
An Object-Oriented Datamodel for th.e

VLSI Design System PLAYOUT
Ernst Siepmann, Gerhard Zimmermann

University of Kaiserslautern

D-6750 Kaiserslautern, West - Germany

Abstract
A complete datamodel for an integrated VLSI design system is de-

veloped in a stepwise manner. This datamodel introduces a unified
view of all design domains and hierarchy levels that result in a con-
siderable simplification of the communication among the design
tools. We defined five basic objects: cell, interface, contents,
irutance and conjiguration for high level description of all design
data. The model also covers views, types, alternatives, versions and
the design historyIn particular our handling of the configuration
demonstrates reasonable response times, due to the strict avoidance
of redundant information and the storage of complex objects. This
datamodel can he directly used for the implementation of an efficient
object-oriented design database.

1. The PLAYOUT Architecture
The design process of the PLAYOUT system /zi 86, Zi 88/ takes

placeonadesignplane (Figure 1.1). withthehierarchylevelsandthe
domains (inour system behavior, structure, foorplan, masklayout) as
dimensions. The design process traverses the design plane in a top
down (for chip planning), a bottom-up (for chip assembly), and a
mixed (for logic design) manner. The design process is nondetermin-
is tic and in some phases highly parallel.

Different design tasks are handled by toolboxes. A toolbox consists
of a number of algorithms (tools) and a common internal data struc-
ture. Typically, this is an abstract data type (ADT). Thus the tools in a
toolbox can communicate very fast. A typical toolbox is the Chip
Planner. It contains tools for placement, sizing, global routing, pin
placement, and analysis. For placement several alternatives exist.
Besides the Repartitioner all toolboxes execute transformations bet-

ween domains and therefore cover two domains. Toolboxes also cov-

domalr

Fin. 1 .l Desien Plane

Permission to copy without fee all or pan of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by pmmissioo of he Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

er two hierarchy le-
vels. The upper level
is the cell-under-de-
sign (CUD) which
consists of subcells at
the lower level.
Most toolboxes can be
used recursively at
different levels of the
hierarchy. Therefore
the number of levels
GUI be adjusted to the
complexity of the pro-
blem. For example,
the Chip Planner at
the top level (the chip)
generates frames for
its subcells. These fra-
mes are the input for
the Chip Planner at the
nex.t lower level where

PLAYoUT Svstemtecture the former subcells ha-
ve become the CUDS, see Figure l.3.

The communication between toolboxes is always through the cen-
tral Design Database, even in the case when it is appliedrecursively,
seeFigure 1.2.The reasonis that the toolboxes gettheir input datanot
only from one other toolbox. but from several. So the Chip Planner
receives both the net list andmodule list from the Schematic Entry or
the Repartitioner, the shape functions from the Shape Function Gen-
erator and the CUD-frame from the Chip Planner employed the level
above.

On the other hand, the same shape functions, the same net list and
the same module list are used for the Shape Function Generator, so
that a complexn:m relation exits among the toolboxes regarding their
communication.Withdirectcommunication it would be hard to auar-
a ntee consistency, particularly if you have various alternatives, ver-

Y

Slldng Tres
comer Graph1

I I

3 The Cornme Objects for the Chip Pti

Paper 45.4

814

26th ACM/IEEE: Design Automation Conference@

0 1989 ACM O-89791 -31 O-8/8!3/0006/0814 $1.50

sions and configurations of the design data.
The data are exchanged in the form of ASCII files. The format is a

object-oriented language PLIF (PLAYOUT Interchange Format)
/Si88/.Theinputandoutputfilesforeachtoolboxapplicationccnsist
ofanumberofdifferentcommunlcatlonobjects,showninFigurel.3
as circles. The database breaks the files up into the communication
objects, stores andmanages theseobjects and the assembly of objects
into files.
2. The PLAYOUT Datamodel
In this chapter, the data model will be derived in a stepwise manner

from ahierarchy model. An object-oriented approach is chosen. The
concept also avoids redundancy of data. This not only reduces the
amount of data, but greatly supports data consistency.

2.1 Model of the Hierarchy
This basis of the datamodel is the hierarchy as described in Chapter

1. Each cell can be part of another cell (supercell) or contain other
cells (subcells). This complex relation is calledpartandccrrespcnds
to the abstractionconcept of aggregation/Mi88a/. A cell cannot con-
tain itself and no cell of which it is a part itself. The part relation is
not defined between all cells. Therefore it defines a partial order.

