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Abstract

This thesis addresses fragmentation in dataflow com-
piler frameworks and explores the potential of the
Multi-Level Intermediate Representation (MLIR) as a
unifying solution. The research develops a custom
Dataflow Process Network (DPN) dialect within MLIR
to represent and compile dataflow models specified us-
ing the CAL actor language and the NL network lan-
guage. A prototype compiler was created by inte-
grating a custom StreamBlocks Tj§cho frontend with
an MLIR backend, successfully transforming dataflow
models into optimized executables. The results demon-
strate significant improvements in memory usage and
and comparable execution efficiency compared to exist-
ing multi-core platform implementations. These find-
ings highlight MLIR’s potential as a modular, extensi-
ble platform for dataflow compilers, enabling the inte-
gration of custom transformations and optimizations.
However, challenges remain, including supporting the
full set of language features and integrating compila-
tion for heterogeneous systems. Future work should
focus on extending the dialect’s capabilities, refining
optimization strategies, and exploring the integration
with heterogeneous system architectures.
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Zusammenfassung

Diese Arbeit befasst sich mit der Fragmentierung
in Datenfluss-Compiler-Frameworks und erforscht das
Potenzial der Multi-Level Intermediate Representation
(MLIR) als vereinheitlichende Losung. Die Forschung
entwickelt einen benutzerdefinierten Dataflow Pro-
cess Network (DPN) Dialekt innerhalb von MLIR,
um Datenflussmodelle darzustellen und zu kom-
pilieren, die mit der CAL-Akteurssprache und der
NL-Netzwerksprache spezifiziert wurden. Durch die
Integration eines benutzerdefinierten StreamBlocks
Tycho-Frontends mit einem MLIR-Backend wurde ein
Prototyp-Compiler erstellt, der Datenflussmodelle er-
folgreich in optimierte ausfithrbare Dateien umwan-
delt. Die Ergebnisse zeigen signifikante Verbesserungen
bei der Speichernutzung und eine vergleichbare Aus-
fliihrungseffizienz im Vergleich zu bestehenden Multi-
Core-Plattform-Implementierungen. Diese Ergebnisse
unterstreichen das Potenzial von MLIR als modulare,
erweiterbare Plattform fiir Datenfluss-Compiler, die
die Integration von benutzerdefinierten Transformatio-
nen und Optimierungen ermoglicht. Es bleiben jedoch
noch einige Herausforderungen, wie die Unterstiitzung
aller Sprachfunktionen und die Integration der Kom-
pilierung fiir heterogene Systeme. Zukiinftige Arbeiten
sollten sich darauf konzentrieren, die Fahigkeiten des
Dialekts zu erweitern, Optimierungsstrategien zu ver-
feinern und die Integration mit heterogenen Systemar-
chitekturen zu erforschen.
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1 Introduction

Modern industrial and commercial systems are increasingly characterized by
the growing complexity and interconnectedness of their components, ranging
from manufacturing equipment to sensor networks and data processing units,
many of which are critical to ensuring safety and operational efficiency. As
these systems scale, challenges such as component management, system elas-
ticity, handling of large data volumes, and maintaining robust performance in
dynamic environments become more pronounced. In response to these chal-
lenges, model-based design workflows are frequently employed.

These workflows offer substantial benefits in the design and development of
complex systems. By focusing on system functionality rather than low-level
implementation details, they can reduce cognitive load on developers, enable
early assessment and validation of requirements (front-loading in systems en-
gineering), and provide other potential advantages depending on the specific
model used. An approach that has proven useful in addressing the challenges
of such systems, especially those inherently parallel, is the use of Dataflow
Process Networks (DPNs).

DPNs [LP95| offer a formal framework for modeling the dynamic interac-
tions between concurrent system components arranged in a directed graph.
By following a data-driven execution model, DPNs enable the representation
of complex workflows where processes are triggered by the availability of in-
put data, enhancing system efficiency and flexibility. Specific classes of DPNs,
such as synchronous dataflow networks (SDFs) [LMS87|, allow the evaluation
of critical system properties such as memory boundedness, process liveness,
and deadlock freedom. These properties are essential for ensuring the robust-
ness and predictability of industrial and commercial systems, particularly in
environments where reliability and performance are crucial.

However, unlike traditional programming paradigms where code can be di-
rectly compiled into executables, these model specifications are often expressed
in high-level, domain-specific abstractions, lacking a clear and straightfor-
ward path to implementation. Moreover, deploying dataflow networks presents
more significant challenges. System heterogeneity, marked by diverse hard-
ware and software components, complicates the integration and optimization
of dataflows. Additionally, the varying needs of distinct industrial and com-
mercial domains often require specialized data processing techniques to address
specific operational needs. Overcoming these challenges calls for tailored solu-
tions that account for the unique characteristics of each domain, which has led
to the development of numerous frameworks for dataflow specification, model-
ing, and compilation.

Each dataflow framework employs a specific set of frontend representations
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and resulting backend outputs. For instance, MAPS |CLA13| and Flextream
[Hor+09] take sequential C programs as input and generate parallel C pro-
grams; ORCC |Yvi+13| uses RVC-CAL programs to produce parallel C code;
and StreamBlocks |Bez+21| processes RVC-CAL programs to generate het-
erogeneous parallel programs. Each of these frameworks implements its own
unique technology stack, often developed independently to address domain-
specific requirements. While this diversity enables specialized solutions, it also
fragments the ecosystem, highlighting the need for a unified framework to har-
monize dataflow specification and modeling efforts to enhance interoperability
and reduce redundant development.

Multi-Level Intermediate Representation (MLIR) |Lat-+21] is an emerging
technology that addresses interoperability challenges in modern compilers. Its
flexible framework facilitates the design and implementation of code genera-
tors, translators, and optimizers across various abstraction levels, application
domains, hardware targets, and execution environments. By using dialects,
MLIR modularizes domain-specific languages or their components, enabling in-
tegration and co-optimization. Operating at multiple abstraction levels, MLIR
allows optimizations to be applied to target-specific resources. This modular-
ity reduces software fragmentation, promotes cross-domain compatibility, and
fosters collaboration, enhancing compiler scalability, streamlining the develop-
ment of compiler tools, and supporting specialized solutions.

The focus of this thesis is to identify whether MLIR can address the software
fragmentation currently faced by the dataflow community, which is character-
ized by a multitude of distinct frameworks, and explore its potential to unify
and integrate these solutions through the development of a single DPN dialect.
The significance of this study lies in its potential to reduce the community’s
duplication of effort and enable a single dataflow compilation ecosystem where
optimizations can be implemented and executed to target domain-specific re-
quirements. By consolidating disparate frameworks into a unified platform,
it is expected that the development of dataflow-based applications would be
streamlined, reducing redundant efforts across different teams and facilitating
collaboration.

To take a step toward this goal, a prototype compiler for the CAL actor
language |[EW03| and the NL network language |[Jan07] was built using a cus-
tom T¥cho frontend and an MLIR backend. A proof-of-concept DPN dialect
was created leveraging MLIR, along with a series of compilation passes for
both single- and multi-threaded executions. A simple DPN was designed and
compiled, and the resulting executables were analyzed and compared to those
generated with StreamBlocks [Bez-+21| multicore compiler. Preliminary results
indicate that MLIR is a promising candidate for generating highly optimized
executables, showing a significant reduction in executable file sizes and memory
usage while maintaining comparable execution time results.

This thesis is structured as follows: Chapter [2] provides an overview of DPNs
and the languages used in this thesis for specifying DPNs, an introduction to
MLIR, and a review of related work in dataflow compilers and frameworks.
Chapter [3] outlines the methodology, detailing the development of the proto-
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type compiler, the creation of the custom DPN dialect and its compilation
passes, and the approach to compiling dataflow models. Chapter [ presents
the experimental setup, performance evaluation criteria, and the experimen-
tal results, along with their evaluation. Chapter [f| discusses the implications
of the findings, the strengths and challenges of using MLIR for developing
dataflow compilers, and the potential role of the custom DPN dialect devel-
oped in this work, while also outlining limitations and proposing directions for
future research. Finally, Chapter [6] concludes the thesis by summarizing the
key findings and contributions.







