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Example
Dekker’s mutex

Procedure p

1 x = 1;
2 while y=1 do
3 x = 0;
4 Sleep(time);
5 x = 1;

6 end
7 Critical Section;
8 x = 0;

Procedure q

1 y = 1;
2 while x=1 do
3 y = 0;
4 Sleep(time);
5 y = 1;

6 end
7 Critical Section;
8 y = 0;

goal: Only one process in critical section at a time.

violation if both processes read 0.
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Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

sequence:

result (x,y) = (?,?)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving
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Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1 Buf2
Mem

x: 0
y: 0

result (x,y) = (?,?)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors
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State of the Art
Modelling approaches

Textual

Litmus tests

Axiomatic

Operational

View-based

. . .
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State of the Art: Textual

Definition (PRAM)

Consider n processes P1, . . . ,Pn with a local memory M1, . . . ,Mn

each. Process k executes a read from location i “by performing a
normal read from location i” of its own memory Mk . Process k
executes a write to location i with value v “by performing a local
action and initializing a global action. Locally, it does a normal
write to [Mk ] at location i with value v . Globally, it sends a message
< i , v > to all the other processors.”
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State of the Art: Litmus Tests
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State of the Art: Axiomatic

Definition

An execution is TSO if there exists a memory order ≤ which respects:

Order: (w , i , x , v1) ≤ (w , j , y , v2) ∨ (w , j , y , v2) ≤ (w , i , x , v1)
Value:

val((r , i , a, x)) =val(Max≤[
{(w , j , a, y)∣(w , j , a, y) <PO (r , i , a, x)}∪
{(w , j , a, y)∣(w , j , a, y) ≤ (r , i , a, x)} ])

LoadOp: r ∈ (r , i ,∗,∗),o ∈ (∗, i ,∗,∗) r <PO o ⇒ r ≤ o

StoreStore: w1,w2 ∈ (write, i ,∗,∗) w1 <PO w2 ⇒ w1 ≤ w2
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State of the Art: Operational

module RefPRAM( [...] ) {
[...]
for(i = 0 .. P−1) do || {

always { // Dist: broadcasts writes to connected FIFOs & sends reads to own FIFO
if(reqMem[i] & !someFIFOfull[i]) {

emit(ackMem[i]);
if(writeMem[i]) { emit(doneMem[i]); }
for(j = 0 .. P−1) {

if((j==i) | writeMem[i]) {
FIFOpush[j ][ i ] = true;
FIFOinp[j ][ i ] = (writeMem[i], i , adrBus[i ], dataBus[i ]) ;

}
}

}
}
|| for(j = 0 .. P−1) do || { // FIFO

always { if(FIFOisfull[j ][ i ]) { emit(someFIFOfull[i]); } }
|| fifo : FIFO(FIFOpop[i][j ], FIFOpush[i ][ j ], FIFOisempty[i ][ j ], FIFOisfull [ i ][ j ], FIFOinp[i ][ j ], →

FIFOoutp[i ][ j ]) ;
}
|| always { // Arbiter (Simply choose from N components)

choose(o1 = 0 .. P−1) {
if(!FIFOisempty[i ][ o1]) {

memIn[i] = (true, FIFOoutp[i][o1]) ;
emit(FIFOpop[i][o1]);

}
}

}
[...]

|| memunit: MemUnit(memIn[i], readResult[i]) ;
|| always { // returns memory unit read result to connected process

if(readResult[ i ].0) {
dataBus[i ] = readResult[ i ].2;
emit(doneMem[i]);

}
}

}
}
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State of the Art: View-based

p q

Memory
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Motivation

Distribution

Consumer CPU, Distributed Computing, Cloud, Embedded

Modelling approaches

Different, incompatible, limited

Critical software

Embedded controllers, Operating system, . . .