Figure 2.1 shows the part relation aa Mole-

,*,.9 Cell
I

cule Atom Data (MAD) model /Mi88b/. In the
:“’ ;.< irh

EJ

MAD-model boxes are the entities, arrows the
$<,). .~~!.,h~~*.~P+~ j ,3 relations. The relation name is split in two

“” roles. in Figure 2.1 for example in parts and

Fi . 2. 1 Hierarch
part-of. Numbers or variables at the arrows
describe thecardinality of the relation,Thus the

part relation in Figure 2.1 is an n:m relation. The arrows of the port
relation in Figure 2.1 are shaded, because this relation is between dif-
ferent hierarchy levels,

Normally a hierarchy is represented as tree, but this is only a special
case of the representation as a directed acyclic graph (DAG) which
we will call the hierarchy graph. The database uses a model of the
DAG for consistency checks. If a newparr relation is to be added, it
is first checked if this would result in a cycle. This would violate the
above conditions and could be a new or previously made error. The
user is then asked to solve this problem.
2.2 Classification
This model has to be extended for the complete description of sche-

matics. A cell very often contains several copies of the same subcell.
For the purpose of describing the co~ections between the subcells
(netlists), each copy has to be identified. The description of the sub-
cell is only needed once. Therefore weuse the principle of classifica-
tion and assign a type to each cell which describes it and an instance to
each copy. The instance relation uniquely assigns a cell type to each
cellinstance.Thusthecomplexn:mparfrelationinFigure2.1 isnow
splitinto twofunctionalrelations asshowninFigure 2.2. Acell(type)
is composed of the cell instances of other cells. We can now generate
a comnletc instance tree called the hierarchv tree.

This simple hierarchy mo-
del is used in many existing
CAD tools. The disadvanta-
ge is the missing construct
for alternatives. Each alter- 1
native forma anew cell. This

results in a very early deci-
sion as to which alternative of a subcell is chosen. Otherwiseno net-
list can be generated. We wish to postpone this decision until it beco-
mes necessary. Therefore we further extend our datamodel.
2.3 Alternatives
Let us fist define cell and alternative more precisely. A cell is char-

acterized by its function, for example a 2-input-nand or a l-bit full-
adder. For the implementation or realization of this function we have
many structural, floorplan and layout alternatives. All of them are to
belong to the samecell. We callthcserealization alternatives. Often
in a design process, many of the alternatives are a valid choice and the

designer or a toolbox candeter-
mine the best one.

Let us for the moment select
one domain, for example the
structural domain. We further
specify a cell type by its tier-
jbce and its cotients. The
same approach has been used
by many authors, for example
/BBN85/and/MDK87/andis

Fiz. 2.3 RealizationAlternatives also Part of EDIF. An i~e$ce
can renresent an abstraction of

1

several confer& alternatives with the same abstract function. This is
expressed by the relation realization in Figure 2.3. A contents may
contain instances (part relation). These are instances of the itier-
faces of the subcells. The &e$ae typically contains enough infor-
mation for a tool about the subcell. For example, a schematic diagram
is sufficiently described by the interface symbols of its subcells. The
internal structure of a subcell (contents) is only necessary if we want
to refine a subcell.
This seperation has the decisive advantage that the use of a cell does

not automatically require a decision about the selected realization al-
ternative. This supports the principle of “lazy decision”.
The division into interface and cotietis also provides the frame-

work for hierarchical top-down designs. If we look again at Figure
1.3, we see that the Chip planner only nesds the structure contents
(St-ct) of its CUD and the structure instunces (St-is) and interfaces
(St-it) of its subcells. In addition, it needs rhefloorplun instunce (fp-
is) defining the frame of the CUD and the subcellfloorph interfac-
es @p-it) describing the shape functions. This principle avoids ex-
pansion of the hierarchy down to the leaf cells.
2.4 Domains

Fie. 2.4 Cell as Comulex Obiect

in each domain.

?I? now extend the data
11 :el to several do-

mains. As shown in Fig-
ure 2.4 a cell is now an
abstract object which it-
self contains no design
data. In each domain it
may be represented by
one or more interjbces.
Intetjhce, contents,
and instance remain in
the already known rela-
tions to each other with-

We now need a relation between domains. In Figure 2.4 this is
shown as the relation generated with dashed arrows. A design step
has an initial cell description as its input and generates aresultant cell
description. From one original contents we can generate several re-

sultant con-
tents altema-
tives. But all
contents al-
ternatives
have the same
resultant in-
teqke. Thus
we can use a
1: 1 generat-
ed relation
between orig-
inal contents
and resultant
interface as
showninFig-

Fig. 2.5 DesignTree with Realization Alternatives ure 2.4.

Paper 45.4

815

Figure 2.5 gives an example. Each structure interface (st-it)may be
realized by st-ct alternatives. The Shape Function Generator gener-
ates onefloorpkzn interface @p-it) for each st-ct. The Chip Planner
can generate several fp-ct for each fp-it. These are again alternatives.
This is carried on to the ma&layout domain. We call this tree of alter-
natives in Figure 2.5 the design tree.
2.5 Configuration
So far we have postponed the selection of alternatives for as long as

possible. But the decision has to be made and we need arelation to ex-
press the decision. The process itself is called configuration and can
behandledbythedesigner withaconfig

tntermce

7

i-2
.2
Is .- :

inekle, one level

rationed&r or by the tools.