2 Background and Related Work

This chapter is intended to provide an overview of the fundamental concepts
and prior research relevant to the topic of this thesis. Section introduces
Dataflow Process Networks (DPNs), a versatile formal computational model
for reasoning about dataflow applications. Section examines languages
for specifying DPNs, with a focus on the CAL Actor Language (CAL), the
NL Network Language (NL), and the T§cho compiler framework, utilized in
this thesis. The Multi-Level Intermediate Representation (MLIR) is presented
in Section a highly modular and flexible infrastructure designed for the
development of domain-specific compilers. Finally, Section concludes with
a review of related work in the field of dataflow programming, summarizing
some of the recent advancements in modeling, optimization, and execution of
dataflow models across different system architectures.

2.1 Dataflow Process Networks

The term "Dataflow Process Network" (DPN) was coined by Lee et al. [LP95|
to describe a formal computational model for representing and processing par-
allel dataflows. A DPN consists of a network of dataflow processes, where a
process represents one or more firings of a dataflow actor. A "firing" is defined
as an atomic unit of computation that consumes the input tokens of the actor
and produces output tokens, subject to a set of firing rules specifying that suffi-
cient tokens must be available at the actor’s input ports for the computation to
take place. By definition, DPNs follow a data-driven execution model, where
computations are dynamically triggered based on the availability of input data.

DPNs differ from Kahn Process Networks (KPNs) [Kah74] in that DPN reads
are non-blocking in the absence of input tokens, allowing process execution to
continue even if data dependencies are not satisfied. However, an actor’s firing
still depends on the fulfillment of its data dependencies, making this behavior
analogous to a KPN extended with empty channel tests. Additionally, DPNs
admit multiple, overlapping firing rules, which are not allowed in KPNs. This
is theoretically equivalent to extending KPNs by permitting multiple processes
to access a single channel. These differences introduce non-determinism into
the DPN execution order, where the availability and timing of tokens affect the
network’s behavior. In contrast, KPNs enforce blocking reads while allowing
non-blocking writes, and limit each channel to one reading and one writing
process. This blocking mechanism guarantees deterministic execution order in
KPNs, but it also constrains concurrency by delaying process execution until
data dependencies are met, incurring in context switching overhead.

In both DPNs and KPNs, communication between processes occurs via
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streams of tokens transmitted through First-In-First-Out (FIFO) channels.
These channels preserve the order of token production, though the rate and
timing of token production and consumption can vary depending on execution
conditions. This flexibility allows DPNs to effectively model a wide range of
applications, such as those with dynamic workloads or irregular data produc-
tion rates.

It has been demonstrated that DPNs are capable of modeling both syn-
chronous and dynamic dataflows [LP95|. In the context of synchronous dataflows
(SDFs) |[LMS7|, actors are characterized by fixed token production and con-
sumption rates, enabling static scheduling, static buffering, and consequently,
deterministic execution. Conversely, dynamic dataflow graphs (DDFs) [BL93|
consist of one or more dynamic dataflow actors, where the token consumption
or production rates of actors cannot be determined statically. While more
flexible, this potentially requires run-time scheduling, which can introduce
non-determinism in the execution order of actors, depending on the schedul-
ing strategy. In the same work, Buck et al. also introduce boolean-controlled
dataflow actors (BDF actors). In this modeling approach, the number of tokens
produced or consumed by an actor is either constant, as in the SDF model,
or dynamically determined based on boolean control tokens, influencing the
actor’s firing rules and token rates. Moreover, Buck et al. emphasize that BDF
graphs are Turing-equivalent. As a corollary, generally determining whether a
BDF graph can be scheduled with bounded memory is equivalent to the halting
problem and is therefore undecidable.

While DPNs are flexible in representing other dataflow models, they also sup-
port hierarchical composition, where the networks themselves can be treated
as individual actors within a larger network. This modularity simplifies the
design of large and complex systems by allowing components to be designed,
verified, and reused independently. Hierarchical composition also facilitates
complexity management by encapsulating details at lower levels while expos-
ing only the necessary interfaces to higher-level components. In addition, this
approach improves maintainability and scalability, as changes can be made to
lower-level components without structurally compromising the system.

Feedback loops can also be represented within DPNs, allowing for the expres-
sion of iterative or cyclic dependencies, where the output of one actor can be
fed back as input to the same or another actor. This capability is essential for
representing applications such as signal processing or iterative algorithms. Ad-
ditionally, a feedback directed to the same actor can be employed to maintain
its state, allowing dynamic state updates over time and supporting applications
that require memory or state persistence.

In summary, DPNs serve as both a theoretical foundation and a practical tool
for designing, reasoning about, and implementing efficient, robust, and scalable
reactive and parallel applications. The ability to decouple processes and their
execution from a strict timing model renders DPNs particularly well-suited
for modeling these systems, allowing the flow of data to adapt dynamically to
varying conditions. Through token-based data dependencies and the avoidance
of shared mutable state between actors, DPNs help mitigate common pitfalls
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such as race conditions and deadlocks. Its data-driven computation, triggered
by the availability of data rather than explicit synchronization, fosters clarity
and reliability in system design.

2.2 Dataflow Network Specification

As discussed in the previous section, DPNs offer a comprehensive approach
to modeling and programming concurrent systems where the flow of data de-
termines the execution order of processes. These processes, referred to as
actors in the context of dataflow models, are independent, self-contained units
of computation that communicate via streams of tokens. Programming such
systems requires specialized languages that can express both their structural
aspects (e.g., network topologies and actor connections) and dynamic behavior
(e.g., token consumption and production). This section briefly introduces two
programming languages designed for dataflow networks: the CAL Actor Lan-
guage (CAL) and the NL Network Language, as well as the framework used
to develop the front-end compiler of this thesis: the Tycho Framework.

2.2.1 CAL Actor Language

The CAL actor language (CAL) [EWO03]| is a simple yet powerful declarative
language designed for programming actors in dataflow models. Actors are
independent, self-contained units that communicate by consuming and pro-
ducing tokens through identified ports. CAL provides a formal framework for
defining the internal behavior of actors and their interactions with external
components. It is specifically designed to define these individual components
(the actors), encapsulating their functionality and enabling their integration
into larger systems. This promotes modularity and enhances flexibility in the
construction of concurrent systems.

CAL abstracts away from the network communication model and actor
scheduling, allowing developers to focus on the individual logic of actors and
their interactions through well-defined ports. The semantics of the actor net-
work are thus defined in a subsequent step, where the communication between
actors and their scheduling are determined. Key aspects of actors addressed
by CAL include, but are not limited to, their port signatures, actor state and
its modifications, firing logic (including firing alternatives that consider token
dependencies), and the production and consumption of tokens.

One important characteristic of CAL is that it does not provide a type
system. Instead, it delegates the type system to the external environment.
Despite this characteristic, CAL does require a small set of base types to
support its grammatical constructs, primarily for expressions. Consequently,
CAL defines a notation for declaring types, although it does not specify their
meaning or underlying implementation. This design choice aligns with CAL’s
goal of being implementation independent and retargetable, allowing it to be
compiled for different execution environments.

In CAL, an actor is defined within a surrounding namespace. Its declaration
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starts with the actor keyword, and is followed by a name, actor parameters,
input and output ports, actor variables, actions, functions, and procedures.
Additionally, it may also include an initialization action, a priority block or
action schedule, and a time clause. In this work, we focus on the former con-
structs, as they are fundamental to defining the core behavior and interactions
of actors.

