
INFORMATIK

Modelling Memory Consistency Models for Formal
Verification

Maximilian Senftleben

Embedded Systems Group
Department of Computer Science

TU Kaiserslautern

07.06.2019

INFORMATIK

Introduction Modelling approaches Conclusion

Overview

1 Introduction
Weak Memory
Example
State of the Art
Motivation

2 Modelling approaches
Testing as SAT
Temporal Logic
Operational Semantics
State Transition System
Comparison

3 Conclusion

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 2/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Introduction
Weak Memory Model

Sequential memory

Intuitive
Total order

Weak memory

Optimizations
More behavior
Potentially unexpected
Multitude of models

LOCAL

SLOW

CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO CAUSAL

PC-G PC-D

SC

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 3/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Introduction
Weak Memory Model

Sequential memory

Intuitive
Total order

Weak memory

Optimizations
More behavior
Potentially unexpected
Multitude of models

LOCAL

SLOW

CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO CAUSAL

PC-G PC-D

SC

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 3/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Introduction
Weak Memory Model

Sequential memory

Intuitive
Total order

Weak memory

Optimizations
More behavior
Potentially unexpected
Multitude of models

LOCAL

SLOW

CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO CAUSAL

PC-G PC-D

SC

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 3/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
Dekker’s mutex

Procedure p

1 x = 1;
2 while y=1 do
3 x = 0;
4 Sleep(time);
5 x = 1;

6 end
7 Critical Section;
8 x = 0;

Procedure q

1 y = 1;
2 while x=1 do
3 y = 0;
4 Sleep(time);
5 y = 1;

6 end
7 Critical Section;
8 y = 0;

goal: Only one process in critical section at a time.

violation if both processes read 0.

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 4/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

sequence:

result (x,y) = (?,?)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 5/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 1
y: 0

sequence: p0

result (x,y) = (?,?)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 5/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 1
y: 0

sequence: p0 p1

result (x,y) = (?,0)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 5/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 1
y: 1

sequence: p0 p1 q0

result (x,y) = (?,0)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 5/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 1
y: 1

sequence: p0 p1 q0 q1

result (x,y) = (1,0)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 5/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 1
y: 1

sequence: p0 p1 q0 q1

result (x,y) = (1,0)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 5/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
sequential consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 1
y: 1

sequence: p0 p1 q0 q1

result (x,y) = (1,0)

(0,1), (1,0) and (1,1) possible.
(0,0) not possible

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Mem

x: 0
y: 0

multiprocessor

same behavior as unicore:
sequential interleaving

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 5/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1 Buf2
Mem

x: 0
y: 0

result (x,y) = (?,?)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 6/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1

write(x,1)

Buf2
Mem

x: 0
y: 0

result (x,y) = (?,?)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 6/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1

write(x,1)

Buf2
Mem

x: 0
y: 0

result (x,y) = (?,0)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 6/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1

write(x,1)

Buf2

write(y,1)

Mem

x: 0
y: 0

result (x,y) = (?,0)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 6/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1

write(x,1)

Buf2

write(y,1)

Mem

x: 0
y: 0

result (x,y) = (0,0)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 6/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1

write(x,1)

Buf2

write(y,1)

Mem

x: 0
y: 0

result (x,y) = (0,0)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 6/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Example
weak consistency

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1

write(x,1)

Buf2

write(y,1)

Mem

x: 0
y: 0

result (x,y) = (0,0)

violates mutual exclusion

E.g. TSO consistency in SPARC, x86 processors

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 6/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State of the Art
Modelling approaches

Textual

Litmus tests

Axiomatic

Operational

View-based

. . .

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 7/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State of the Art: Textual

Definition (PRAM)

Consider n processes P1, . . . ,Pn with a local memory M1, . . . ,Mn

each. Process k executes a read from location i “by performing a
normal read from location i” of its own memory Mk . Process k
executes a write to location i with value v “by performing a local
action and initializing a global action. Locally, it does a normal
write to [Mk] at location i with value v . Globally, it sends a message
< i , v > to all the other processors.”

