Evaluation of Dataflow Process Networks Mapping on
Multi-core Processors

Tania Shazadi
MSc. Computer Science
Supervisor & Examiner: Prof. Dr. Klaus Schneider
Second Supervisor: Yu Bai

9th December, 2015

Outline

Motivation of the Research
Problem Statement

Mapping Techniques
Experiments and Results
Conclusion and Future Work

Motivation

Several models of computation (MoC) have been developed
Synchronous models are particularly well suited for analysis
Translating them into a dataflow process network for efficient synthesis
Desynchronization of synchronous systems

Mapping of DPN on a multicore architecture is left

Problem Statement

“Evaluation of Dataflow Process Networks Mapping on Multi-core Processors”

e Dataflow process network model
e Mapping techniques
e Architecture model

Experimental Setup

e Language:
For the representation of DPNs: CAL
e Tool:
For the compilation of DPN applications: Orcc
e Mapping/partitioning techniques:
Partitioning the DPN into as many threads as the processor has cores
e Scheduling techniques:
Scheduling the processes of one partition into a single thread that can then run on a core

CAL

e CALis an actor language

e Developed by Eker and Janneck at U.C. Berkeley

e A complete programming language for design and implementation of embedded software
and FPGAs (field programmable gate array applications)

ORCC
e Open RVC-CAL Compiler (Orcc) is a plug-in in Eclipse
e Supports RVC-CAL code
e RVC-CAL is a subset of CAL that is standardized along MPEG
e Can compile RVC-CAL code for various platforms, such as C, Jade, TTA, and Xronos Verilog

Mapping Techniques

MR: METIS Recursive graph partition mapping

MKCV: METIS KWay graph partition mapping (Optimize Com-
munication volume)

MKEC: METIS KWay graph partition mapping (Optimize Edge-cut)
WLB: Weighted Load Balancing

RR: A simple Round-Robin mapping

KLR: Kernighan Lin Refinement Weighted Load Balancing

Metis Partitioning Process

Multilevel partitioning

Coarsening phase

Uncoarsening phase

6, &>

Initial partitioning phase

Continued..,

-

|n|'.|.'.| Fartitioning

Enxrr:-c I::rEFIh

MR

first bis=ection

An example of recursive-bisection graph partitioning

10

MKCV

Example of reduced Inter-node communication before graph partitioning

11

Continued..,

Reduced Inter-node communication after graph partitioning

12

Maximum Edge-cut

Minimum Edge-cut

13

RR

@

An example of RR mapping

2(®

14

WLB

Fartitiorn 1
Partition 2

load balance: 100 9%
(weight of cut edges: 4

Equal number of nodes within each partition

15

KLR

An example of KLR graph partitioning

16

Continued..,

Step 1: Initialization.

Let the 1nitial partition be a random division of vertices
into the partition A={2,3,4} and B={1,5,6}.

A=A={234), and B =B={156).

Continued..,

Step 2: Compute [D)—values.

18

Continued..,

Step 3: Compute gains.

g21 = Do +D1 — 2¢c21 = (—1) + (+1) — 2(1) =
gon — Do | Dy 205 —(1) | (1G) 2(0) —
g26 — D2+ Dg —2e05 — {—1) + (- 10) — 2(0) —
gz g gy Pegp (LY o HL) 20—
gss = D3 + Dy — 2¢35 = (—1) + (+0) — 2(0) =

g3z — D3+ Dg — 2¢c3¢ = (—1) + (+0) — 2(0) =

ga1 = Da + D1 — 2¢41 = (+1) + (+1) — 2(0) =
gas — Da + Dg — 2¢45 = (+1) + (+0) — 2(1) = —1
gag — Dy + Dg — 2¢c46 = (+1) + (H0) — 2(1) = —1

The largest g value is g41- (a1, b1) is (4, 1), the gain
ga1 = g1= 2, and
AT — A (A =23}, B — B {1} — {5,6}

Continued..,

Step 4: Update D—values of nodes connected to (4,1).