Listing 2.1: CAL Actor Example

1 mnamespace source.actor.ns:

2 actor Source(imt number_of tokens) ==> int Out:
3

4 int counter := 0;

5

6 function increment (int value) —> int:
7 value + 1

8 end

9

10 action =—> Out:|[t]

11 guard

12 counter < number_of_tokens

13 var

14 t := counter

15 do

16 counter := increment(counter);

17 end

18 end

19

20 end

depicts an actor named Source implemented in the CAL actor
language. The actor is defined within the source.actor.ns namespace, de-
clared using the namespace keyword (line 1). The actor definition begins with
the actor keyword, followed by its name, a possibly empty list of parameters,
and the input-output signature (line 2). Input ports are specified to the left
of the ==> symbol, while output ports are listed on the right. In this case, the
actor accepts an integer parameter, has no input ports, and defines a single
output port named Out that works with integer elements.

The actor contains a single assignable integer variable named counter, ini-
tialized to zero (line 4), and a function named increment that takes an integer
argument and returns an integer (lines 6-8). It also defines an action without
a tag (lines 10-17). The action takes no input and produces one output token,
represented by the action variable t (defined in line 14), which is sent to the
Out port. The action can execute as long as the counter variable is less than
the number_of _tokens parameter (line 12). Upon execution, the action body
(lines 15-17) increments the counter variable, and at the end of execution, the
value stored in t is transmitted to the Out port.

The actor’s surrounding namespace defines its global environment, which
includes free variables such as functions, procedures, and types that are not
explicitly defined within the actor but are accessible during execution. These
variables are pre-defined within the implementation context. To manage com-
plexity and support logical separation between implementations, CAL allows
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for the selective extension of the global environment through import declara-
tions. Imports make use of a hierarchical namespace with qualified identifiers,
providing clarity and modularity when accessing entities external to the com-
pilation unit.

CAL’s variables can be assignable or non-assignable, and mutable or im-
mutable. Assignable variables allow their values to be modified during execu-
tion, whereas non-assignable variables remain constant once assigned. Mutable
variables, on the other hand, can have their internal states modified, such as
changing an item in a list, while immutable variables cannot. Note that a
variable may be assignable and immutable, or mutable and non-assignable.
The former would allow a variable to, e.g., point to different lists while not
modifying the values within those lists. The latter would allow a list to have
its values modified, but the reference itself must remain constant. If a variable
is declared in an inner scope with the same name as one in an outer scope, the
inner variable shadows the outer one. Additionally, a variable name cannot be
redefined within the same scope.

Actor parameters are variables that allow values to be passed to the actor
during instantiation, providing the actor with the required information for its
execution. These parameter play an important role in customizing the actor’s
behavior, enabling it to be more flexible and reusable across different contexts
or scenarios. The input and output ports of the actor act as communication
endpoints through which it consumes and produces tokens. Each port is asso-
ciated with a defined type, which may explicitly declared or implicitly inferred
based on the context in which the port is used.

CAL’s functions and procedures are analogous to C functions, with the dis-
tinction that functions return a value while procedures do not. Functions in
CAL operate similarly to the typical C function, performing computations and
returning a result, while procedures are used for modifying state or triggering
side effects. Although CAL does not natively support external function or
procedure declarations, it is common for CAL implementations to extend its
functionality, accepting that functions and procedures signatures be declared
without definitions. In this case, the implementation is delegated to an ex-
ternal source or environment, which must be linked during the compilation
process. This enables the integration of CAL with a wide range of pre-existing
functionality, facilitating interoperability with other programming languages,
systems, or hardware platforms, significantly expanding its potential use cases.

CAL Actions

Actions are declarative descriptions of how input tokens, output tokens, and
state transitions are related to each other. They define the behavior of an
actor by specifying how it consumes input tokens, processes data, modifies its
internal state, and produces output tokens. Additionally, an action may have
an assigned time delay, not used in this thesis. An actor may present zero
or more actions. The actual meaning of an action is defined by the model of
computation. In the context of this thesis, an action execution can be seen
as a single firing event that consumes and produces tokens, where actor state
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variables are syntactic sugar for one or more immediate single-token feedback
edges.

Actions are triggered by the availability of tokens in the input ports, and
their firing may depend on additional conditions, known as guard expressions.
When enough tokens are present in the input ports and the guard expres-
sions evaluate to TRUE, the action body can be executed. The action body
is composed of executable statements such as variable assignment, function
calls, conditional statements (if), loops (while, foreach), and block statements.
These statements are constructed using other statements, expressions, or spe-
cific formats and constructs.

An actor may have more than one executable action at a given point in
time. This demands that some form of disambiguation of which action to
actually trigger be defined. For this, CAL provides action priorities and action
schedules, which determine the order in which actions should be tested for
execution or executed. Additionally, actions may be assigned tags, which serve
as labels that can be shared across multiple actions. A tag is used to group
related actions together, and can be used in the definition of action priorities
and schedules.

Actions define a scope within which variables can be declared and used
throughout the action’s execution. Actions determine how input tokens are
consumed and assigned to action variables using input patterns. It is admis-
sible that action guard expressions read input token data without consuming
the tokens, allowing for conditional checks before their consumption. Output
expressions, on the other hand, define the expressions whose results will be
sent to the respective actor’s output port.

Input patterns and output expressions can be associated with ports either
implicitly by position, as declared in the actor’s signature, or explicitly by
name. In both cases, they may include a repeat expression, indicating that
the pattern or expression is repeated a specified number of times, consuming
or producing N times the specified amount of tokens. Additionally, input
patterns and output expressions can be associated with either a single port
or multiple ports (referred to as multiport or multichannel). For multiports,
channel selectors must be used to associate the input patterns and output
expressions with the appropriate ports. Multiports will not be used in this
thesis.

2.2.2 NL Network Language

The NL Network Language (or NL, for short) |[Jan07| is a compact language
designed to specify directed graphs that connect entities through ports. It is
primarily used to specify dataflow networks, where the entities are dataflow
actors. Building on the CAL actor language report [EWO03|, NL introduces
grammar rules for specifying networks, including network ports, entities, con-
nections between entities, among constructs. These rules provide a robust
foundation for representing dataflow graphs. It is important to note that the
found NL specification is marked as a draft, and the implementation used in

10
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this thesis, via Tycho (see Section [2.2.3)), may therefore present distinctions
from the draft specification.

An NL network class begins with the network keyword, followed by a qual-
ified name, network parameters, input and output ports, an import statement
section, a variable declaration section, sub-network declarations, entity decla-
rations, and the overall network structure. In NL, import statements explicitly
specify whether the namespace pertains to types, entities, or variables. If omit-
ted, variables are assumed by default. Entities may be atomic or composite,
with composite entities representing sub-networks that can be flattened. This
hierarchical structure allows networks to act as nodes within a larger graph,
enabling modular and scalable design.

Entities are declared in the entities section and are associated with unique
identifiers. Each entity corresponds to a CAL actor declaration and represents
an instantiation of the actor. If the actor requires parameters, they must be
specified in the entity declaration. Entities can also be conditionally instan-
tiated, enabling their creation to depend on specific configuration conditions.
Additionally, entities include an attribute section that provides extra infor-
mation to the compiler. Attributes consist of a list of named values or types
associated with the entity, offering flexibility to configure and influence the
behavior of the compiler and other tools.

A network structure, defined in the structure section, consists of a se-
quence of structure statements. These statements may define port-to-port
connections, generate additional structure statements via a for-each loop, or
conditionally create individual connections or sets of connections based on
specified conditions.

Listing 2.2: NL Network Example

1 mnamespace my.network.ns:

2 import source.actor.ns.Source;

3 import other.example.ns. Sink;

4

5 network SourceSink () => :

6 entities

7 source = Source (number of tokens = 5);
8 sink = Sink ();

9 structure

10 source.Out —> sink.In { bufferSize = 1; };
11 end

12 end

illustrates a network defined in the NL language. The enclosing
namespace is my.network.ns (line 1), and the actors Source and Sink are
imported into it (lines 2-3). The network, named SourceSink, has no input
or output ports (line 5). It consists of two entities: source, which represents
an instance of the Source actor, and sink, which represents an instance of the
Sink actor (lines 6-8). The network structure consists of a single connection
linking the Out port of the source entity to the In port of the sink entity,
with a bufferSize attribute set to one (lines 9-10).