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 8/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State of the Art: Litmus Tests

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 9/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State of the Art: Axiomatic

Definition

An execution is TSO if there exists a memory order ≤ which respects:

Order: (w , i , x , v1) ≤ (w , j , y , v2) ∨ (w , j , y , v2) ≤ (w , i , x , v1)
Value:

val((r , i , a, x)) =val(Max≤[
{(w , j , a, y)∣(w , j , a, y) <PO (r , i , a, x)}∪
{(w , j , a, y)∣(w , j , a, y) ≤ (r , i , a, x)}])

LoadOp: r ∈ (r , i ,∗,∗),o ∈ (∗, i ,∗,∗) r <PO o ⇒ r ≤ o

StoreStore: w1,w2 ∈ (write, i ,∗,∗) w1 <PO w2 ⇒ w1 ≤ w2

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 10/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State of the Art: Operational

module RefPRAM([...]) {
[...]
for(i = 0 .. P−1) do || {

always { // Dist: broadcasts writes to connected FIFOs & sends reads to own FIFO
if(reqMem[i] & !someFIFOfull[i]) {

emit(ackMem[i]);
if(writeMem[i]) { emit(doneMem[i]); }
for(j = 0 .. P−1) {

if((j==i) | writeMem[i]) {
FIFOpush[j][i] = true;
FIFOinp[j][i] = (writeMem[i], i , adrBus[i], dataBus[i]) ;

}
}

}
}
|| for(j = 0 .. P−1) do || { // FIFO

always { if(FIFOisfull[j][i]) { emit(someFIFOfull[i]); } }
|| fifo : FIFO(FIFOpop[i][j], FIFOpush[i][j], FIFOisempty[i][j], FIFOisfull [i][j], FIFOinp[i][j], →

FIFOoutp[i][j]) ;
}
|| always { // Arbiter (Simply choose from N components)

choose(o1 = 0 .. P−1) {
if(!FIFOisempty[i][o1]) {

memIn[i] = (true, FIFOoutp[i][o1]) ;
emit(FIFOpop[i][o1]);

}
}

}
[...]

|| memunit: MemUnit(memIn[i], readResult[i]) ;
|| always { // returns memory unit read result to connected process

if(readResult[i].0) {
dataBus[i] = readResult[i].2;
emit(doneMem[i]);

}
}

}
}

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 11/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State of the Art: View-based

p q

Memory

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 12/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State of the Art: View-based

p q

Memory

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 12/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Motivation

Distribution

Consumer CPU, Distributed Computing, Cloud, Embedded

Modelling approaches

Different, incompatible, limited

Critical software

Embedded controllers, Operating system, . . .

⇒ Formal analysis

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 13/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Motivation

Distribution

Consumer CPU, Distributed Computing, Cloud, Embedded

Modelling approaches

Different, incompatible, limited

Critical software

Embedded controllers, Operating system, . . .

⇒ Formal analysis

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 13/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Contributions

Approaches covering multiple models in a uniform way

1 Testing as SAT

2 Temporal Logic

3 Operational semantics

4 State transition system

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 14/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Contributions

Approaches covering multiple models in a uniform way

1 Testing as SAT

2 Temporal Logic

3 Operational semantics

4 State transition system

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 14/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Testing Problem
Complexity

Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1) write(y,1)
read(y,0) read(x,0)

Complexity analysis

NP complete for many models
Testing is in NP (SAT)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 15/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Testing Problem
Complexity

Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1) write(y,1)
read(y,0) read(x,0)

Complexity analysis

NP complete for many models
Testing is in NP (SAT)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 15/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Testing Problem
Complexity

Testing problem:
Is memory trace consistent with memory model?