The vertices connected to (4.1) are vertex (2) in set A’
and vertices (5,6) in set B’. The new D —values for
vertices of A’ and B’ are given by

Do = Do+ 2co4 — 2¢91 = —1+2(1 —1) = —1
D;:-,:D5—1—2651—2654:—1—U+2(U—1):—2
D;;:D6+2C51—2654:—1—04—2(0—1):—2

Continued..,

Step 5: Determine k.

We see that g1 = +2, g1 + g2 = —1, and
g1+ g2+ g3 = 0.

The value of k that results in maximum & is 1.

Therefore, X = {a1} = {4} andY = {b1} = {1}.

The new partition that results from moving X to B and Y
to Ais, A={1,2,3} and B = {4,5,6}.

The entire procedure is repeated again with this new
partition as the initial partition.

21

METIS Library

e A Cprogram which can partition a graph, a finite element mesh, or reorder a sparse matrix
Can be called from C/C++ and Fortran

e For large graph one may require machines with extra memory, example - 64 Gbytes of
memory instead of 8 Gbytes

Other libraries: Chaco (Sandia), Scotch (INRIA), Jostle (now commercialized), Zoltan (Sandia)

22

Continued..,

Associated executable programs with the METIS library

Kmetis or pmetis, for partitioning the nodes of a graph

Partdmesh or partnmesh, for partitioning the elements of a finite element mesh
Oemetis or onmetis, for reordering the variables in a sparse matrix

Mesh2dual or mesh2nodal, for converting a mesh into the dual or nodal graph
Graphchk, for error checking a graph file

23

Scheduling Techniques

e A combined version of the round-robin and data-driven / demand-driven strategies

e To avoid starvation of distributed algorithm

e The scheduler applies the data-driven/demand-driven policy until its schedulable list is
empty

e The round-robin policy is used until the schedulable list contains at least one actor

24

Dataflow Benchmarks

e Open-source applications described in a dynamic dataflow programming way using the CAL
language

e The applications that are fully compliant with the Orcc toolset

e Compatible with Metis library support

25

Array Addition

e A simple network comprising of four actors
e Mapping on multi-core processors is not efficient
e Not much possibilities to partition the DPN

Digital Filtering

e Contains descriptions of a 4-tap FIR filter
e Few connections between 4-tap FIR filters
e The inter-processor communication overhead far greater than parallelization gain

ZigBee
e Implementation of the ZigBee protocol
e Works better with HDL-code generation
e Implementation is not still efficient on multi-core architecture, though have more actors
e Hence, the Predistortion applications considered

26

Predistortion

A parallel Hammerstein digital predistortion filter with 5 FIR filter branches
Each branch with 5 taps

Native functions are provided: linux.c, linuxbin.c, linuxmulti.c

First reads and writes text files and the latter binary files

The FIR filter and the local oscillator leakage compensation coefficients
Hardcoded into the RVC-CAL sources in the implementation

27

Experiments and Results

e To find out best possible graph partitioning strategy
e Torun equal amount of work on multi-core processor architecture
e Different hardware architecture

CPU: Intel® CoreTM i5-3337U CPU @ 1.80GHz x 4

CPU: 2x Intel Xeon CPU X5450 (4x 3.0GHz) 64bit 16GB RAM, 950GB HDD

e Different input samples (1000, 5000)
e Different graph size (number of actors)

28

Predistrotion_application1 (No. of Actors: 10)

Input Samples: 1000, FIFO Size: 512, Physical Cores: 4

Partitioning No. of Logical Cores
Techniques
2 4 6 8 10 12

MR Inf FPS Inf FPS Inf FPS 1025 FPS 256 FPS 256 FPS
MKCV Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS
MKEC Inf FPS Inf FPS Inf FPS Inf FPS 1025 FPS 205 FPS
WLB Inf FPS Inf FPS 341 FPS 205 FPS 205 FPS 170 FPS
RR Inf FPS Inf FPS 341 FPS 256 FPS 256 FPS 205 FPS

MKCV works faster on any number of logical cores

KLR?

