An Object-Oriented Datamodel for the
VLSI Design System PLAYOUT

Ernst Siepmann, Gerhard Zimmermann

University of Kaiserslautern

D-6750 Kaiserslautern, West - Germany

Abstract

A complete datamodel for an integrated VLSI design system is de-
veloped in a stepwise manner. This datamodel introduces a unified
view of all design domains and hierarchy levels that result in a con-
siderable simplification of the communication among the design
tools. We defined five basic objects: cell, interface, contents,
instance and configuration for high level description of all design
data. The model also covers views, types, alternatives, versions and
the design history.In particular our handling of the configuration
demonstrates reasonable response times, due to the strict avoidance
of redundant information and the storage of complex objects. This
datamodel can be directly used for the implementation of an efficient
object-oriented design database.

1. The PLAYOUT Architecture

The design process of the PLAYOUT system /Zi 86, Zi 88/ takes
placeon adesign plane (Figure1.1), with the hierarchylevels and the
domains (in our system behavior, structure, foorplan, masklayout) as
dimensions. The design process traverses the design plane in a top-
down (for chip planning), a bottom-up (for chip assembly), and a
mixed (forlogic design) manner. The design process is nondetermin-
istic and in some phases highly parallel.

Different design tasks are handled by toolboxes. A toolbox consists
of a number of algorithms (tools) and a common internal data struc-
ture. Typically, this is an abstract data type (ADT). Thus the toolsina
toolbox can communicate very fast. A typical toolbox is the Chip
Planner. It contains tools for placement, sizing, global routing, pin
placement, and analysis. For placement several alternatives exist.

Besides the Repartitioner all toolboxes execute transformations bet-
ween domains and therefore cover two domains. Toolboxes also cov-

domain] behavior| structure floorplan masklayou!l

LDA A INC A
LDA B INC B
STA A ASL A
STA B ROL B
CLR X COM A
ADD A AND A
SUB A EOR B

| = el bl & ck1;

cl=oi*bl+of"*
ol-1 ¢ bl * cb1;

s{ans] Ayssesany

b
-~

Fig. 1.1 Design Plane

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

26th ACM/NIEEE Design Automation Conference

Paper 45.4
814

er two hierarchy le-
vels. The upper level
is the cell-under-de-
sign (CUD) which
consists of subcells at
the lower level.

Most toolboxes can be
used recursively at
different levels of the
A\ W/ 4 hierarchy. Therefore

Schematic Entry

Repartitioner

Shape Function

[e]

gl | g
CHImC

&

3 °

2 [

N the number of levels
:@.4 .D:’w can be adjusted to the
data .
5 complexity of the pro-
1 - blem. For example,
Coll Synthesis M objectoriented the Chip Planner at
prisbase System | the top level (the chip)

generates frames for
its subcells. These fra-
mes are the input for

ChipAssembly @

the Chip Planner at the

e nextlowerlevel where
the former subcells ha-

ve become the CUDs, see Figure 1.3.

The communication between toolboxes is always through the cen-
tral Design Database, even in the case when itis applied recursively,
see Figure 1.2. The reason is that the toolboxes get their input datanot
only from one other toolbox, but from several. So the Chip Planner
receives both the net list and module list from the Schematic Entry or
the Repartitioner, the shape functions from the Shape Function Gen-
erator and the CUD-frame from the Chip Planner employed the level
above.

On the other hand, the same shape functions, the same net list and
the same module list are used for the Shape Function Generator, so
thatacomplexn:mrelation exits among the toolboxes regarding their
communication. With direct communication it would be hard to guar-
antee consistcncy. particularly if you have various alternatives, ver-

-
."*‘ e,

/ ”
%2 fp-is

A

P

frame,
pin cost
function

Chip Planner

Slicing Tree
Corner Graph

o

X »~“"

\fmnwt pin
slzing models cost functlons
< g ﬁlé 6

®

© 1989 ACM 0-89791-310-8/89/0006/0814 $1.50

sions and configurations of the design data.

The data are exchanged in the form of ASCII files. The formatis a
object-oriented language PLIF (PLAYOUT Interchange Format)
/Si88/. The input and output files for each toolbox application consist
of anumber of different communication objects, shownin Figurel.3
as circles. The database breaks the files up into the communication
objects, stores and manages these objects and the assembly of objects
into files.