P Q
write(x,1) write(y,1)
read(y,0) read(x,0)

Complexity analysis

NP complete for many models
Testing is in NP (SAT)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 15/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Testing Problem
SAT encoding

View-based definitions: Serial view

subset of operations

Encoding

Variables: execution, serial view
EXE(T) : existence of execution

”writes-to” relation

SV (T ,O,<) : serial view property of execution

total, transitive, extends <

Experiments

Z3 SMT solver (SMT-LIBv2 encoding)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 16/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Testing Problem
SAT encoding

View-based definitions: Serial view

subset of operations

Encoding

Variables: execution, serial view
EXE(T) : existence of execution

”writes-to” relation

SV (T ,O,<) : serial view property of execution

total, transitive, extends <

Experiments

Z3 SMT solver (SMT-LIBv2 encoding)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 16/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Testing Problem
SAT encoding

View-based definitions: Serial view

subset of operations

Encoding

Variables: execution, serial view
EXE(T) : existence of execution

”writes-to” relation

SV (T ,O,<) : serial view property of execution

total, transitive, extends <

Experiments

Z3 SMT solver (SMT-LIBv2 encoding)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 16/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Testing Problem
SAT encoding

View-based definitions: Serial view

subset of operations

Encoding

Variables: execution, serial view
EXE(T) : existence of execution

”writes-to” relation

SV (T ,O,<) : serial view property of execution

total, transitive, extends <

Experiments

Z3 SMT solver (SMT-LIBv2 encoding)

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 16/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Temporal Logic
Linear temporal logic

Temporal Logic well suited for concurrency

Linear temporal logic (LTL):
Gϕ, Fϕ, Xϕ, ϕUψ

Event variables:

Read, Write: Interface
Observed: Internal

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 17/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Temporal Logic
Linear temporal logic

Temporal Logic well suited for concurrency

Linear temporal logic (LTL):
Gϕ, Fϕ, Xϕ, ϕUψ

Event variables:

Read, Write: Interface
Observed: Internal

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 17/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Temporal Logic
Linear temporal logic

Temporal Logic well suited for concurrency

Linear temporal logic (LTL):
Gϕ, Fϕ, Xϕ, ϕUψ

Event variables:

Read, Write: Interface
Observed: Internal

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 17/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Temporal Logic
Example

Local consistency: Observe own writes immediately

G(w → ∀q Observedq(w)) (1)

Slow consistency: Observe another’s writes to the same location
in the same order

G(Observed(w) → XG∄w ′<Pw Observed(w ′)) (2)

Experiments: NuSMV, NuXMV model checker

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 18/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Temporal Logic
Example

Local consistency: Observe own writes immediately

G(w → ∀q Observedq(w)) (1)

Slow consistency: Observe another’s writes to the same location
in the same order

G(Observed(w) → XG∄w ′<Pw Observed(w ′)) (2)

Experiments: NuSMV, NuXMV model checker

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 18/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Operational Semantics: PRAM

∀p∃ <sv= SerialView (<P ∣(∗,∗,∗,p,∗) ∪ (w ,∗,∗,∗,∗))

Reference Machine

Correctness
Completeness

Applications

Simulation
Synthesis

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 19/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Operational Semantics: PRAM

∀p∃ <sv= SerialView (<P ∣(∗,∗,∗,p,∗) ∪ (w ,∗,∗,∗,∗))

Reference Machine

Correctness
Completeness

Applications

Simulation
Synthesis

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 19/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State Transition System

Semantics of programming language & memory model

State Σ = ⟨E ∣ S1, . . . ,Si , . . . ,Sn⟩

Structural operational semantics

α

⟨E ∣ S1, . . . ,Sp, . . . ,Sn⟩ ↦ ⟨E ′ ∣ S1, . . . ,S ′p, . . . ,Sn⟩

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 20/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State Transition System

Semantics of programming language & memory model

State Σ = ⟨E ∣ S1, . . . ,Si , . . . ,Sn⟩

Structural operational semantics

α

⟨E ∣ S1, . . . ,Sp, . . . ,Sn⟩ ↦ ⟨E ′ ∣ S1, . . . ,S ′p, . . . ,Sn⟩

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 20/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State Transition System

