
Evaluation of Dataflow Process Networks Mapping on 
Multi-core Processors

                                              Tania Shazadi

                                       MSc. Computer Science

                         Supervisor & Examiner: Prof. Dr. Klaus Schneider

                                       Second Supervisor: Yu Bai

                                             9th December, 2015

                                       

1



Outline

● Motivation of the Research
● Problem Statement
● Mapping Techniques
● Experiments and Results
● Conclusion and Future Work

2



 Motivation

● Several models of computation (MoC) have been developed
● Synchronous models are particularly well suited for analysis
● Translating them into a dataflow process network for efficient synthesis
● Desynchronization of synchronous systems
● Mapping of DPN on a multicore architecture is left 

3



 Problem Statement

“Evaluation of Dataflow Process Networks Mapping on Multi-core Processors”

● Dataflow process network model
● Mapping techniques
● Architecture model

 

4



Experimental Setup

● Language:
          For the representation of DPNs: CAL
● Tool: 

          For the compilation of DPN applications:  Orcc
● Mapping/partitioning techniques: 

          Partitioning the DPN into as many threads as the processor has cores
● Scheduling techniques: 

          Scheduling the processes of one partition into a single thread that can then run on a core
 

5



CAL

● CAL is an actor language
● Developed by Eker and Janneck at U.C. Berkeley
● A complete programming language for design and implementation of embedded software 

and FPGAs (field programmable gate array applications) 

ORCC

● Open RVC-CAL Compiler (Orcc) is a plug-in in Eclipse
● Supports RVC-CAL code
● RVC-CAL is a subset of CAL that is standardized along MPEG
● Can compile RVC-CAL code for various platforms, such as C, Jade, TTA, and Xronos Verilog

6



Mapping Techniques

● MR: METIS Recursive graph partition mapping
● MKCV: METIS KWay graph partition mapping (Optimize Com-
● munication volume)
● MKEC: METIS KWay graph partition mapping (Optimize Edge-cut)
● WLB: Weighted Load Balancing
● RR: A simple Round-Robin mapping
● KLR: Kernighan Lin Refinement Weighted Load Balancing

7



 Metis Partitioning Process 

8



Continued..,

9



10

MR

                    An example of recursive-bisection graph partitioning



11

MKCV

 

   Example of reduced Inter-node communication before graph partitioning



Continued..,

                   Reduced Inter-node communication after graph partitioning 

12



MKEC

                                     

13

  Maximum Edge-cut    Minimum Edge-cut 



RR

      An example of RR mapping

14



15

WLB

                              Equal number of nodes within each partition



KLR

                      An example of KLR graph partitioning

16



 Continued..,

17



Continued..,

18



 Continued..,

19



 Continued..,

20



 Continued..,

21



 METIS Library 

● A C program which can partition a graph,  a finite element mesh,  or reorder a sparse matrix
● Can be called from C/C++ and Fortran 
● For large graph one may require machines with extra memory,  example - 64 Gbytes of 

memory instead of 8 Gbytes

  Other libraries: Chaco (Sandia), Scotch (INRIA), Jostle (now commercialized), Zoltan (Sandia)

22



  Continued..,

● Associated executable programs with the METIS library
● Kmetis or pmetis, for partitioning the nodes of a graph
● Partdmesh or partnmesh, for partitioning the elements of a finite   element mesh 
● Oemetis or onmetis, for reordering the variables in a sparse matrix
● Mesh2dual or mesh2nodal, for converting a mesh into the dual or  nodal graph
● Graphchk, for error checking a graph file

23



Scheduling Techniques

● A combined version of the round-robin and data-driven / demand-driven strategies 
● To avoid starvation of distributed algorithm
● The scheduler applies the data-driven/demand-driven policy until its schedulable list is 

empty
● The round-robin policy is used until the schedulable list contains at least one actor

24



Dataflow Benchmarks

● Open-source applications described in a dynamic dataflow programming way using the CAL 
language

● The applications that are fully compliant with the Orcc toolset
● Compatible with Metis library support

    

25



26

 Array Addition

● A simple network comprising of four actors
● Mapping on multi-core processors is not efficient
● Not much possibilities to partition the DPN

 Digital Filtering

● Contains descriptions of a 4-tap FIR filter 
● Few connections between 4-tap FIR filters 
● The inter-processor communication overhead far greater than parallelization gain

 ZigBee

● Implementation of the ZigBee protocol
● Works better with HDL-code generation 
● Implementation is not still efficient on multi-core architecture, though have more actors 
● Hence, the Predistortion applications considered



  Predistortion

● A parallel Hammerstein digital predistortion filter with 5 FIR filter branches
● Each branch with 5 taps
● Native functions are provided: linux.c, linuxbin.c, linuxmulti.c 
● First reads and writes text files and the latter binary files
● The FIR filter and the local oscillator leakage compensation coefficients
● Hardcoded into the RVC-CAL sources in the implementation

27



  Experiments and Results

● To find out best possible graph partitioning strategy 
● To run equal amount of work on multi-core processor architecture
● Different hardware architecture