11
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2.2.3 The Tycho Framework

Tycho |CJ19] is a Java framework for compiling stream programs based on
RVC-CAL, the CAL Actor Language, the NL Network Language, and a modi-
fied language for Kahn processes. It is based on formally defined actor machines
that closely match CAL actors and provide the same semantics for input and
output port interfaces. Actor machines consist of ports, state variables, tran-
sitions, conditions, and a controller that governs the transitions. A transition
corresponds to the execution of an actor’s action and can affect state vari-
ables and controller state. An actor action is referred to as an actor machine
instruction in the actor machine model.

A compiler developed with T¥cho is built as a sequence of compilation phases
(equivalent to compilation passes), such as parsing, validation, transformation
to actor machines, optimization, and back-end generation. Different compilers
can be built based on different compositions of compilation phases. The main
back-end for the T§cho compiler is C. Within T¥cho’s C back-end, each ac-
tor machine is associated with a data structure containing its state variables,
controller state, and buffer references. The controller function takes this data
structure, determines whether a transition can be taken, executes the transi-
tion in the positive case, and returns a boolean indicating whether a transition
was taken. Actor functions and procedures are translated to fat pointers, i.e.,
structures containing the function pointer and a pointer to an environment
object that in turn contains the pointers to the variables from the action scope
that the function requires.

Along with the T¥cho framework, Cedersjo et al. also list a number of po-
tential optimizations and transformations, such as controller reductions, kernel
fusion, and scope optimizations. Controller reduction involves compile-time de-
cisions about which instructions to test and execute when a controller state can
arbitrarily choose among a set of actions, often guided by heuristics. Kernel
fusion, or actor-machine fusion, aims to reduce concurrency overhead between
kernels scheduled on the same processor by creating a single sequential ex-
ecution plan at compile time. Kernel fusion requires that the target actor
machines have immediate communication, i.e., when a transition is taken by a
fused actor machine, the tokens sent back to it, as well as information about the
tokens consumed, arrive immediately. The proposed scope optimizations focus
on scope initialization and scope lifting. Scope initialization aims to reduce
transient scope reinitializations when the variables are not modified, whereas
scope lifting, in the context of their work, involves removing variables from the
transient scope data structures and declaring them locally in a condition or
transition when they are used in exactly one of these constructs.

2.3 Multi-Level Intermediate Representation (MLIR)

MLIR [Lat+21] is a novel, non-opinionated compiler infrastructure designed to
streamline the development of domain-specific compilers while supporting het-
erogeneous computer architectures. It is a flexible and extensible framework for
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building reusable compilation tools that operate at multiple levels of abstrac-
tion, enabling efficient code generation and optimization for a wide range of
hardware platforms. Its modular design facilitate the interoperability between
different compilers, enables scalability for different use cases and domains, and
simplifies the integration of domain-specific languages and frameworks.

2.3.1 Motivation and Design Principles

MLIR was created to address two main challenges [Lat+21]. First, high-level
languages have to implement their own compiler infrastructure with their own
intermediate representation before being lowered to LLVM |[LA04]. Second, the
LLVM community struggled to share front-end compiler infrastructure, while
observing a significant amount of effort duplication. To tackle these chal-
lenges, the community decided to invest into the development of a common,
high-quality infrastructure. The MLIR infrastructure facilitates greater col-
laboration and reuse across projects, shared optimization and transformation
of IRs, and multiple levels of abstraction.

MLIR’s design is guided by three overarching principles |Lat-+21|: parsi-
mony, traceability, and progressivity. Parsimony emphasizes simplicity and
minimalism, including only essential features such as the most commonly used
operations, types, and attributes among IRs. Built-in constructs are reused
and customized via extensions to sustain a wide range of requirements, reduc-
ing complexity while maximizing utility. Traceability focuses on maintaining a
clear and consistent relationship between different levels of abstraction for, e.g.,
tracking source code for debugging and understanding code transformations.
Progressivity ensures consistent progressive lowerings, avoiding the premature
loss of code structure. With MLIR, parts of the code can be lowered on de-
mand without compromising the overall integrity or the ability to optimize the
program.

To enable the efficient and scalable development of compilers, the MLIR
infrastructure provides a declarative syntax for defining operations, types, in-
terfaces, traits, and passes using TableGen |LLV|. TableGen automates the
generation of common patterns while allowing extensibility and customiza-
tion. When a TableGen definition is compiled, it produces C+-+ boilerplate
code for the declared constructs. Depending on the nature of these constructs,
additional function definitions and implementation details may be required to
fully implement the behavior and functionality of the declared entities. The
subsequent subsections elaborate on the aforementioned MLIR constructs.

2.3.2 MLIR Core Constructs and Representation

MLIR consists of a set of core constructs that are held in memory at compile
time. These core constructs include operations, attributes, location informa-
tion, regions, blocks, symbols, symbol tables, dialects, and types. Together,
these elements constitute the internal representation of the MLIR code, which
is reflected in both a generic textual representation and the in-memory struc-
ture. This in-memory representation is then used for optimizations, transfor-

13



Chapter 2: Background and Related Work

%sresults:2 = "d.operation'"(%arg@, %argl) ({
// Regions belong to Ops and can have multiple blocks. Region
TAblock(%argument: id.type): T ek
// Ops have function types (expressing mapping).
%value = "nested.operation"() ({
// Ops can contain nested regions. Region

"d.op"() : () —> ()
}) + () —> (!d.other_type)

coiconsume. valuet (svalue) : (ld.other type) —> () i
“Aother_block: ~ T Block
i "d.terminator"() [~block(%argument d.type)] () = ()

T T R
// Ops can have a list of attributes.
{attribute="value" : !d.type} : () — (!d.type, !d.other_type)

Figure 2.1: Operation structure example. Operations contain a list of regions, re-
gions contain a list of blocks, blocks contain a list of operations. Opera-
tions may have arguments and attributes. Blocks may have arguments.

Reprinted from |Lat+21].

mations, and validation throughout the compilation process. An example of
the textual representation and its structure is depicted in Figure 2:1]

Operations are the units of semantics of MLIR. These constructs repre-
sent actions or computations. Examples include arithmetic, memory access,
and control flow operations. MLIR does not have a fixed set of operations;
rather, operations can be created and extended to represent domain-specific
computations. An operation must have a unique opcode string identifying the
operation and the dialect. It takes and produces zero or more values, respec-
tively operands and results, which are kept in SSA form. Values represent
runtime data and must have an associated Type at compile-time. Operations
can only use values that are visible based on SSA dominance, nesting rules,
and the semantics of enclosing operations. Furthermore, operations may have
Attributes, Regions, Successor Blocks, and Location Information |[Lat-+21].

An operation instance may be comprised of a list of attached regions, with
each region potentially containing a list of blocks. These blocks can in turn
contain operations, which may include additional regions. The semantics of
a region are dependent on the operation to which it is attached, whereas a
list of blocks form a control flow graph. Blocks must end with a terminator
operation. The terminator operation defines its own semantics, for example,
by indicating a successor block where to direct the control flow or returning it
to the enclosing region’s operation. Blocks may have a list of block arguments;
regular values obeying the SSA. These are to be received from terminator
operations of predecessor blocks. MLIR does not use ¢ nodes; instead, control
flow and block arguments are used to manage value definitions.

Attributes are typed values containing compile-time information about oper-
ations. All operations have an open key-value attribute dictionary indexed by
attribute name. As with regions, attributes derive their meaning either from
the associated operation or dialect. Attributes augment the expressiveness of
operations by representing metadata that influences the behavior of the com-
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piler and/or runtime. While attributes have the capacity to influence runtime
behavior, they are classified as compile-time constructs. Consequently, they
must be known at compile time.