2. The PLAYOUT Datamodel

In this chapter, the data model will be derived in a stepwise manner
from a hierarchy model. An object-oriented approach is chosen. The
concept also avoids redundancy of data. This not only reduces the
amount of data, but greatly supports data consistency.

2.1 Model of the Hierarchy

This basis of the datamodel is the hierarchy as described in Chapter
1. Each cell can be part of another cell (supercell) or contain other
cells (subcells). This complex relation is called part and corresponds
to the abstraction concept of aggregation /Mi88a/. A cell cannot con-
tain itself and no cell of which it is a part itself. The part relationis
not defined between all cells. Therefore it defines a partial order.

| Figure 2.1 shows the part relation as Mole-

cule Atom Data(MAD) model /Mi88b/. Inthe
.| MAD-model boxes are the entities, arrows the
#| relations, The relation name is split in two
roles, in Figure 2.1 for example in parts and
- - part-of. Numbers or variables at the arrows

Fig.2.1 Hierarchy gescribe the cardinality of the relation. Thus the
part relation in Figure 2.1 is an n:m relation. The arrows of the part
relation in Figure 2.1 are shaded, because this relation is between dif-
ferent hierarchy levels,

Normally a hierarchy is represented as tree, but this is only a special
case of the representation as adirected acyclic graph (DAG) which
we will call the hierarchy graph. The database uses a model of the
DAG for consistency checks. If anew part relation is to be added, it
is first checked if this would result in a cycle. This would violate the
above conditions and could be a new or previously made error. The
user is then asked to solve this problem.

2.2 Classification

This model has to be extended for the complete description of sche-
matics. A cell very often contains several copies of the same subcell.
For the purpose of describing the connections between the subcells
(netlists), each copy has to be identified. The description of the sub-
cellis only needed once. Therefore we use the principle of classifica-
tion and assign a type to each cell which describes it and an instance to
eachcopy. Theinstance relation uniquely assigns a cell type to each
cellinstance. Thus the complex n:mpart relation in Figure 2.1 isnow
splitinto two functional relations as shown inFigure 2.2. A cell (type)
is composed of the cell instances of other cells. We can now generate
a complete instance tree called the hierarchy tree.

Cell i o This simple hierarchy mo-
el Iz - del is used in many existing

'L)) CAD tools. The disadvanta-
k 1_instanceOf _] ge is the missing construct
Telances M for alternatives. Each alter-

Fig.22 Hi by Tre native forms anew cell. This

results in a very early deci-
sion as to which alternative of a subcell is chosen. Otherwise no net-
list can be generated. We wish to postpone this decision until it beco-
mes necessary. Therefore we further extend our datamodel.

2.3 Alternatives

Let us first define cell and alternative more precisely. A cellis char-
acterized by its function, for example a 2-input-nand or a 1-bit full-
adder. For the implementation or realization of this function we have
many structural, floorplan and layout alternatives. All of them are to
belong to the samecell. We call these realization alternatives. Often
in adesign process, many of the alternatives are a valid choice and the

Cell designeror atoolbox candeter-
Intertace mine the best one.

Let us for the moment select

'% one domain, for example the
"% structural domain. We further
specify a cell type by its inter-

face and its contents. The
same approach has been used
instance || by many authors, for example

k realizations
jouoneziess |

lazy decision”
parts n 5,

Rt LL] P O
_t“' 1 partOl

/BBN 85/ and /MDK 87/ and is

also part of EDIF. An interface
can represent an abstraction of
several contents alternatives with the same abstract function. This is
expressed by the relation realization in Figure 2.3. A contents may
contain instances (part relation). These are instances of the inter-
faces of the subcells. The interface typically contains enough infor-
mation for atool about the subcell. Forexample, a schematic diagram
is sufficiently described by the interface symbols of its subcells. The
internal structure of a subcell (contents) is only necessary if we want
to refine a subcell.

This seperation has the decisive advantage that the use of acell does
not automatically require a decision about the selected realization al-
temnative. This supports the principle of "lazy decision".