⇒ Formal analysis
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Contributions

Approaches covering multiple models in a uniform way

1 Testing as SAT

2 Temporal Logic

3 Operational semantics

4 State transition system
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Testing Problem
Complexity

Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1) write(y,1)
read(y,0) read(x,0)

Complexity analysis

NP complete for many models
Testing is in NP (SAT)
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Testing Problem
SAT encoding

View-based definitions: Serial view

subset of operations

Encoding

Variables: execution, serial view
EXE(T ) : existence of execution

”writes-to” relation

SV (T ,O,<) : serial view property of execution

total, transitive, extends <

Experiments

Z3 SMT solver (SMT-LIBv2 encoding)
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Temporal Logic
Linear temporal logic

Temporal Logic well suited for concurrency

Linear temporal logic (LTL):
Gϕ, Fϕ, Xϕ, ϕUψ

Event variables:

Read, Write: Interface
Observed: Internal
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Temporal Logic
Example

Local consistency: Observe own writes immediately

G( w → ∀q Observedq(w) ) (1)

Slow consistency: Observe another’s writes to the same location
in the same order

G(Observed(w) → XG∄w ′<Pw Observed(w ′) ) (2)

Experiments: NuSMV, NuXMV model checker
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Operational Semantics: PRAM

∀p∃ <sv= SerialView (<P ∣(∗,∗,∗,p,∗) ∪ (w ,∗,∗,∗,∗))

Reference Machine

Correctness
Completeness

Applications

Simulation
Synthesis
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State Transition System

Semantics of programming language & memory model

State Σ = ⟨E ∣ S1, . . . ,Si , . . . ,Sn⟩

Structural operational semantics

α

⟨E ∣ S1, . . . ,Sp, . . . ,Sn⟩ ↦ ⟨E ′ ∣ S1, . . . ,S ′p, . . . ,Sn⟩
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State Transition System

E : environment suited to express different memory models

x: 3 4 8 7

p q,r

y: 0

p,q,r

z: 0 2

p,r q
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State Transition System

Reading

NextVar(e) = v ≠ � ∧ E(v ,p) = d ∧ e′ = e∣v
d

⟨E ∣ S1, . . . ,Sp ∶ x = e , . . . ,Sn⟩ ↦ ⟨E ∣ S1, . . . ,S ′p ∶ x = e’ , . . . ,Sn⟩

Writing (SC)

d ∈ Z ∧ v ∈ Vg ∧ Len(E , v) = i
∧ E ′ = Ins(MovAll(E , v , i + 1), v ,d , i + 1)

⟨E ∣ S1, . . . , v=d; , . . . ,Sn⟩ ↦ ⟨E ′ ∣ S1, . . . , nothing; , . . . ,Sn⟩
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Comparison

co
ve
ra
g
e

si
m
u
la
ti
o
n

st
at
e

st
at
e
sp
ac
e

SAT trace no - -
LTL program no min full
OpS program yes full1 optimized2

STS program yes small optimized

1including processor state
2only consistent states
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Conclusion

Modeling approaches for multitude of models

Testing Problem SAT encoding

Temporal Logic

Operational Semantics

State Transition System
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Thank you for your attention.
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SAT encoding I
(w , x ,1).(r , x ,2) ∣∣ (w , x ,2).(r , x ,1)

EXE(Tα) ∧ SV (Tα,<PO)