Location information can be used to identify how an operation was produced
and trace its origin throughout the compilation process. This information can
be propagated throughout the system, such as when lowering an operation
to a different set of operations. Location information standardizes the man-
ner in which diagnostics are emitted in MLIR, ensuring consistent reporting.
The underlying structures implementing location information can also be ex-
tended |Lat+21|, allowing the compiler to refer to more granular or contextual
locations. This, in turn, enables richer debugging, traceability, and analysis,
supporting complex transformations and optimizations while maintaining clear
references to the source code.

Operations may be associated with a symbol table and a symbol. The symbol
table associates string representations, or symbol names, with an IR symbol
object. Symbols are used to name entities that do not need to obey SSA.
The manner in which symbols are used is not defined by MLIR; rather, it is
left to the related operations to define its semantics. A symbol may be used
before its definition to, e.g., support recursive functions. Symbol tables have
the capacity for nesting, and MLIR provides mechanisms for retrieving nested
symbols, thereby enabling the modeling of hierarchical constructs.

Dialects serve as modular conceptual building blocks within the MLIR frame-
work, providing a structured grouping of operations, types, and attributes
suited for a specific domain. This structure facilitates the organization of
language- and domain-specific semantics while ensuring interoperability with
the MLIR core infrastructure and other dialects. To support progressive low-
erings and promote reuse, MLIR allows the intermixing and composing of
multiple dialects at any point of the compilation process.

MLIR provides a range of dialects in its repository, including: 11vm, which of-
fers an interface to LLVM instructions; scf, which provides structured control
flow operations; memref, designed for high-level memory control and referenc-
ing; and many others, each tailored to a specific use and domain.

2.3.3 Dialect Passes and Operation Traits and Interfaces

Compilation passes can be viewed from two primary perspectives: the pass
contains information about the operations that require transformation, or the
operation contains information about the passes in which it may register it-
self. These perspectives enable the implementation of different design choices.
MLIR provides infrastructure for three distinct mechanisms to support these
perspectives: dialect passes, which provide dialect-specific transformations and
optimizations; operation traits, which encode reusable static properties of op-
erations; and operation interfaces, which enable dynamic interaction with op-
erations via pre-defined methods.

Whilst dialect passes are dialect-specific and directly relate to compiler
passes, operation traits and operation interfaces are new, generalizable con-
cepts that enable interaction between operations and the IR. Operation traits
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encode reusable, static properties of operations, such as commutativity or the
absence of side effects, and can be used across multiple passes to simplify and
standardize transformations. In contrast, operation interfaces define dynamic
behaviors or capabilities that operations can implement, enabling passes to
interact with operations in a modular and extensible way. These are utilized
when the static behavior provided via traits is insufficient. Together, these
concepts provide a flexible framework for building reusable and scalable com-
piler infrastructure within MLIR. They also allow passes to operate on opera-
tions without requiring prior knowledge of their specific implementations, and
dialects can extend or customize traits and interfaces as necessary to accom-
modate dialect-specific behaviors and requirements.

2.4 Related Work

In the field of dataflow networks and its applications, particularly in paral-
lel and embedded systems, numerous frameworks and tools have been pro-
posed to aid in the design, optimization, and efficient execution of dataflow
models. These tools span a variety of paradigms, from static to dynamic,
runtime-dependent adaptation scheduling, to compilation and transpilation
of domain-specific languages, addressing diverse system architectures such as
multi-processor and heterogeneous environments. Often, these frameworks
are designed to provide both high-level abstractions and multi-level optimiza-
tions, simplifying the development of high-performance, possibly resource-
aware, dataflow applications. This section offers a short overview of the com-
munity’s efforts, highlighting their contributions and the uniqueness of their
solutions in handling dataflow models.

Streamlt [TKAO02] is a Java framework that provides constructs for building
data stream applications. These constructs are provided as base classes to be
extended by the developer. Streamlt uses Filter constructs as independent
execution units. Filters communicate data via FIFO buffers, with the con-
straint that their input and output rates are static. The Pipeline construct
creates a chain of streams; the SplitJoin creates parallel streams with different
strategies for data splitting and joining; and a FeedbackLoop allows cycles in
the stream graph. The FeedbackLoop requires an initialization strategy for
its initial executions. By applying the hierarchical composition of these con-
structs, Streamlt enforces a defined structure for streaming applications. It
also provides messages with control information and time synchronization, e.g.
to indicate shutdown. The time synchronization is not given in terms of wall
clock time. Rather, time is counted in terms of the number of executions of
the filter’s work function, taking into account the delay between the sender
of the control message and the executing receiver. Thus, a control message is
executed after the receiver has consumed all or most of the data sent before
the command.

The MPSoC Application Programming Studio (MAPS) [Cen+08]| is a frame-
work consisting of several tools for parallelizing sequential C code into multi-
processor systems-on-chip (MPSoC) processing elements. It takes a sequential
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C code and a MPSoC architecture definition and outputs an equivalent parallel
C code. MAPS achieves this parallelization by performing static and dynamic
analysis on the received C code paired with the architecture description. The
analyses are used to build a Weighted Statement Control Data Flow Graph
from which Coupled Blocks are generated using iterative clustering. A cou-
pled block is a schedulable set of basic blocks that are tightly coupled by data
dependencies. Parallel executable tasks are then created either in a one-to-
one relationship to the coupled blocks or by combinations of them, as desired
by the user. Finally, the parallel C code is output as a result. The MAPS
framework has been further enhanced |LC10; |CLA13]|, introducing algorithms
that improve the partitioning of coupled blocks, allowing MPSoC programming
with multiple applications, support for parallel extended C programs written
as Kahn process networks, and new user-defined parameters and constraints.

Flextream |Hor+09| integrates static scheduling to divide the work of syn-
chronous data flows and their dynamic adaptation according to the available
resources at run-time. Actors are classified as either stateful or stateless, where
stateless actors are permitted to be replicated. The static phase is subdivided
into two parts: the first part adjusts the amount of parallelism for the re-
ceived application by, for example, replicating stateless actors when there are
more processors than functional units; the second part applies an integer linear
programming formulation for partitioning the work, taking into account the
virtualized multicore target system with all resources available, i.e., an idle
system with the maximal (best possible) configuration.

The Flextream dynamic phase is composed of three parts: partition refine-
ment, stage assignment, and buffer allocation. The partition refinement phase
involves the redistribution of actors from unavailable cores to available ones,
utilizing an heuristic. The assignment of stages entails the distribution of func-
tional units in time accounting for their data dependencies. The allocation of
buffers aims to fit the storage requirements of the schedule within the local
memories, seeking to avoid the need for main memory space. This is accom-
plished by assessing whether memory requirements are met by all tasks in the
processor. If not, an attempt is made to allocate memory space into other pro-
cessors’ local memories. The resulting adapted schedule is executed by means
of a multicore runtime that dynamically manages system resource allocations.

OpenStream |[PC13| proposes an extension of OpenMP3.0 task clauses with
input and output streams. An OpenMP task is defined as a routine to be
executed by one of the threads in the innermost bound OpenMP parallel region.
The creation of OpenMP tasks occurs when a task construct is reached, with
their scheduling depending on a cooperative scheduling policy. OpenStream
establishes data dependencies between tasks, enabling their execution as data
and space become available, and it allows for the access of the same data stream
by multiple producers and consumers. Data consistency is maintained by using
the stream’s read and write indexes. OpenStream utilizes persistent tasks,
leveraging their static scheduling and lock-free implementations for stream
communications.

The Open RVC-CAL Compiler (ORCC) [Yvi+13| is an open-source inte-
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grated development environment (IDE) that assists in the development, valida-
tion, and deployment of multimedia applications. It offers two Eclipse plugins:
one for model-based specification of RVC-CAL networks and one RVC-CAL
editor. Additionally, it integrates with a Java simulation tool for testing the
developed applications, and provides distinct back-end compilation and tran-
spilation, e.g., for generating C/C++ code or HDL code for FPGA and ASIC.