The division into interface and contents also provides the frame-
work for hierarchical top-down designs. If we look again at Figure
1.3, we see that the Chip Planner only needs the structure contents
(st-ct) of its CUD and the structure instances (st-is) and interfaces
(st-it) of its subcells. In addition, it needs the floorplan instance (fp-
is) defining the frame of the CUD and the subcell floorplan interfac-
es (fp-it) describing the shape functions. This principle avoids ex-
pansion of the hierarchy down to the leaf cells.

Fig. 2.3 RealizationAlternatives

2.4 Domains

PE—, W now extend the data
«~{ Interface [$—— Celi i el to several do-

o7 T . A~
;= mains. As shown in Fig-
£33 oll- fos, ure 2.4 a cellisnow an
.08 S|, 7 abstract object which it-

.8 W2 P . .
g2 § g BENNT self contains no design
8 E; g /’q’Or data. In each domain it
N may be represented by
TN Contents parts n _— one or more interfaces.
-~ S W Imerface, cont.ent_s.
and instance remain in
Fig. 2.4 Cell as Complex Object the already known rela-

tions to each other with-
in each domain.

We now need a relation between domains. In Figure 2.4 this is
shown as the relation generated with dashed arrows. A design step
has an initial cell description as its input and generates aresultant cell
description. From one original contents we can generate several re-
sultant con-
tents alterna-
tives. But all
contents al-
ternatives
have the same
resultant in-
terface. Thus
we can use a
1:1 generar-
ed relation
between orig-
inal contents
and resultant
interface as

cell

alternatives

OO D0 DD
ledlisnatives . alicroatives. Allcrnatives. Allscostives...) showninFig-
Fig. 2.5 DesignTree with Realization Alternatives ure 24.

Paper 45.4
815

Figure 2.5 gives an example. Each structure interface (st-it) may be
realized by st-ct alternatives. The Shape Function Generator gener-
ates one floorplan interface (fp-it) for each st-ct. The Chip Planner
can generate several fp-ct for each fp-it. These are again alternatives.
This is carried on to the masklayout domain. We call this tree of alter-
natives in Figure 2.5 the design tree.

2.5 Configuration

So far we have postponed the selection of alternatives for as long as
possible. Butthe decision has to be made and we need arelation to ex-
press the decision. The process itself is called configuration and can
behandled by the designer with a configuration editor or by the tools.

= The configuration process
is split into two levels,
First, we can select a con-
tents alternative for each
instance and the corre-
Dutoide sponding interface. We
call this an initial configu-
ration. On the right side of
Figure 2.6, the middle
floorplan shows the initial
configuration of the top
cell. We do not know how
each of the subcells is
composed in itself. This
has the following reason.
Since we represent only
the types of cells and the in-
stancesof atypeonceinthe
database, each instance
may occur several times in
the design tree (see chapter
2.4). Thus each of these oc-
currences of an instance may be configured differently.

We model this by a relationconfiguration that assigns several con-
figuration objects (entities) to each contents. The left side of Figure
2.6 shows this relation. An initial configuration means that for each
instance we select one contents, A final configuration is reached if
we make a more detailed selection and chose a configuration object
for each instance.

If we do this at all levels of the hierarchy, the complete refinement of
a cell as shown in the floorplan example of Figure 2.6, bottorn right
corner, can be expressed.

intertace

k realizations

TOOUNEZNEwT T

5
.

inside, one level

¢ configurations

Configu-
ration

r t domains A more complete data-
«={Interface Cell . P
. =TT model is shown in Figure
Ef .; 2.6. An additional temar-
g3 g y relation association is
?%‘ '% 3 introduced. Therefore it
2.5 3 isnecessary to extend the
- MAD-model. We define
) branched arrows for two
1) feor ' cases. Firstbranch type is
e g POt - an exclusive or, which in
S | Figure 2.7 is used to se-
o BiE|8 :§ lect either a contents (in-
‘“, i gE = itial configuration) or a
B! I ° configuration (final
AR %%] configuration). The ar-
* < contigulo g 1§ g rows are drawn in the
Fopg rion RS same style before and aft-
&5 et g<=n . er the branching.
associations n The more interesting sec-
Fig. 2.7 Confi ion Grapl ond type is used to repre-

sent a ternary relation.
The bold drawn line branches at the black dot in two arrows. They
represent the two binary relations, in which each ternary relation can
be split by losing some information.(in Figure 2.7 parts and mod-

Paper 45.4
816

ules). You cannot discover the association between each instance
and the selected configuration (or contents) from these partial rela-
tions. The retrieval of the linkage information must be supported by
the datamodel and implemented on the Design Databaase. In Figure
2.7 the relation association provides this information.