Semantics of programming language & memory model

State Σ = ⟨E ∣ S1, . . . ,Si , . . . ,Sn⟩

Structural operational semantics

α

⟨E ∣ S1, . . . ,Sp, . . . ,Sn⟩ ↦ ⟨E ′ ∣ S1, . . . ,S ′p, . . . ,Sn⟩

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 20/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State Transition System

E : environment suited to express different memory models

x: 3 4 8 7

p q,r

y: 0

p,q,r

z: 0 2

p,r q

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 21/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

State Transition System

Reading

NextVar(e) = v ≠ � ∧ E(v ,p) = d ∧ e′ = e∣v
d

⟨E ∣ S1, . . . ,Sp ∶ x = e , . . . ,Sn⟩ ↦ ⟨E ∣ S1, . . . ,S ′p ∶ x = e’ , . . . ,Sn⟩

Writing (SC)

d ∈ Z ∧ v ∈ Vg ∧ Len(E , v) = i
∧ E ′ = Ins(MovAll(E , v , i + 1), v ,d , i + 1)

⟨E ∣ S1, . . . , v=d; , . . . ,Sn⟩ ↦ ⟨E ′ ∣ S1, . . . , nothing; , . . . ,Sn⟩

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 22/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Comparison

co
ve
ra
g
e

si
m
u
la
ti
o
n

st
at
e

st
at
e
sp
ac
e

SAT trace no - -
LTL program no min full
OpS program yes full1 optimized2

STS program yes small optimized

1including processor state
2only consistent states

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 23/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Conclusion

Modeling approaches for multitude of models

Testing Problem SAT encoding

Temporal Logic

Operational Semantics

State Transition System

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 24/ 25

INFORMATIK

Introduction Modelling approaches Conclusion

Thank you for your attention.

Maximilian Senftleben Modelling Memory Consistency Models for Formal Verification 07.06.2019 25/ 25

SAT encoding I
(w , x ,1).(r , x ,2) ∣∣ (w , x ,2).(r , x ,1)

EXE(Tα) ∧ SV (Tα,<PO)

(d e c l a r e −fun ex (I n t I n t) Bool) ; V a r a i b l e e x i , j
(d e c l a r e −fun s v (I n t I n t) Bool) ; V a r i a b l e s v i , j
; ### E x e c u t i o n ##
; E x i s t s w r i t e f o r r e a d
(a s s e r t (ex 0 3)) ; wx1 −> r x 1
(a s s e r t (ex 2 1)) ; wx2 −> r x 2
; Only one w r i t e f o r r e a d (same v a r i a b l e & data)
; > none , as o n l y one w r i t e matches r e a d
; ### S e r i a l V i e w s ######################################
; ## SV : f o r a l l (∗ ,∗ ,∗ ,∗ ,∗) , r e s p e c t i n g < PO
; T o t a l Order & AntiSymmetry
(a s s e r t (x o r (not (sv 0 1)) (not (sv 1 0))))
(a s s e r t (x o r (not (sv 0 2)) (not (sv 2 0))))
(a s s e r t (x o r (not (sv 0 3)) (not (sv 3 0))))
(a s s e r t (x o r (not (sv 1 2)) (not (sv 2 1))))
(a s s e r t (x o r (not (sv 1 3)) (not (sv 3 1))))
(a s s e r t (x o r (not (sv 2 3)) (not (sv 3 2))))
; T r a n s i t i v i t y
(a s s e r t (=> (and (sv 0 1) (sv 1 2)) (sv 0 2)))
(a s s e r t (=> (and (sv 0 1) (sv 1 3)) (sv 0 3)))
(a s s e r t (=> (and (sv 0 2) (sv 2 1)) (sv 0 1)))
(a s s e r t (=> (and (sv 0 2) (sv 2 3)) (sv 0 3)))
(a s s e r t (=> (and (sv 0 3) (sv 3 1)) (sv 0 1)))
(a s s e r t (=> (and (sv 0 3) (sv 3 2)) (sv 0 2)))
(a s s e r t (=> (and (sv 1 0) (sv 0 2)) (sv 1 2)))
(a s s e r t (=> (and (sv 1 0) (sv 0 3)) (sv 1 3)))