A transpiler from RVC-CAL to SYSCL and OpenCL was proposed in the
work of Krebs |Krel9|. In this work, actors are executed by threads and
workloads are then delegated to GPUs by means of SYSCL and OpenCL.
Actors are scheduled by a global scheduler, which is run by multiple threads.
When an actor is not executing, it can be scheduled by one of these threads.
To mitigate the overhead of scheduling actors, an actor is executed multiple
times per scheduled window. During its execution, an actor’s local scheduler
determines whether any action can be executed and, if so, a kernel is scheduled.
In his work, Krebs proposes parallelizing an actor’s action execution as long as
the actor presents no action schedules or state variables, and the action presents
no guard condition. Additionally, the study mentions the possibility of actor’s
action parallelization with action guards when the actor is synchronous, i.e.,
it consumes and produces the same number of tokens for all actions. With
the SYCL version, when an actor finishes its execution, the global scheduler is
responsible for calling the port, which copies the resulting SYSCL buffer into
the FIFO buffer and frees its memory. In the OpenCL case, this is performed
by the local scheduler.

StreamDrive |[SB19] is a framework that facilitates the transformation of se-
quential C code into Kahn process networks and dynamic dataflows, with a
particular focus on clustered embedded multicore architectures. It defines a
comprehensive C API for defining and instantiating the models, a sequence
of steps for converting the reference C code into the respective MoCs, as well
as schedule optimization and human-in-the-loop refinement. Additionally, it
also offers its own runtime, capable, for example, of simultaneously execut-
ing Kahn process networks and dataflow models. A communication layer is
also provided, allowing actors to directly access shared communication buffers,
reducing memory copies and their associated overhead.

SHeD |RS20] is a framework for the automatic synthesis of heterogeneous
DPNs composed of dynamic and static data flows. In their work, Rafique et
al. provide the formal operational semantics for the aforementioned dataflow
models, together with algorithms for their execution. SHeD uses OpenCL to
distribute the workload to the target devices. It does this by separating the
execution of host and OpenCL kernels. The host runs a runtime manager that
is responsible for scheduling process kernels to devices. The runtime manager
has two levels of scheduling, a global level where processes are selected from a
process queue, and a local level where action guards are evaluated to determine
suitable actions to execute. When a process is deemed ready for execution, the
runtime manager selects the least busy device from the device queue to execute
the process kernel. After execution, callbacks are used to synchronize OpenCL
buffers with FIFO buffers. These callbacks are also responsible for updating
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the metadata used by the runtime manager, such as the process queues, device
queues, and device loads.

StreamBlocks [Bez+21] is a suite of tools that extends from the T§cho com-
piler framework [CJ19]. It leverages the infrastructure of T§cho under its Actor
Machine model to compile dynamic dataflows written with the NL Network
Language targeting heterogeneous platforms. It consists of a T§cho front-end,
platform-specific back-end compilers and code generators, and a partitioning
tool to determine which actors to offload to accelerators or CPU cores. The
T¥cho front-end receives CAL Network code — possibly with annotations such
as which partition an actor should be run on —, transforms the received mod-
els into the actor machine model, and optimizes it. The back-end compiler
and code generator is responsible for platform-specific optimizations and gen-
eration of the hardware (via, e.g., high-level synthesis) and software code. The
results are profiled by mean of a co-simulating the software actors in the soft-
ware runtime with the hardware actors profiled via cycle-accurate SystemC
modeling. The collected data is used to parameterize a mixed-integer linear
programming model to estimate optimal partitioning performance.

IaRa |Cia+22| is a synchronous dataflow compiler that leverages MLIR. It
converts a dataflow graph with computation kernels written in C and topol-
ogy represented using the Dataflow Interchange Format (DIF) |[Hsu+04] into
MLIR. The proposed dialect consists of four main abstractions: Graph, Ker-
nel, Actor, and Edge. These abstractions are directly translated into oper-
ations, namely GraphOp, KernelOp, NodeOp, and EdgeOp. The kernel func-
tions are transformed into MLIR using the Polygeist C-to-MLIR compiler
[Mos+21]. The proposed dialect’s structure, when combined with the MLIR
kernel code, enables the simultaneous optimization of both the kernels and the
dataflow graph structure as shown by Ciambra et al. The optimizations include
dead code elimination, dataflow scheduling, and memory allocation optimiza-
tions. After optimizations are performed, the flattened topology achieved, and
scheduling and memory allocation defined, the resulting MLIR code is lowered
to LLVM IR and compiled into an executable.
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3 Methodology

This chapter outlines the methodology and rationale employed to address the
research objectives of this study. Section provides an overview of the chap-
ter’s structure. Section describes the components forming the foundation
of the prototype compiler, beginning with the supported language features in
Subsection [3.2.1] Subsection then introduces the custom DPN dialect,
which was designed to represent DPN specifications in an intermediate repre-
sentation, followed by Subsection discussing the frontend compiler, which
leverages the T¥cho and StreamBlocks Platforms frameworks to parse input
specifications and generate the IR code for the DPN dialect. Finnaly, Sec-
tion [3.3] details the dialect-specific compilation passes developed as part of this
thesis, along with additional passes required for the compilation process. The
section concludes with a brief explanation of how to execute the compilation
process to produce an executable.

3.1 Overview

As stated in the introduction, this thesis investigates whether MLIR can ad-
dress the software fragmentation currently faced by the dataflow community.
While developing a comprehensive solution is a broad, collaborative endeavor
beyond the scope of a single master’s thesis, this work takes initial steps toward
that goal, with a narrowed focus on developing a proof-of-concept implemen-
tation to validate MLIR’s feasibility and potential in this context.

The development is divided into two main stages:

1. Prototype Development: A custom Tjcho frontend was developed to
parse CAL actor language and NL network language specifications, con-
verting them into MLIR code. Simultaneously, a proof-of-concept DPN
dialect was designed and implemented, providing the foundation for the
subsequent compilation process.

2. MLIR Compilation Process: Compilation passes were implemented for
single- and multi-threaded executions utilizing the MLIR framework to
generate preliminary executables from specifications represented via the
DPN dialect, demonstrating the feasibility of this approach.

These stages are further elaborated upon in the following sections. To pro-
vide an overview, Figure illustrates the compilation flow adopted in this
thesis. A DPN specification is provided as a set of CAL actor language and
NL network language files. Using the custom T§cho frontend, these files are
compiled into MLIR code, which consists of the DPN dialect developed in this
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Figure 3.1: Compilation flow.

thesis along with other built-in dialects from the MLIR project. The MLIR
code undergoes multiple compilation passes, progressively lowering the DPN
dialect into the LLVM dialect. When only LLVM dialect remains, the MLIR
code is translated into LLVM IR. The LLVM IR is then compiled and linked
with external object code files, containing the respective external function
and procedure definitions, ultimately producing a library. This library can
then be used to embed the DPN code into other executables.

3.2 Prototype Development

MLIR is a versatile compiler development framework offering a high degree of
flexibility through multiple abstractions. The community also provides exten-
sive documentation on many of its aspects, covering most of the main use cases
and constructs in great detail. However, when onboarding onto a project that
requires MLIR with no prior experience, the combination of its flexibility, the
sheer number of available dialects and their operations, and its comprehensive
documentation can quickly become overwhelming.

The uncertainty surrounding how MLIR operations from distinct dialects
could be combined into a single MLIR code led to the decision to develop the
frontend and the MLIR dialect in parallel. Changes in the dialect, after being
successfully parsed via a manually modified MLIR code, would then be intro-
duced into the frontend code generation. In many cases, these modifications
created new challenges, requiring either a different approach in the frontend or
an adaptation of the dialect under development. As understanding deepened,
the learning curve eased, and the process gradually became easier.