If we look ata
specific con-
figuration of
a contents of
cell A, the as-
sociation

links each in-
stance of the
subcells of A
(part rela-
tion) either to
the subcell
contents al-
ternative (ini-
tial configura-

""' tion) as shown
A by the associ-
g ation in Fig-

%
Kix

llwmi%u

-';P"g-"mn:{?:‘{y. nattons n:g:;. 1 ""*""‘“’0' ure 2.6 or to
A & ﬁ‘”’ ’”’"‘@ E @ the subcell
configura-
¢ parts '1:‘ parts parts % pmnlllvc tion alterna-
E 1 onagurstien| tive (final con-
i figuration).
uurﬁniv& At the bottom

of the hierar-

’AAAA AN

Fig. 2.8 Hierarchy Tree with _Alternatives and
Conf. ; e posed of sub-
~enligurations cells, but are

primitive or leaf cells. For these cells no configuration in the previ-
ously described sense exists. Instead, areference to a corresponding
leaf cell from a domain further to the right can be used as configura-
tion. We call this a primitive configuration.

For example the Sizing Function Generator at the lowest level has
masklayout interfaces (ml-it) as ari input. This differs from the fp-it
input to the same toolbox at the next higher level. The primitive con-
figuration defines this special relation at the bottom level of the hier-
archy.

In the case of configurations the generated relation also has to be
changed. The original data for a toolbox is a configured contents.
Therefore we draw the relation between configuration and interface
as shown in Figure 2.7.

The ternary relation association in Figure 2.7 is now well represent-
ed by the MAD-model and therefore easy to understand. Let us try a
differentinterpretation. Association has similarities to the partrela-
tion because it also links different levels of the hierarchy. If we con-
sider the part branch of the configuration in Figure 2.7 instead of the
cells in Figure 2.1, we get a similar DAG, the configuration graph.
This is the subgraph of the hierarchy graph. The hierarchy graph con-
tains all alternatives, the configuration graph only the selected ones.

The configurations are the vital part of a design database. In our o-
pinion, it is not possible to find a simpler model & represent the con-
figurations with the same expressive power. The hierarchy tree in
Figure 2.8 may help tounderstand the meaning. For the sake of clarity
theinstances are not shown and are represented by the corresponding
interfaces (it). The tree shows acontents (ct) with all its alternatives
in one domain and three hierarchy levels. The confents that were se-
lected for a design (configured) are emphasized by heavy print. In-
terfaces (it) from a domain to the right (primitive configurations) are
shaded. Configurations are indicated by open ellipses. For some in-
terfaces no contents exists so far. These incomplete configurations

chy, cells will
not be com-

are indicated by checkered openellipses. We alsonote again that ain-
tial configuration only spans one level of the hierarchy and a final
configuration several levels.

2.6 Views

A further extension to the model are the views. They are the place
for the storage of the design data or for pointers to secondary storage
of the data. Several views of an object can exist. In principle these
views represent the same data in a different form or different aspects
of an object, Examples are the views "schematic" and "netlist". Both
represent the structural information. A schematic entry tool can gen-
erate both views, but needs only read the netlist view. On the other
hand, the complete floorplan information is represented by the views
"frame", "iopins", "slicing tree", and "fp netlist". Different tools need
different assemblies of these partial views.

2.7 Versions

The management of versions is another important task of a design
database. Versions are generated sequentially and only the last ver-
sion is, in general, valid. This is in contrast to alternatives which are
allvalid. Normally, anew version is produced if the lastonehad aner-
TOT.

Nevertheless, old versions may have to be stored if they are origins
of other cells (generated relation). The corresponding transaction
may havetobereset and all generated cells may have to be newly gen-
erated with the new version as origin. If the error does not affect the
generated cell, old versions may still continue to exist.