( d e c l a r e −fun ex ( I n t I n t ) Bool ) ; V a r a i b l e e x i , j
( d e c l a r e −fun s v ( I n t I n t ) Bool ) ; V a r i a b l e s v i , j
; ### E x e c u t i o n ########################################
; E x i s t s w r i t e f o r r e a d
( a s s e r t ( ex 0 3 ) ) ; wx1 −> r x 1
( a s s e r t ( ex 2 1 ) ) ; wx2 −> r x 2
; Only one w r i t e f o r r e a d ( same v a r i a b l e & data )
; > none , as o n l y one w r i t e matches r e a d
; ### S e r i a l V i e w s ######################################
; ## SV : f o r a l l (∗ ,∗ ,∗ ,∗ ,∗ ) , r e s p e c t i n g < PO
; T o t a l Order & AntiSymmetry
( a s s e r t ( x o r ( not ( sv 0 1) ) ( not ( sv 1 0 ) ) ) )
( a s s e r t ( x o r ( not ( sv 0 2) ) ( not ( sv 2 0 ) ) ) )
( a s s e r t ( x o r ( not ( sv 0 3) ) ( not ( sv 3 0 ) ) ) )
( a s s e r t ( x o r ( not ( sv 1 2) ) ( not ( sv 2 1 ) ) ) )
( a s s e r t ( x o r ( not ( sv 1 3) ) ( not ( sv 3 1 ) ) ) )
( a s s e r t ( x o r ( not ( sv 2 3) ) ( not ( sv 3 2 ) ) ) )
; T r a n s i t i v i t y
( a s s e r t (=> ( and ( sv 0 1) ( sv 1 2 ) ) ( sv 0 2) ) )
( a s s e r t (=> ( and ( sv 0 1) ( sv 1 3 ) ) ( sv 0 3) ) )
( a s s e r t (=> ( and ( sv 0 2) ( sv 2 1 ) ) ( sv 0 1) ) )
( a s s e r t (=> ( and ( sv 0 2) ( sv 2 3 ) ) ( sv 0 3) ) )
( a s s e r t (=> ( and ( sv 0 3) ( sv 3 1 ) ) ( sv 0 1) ) )
( a s s e r t (=> ( and ( sv 0 3) ( sv 3 2 ) ) ( sv 0 2) ) )
( a s s e r t (=> ( and ( sv 1 0) ( sv 0 2 ) ) ( sv 1 2) ) )
( a s s e r t (=> ( and ( sv 1 0) ( sv 0 3 ) ) ( sv 1 3) ) )
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( a s s e r t (=> ( and ( sv 1 2) ( sv 2 0 ) ) ( sv 1 0) ) )
( a s s e r t (=> ( and ( sv 1 2) ( sv 2 3 ) ) ( sv 1 3) ) )
( a s s e r t (=> ( and ( sv 1 3) ( sv 3 0 ) ) ( sv 1 0) ) )
( a s s e r t (=> ( and ( sv 1 3) ( sv 3 2 ) ) ( sv 1 2) ) )
( a s s e r t (=> ( and ( sv 2 0) ( sv 0 1 ) ) ( sv 2 1) ) )
( a s s e r t (=> ( and ( sv 2 0) ( sv 0 3 ) ) ( sv 2 3) ) )
( a s s e r t (=> ( and ( sv 2 1) ( sv 1 0 ) ) ( sv 2 0) ) )
( a s s e r t (=> ( and ( sv 2 1) ( sv 1 3 ) ) ( sv 2 3) ) )
( a s s e r t (=> ( and ( sv 2 3) ( sv 3 0 ) ) ( sv 2 0) ) )
( a s s e r t (=> ( and ( sv 2 3) ( sv 3 1 ) ) ( sv 2 1) ) )
( a s s e r t (=> ( and ( sv 3 0) ( sv 0 1 ) ) ( sv 3 1) ) )
( a s s e r t (=> ( and ( sv 3 0) ( sv 0 2 ) ) ( sv 3 2) ) )
( a s s e r t (=> ( and ( sv 3 1) ( sv 1 0 ) ) ( sv 3 0) ) )
( a s s e r t (=> ( and ( sv 3 1) ( sv 1 2 ) ) ( sv 3 2) ) )
( a s s e r t (=> ( and ( sv 3 2) ( sv 2 0 ) ) ( sv 3 0) ) )
( a s s e r t (=> ( and ( sv 3 2) ( sv 2 1 ) ) ( sv 3 1) ) )
; SV r e f i n e s < PO
( a s s e r t ( sv 0 1 ) ) ; wx1 < PO r x 2
( a s s e r t ( sv 2 3 ) ) ; wx2 < PO r x 1
; Wri tes −To i m p l i e s SV & no i n t e r m e d i a t e w r i t e
; wx1 −> r x 1
( a s s e r t ( o r ( not ( ex 0 3 ) ) ( sv 0 3 ) ) )
( a s s e r t ( o r ( not ( ex 0 3 ) ) ( not ( sv 0 0 ) ) ( not ( sv 0 3 ) ) ) )
( a s s e r t ( o r ( not ( ex 0 3 ) ) ( not ( sv 0 2 ) ) ( not ( sv 2 3 ) ) ) )
; wx2 −> r x 2
( a s s e r t ( o r ( not ( ex 2 1 ) ) ( sv 2 1 ) ) )
( a s s e r t ( o r ( not ( ex 2 1 ) ) ( not ( sv 2 0 ) ) ( not ( sv 0 1 ) ) ) )
( a s s e r t ( o r ( not ( ex 2 1 ) ) ( not ( sv 2 2 ) ) ( not ( sv 2 1 ) ) ) )
( check− s a t )
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− INVARIANTS −−