SAT encoding II

(a s s e r t (=> (and (sv 1 2) (sv 2 0)) (sv 1 0)))
(a s s e r t (=> (and (sv 1 2) (sv 2 3)) (sv 1 3)))
(a s s e r t (=> (and (sv 1 3) (sv 3 0)) (sv 1 0)))
(a s s e r t (=> (and (sv 1 3) (sv 3 2)) (sv 1 2)))
(a s s e r t (=> (and (sv 2 0) (sv 0 1)) (sv 2 1)))
(a s s e r t (=> (and (sv 2 0) (sv 0 3)) (sv 2 3)))
(a s s e r t (=> (and (sv 2 1) (sv 1 0)) (sv 2 0)))
(a s s e r t (=> (and (sv 2 1) (sv 1 3)) (sv 2 3)))
(a s s e r t (=> (and (sv 2 3) (sv 3 0)) (sv 2 0)))
(a s s e r t (=> (and (sv 2 3) (sv 3 1)) (sv 2 1)))
(a s s e r t (=> (and (sv 3 0) (sv 0 1)) (sv 3 1)))
(a s s e r t (=> (and (sv 3 0) (sv 0 2)) (sv 3 2)))
(a s s e r t (=> (and (sv 3 1) (sv 1 0)) (sv 3 0)))
(a s s e r t (=> (and (sv 3 1) (sv 1 2)) (sv 3 2)))
(a s s e r t (=> (and (sv 3 2) (sv 2 0)) (sv 3 0)))
(a s s e r t (=> (and (sv 3 2) (sv 2 1)) (sv 3 1)))
; SV r e f i n e s < PO
(a s s e r t (sv 0 1)) ; wx1 < PO r x 2
(a s s e r t (sv 2 3)) ; wx2 < PO r x 1
; Wri tes −To i m p l i e s SV & no i n t e r m e d i a t e w r i t e
; wx1 −> r x 1
(a s s e r t (o r (not (ex 0 3)) (sv 0 3)))
(a s s e r t (o r (not (ex 0 3)) (not (sv 0 0)) (not (sv 0 3))))
(a s s e r t (o r (not (ex 0 3)) (not (sv 0 2)) (not (sv 2 3))))
; wx2 −> r x 2
(a s s e r t (o r (not (ex 2 1)) (sv 2 1)))
(a s s e r t (o r (not (ex 2 1)) (not (sv 2 0)) (not (sv 0 1))))
(a s s e r t (o r (not (ex 2 1)) (not (sv 2 2)) (not (sv 2 1))))
(check− s a t)

LTL (SMV encoding): invariants I

−−

−− INVARIANTS −−

−− r e a d and w r i t e o n l y o c c u r i f p r o c e s s o r i s a c t i v e
[[r e p e a t l i n e %p=MIN P . . MAX P]]

INVAR (! s t e p [%p]) −> (! r e a d [%p] & ! w r i t e [%p]) ;
[[/ r e p e a t l i n e]]

−− r e a d and w r i t e n e v e r o c c u r a t t h e same t ime
[[r e p e a t l i n e %p=MIN P . . MAX P]]

INVAR ! (w r i t e [%p] & r e a d [%p]) ;
[[/ r e p e a t l i n e]]

−− r e a d V a l u e i s u n d e f i n e d w h i l e no r e a d o c c u r s
[[r e p e a t l i n e %i=MIN P . . MAX P]]

INVAR (! r e a d [% i]) −> (r e a d V a l u e [% i]=UNDEFINED) ;
[[/ r e p e a t l i n e]]

