNNNOO®OO®O®

>>>>>>>>>>>>>>> >
I I I A T R T R T BT A R A AT
NN N N N N N NN NN

o
NANOMOMNOO-H-HMMOO =N
>
0

NANOMOMNOO—A—MNMMOO —

~
HEH A A NNANNNNOO®O®O®O
>
0

NN N N N N N N N N NN

rrrrrrrrrrrrrrrrr

5 wxl <_PO rx2

;o wx2 <_PO rx1
mplies SV & no intermediate write

o« —

;owxl —=> rx1

(assert
(assert
(assert

—_———

—_———

—_———

(or
or
(or

assert
assert
check-sat)

(
(
(
(

LTL (SMV encoding): invariants |

—— INVARIANTS ——

—— read and write only occur if processor is active
[[repeatline %p=MIN_P..MAXP]]

INVAR (!step[%p]) —> (!read[%p] & !write[%p]);
[[/repeatline]]

—— read and write never occur at the same time
[[repeatline %p=MIN_P..MAXP]]

INVAR ! (write[%p] & read[%p]);
[[/repeatline]]

—— readValue is undefined while no read occurs
[[repeatline %i=MIN_P..MAXP]]

INVAR (!read[%i]) —> (readValue[%i]=UNDEFINED);
[[/repeatline]]

—— Fairness: step[p] has to hold infinitely often (for all processors p)
[[repeatline %p=MIN_P..MAXP]]

JUSTICE step[%p];
[[/repeatline]]

LTL (SMV encoding): base |

—— Processing Causality

(

[[forall %p=MIN_P..MAXP]][[forall %q=MIN_P .. MAXP]]

[[forall %i=MIN_ID..MAXID]][[forall %I=MIN_LOC .. MAX.LOC]]
(!(proc[%p] & (procProcess[%p] = %q)

%i) & (procLocation[%p] = %l)))
%i) & (writeLocation[%q] = %l)))

(
& (procld[%p] =
U (write[%q] & (writeld[%q] =
| G(!(proc[%p] & (procProcess[%p] = %q)
& (procld[%p] = %i) & (procLocation[%p] = %l)))
[[/ forall J][[/ forall]]
[[/ forall J][[/ forall]]
)

—— Processing Uniqueness
& (G

[[forall %p=MIN_P..MAXP]][[forall %qg=MIN_P..MAXP]]
[[forall %i=MIN_ID.. MAX.ID]]

(proc[%p] & (procProcess[%p] = %q) & (procld[%p] = %i))

—> X G !(proc[%p] & (procProcess[%p] = %q) & (procld[%p] = %i))

[[/ forall]]
[[/ forall]][[/ forall]])
—— Read Initial
& ([[forall %p=MIN_P . .MAXP]][[forall %I=MIN_LOC..MAXLOC
(read[%p] & (readLocation[%p]=%I) —> (readValue[%p]=UNDEFINED))

(
U (proc[%p] & proclLocation[%p]=%!
| G(read[%p] & (readLocation[%p]=%!) —> (readValue[%p]=UNDEFINED))

[[/ forall J][[/ forall]])

—— Read Causality
& (G
[[forall %g=MIN_P..MAXP]][[forall %i=MIN_ID.. MAX_ID]]
[[forall %I=MIN_LOC..MAXLOC]][[forall %v=MIN_VAL..MAX_VAL]]

LTL (SMV encoding): base Il

(write[%q] & (writeld[%q]=%i)
& (writeLocation[%q]=%!) & (writeValue[%q]=%V))
> G [[forall %p=MIN_P..MAXP]]
(proc[%p] & (procProcess[%p] = %q) & (procld[%p]=%i))
—> ((((read[%p] & (readLocation[%p]=%I))
—> readValue[%p]=%v)
U (proc[%p] & (procLocation[%p]=%!)
& ((procProcess[%p] != %q) | (procld[%p] !'= %i))))
[(G ((read[%p] &
(readLocation[%p]=%1)) —> readValue[%p]=%v)))
forall]]
orall]]
orall]])

.y

-

o

=

[
~~
- >

LTL (SMV encoding): local consistency |

—— Include Base Spec

(

#include (spec—base. Itl)

—— Local Causality
& ([[forall %p=MIN_P.. MAX_P]]

G ((write[%p]) —>

(proc[%p] & (procProcess[%p]=%p) & (procld[%p]=writeld[%p])))
[[/ forall]])

LTL (SMV encoding): Peterson Mutex example |

—— Petersons Mutual Exclusion Algorithm

—— LOCATIONS: flag0, flagl, turn, data

—— 00: write (0,1) flag[self] <= T
—— 01: write (2,1) turn <- other
—— 02: reg = read (1) if (!flag[other]) goto 6
—— 03: if(reg=0) goto 6 "