CPU: Intel® CoreTM i5-3337U CPU @ 1.80GHz × 4

CPU: 2x Intel Xeon CPU X5450 (4x 3.0GHz) 64bit 16GB RAM, 950GB HDD

● Different input samples (1000, 5000)
● Different graph size (number of actors)

28



29

Predistrotion_application1 (No. of Actors: 10)

Input Samples: 1000, FIFO Size: 512, Physical Cores: 4

Partitioning
Techniques

No. of Logical Cores

2 4 6 8 10 12       

MR Inf FPS Inf FPS Inf FPS 1025 FPS 256 FPS 256 FPS

MKCV Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

MKEC Inf FPS Inf FPS Inf FPS Inf FPS 1025 FPS 205 FPS

WLB Inf FPS Inf FPS 341 FPS 205 FPS 205 FPS 170 FPS

RR Inf FPS Inf FPS 341 FPS 256 FPS 256 FPS 205 FPS

MKCV works faster on any number of logical cores

KLR ?



 Continued..

30

Input Samples: 5000, FIFO Size: 512, Physical Cores: 4

Partitioning
Techniques

No. of Logical Cores

2 4 6 8 10 12       

MR Inf FPS Inf FPS Inf FPS 12 FPS 17 FPS 12 FPS

MKCV Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

MKEC Inf FPS Inf FPS Inf FPS 22 FPS 11 FPS 12 FPS

WLB Inf FPS Inf FPS 16 FPS 11 FPS 10 FPS 10 FPS

RR Inf FPS Inf FPS 17 FPS 10 FPS 10 FPS 10 FPS

MKCV: fastest,  MR, MKEC, WLB, RR: equal,  KLR ?



Continued..,

31

Input Samples: 1000, FIFO Size: 512, Physical Cores: 8

Partitioning 
Techniques

No. of Logical Cores

2 4 6 8 10 12

RR Inf FPS Inf FPS 205 FPS 205 FPS 341 FPS 146 FPS

WLB Inf FPS Inf FPS 341 FPS 205 FPS 146 FPS 146  FPS

KLR struggles - since the graph size is the same



 Continued..,

32

Input Samples: 5000, FIFO Size: 512, Physical Cores: 8

Partitioning 
Techniques

No. of Logical Cores

2 4 6 8 10 12

RR Inf FPS Inf FPS 205 FPS 205 FPS 341 FPS 146 FPS

WLB Inf FPS Inf FPS 341 FPS 205 FPS 146 FPS 146  FPS

 RR, WLB map equal number of FPS, KLR doesn’t work!



33

Predistortion_application2 (No. of Actors: 80)

Input Samples: 1000, FIFO Size: 512, Physical Cores: 4, FPS: frames per second

Partitioning
Techniques

No. of Logical Cores

2 4 6 8 10 12       

MR Inf FPS Inf FPS 800 FPS 960 FPS 992 FPS 480 FPS

MKCV Inf FPS Inf FPS Inf FPS 864 FPS 864 FPS 464 FPS

MKEC Inf FPS Inf FPS 896 FPS 960 FPS 961 FPS 448 FPS

WLB Inf FPS Inf FPS 896 FPS 464 FPS 432 FPS 277 FPS

RR Inf FPS Inf FPS 432 FPS 432 FPS 298 FPS 277 FPS

KLR Inf FPS Inf FPS 960 FPS 480 FPS 288 FPS 298 FPS

MR, MKCV, MKEC: map more FPS, KLR works properly



34

Input Samples: 5000, FIFO Size: 512, Physical Cores: 4

Partitioning 
Techniques

No. of Logical Cores

2 4 6 8 10 12

MR Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

MKCV Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

MKEC Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

WLB Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS

RR Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS

KLR Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS

Continued..,

WLB, RR, KLR work better with more number of Input samples & large size of graph



35

Input Samples: 1000, FIFO Size: 512, Physical Cores: 8

Partitioning 
Techniques

No. of Logical Cores

2 4 6 8 10 12

RR Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

WLB Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

KLR Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS Inf FPS

Continued..,

RR, WLB, KLR give efficient results on Octa-core processor than Quad-core processor



Continued..,

36

Input Samples: 5000, FIFO Size: 512, Physical Cores: 8

Partitioning 
Techniques

No. of Logical Cores

2 4 6 8 10 12

RR Inf FPS Inf FPS 1521 FPS 1521 FPS 1521 FPS 2560 FPS

WLB Inf FPS Inf FPS Inf FPS Inf FPS 2560 FPS 2560 FPS

KLR Inf FPS Inf FPS Inf FPS 1521 FPS 1521 FPS 2560 FPS

WLB maps more number of FPS with the increase of input samples and physical cores



 Conclusion

● Overall, all techniques can map maximum number of tasks with more number of logical cores
● Also, the results depend on:

          Size of graph, number of input samples, the hardware platform (multi-core processors)

● MR, MKCV and MKEC are faster than RR, WLB and KLR 
● KLR struggles where graph size is small

37



Future Work

● Partitioning techniques for large structured graphs 
● At heterogeneous hardware platforms
● Own library for the graph partitioning techniques 
● Benchmarks for different types of DPNs
● Evaluation on different operating systems

38



39