−−

−− F a i r n e s s : s t e p [p] has to h o l d i n f i n i t e l y o f t e n (f o r a l l p r o c e s s o r s p)
[[r e p e a t l i n e %p=MIN P . . MAX P]]

JUSTICE s t e p [%p] ;
[[/ r e p e a t l i n e]]
−−

LTL (SMV encoding): base I
−−

−− P r o c e s s i n g C a u s a l i t y
(
[[f o r a l l %p=MIN P . . MAX P]] [[f o r a l l %q=MIN P . . MAX P]]
[[f o r a l l %i=MIN ID . . MAX ID]] [[f o r a l l %l=MIN LOC . . MAX LOC]]

((! (p r o c [%p] & (p r o c P r o c e s s [%p] = %q)
& (p r o c I d [%p] = %i) & (p r o c L o c a t i o n [%p] = %l)))
U (w r i t e [%q] & (w r i t e I d [%q] = %i) & (w r i t e L o c a t i o n [%q] = %l)))
| G (! (p r o c [%p] & (p r o c P r o c e s s [%p] = %q)
& (p r o c I d [%p] = %i) & (p r o c L o c a t i o n [%p] = %l)))

[[/ f o r a l l]] [[/ f o r a l l]]
[[/ f o r a l l]] [[/ f o r a l l]]
)
−−

−− P r o c e s s i n g U n i q u e n e s s
& (G

[[f o r a l l %p=MIN P . . MAX P]] [[f o r a l l %q=MIN P . . MAX P]]
[[f o r a l l %i=MIN ID . . MAX ID]]

(p r o c [%p] & (p r o c P r o c e s s [%p] = %q) & (p r o c I d [%p] = %i))
−> X G ! (p r o c [%p] & (p r o c P r o c e s s [%p] = %q) & (p r o c I d [%p] = %i))

[[/ f o r a l l]]
[[/ f o r a l l]] [[/ f o r a l l]])

−− Read I n i t i a l
& ([[f o r a l l %p=MIN P . . MAX P]] [[f o r a l l %l=MIN LOC . . MAX LOC]]

((r e a d [%p] & (r e a d L o c a t i o n [%p]=% l) −> (r e a d V a l u e [%p]=UNDEFINED))
U (p r o c [%p] & p r o c L o c a t i o n [%p]=% l))

| G(r e a d [%p] & (r e a d L o c a t i o n [%p]=% l) −> (r e a d V a l u e [%p]=UNDEFINED))
[[/ f o r a l l]] [[/ f o r a l l]])
−−

−− Read C a u s a l i t y
& (G

[[f o r a l l %q=MIN P . . MAX P]] [[f o r a l l %i=MIN ID . . MAX ID]]
[[f o r a l l %l=MIN LOC . . MAX LOC]] [[f o r a l l %v=MIN VAL . . MAX VAL]]

LTL (SMV encoding): base II

(w r i t e [%q] & (w r i t e I d [%q]=% i)
& (w r i t e L o c a t i o n [%q]=% l) & (w r i t e V a l u e [%q]=%v))

−> G [[f o r a l l %p=MIN P . . MAX P]]
(p r o c [%p] & (p r o c P r o c e s s [%p] = %q) & (p r o c I d [%p]=% i))
−> ((((r e a d [%p] & (r e a d L o c a t i o n [%p]=% l))

−> r e a d V a l u e [%p]=%v)
U (p r o c [%p] & (p r o c L o c a t i o n [%p]=% l)

& ((p r o c P r o c e s s [%p] != %q) | (p r o c I d [%p] != %i))))
| (G ((r e a d [%p] &

(r e a d L o c a t i o n [%p]=% l)) −> r e a d V a l u e [%p]=%v)))
[[/ f o r a l l]]

[[/ f o r a l l]] [[/ f o r a l l]]
[[/ f o r a l l]] [[/ f o r a l l]])