The configuration process
is split into two levels.
First, we can select a COR-
tents alternative for each
instance and the corre-
sponding interface. We
call this an initial confign-
ration. On the right .side of
Figure 2.6, the middle
floorplan shows the initial
configuration of the top
cell. We do not know how
each of the subcells is
composed in itself. This
has the following reason.
Since we represent only
the types of cells and the in-
stances of a type once in the
database, each instance
may occur several times in
the design tree (see chapter
2.4). Thus each of these oc-

currences of an instance may be configured differently.

We model this by a relationconfiguration that assigns several con-
figurationobjects (entities) to each contents. The left side of ‘Figure
2.6 shows this relation. An initial configuration means that for each
instance we select one contents. A final configuration is reached if
we make a more detailed selection and chose a configuration object
for each imtance.
If wedo this at all levels of the hierarchy, the complete refinement of

a cell as shown in the floorplan example of Figure 2.6, bottom right
comer. can be exmessed. .

The bold drawn line branches at the bla

A more complete data-
model is shown in Figure
2.6. An additional r&mar-
y relation Usoc&on is
introduced. Therefore it
is necessary to extend the
MAD-model. We defme
branched arrows 5or two
cases. First branch type is
an exclusive or, which in
Figure 2.1 is used to se-
lect either a confenfs (in-
itial configuration) or a
configuration (fmal
configuration). The ar-
rows are drawn in the
same style before and aft-
er the branching.

The more interesting sec-
ond type is used to repre-
rent a ternary relation.
dot in two arrows. They

represent the two binary relations, in which each ternary relation can
be split by losing some information.@ Figure 2.7 parts ant1 mod-

ules). ‘You cannot discover the association between each instance
and the selected conjgurution (or confenrs) from these partial rela-
tions. The retrieval of the linkage information must be supported by
the datamodel and implemented on the Design Databaase. In Figure
2.7 the relation associution movides this information.

If we look at a
specific con-
figuration of
a contents of
cell A, the as-
sociation
links each in-
stunce of the
subcells of A
@art rela-
tion) either to
the subcell
contents al-
ternative (ini-
tial configura-
tion) as shown
by the associ-
ation in Fig-
ure 2.6 or to
the subcell
confgura-
tion altema-
tive(finaIcon-
figuration).

At the bottom
of the hierar-
chy, cells will
not be com- Fin. 2.8 Hierarchv Tree with Alternatives and

Configurations
posed of sub-
cells, but are

primitive or leaf cells. For these cells no configuration in the previ-
ously described sense exists. Instead, areference to a corresponding
leaf cell from a domain further to the right can be. used as configura-
tion. We call this a primitive conflguration.

For example the Sizing Function Generator at the lowest level has
mzskkxyout interfaces (ml-it) as an input. This differs from the fpit
input to the same toolbox at the next higher level. The primitive con-
figuration defines this special relation at the bottom level of the hier-
archy.
In the case of con.gurations the generated relation also has to be

changed. The original data for a toolbox is a configured cotients.
Therefore we draw the relationbetweenconjigurafion and integace
as shown in Figure 2.7.

The ternary relation association in Figure 2.7 is now well represent-
ed by the MAD-model and therefore easy to understand. Let us try a
different interpretation. Associution has similarities to the part rela-
tion because it also links different :levels of the hierarchy. If we con-
sider thepart branch of the configuration in Figure 2.7 instead of the
cells in Figure 2.1, we get a similar DAG, the configuration graph.
This is the subgraph of the hierarchy graph. The hierarchy graph con-
tains all alternatives, the configuration graph or&y the selected ones.
The configurations are the vital part of a design database. In our o-

pinion, it is not possible to find a simpler model to represent the con-
figurations with the same expressive power. Thle hierarchy tree in
Figure2.8 may help tounderstandthemeaning. For the sakeofclarity
h&stances are not shown and are represented by the corresponding
interfaces (it). The tree shows acontents (ct) with all its alternatives
in one domain and three hierarchy levels. The confenfs that were se-
lected for a design (configured) are emphasized by heavy print. In-
terfaces (it) from a domain to the right (primitive configurations) are
shaded. Configurations are indicated by open ellipses. For some in-
terfaces no cotietis exists so far. These incomplete configurations

Paper 45.4

816

areindicatedby checkeredopenellipses. Wealsonote againthat ain-
tial configuration only spans one level of the hierarchy and a final
configuration several levels.