−− r e a d and w r i t e o n l y o c c u r i f p r o c e s s o r i s a c t i v e
[ [ r e p e a t l i n e %p=MIN P . . MAX P ] ]

INVAR ( ! s t e p [%p ] ) −> ( ! r e a d [%p ] & ! w r i t e [%p ] ) ;
[ [ / r e p e a t l i n e ] ]

−− r e a d and w r i t e n e v e r o c c u r a t t h e same t ime
[ [ r e p e a t l i n e %p=MIN P . . MAX P ] ]

INVAR ! ( w r i t e [%p ] & r e a d [%p ] ) ;
[ [ / r e p e a t l i n e ] ]

−− r e a d V a l u e i s u n d e f i n e d w h i l e no r e a d o c c u r s
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ]

INVAR ( ! r e a d [% i ] ) −> ( r e a d V a l u e [% i ]=UNDEFINED ) ;
[ [ / r e p e a t l i n e ] ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− F a i r n e s s : s t e p [ p ] has to h o l d i n f i n i t e l y o f t e n ( f o r a l l p r o c e s s o r s p )
[ [ r e p e a t l i n e %p=MIN P . . MAX P ] ]

JUSTICE s t e p [%p ] ;
[ [ / r e p e a t l i n e ] ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



LTL (SMV encoding): base I
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− P r o c e s s i n g C a u s a l i t y
(
[ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]
[ [ f o r a l l %i=MIN ID . . MAX ID ] ] [ [ f o r a l l %l=MIN LOC . . MAX LOC ] ]

( ( ! ( p r o c [%p ] & ( p r o c P r o c e s s [%p ] = %q )
& ( p r o c I d [%p ] = %i ) & ( p r o c L o c a t i o n [%p ] = %l ) ) )
U ( w r i t e [%q ] & ( w r i t e I d [%q ] = %i ) & ( w r i t e L o c a t i o n [%q ] = %l ) ) )
| G ( ! ( p r o c [%p ] & ( p r o c P r o c e s s [%p ] = %q )
& ( p r o c I d [%p ] = %i ) & ( p r o c L o c a t i o n [%p ] = %l ) ) )

[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− P r o c e s s i n g U n i q u e n e s s
& (G

[ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]
[ [ f o r a l l %i=MIN ID . . MAX ID ] ]

( p r o c [%p ] & ( p r o c P r o c e s s [%p ] = %q ) & ( p r o c I d [%p ] = %i ) )
−> X G ! ( p r o c [%p ] & ( p r o c P r o c e s s [%p ] = %q ) & ( p r o c I d [%p ] = %i ) )

[ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ] )

−− Read I n i t i a l
& ( [ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %l=MIN LOC . . MAX LOC ] ]

( ( r e a d [%p ] & ( r e a d L o c a t i o n [%p]=% l ) −> ( r e a d V a l u e [%p]=UNDEFINED ) )
U ( p r o c [%p ] & p r o c L o c a t i o n [%p]=% l ) )

| G( r e a d [%p ] & ( r e a d L o c a t i o n [%p]=% l ) −> ( r e a d V a l u e [%p]=UNDEFINED ) )
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ] )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Read C a u s a l i t y
& (G

[ [ f o r a l l %q=MIN P . . MAX P ] ] [ [ f o r a l l %i=MIN ID . . MAX ID ] ]
[ [ f o r a l l %l=MIN LOC . . MAX LOC ] ] [ [ f o r a l l %v=MIN VAL . . MAX VAL ] ]
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( w r i t e [%q ] & ( w r i t e I d [%q]=% i )
& ( w r i t e L o c a t i o n [%q]=% l ) & ( w r i t e V a l u e [%q]=%v ) )