−−

LTL (SMV encoding): local consistency I

−−

−− I n c l u d e Base Spec
(
#i n c l u d e (spec−base . l t l)
)
−− L o c a l C a u s a l i t y
& ([[f o r a l l %p=MIN P . . MAX P]]

G ((w r i t e [%p]) −>
(p r o c [%p] & (p r o c P r o c e s s [%p]=%p) & (p r o c I d [%p]= w r i t e I d [%p])))

[[/ f o r a l l]])
−−

LTL (SMV encoding): Peterson Mutex example I
−−

−− P e t e r s o n s Mutual E x c l u s i o n A l g o r i t h m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−

−− LOCATIONS : f l a g 0 , f l a g 1 , turn , data

−− 0 0 : w r i t e (0 , 1) f l a g [s e l f] <− T
−− 0 1 : w r i t e (2 , 1) t u r n <− o t h e r
−− 0 2 : r e g = r e a d (1) i f (! f l a g [o t h e r]) goto 6
−− 0 3 : i f (r e g =0) goto 6 ”
−− 0 4 : r e g = r e a d (2) i f (t u r n=o t h e r) goto 2
−− 0 5 : i f (r e g =1) goto 2 ”
−− 0 6 : r e g = r e a d (3) data++;
−− 0 7 : w r i t e (3 , r e g +1) ”
−− 0 8 : w r i t e (0 , 0) f l a g [s e l f] <− F
−− 0 9 : goto 9

−−

#d e f i n e MIN P 0
#d e f i n e MAX P 1
#d e f i n e MIN LOC 0
#d e f i n e MAX LOC 3
#d e f i n e MIN VAL 0
#d e f i n e MAX VAL 2
#d e f i n e UNDEFINED 0
#d e f i n e MIN ID 0
#d e f i n e MAX ID 10

−−

−− P r o c e s s o r −−

MODULE P r o c e s s o r (id , s tep , w r i t e , w r i t e L o c a t i o n , w r i t e V a l u e , read ,
r e a d L o c a t i o n , r e a d V a l u e)

LTL (SMV encoding): Peterson Mutex example II
VAR

r e g : MIN VAL . . MAX VAL ;
pc : 0 . . 9 ;
o t h e r : MIN P . . MAX P ;

ASSIGN
o t h e r := ((i d = 0) ? 1 : 0) ;
i n i t (pc) := 0 ;
n e x t (pc) :=

c a s e
! s t e p : pc ;
(pc = 3) & (r e g = 0) : 6 ;
(pc = 5) & (r e g != i d) : 2 ;
pc >= 9 : 9 ;
TRUE : (pc +1);

e s a c ;
i n i t (r e g) := UNDEFINED ;
n e x t (r e g) :=

c a s e
! s t e p : r e g ;
pc = 2 : r e a d V a l u e ;
pc = 4 : r e a d V a l u e ;
pc = 6 : r e a d V a l u e ;
TRUE : r e g ;

e s a c ;
w r i t e :=

c a s e
! s t e p : FALSE ;
TRUE: (pc = 0 | pc = 1 | pc = 7 | pc = 8) ;

e s a c ;
w r i t e L o c a t i o n :=

c a s e
! s t e p : 0 ;
pc = 0 : i d ;
pc = 1 : 2 ;

LTL (SMV encoding): Peterson Mutex example III
pc = 7 : 3 ;
pc = 8 : i d ;
TRUE : 0 ;

e s a c ;
w r i t e V a l u e :=

c a s e
! s t e p : 0 ;
pc = 0 : 1 ;
pc = 1 : o t h e r ;
pc = 7 : (reg>=MAX VAL)? r e g : (r e g +1);
pc = 8 : 0 ;
TRUE : 0 ;

e s a c ;
r e a d :=

c a s e
! s t e p : FALSE ;
TRUE: (pc = 2 | pc = 4 | pc = 6) ;