—— 04: reg = read (2) if (turn=other) goto 2
—— 05: if(reg=1) goto 2 "

—— 06: reg = read (3) data++;

—— 07: write (3,reg+1)
—— 08: write (0,0) flag[self] <- F
—— 09: goto 9

#define MIN_P 0
#define MAXP 1
#define MIN_LOC
#define MAX_LOC
#define MIN_VAL
#define MAX_VAL
#define UNDEFINED
#define MIN_ID 0
#define MAX.ID 10

ONO WO

—— Processor ——
MODULE Processor(id, step, write, writeLocation, writeValue, read,
readLocation, readValue)

LTL (SMV encoding): Peterson Mutex example I

VAR
reg : MIN_VAL.. MAX_VAL;
pc : 0..9;
other: MIN_P..MAXP;
ASSIGN
other := ((id O)?l:Oﬁ
init(pc) :=
next(pc) :=
case
Istep : pc;
(pc = 3) & (reg = 0) : 6;
(pc = 5) & (reg !'= id) : 2;

pc>=9 : 9;
TRUE : (pc+1);

esac;
init(reg) := UNDEFINED;
next(reg) =
case
Istep : reg;
pc = 2 : readValue;
pc = 4 : readValue;
= 6 : readValue;
TRUE ©oreg;
esac;
write :=
case
Istep: FALSE;
TRUE: (pc =0 | pc =1 | pc 7 | pc = 8);
esac;
writeLocation :=
case
Istep: 0;
pc =0 : id;
pc =1 : 2;

LTL (SMV encoding): Peterson Mutex example Il|

pc =7 : 3
pc =8 : id;
TRUE : O0;
esac;
writeValue :=
case
Istep: O0;
pc =0 : 1;
pc =1 other;
pc =7 (reg>=MAX_VAL)?reg:(reg+1);
pc = 8 : H
TRUE : O0;
esac;
read :=
case
Istep: FALSE;
TRUE: (pc =2 | pc =4 | pc = 6);
esac;
readLocation :=
case
Istep: 0
pc = 2 : other;
pc =4 : 2;
pc =6 : 3;
TRUE : 0;
esac;
MODULE main

VAR
step: array MIN_P..MAXP of boolean;
write: array MIN_P..MAXP of boolean;
writeld: array MIN_P..MAXP of MIN.ID .. MAX.ID;
writeLocation: array MIN_P..MAX_P of MIN_LOC.. MAX_LOC;
writeValue: array MIN_P..MAXP of MIN_VAL.. MAX_VAL;

LTL (SMV encoding): Peterson Mutex example 1V

read: array MIN_P..MAXP of boolean;

readValue: array MIN_P..MAXP of MIN_VAL..MAXVAL;
readLocation: array MIN_P..MAX_P of MIN_LOC.. MAX_LOC;
proc: array MIN_P..MAXP of boolean;

procProcess: array MIN_P..MAXP of MIN_P.. MAXP;
procld: array MIN_P..MAXPP of MIN.ID.. MAX.ID;
procLocation: array MIN_P..MAX_P of MIN_LOC.. MAX_LOC;

VAR
[[repeatline %i=MIN_P..MAXP]]
p%i : Processor(%i, step[%i], write[%i], writeLocation[%i],
writeValue[%i], read[%i], readlLocation[%i], readValue[%i]);
[[/ repeatline]]
ASSIGN
[[repeatline %i=MIN_P..MAXP]] init(writeld[%i]) := 0;[[/repeatline]]

[[repeatline %i=MIN_P..MAXP]]
next(writeld[%i]) =
(write[%i] & (writeld[%i]<MAX.D)) ? (writeld[%i]+1) : writeld[%i];
[[/repeatline]]

#include(invariants)

—— First Test: CC
LTLSPEC
(

#include (spec—cc. Itl)

—— Property to check

d

(G !'((p0.pc=6) & (pl.pc=6)))

——EXPECTED: FALSE (counterexample <=> possible behavior)

LTL (SMV encoding): Peterson Mutex example V

——PROVEN (BMC CounterExample)

—— Second Test: PRAM
LTLSPEC
(

#include (spec—pram. Itl)

—— Property to check

—>

(G !'((p0.pc=6) & (pl.pc=6)))

——EXPECTED: FALSE (counterexample <=> possible behavior)
——PROVEN (BMC CounterExample)

—— Third Test: SC

LTLSPEC

#include (spec—sc. Itl)
)

—— Property to check
o

(G 1((p0.pc=6) & (p1.pc=6)))

L—EXPECTED: TRUE (no counterexample)
——PROVEN (BMC Depth 27)

	Introduction
	Weak Memory
	Example
	State of the Art
	Motivation

	Modelling approaches
	Testing as SAT
	Temporal Logic
	Operational Semantics
	State Transition System
	Comparison

	Conclusion
	Appendix