3.2.1 Supported Language Features

To set expectations and help the reader contextualize the following sections,
it is useful to first list the features currently supported by the prototype com-
piler. At this stage, the prototype supports a very limited set of language
features, which have been tested to a limited extent. These features include:
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networks (without hierarchy, ports, parameters, or variables), network entities
(without conditional declarations), network entity parameters, network struc-
ture (without conditional declarations), actor declarations, actor parameters,
actor input and output ports, actor variables, actor functions and procedures,
action declarations, action variables, action guards, action body, action input
patterns and output expressions (single-port, no repeat statements), function
and procedure calls, variable referencing (without indexing), simple variable
assignment, addition and logical less-than expressions, and support for integer,
real, and string literal types.

This subset of features was selected to manage complexity while focusing on
the essential functionality and core mechanisms of dataflow and actor-based
modeling, with networks and actors serving as fundamental components. These
basic types and structures provide the minimal expressive power necessary for
structuring a practical system. However, the absence of support for control-
flow statements and expressions represents a significant limitation, restricting
the modeling and manipulation of data within the language. Additionally, the
scheduling was kept at a basic, naive level, which simplifies implementation but
limits the potential of the generated code and its assessment. Future iterations
may expand on the current prototype (see Section , but the focus remains
on assessing the MLIR framework’s ability to process and generate code for
the essential constructs of DPN specifications.

3.2.2 DPN Dialect

A MLIR dialect named dpn (hereafter referred to as the DPN dialect) was de-
veloped to support the representation of DPNs within the MLIR framework.
Currently, it depends on the LLVM, Func, Arith, MemRef, SCF (Structured
Control Flow), ControlFlow, and OpenMP dialects. The LLVM dialect pro-
vides a direct interface from MLIR to LLVM instructions. The Func dialect
supports function creation and invocation. The Arith dialect provides basic
floating-point and integer mathematical operations. The MemRef dialect en-
ables memory creation and manipulation. The SCF dialect offers operations
such as if-then-else and do-while, while the ControlFlow dialect provides
branching operations. Finally, the OpenMP dialect enables the creation of
concurrent and parallel code via multithreading mechanisms.

Using TableGen, abstract classes are defined to group DPN dialect opera-
tions (DPN_Op), types (DPN_Type), and attributes (DPN_Attr). Specializations
of these constructs can then be identified as part of the DPN dialect. Of these
constructs, only operations were actually implemented in the DPN dialect.
Types and attributes are deferred for future iterations as they are not critical
for the current proof of concept.

Traits

As described in the background chapter, MLIR provides reusable, static prop-
erties of operations through traits. Before proceeding, it is helpful to briefly
describe the traits used by the DPN dialect operations. These are: Symbol,
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SymbolTable, IsolatedFromAbove, SingleBlock, AutomaticAllocationScope,
NoTerminator, and Terminator.

Symbol The Symbol trait designates an operation as named, enabling it to be
registered in a symbol table and referenced by its name. Symbolic naming is
particularly useful for representing entities like functions, variables, or actors
that need to be referenced or invoked from various parts of a program. An
operation with this trait includes a retrievable sym_name attribute, which holds
the operation’s unique identifier.

SymbolTable The SymbolTable trait indicates that the implementing opera-
tion acts as a container for Symbol operations. This trait allows the operation
to manage a collection of named symbols, providing a structured mechanism
for symbol registration and lookup. Operations implementing the SymbolTable
trait are responsible for maintaining the symbol scope and accessibility of con-
tained symbols, enabling other operations to reference them by name.

IsolatedFromAbove The IsolatedFromAbove trait asserts that the regions
of the operation will not reference SSA values defined outside their scopes.
Note that this does not affect the referencing of symbols, which is still allowed.
It guarantees that the operation does not rely on values from parent regions
or contexts, thereby preserving its isolation and enabling modularity within
the MLIR framework. This isolation also allow passes to process operations in
parallel, which is key to MLIR’s compilation performance.

SingleBlock The SingleBlock trait indicates that the operation’s regions
contain a single block. In this thesis, this trait is used when operations rep-
resent combinations of other operations, without a determined execution flow
between them.

AutomaticAllocationScope The AutomaticAllocationScope trait marks op-
erations where memory allocation is automatically managed by the framework.
Specifically, the memory allocated within the operation’s scope is automati-
cally deallocated when the scope terminates. It is important to note that only
stack memory is automatically managed.

NoTerminator The NoTerminator trait requires that the regions of the op-
eration have a single block, and removes the requirement that the block ends
with a terminator.

Terminator The Terminator trait indicates that the operation marks the
end of the block execution flow. These operations are typically responsible for
controlling the flow of execution, such as transferring control to another block
or terminating the current execution context.
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These traits are used in different combinations to define the desired behavior
of the DPN dialect operations, which will be discussed shortly. We will now
continue with a brief overview of the DPN dialect’s type support.

Types

As previously mentioned, the dialect does not provide any domain-specific
types. Consequently, types must be explicitly specified in the MLIR code
using types available from other dialects. The lack of domain-specific type
support in the DPN dialect shifts the responsibility of type interpretation and
enforcement to the front-end. The front-end’s approach to type handling is
described in Section

Operations

TableGen allows functions to be defined via the extraClassDeclaration field,
generating code for these functions in each concrete implementation of the
TableGen class. To simplify the development of additional operations, the
DPN_Op abstract class includes a definition of a getSymbolDefinition func-
tion, enabling all DPN operations to search for symbols in nested symbol ta-
bles. This is because the the built-in symbol referencing mechanism supports
searching of symbols in the innermost symbol table only, while the DPN dialect
uses nested symbol tables representing nested scopes.

During the development of the prototype, the following operations were im-
plemented: ActorOp, PortOp, YieldOp, VariableOp, DereferenceOp, Store0lp,
Action0Op, ActionInputOp, ActionOutputOp, ActionGuardOp, ActionBody0Op,
TerminatorQOp, CallOp, NetworkOp, ActorInstanceOp, ActorParameterOp, and
LinkOp. The role of these operations is to either represent the structure of the
DPN or provide auxiliary semantics to the dialect. The actual scheduling of
actors and their actions is determined by means of passes, described in Section
Each of the DPN dialect operations is described in detail below.

ActorOp The actor operation represents an actor specification. It is identi-
fied by a symbol, may have a list of actor parameters, and must contain a
body. The body is a region composed of a single block with no terminator
and may contain port, variable, action, and function operations. Currently,
the operation verification only checks whether each declared actor parameters
correspond to a variable operation declared within body. The actor’s input
and output ports are determined by the port operations contained in its body,
as well as the actor’s actions. The actor operation is isolated from above and
contains its own symbol table.

PortOp The port operation represents an actor port. It is identified by a
symbol, a port direction encoded in an enumeration specifying whether it is
designated as an input or output port, and an associated type that defines
the type of data the port handles.
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YieldOp The yield operation implements the terminator trait, indicating the
end of the execution flow for its containing block. It requires a value which to
yield together with its type.

VariableOp The variable operation represents a variable in the dialect. It is
identified by a symbol and an associated type. It may declare a variable with
its type without an initializer, for instance, to represent a variable that will be
configured via a parameter, or it may contain an initializer region. When an
initializer region is present, it must consist of one or more blocks containing
the code for initializing the variable. Additionally, the end of each execution
sequence within the initializer region must be marked with a YieldOp, and
their types must match the variable’s type.

DereferenceOp The dereference operation represents the process of accessing
the value stored in a variable’s memory space. It requires a symbol name and
the associated variable type as input. During verification, the operation ensures
that the provided symbol exists and that the specified type matches the type
of the dereferenced variable. However, the implementation of type matching is
currently incomplete, and some aspects of the verification may not fully enforce
type consistency.

StoreOp The store operation represents storing a value into a variable. It
receives the value to store, the variable’s symbol name, and the value type.
Upon verification, the existence of the variable is checked, and the types are
verified for compatibility.