e s a c ;
r e a d L o c a t i o n :=

c a s e
! s t e p : 0 ;
pc = 2 : o t h e r ;
pc = 4 : 2 ;
pc = 6 : 3 ;
TRUE : 0 ;

e s a c ;
−−

MODULE main
VAR

s t e p : a r r a y MIN P . . MAX P o f b o o l e a n ;
w r i t e : a r r a y MIN P . . MAX P o f b o o l e a n ;
w r i t e I d : a r r a y MIN P . . MAX P o f MIN ID . . MAX ID ;
w r i t e L o c a t i o n : a r r a y MIN P . . MAX P o f MIN LOC . . MAX LOC ;
w r i t e V a l u e : a r r a y MIN P . . MAX P o f MIN VAL . . MAX VAL ;

LTL (SMV encoding): Peterson Mutex example IV
r e a d : a r r a y MIN P . . MAX P o f b o o l e a n ;
r e a d V a l u e : a r r a y MIN P . . MAX P o f MIN VAL . . MAX VAL ;
r e a d L o c a t i o n : a r r a y MIN P . . MAX P o f MIN LOC . . MAX LOC ;
p r o c : a r r a y MIN P . . MAX P o f b o o l e a n ;
p r o c P r o c e s s : a r r a y MIN P . . MAX P o f MIN P . . MAX P ;
p r o c I d : a r r a y MIN P . . MAX P o f MIN ID . . MAX ID ;
p r o c L o c a t i o n : a r r a y MIN P . . MAX P o f MIN LOC . . MAX LOC ;

VAR
[[r e p e a t l i n e %i=MIN P . . MAX P]]

p%i : P r o c e s s o r (%i , s t e p [% i] , w r i t e [% i] , w r i t e L o c a t i o n [% i] ,
w r i t e V a l u e [% i] , r e a d [% i] , r e a d L o c a t i o n [% i] , r e a d V a l u e [% i]) ;

[[/ r e p e a t l i n e]]
ASSIGN
[[r e p e a t l i n e %i=MIN P . . MAX P]] i n i t (w r i t e I d [% i]) := 0 ; [[/ r e p e a t l i n e]]
[[r e p e a t l i n e %i=MIN P . . MAX P]]

n e x t (w r i t e I d [% i]) :=
(w r i t e [% i] & (w r i t e I d [% i]<MAX ID)) ? (w r i t e I d [% i]+1) : w r i t e I d [% i] ;

[[/ r e p e a t l i n e]]

−−

#i n c l u d e (i n v a r i a n t s)

−−

−− F i r s t Test : CC
LTLSPEC
(
#i n c l u d e (spec−cc . l t l)
)
−− P r o p e r t y to check
−>
(G ! ((p0 . pc=6) & (p1 . pc =6)))
;
−−EXPECTED : FALSE (c o u n t e r e x a m p l e <=> p o s s i b l e b e h a v i o r)

LTL (SMV encoding): Peterson Mutex example V

−−PROVEN (BMC CounterExample)
−−

−− Second Test : PRAM
LTLSPEC
(
#i n c l u d e (spec−pram . l t l)
)
−− P r o p e r t y to check
−>
(G ! ((p0 . pc=6) & (p1 . pc =6)))
;
−−EXPECTED : FALSE (c o u n t e r e x a m p l e <=> p o s s i b l e b e h a v i o r)
−−PROVEN (BMC CounterExample)
−−

−− Thi rd Test : SC
LTLSPEC
(
#i n c l u d e (spec−s c . l t l)
)
−− P r o p e r t y to check
−>
(G ! ((p0 . pc=6) & (p1 . pc =6)))
;
−−EXPECTED : TRUE (no c o u n t e r e x a m p l e)
−−PROVEN (BMC Depth 27)
−−

	Introduction
	Weak Memory
	Example
	State of the Art
	Motivation

	Modelling approaches
	Testing as SAT
	Temporal Logic
	Operational Semantics
	State Transition System
	Comparison

	Conclusion
	Appendix