29

Continued..,

Input Samples: 5000, FIFO Size: 512, Physical Cores: 4

Partitioning | No. of Logical Cores
Techniques
2 4 6 8 10 12

MR Inf FPS Inf FPS Inf FPS 12 FPS 17 FPS 12 FPS
MKCV Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS
MKEC Inf FPS Inf FPS Inf FPS 22 FPS 11 FPS 12 FPS
WLB Inf FPS Inf FPS 16 FPS 11 FPS 10 FPS 10 FPS
RR Inf FPS Inf FPS 17 FPS 10 FPS 10 FPS 10 FPS

MKCV: fastest, MR, MKEC, WLB, RR: equal, KLR ?

30

Continued..,

Input Samples: 1000, FIFO Size: 512, Physical Cores: 8

Partitioning No. of Logical Cores
Techniques
2 4 6 8 10 12
RR Inf FPS Inf FPS 205 FPS 205 FPS 341 FPS 146 FPS
WLB Inf FPS Inf FPS 341 FPS 205 FPS 146 FPS 146 FPS

KLR struggles - since the graph size is the same

31

Continued..,

Input Samples: 5000, FIFO Size: 512, Physical Cores: 8
Partitioning No. of Logical Cores
Techniques
2 4 6 8 10 12
RR Inf FPS | Inf FPS | 205 FPS 205 FPS 341 FPS 146 FPS
WLB Inf FPS | Inf FPS | 341 FPS 205 FPS 146 FPS 146 FPS

RR, WLB map equal number of FPS, KLR doesn’t work!

32

Predistortion_application2 (No. of Actors: 80)

Input Samples: 1000, FIFO Size: 512, Physical Cores: 4, FPS: frames per second

Partitioning | No. of Logical Cores
Techniques
2 4 6 8 10 12

MR Inf FPS Inf FPS 800 FPS 960 FPS 992 FPS 480 FPS
MKCV Inf FPS Inf FPS Inf FPS 864 FPS 864 FPS 464 FPS
MKEC Inf FPS Inf FPS 896 FPS 960 FPS 961 FPS 448 FPS
WLB Inf FPS Inf FPS 896 FPS 464 FPS 432 FPS 2’77 FPS
RR Inf FPS Inf FPS 432 FPS 432 FPS 298 FPS 277 FPS
KLR Inf FPS Inf FPS 960 FPS 480 FPS 288 FPS 298 FPS

MR, MKCV, MKEC: map more FPS, KLR works properly

33

Continued..,

Input Samples: 5000, FIFO Size: 512, Physical Cores: 4

Partitioning | No. of Logical Cores
Techniques

2 4 6 8 10 12
MR Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS
MKCV Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS
MKEC Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS
WLB Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS
RR Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS
KLR Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS

WLB, RR, KLR work better with more number of Input samples & large size of graph

34

Continued..,

Input Samples: 1000, FIFO Size: 512, Physical Cores: 8

Partitioning | No. of Logical Cores
Techniques

2 4 6 8 10 12
RR Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS
WLB Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS
KLR Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

RR, WLB, KLR give efficient results on Octa-core processor than Quad-core processor

Continued..,

Input Samples: 5000, FIFO Size: 512, Physical Cores: 8

Partitioning | No. of Logical Cores
Techniques

2 4 6 8 10 12
RR Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS 2560 FPS
WLB Inf FPS Inf FPS Inf FPS Inf FPS 2560 FPS 2560 FPS
KLR Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 2560 FPS

WLB maps more number of FPS with the increase of input samples and physical cores

36

Conclusion

e Overall, all techniques can map maximum number of tasks with more number of logical cores
e Also, the results depend on:

Size of graph, number of input samples, the hardware platform (multi-core processors)

e MR, MKCV and MKEC are faster than RR, WLB and KLR
e KLR struggles where graph size is small

37

Future Work

Partitioning techniques for large structured graphs
At heterogeneous hardware platforms

Own library for the graph partitioning techniques
Benchmarks for different types of DPNs
Evaluation on different operating systems

38

Thank you
for your attention