Versions are introduced in the datamodel for all interfaces, con-

tents and for some configurations. We currently do not provide ver-
sions for instances, because in our experience a change in an in-

structure floorplar

a:
o | 54 | et § g
% Y .-_".' ol |= 5
o
= i 5:!? E g om 8 i1:1
E| |5 08 FHE e |8
o [F 2od s
S § gl :E s 3&.@- instance
E:|3] {éff‘;.h
Sz ondi B
e T8 @
11 O H
generatedC {r:
1=
m::lu_toaron

modules 1:p 0
)

rmmmmm————— -

+
. *

9
\& Configuratior &
A

'f.,f :‘E:%% ge=n
L. pentor od

cera®

N SRS
n assoclations

Fig. 290 1ol for two Domai

stance always caused a change in the corresponding contents and a
new version there. The views, containing the design data, are now
related to the versions.

2.8 The Nearly Complete Datamodel

Figure 2.9 shows the datamodel for the domains structure and floor-
plan in the notation of an extended MAD model. Only the viewsare
missing in order to simplify the drawing, objects with views have a
hatching. The versions are included. In principle, each domain is
represented by the datamodel which we developed in the previous
chapters.

The generated relation relates versions to each other. An additional
generated relation has been introduced between contents versions.
We can now reconstruct the design history.

Figure2.9 also shows the limitation of datamodels. Many semantic
details cannotbe properly expressed. The figure tries to show some of
the special characteristics by different shadings. It distinguishes rela-
tions between hierarchy levels and between domains. All black ar-
rows represents relations within the same cell, the same hierarchy
level, and the same domain. The bold type arrows point to dependent
objects, for example a contents can only be defined to an existing
interface. If you delete this interface, all dependent contents must
be deleted too.

3. Conclusion

The datamodel has been implemented in Smalltalk 80 as a proto-
type. So far the experience is positive. The database does not repre-
sent a performance bottleneck. Assembly and disassembly of design
files is performed in a few minutes. This time is shorter than the tool-
box execution times. Smalltalk 80 provided a suitable environment
for the object orientation of the data model. An implemented object
browser could be used for ad hoc retrieval. The language also pro-
vides excellent functions as a retrieval language in the case of some
extensions. Currently the complete PLAYOUT system is used for a
VLSIdesign.

This research is part of the Sonderforschungsbereich 124 "VLSI
Design Methods and Parallelism" which is financed by the Deutsche
Forschungsgemeinschaft and the Center of Computer Aided Engi-
neering Systems.

4. References

/BBN 85/ A.Beetem, J. Beetmen, A. Nigam, "HDMS: A Hierarchi-
cal VLSI Design Data Management System”, IBM Research Report,
Yorktown Heights 1985

/Ka 85/ R. Katz, "Information Management for Engineering De-
sign", Springer Verlag, Berlin Heidelberg New York 1985

/MDK 87/ J. Miille, K. Dittrich, A. Kotz, "Design Management
Support by Advanced Database Facilities”, Proc. of the IFIP WG
10.2 Workshop on Tool Integration and Design Environments, Pa-
derborn 1987

/Mi88a/B.Mitschang, "The Molecule-Atom Data Model", in: "The
PRIMA Project, Design and Implementation of a Non-Standard Da-
tabase System", T. Hiirder (ed.), SFB124 Research Report No. 26/88,
Kaiserslautern 1988

/Mi88b/ B. Mitschang, "Towards a Unified View of Design Data
and Knowledge Representation”, in: Proc. of the 2. Int. Conf. on Ex-
pert Database Systems, L. Kerschberg (ed.), pp 33 -49, Virginia 1988

/Si 88/ E. Siepmann, "PLIF - Ein objektorientiertes Datenaus-
tauschformat zur Kommunikation in PLAYOUT", SFB 124 Re-
search Report No. 32/88, Kaiserslautern 1988

[Zi 86/G. Zimmermann, "Top-down design of digital systems", in
Logic Design and Simulation, E. H6rbst (Editor), Elsevier Science
Publ. B.V., Amsterdam 1986

/Zi 88/G. Zimmermann, "PLAYOUT - A Hierarchical Layout Sys-
tem", GI-18. Jahrestagung, Informatik Fachberichte 187, Springer
Verlag, Berlin Heidelberg New York 1988

Paper 45.4
817