2.6 Views
A further extension to the model are the views. They are the place

for the storage of the design data or for pointers to secondary storage
of the data. Several views of an object can exist. In principle these
views represent the same data in a different form or different aspects
of an object. Examples are theviews “schematic” and “netlist”. Both
represent the structural information. A schematic entry tool can gen-
erate both views, but needs only read the netlist view. On the other
hand, the complete floorplan information is represented by theviews
t’frame”, Iiopins”, 11 slicing tree”, and “fpnetlist”. Different tools need
different assemblies of these partial views.

2.7 Versions
The management of versions is another important task of a design

database. Versions are generated sequentially and only the last ver-
sion is. in general, valid. This is in contrast to alternatives which are
allvalid.Nonnally,anewversionisproducedifthelastonehadaner-
ror.

Nevertheless, old versions may have to be stored if they are origins
of other cells (generated relation). The corresponding transaction
mayhavetoberesetandallgeneratedcellsmayhavetobenewlygen-
erated with the new version as origin. If the error does not affect the
generated cell, old versions may still continue to exist.

Version are introduced in the datamodel for all interfaces. con-
tents and for some conjigurations. We currently do not provide ver-
sions for instances, because in our experience a change in an in-

0:n

b

1:l

g<=n

stance always caused a change in the correspondiig contents and a
new version there. The views, containing the design data, are now
related to the versions.
2.8 The Nearly Complete Datamodel
Figure29 shows thedatamodel for the domains structure and floor-

plan in the notation of an extended MAD model. Only the viewsare
missing in order to simplify the drawing, objects with views have a
hatching. The versions are included. In principle, each domain is
represented by the datamodel which we developed in the previous
chapters.
Tkgeneruted relation relates versions to each other. An additional

generated relation has been introduced between contents versions.
We can now reconstruct the design history.
Figure2.9 also shows the limitation of datamodels. Many semantic

details cannotbeproperly expressed. The figuretries to show some of
the special characteristics by different shadings. It distinguishes rela-
tions between hierarchy levels and between domains. All black ar-
rows represents relations within the same cell, the same hierarchy
level, and the same domain. The bold type arrows point to dependent
objects, for example a contents can only be defined to an existing
tiefice. If you delete this interface, all dependent confents must
be deleted too.
3. Conclusion
The datamodel has been implemented in Smalltalk 80 as a proto-

type. So far the experience is positive. The database does not repre-
sent aperfomtancebottleneck. Assembly and disassembly of design
files is performed in a few minutes. This time is shorter than the tool-
box execution times. Smalltalk 80 provided a suitable environment
for the object orientation of the datamodel. An implemented object
browser could be used for ad hoc retrieval. The language also pro-
vides excellent functions as a retrieval language in the case of some
extensions. Currently the complete PLAYOUT system is used for a
VLSIdesign.
This research is part of the Sonderforschungsbereich 124 “VLSI

Design Methods and Parallelism” which is financed by the Deutsche
Forschungsgemeinschaft and the Center of Computer Aided Engi-
neering Systems.
4. References
/BBN85/A.Beetem. J.Beetmen, A. Nigam, “HDMS: AHierarchi-

cal VLSI Design Data Management System”, IBM Research Report,
Yorktown Heights 1985
/Ka 85/ R. Katz, “Information Management for Engineering De-

sign”, Springer Verlag, Berlin Heidelberg New York 1985
/MDK 87/ .I. Mtille, K. Dittrich, A. Katz, “Design Management

Support by Advanced Database Facilities”, Proc. of the IFIP WG
10.2 Workshop on Tool Integration and Design Environments, Pa-
derbom 1987
/Mi88a/B. Mitschang, “TheMolecule-AtomDataModel”, in: “The

PRIMA Project, Design and Implementation of a Non-Standard Da-
tabaseSystem”,T.Hiirder(ed.).SFB124ResearchReportNo.26/88.
Kaiserslautem 1988
/Mi88b/ B. Mitschang, ‘Towards a Unified View of Design Data

and Knowledge Representation”, in: Proc. of the 2. Int. Conf. on Ex-
pertDatabaseSystems,L.Kerschberg(ed.),pp33-49,Virginia1988
/Si 88/ E. Siepmann, “PLIF - Ein objektorientiertes Datenaus-

tauschformat zur Kommunikation in PLAYOUT”, SFB 124 Re-
search Report No. 32/88. Kaiserslautem 1988
/zi 86/G. Zimmermann, ‘Top-down design of digital systems”, in

Logic Design and Simulation, E. Horbst (Editor), Elsevier Science
Publ. B.V., Amsterdam 1986
/Zi 88/G. Zimmermann, “PLAYOUT -A Hierarchical Layout Sys-

tem”, GI-18. Jahrestagung, Informatik Fachberichte 187, Springer
Verlag. Berlin Heidelberg New York 1988

2.9 D-ode1 for two w

Paper 45.4

817