−> G [ [ f o r a l l %p=MIN P . . MAX P ] ]
( p r o c [%p ] & ( p r o c P r o c e s s [%p ] = %q ) & ( p r o c I d [%p]=% i ) )
−> ( ( ( ( r e a d [%p ] & ( r e a d L o c a t i o n [%p]=% l ) )

−> r e a d V a l u e [%p]=%v )
U ( p r o c [%p ] & ( p r o c L o c a t i o n [%p]=% l )

& ( ( p r o c P r o c e s s [%p ] != %q ) | ( p r o c I d [%p ] != %i ) ) ) )
| ( G ( ( r e a d [%p ] &

( r e a d L o c a t i o n [%p]=% l ) ) −> r e a d V a l u e [%p]=%v ) ) )
[ [ / f o r a l l ] ]

[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ] )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− I n c l u d e Base Spec
(
#i n c l u d e ( spec−base . l t l )
)
−− L o c a l C a u s a l i t y
& ( [ [ f o r a l l %p=MIN P . . MAX P ] ]

G ( ( w r i t e [%p ] ) −>
( p r o c [%p ] & ( p r o c P r o c e s s [%p]=%p ) & ( p r o c I d [%p]= w r i t e I d [%p ] ) ) )

[ [ / f o r a l l ] ] )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− P e t e r s o n s Mutual E x c l u s i o n A l g o r i t h m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− LOCATIONS : f l a g 0 , f l a g 1 , turn , data

−− 0 0 : w r i t e ( 0 , 1 ) f l a g [ s e l f ] <− T
−− 0 1 : w r i t e ( 2 , 1 ) t u r n <− o t h e r
−− 0 2 : r e g = r e a d ( 1 ) i f ( ! f l a g [ o t h e r ] ) goto 6
−− 0 3 : i f ( r e g =0) goto 6 ”
−− 0 4 : r e g = r e a d ( 2 ) i f ( t u r n=o t h e r ) goto 2
−− 0 5 : i f ( r e g =1) goto 2 ”
−− 0 6 : r e g = r e a d ( 3 ) data++;
−− 0 7 : w r i t e ( 3 , r e g +1) ”
−− 0 8 : w r i t e ( 0 , 0 ) f l a g [ s e l f ] <− F
−− 0 9 : goto 9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#d e f i n e MIN P 0
#d e f i n e MAX P 1
#d e f i n e MIN LOC 0
#d e f i n e MAX LOC 3
#d e f i n e MIN VAL 0
#d e f i n e MAX VAL 2
#d e f i n e UNDEFINED 0
#d e f i n e MIN ID 0
#d e f i n e MAX ID 10

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− P r o c e s s o r −−

MODULE P r o c e s s o r ( id , s tep , w r i t e , w r i t e L o c a t i o n , w r i t e V a l u e , read ,
r e a d L o c a t i o n , r e a d V a l u e )
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VAR

r e g : MIN VAL . . MAX VAL ;
pc : 0 . . 9 ;
o t h e r : MIN P . . MAX P ;

ASSIGN
o t h e r := ( ( i d = 0 ) ? 1 : 0 ) ;
i n i t ( pc ) := 0 ;
n e x t ( pc ) :=

c a s e
! s t e p : pc ;
( pc = 3) & ( r e g = 0) : 6 ;
( pc = 5) & ( r e g != i d ) : 2 ;
pc >= 9 : 9 ;
TRUE : ( pc +1);

e s a c ;
i n i t ( r e g ) := UNDEFINED ;
n e x t ( r e g ) :=

c a s e
! s t e p : r e g ;
pc = 2 : r e a d V a l u e ;
pc = 4 : r e a d V a l u e ;
pc = 6 : r e a d V a l u e ;
TRUE : r e g ;

e s a c ;
w r i t e :=

c a s e
! s t e p : FALSE ;
TRUE: ( pc = 0 | pc = 1 | pc = 7 | pc = 8 ) ;

e s a c ;
w r i t e L o c a t i o n :=

c a s e
! s t e p : 0 ;
pc = 0 : i d ;
pc = 1 : 2 ;
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pc = 7 : 3 ;
pc = 8 : i d ;
TRUE : 0 ;

e s a c ;
w r i t e V a l u e :=

c a s e
! s t e p : 0 ;
pc = 0 : 1 ;
pc = 1 : o t h e r ;
pc = 7 : ( reg>=MAX VAL)? r e g : ( r e g +1);
pc = 8 : 0 ;
TRUE : 0 ;

e s a c ;
r e a d :=

c a s e
! s t e p : FALSE ;
TRUE: ( pc = 2 | pc = 4 | pc = 6 ) ;

e s a c ;
r e a d L o c a t i o n :=

c a s e
! s t e p : 0 ;
pc = 2 : o t h e r ;
pc = 4 : 2 ;
pc = 6 : 3 ;
TRUE : 0 ;

e s a c ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MODULE main
VAR

s t e p : a r r a y MIN P . . MAX P o f b o o l e a n ;
w r i t e : a r r a y MIN P . . MAX P o f b o o l e a n ;
w r i t e I d : a r r a y MIN P . . MAX P o f MIN ID . . MAX ID ;
w r i t e L o c a t i o n : a r r a y MIN P . . MAX P o f MIN LOC . . MAX LOC ;
w r i t e V a l u e : a r r a y MIN P . . MAX P o f MIN VAL . . MAX VAL ;
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r e a d : a r r a y MIN P . . MAX P o f b o o l e a n ;
r e a d V a l u e : a r r a y MIN P . . MAX P o f MIN VAL . . MAX VAL ;
r e a d L o c a t i o n : a r r a y MIN P . . MAX P o f MIN LOC . . MAX LOC ;
p r o c : a r r a y MIN P . . MAX P o f b o o l e a n ;
p r o c P r o c e s s : a r r a y MIN P . . MAX P o f MIN P . . MAX P ;
p r o c I d : a r r a y MIN P . . MAX P o f MIN ID . . MAX ID ;
p r o c L o c a t i o n : a r r a y MIN P . . MAX P o f MIN LOC . . MAX LOC ;

VAR
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ]

p%i : P r o c e s s o r (%i , s t e p [% i ] , w r i t e [% i ] , w r i t e L o c a t i o n [% i ] ,
w r i t e V a l u e [% i ] , r e a d [% i ] , r e a d L o c a t i o n [% i ] , r e a d V a l u e [% i ] ) ;

[ [ / r e p e a t l i n e ] ]
ASSIGN
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ] i n i t ( w r i t e I d [% i ] ) := 0 ; [ [ / r e p e a t l i n e ] ]
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ]

n e x t ( w r i t e I d [% i ] ) :=
( w r i t e [% i ] & ( w r i t e I d [% i ]<MAX ID ) ) ? ( w r i t e I d [% i ]+1) : w r i t e I d [% i ] ;

[ [ / r e p e a t l i n e ] ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#i n c l u d e ( i n v a r i a n t s )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− F i r s t Test : CC
LTLSPEC
(
#i n c l u d e ( spec−cc . l t l )
)
−− P r o p e r t y to check
−>
( G ! ( ( p0 . pc=6) & ( p1 . pc =6)) )
;
−−EXPECTED : FALSE ( c o u n t e r e x a m p l e <=> p o s s i b l e b e h a v i o r )
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−−PROVEN (BMC CounterExample )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Second Test : PRAM
LTLSPEC
(
#i n c l u d e ( spec−pram . l t l )
)
−− P r o p e r t y to check
−>
( G ! ( ( p0 . pc=6) & ( p1 . pc =6)) )
;
−−EXPECTED : FALSE ( c o u n t e r e x a m p l e <=> p o s s i b l e b e h a v i o r )
−−PROVEN (BMC CounterExample )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Thi rd Test : SC
LTLSPEC
(
#i n c l u d e ( spec−s c . l t l )
)
−− P r o p e r t y to check
−>
( G ! ( ( p0 . pc=6) & ( p1 . pc =6)) )
;
−−EXPECTED : TRUE ( no c o u n t e r e x a m p l e )
−−PROVEN (BMC Depth 27)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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