ActionOp The action operation represents an actor’s action. It includes a
body region composed of a single block with no terminator and must contain
a tagﬂ identified by a symbol. It is important to note that it implements the
NoTerminator trait, but does not require the SingleBlock trait. This is due
to the introduction of multiple terminated blocks in one of the compilation
passes, discussed in the next section (see Section . This block may contain
variables, action input patterns, action output expressions, an action guard,
and an action body operation. Input patterns and output expressions are
currently represented by instances of ActionInputOp and ActionOutputOp,
respectively, which are described shortly. The sequence of token reading and
outputting is determined by the order in which these operations are use
The action operation also contains its own symbol table and implements the
AutomaticAllocationScope trait. Additionally, the action operation includes
an optional flag indicating whether it is an initializer action, even though
initializer actions are not currently supported.

! Although the action must contain a tag, tags are currently not supported and this require-
ment will change in the future.
2This semantics is determined in a subsequent compilation pass and could be modified.
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ActionInputOp The action input operation represents a single token read
from an input port. It is identified by a symbol, analogous to a variable name
that will hold the read token, and a symbol referencing the port from which
the token is read. During verification, the referenced input port is checked for
existence and must be confirmed to be an input port.

ActionOutputOp The action output operation defines the expression whose
result will be written to an output port. It takes an output port’s symbol name
and defines a body region containing the computations to be executed and
output to the port. The body region must be terminated with yield operations,
and the types of these operations must be compatible with the declared type of
the target output port, albeit its type verification is not currently implemented.

ActionGuardOp The action guard operation represents a combination of ac-
tion’s guard expressions. An action operation must contain at most one action
guard operation. It contains a body region with one or more blocks that must
end with the yield operation. All yield operations must yield a boolean il

type.

ActionBodyOp The action body operation represents the actual computations
of the action. It contains a body region constituted of the action’s computation
instructions and implements the NoTerminator trait.

TerminatorOp The terminator operation is used to indicate the end of the
control flow in a block and implements the Terminator trait.

CallOp The call operation is used to invoke functions within the context of
nested symbol tables. It is analogous to the func::CallOp, but with sup-
port for nested symbol table searching. The call operation receives a symbol
name referencing the callee, a sequence of callee operands, and a functional
type. Upon creation, it is verified whether the callee exists and is of the type
func: :FuncOp. The function types are checked for compatibility, and the num-
ber and types of operands are verified.

NetworkOp The network operation represents an NL network. It is identi-
fied by a symbol and must contain a body region. The body consists of actor
instance operations and link operations. It implements the SingleBlock and
NoTerminator traits, and contains its own symbol table. Currently, no verifi-
cations are implemented.

ActorInstanceOp The actor instance operation represents an NL entity. It
is identified by a symbol and its type must reference an actor operation. Op-
tionally, the actor instance operation may present a parameters region of a
single block with no terminator. The parameters region is constituted of
ActorParameterOps, described below. Currently, upon verification only the
existence of the referenced actor operation is checked.
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ActorParameterOp The actor parameter operation represents the initializa-
tion of an actor’s variable. It receives a symbol name referencing the variable’s
name, an initializer region, and the resulting parameter type. The initializer
region must contain one or more blocks, and the end of each execution sequence
must be marked with the yield operation, with the types of the yield operations
matching the actor parameter operation’s type, although this verification is not
currently implemented. Additionally, the referenced actor operation’s variable
is checked for existence, and the parameter operation’s type must match the
variable’s type.

LinkOp The link operation represents the connection between an input and an
output port. It receives two tuples, each containing an actor instance reference
and a port reference to identify the output and input ports, respectively. It
also requires a size value greater than zero, indicating how much space must
be reserved in the respective link’s FIFO buffer. Upon creation, the output
and input ports are checked for existence, and their types are verified for
compatibility.

Each of these operations represents a fundamental element of the DPN or
MLIR infrastructure required in the prototype. Although some features, such
as type verification and support for initializer actions, are still under develop-
ment, the implementation of these operations lays the foundation for creating,
verifying, and executing data flow specifications.

3.2.3 Frontend Compiler

The Tjycho framework was selected as the primary frontend driver for this
work. T¥cho is an open-source projectﬂ that supports the parsing of most
constructs from the CAL and NL languages, as well as the creation of ab-
stract syntax trees (ASTS) to represent specified DPNs. Additionally, a second
repository, StreamBlocks Platform&ﬂ complements T¥cho by providing back-
end infrastructure to facilitate tasks such as modular compiler adaptation and
code generation.

T¥cho’s parsing is based on an LL(k) grammar, and its parser is generated
using JavaCC. A comprehensive set of custom Java classes is predefined and
used to implement the intermediate representation and support the creation
and manipulation of the AST. Building upon Tj§cho, the StreamBlocks Plat-
forms framework provides a set of core functionalities, including a launcher
class for configuring and executing a given compiler, a Platform interface for
representing distinct platform compilers, an Emitter class for emitting backend
code, among others. Both T¥cho and Platforms provide a series of compilation
passes (phases, in their terminology) that implement the Phase interface.

30Originally developed by Lund University and now further developed and maintained by
StreamBlocks: https://github.com/streamblocks/streamblocks-tycho. Whenever
Ticho framework is referenced in this thesis, the latter should be considered.

“https://github.com/streamblocks/streamblocks-platforms
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It is also worth noting that StreamBlocks Platforms utilizes multiple dis-
patch to improve code understandability, extensibility, and maintainability.
Interfaces can be annotated to specify that their methods are multi-methods,
meaning the method selection depends on the dynamic (run-time) type of its
arguments. This is achieved through the MultiJ libraryEL developed along-
side StreamBlocks. As a result, a function is selected for execution based on
the most specific run-time type of the operand, allowing for the invocation of
different methods with varying parameter types without needing to statically
cast the input variables to select the target method.

Leveraging both frameworks, an MLIRPlatform class was implemented. It
consists of parsing phases, where actors and namespaces are loaded from the
CAL specifications, and names are amalgamated and resolved; a network elab-
oration phase, where a network object is built from an NL specification, and
unused global declarations are removed from the AST; a phase for adding
unique action tags to actions without tags, creating a lexical order of actions;
and the MLIR code generation phase, where the final AST is transformed into
MLIR code.

It is important to note that the actor machines defined by T¥cho are not
used. Additionally, no optimization phases were applied at this level other
than the removal of unused global declarations. Of the aforementioned phases,
all were predefined by the frameworks except for two: the action tag addition
and the MLIR code generation phase. The action tag addition was integrated
for compatibility reasons and does not affect correctness. Correctness is not
affected because, according to the CAL specification, untagged actions can
occur at any point in the schedule; i.e., schedules do not constrain untagged
actions. As such, this pass simply creates a lexically ordered set of tags for the
untagged actions. As long as none of the action tags introduced are related to
each other or to other tagged actions through the prefix ordering CAL uses to
define a legal sequence of actions, correctness is maintained.

In T¥cho, an instance of the CompilationTask Java class serves as the root
node of the AST, grouping a network object with its associated source code
units. The MLIR code generation phase receives this compilation task ob-
ject and generates a single named MLIR module operation, within which the
network contents are produced. These contents are generated in three main
steps: first, the external callable declarations; second, the actor definitions;
and finally, the network definition.

Types

Before continuing with each of the generation steps, it is necessary to briefly
discuss the type evaluation. As discussed in the background chapter (see Sec-
tion7 CAL does not provide a type system, delegating type interpretation
to the compiler. In this prototype, CAL types were directly translated into
MLIR types from available dialects for simplicity. To further segregate the
frontend parsing from the backend compiling, and to allow further backend

Shttp://www.multij.org/

29


http://www.multij.org/

Chapter 3: Methodology

optimizations, it is recommended that future work would implement the the
CAL type system within the MLIR dialect (see Section [5.4)).

Types of variables and literals are determined using a custom TypeEvaluator
interface. Integer types are translated into MLIR’s i types based on their size.
When a type must be implicitly inferred, the system evaluates the literal ex-
pression and determines the minimum size required to support it. For exam-
ple, an integer literal with the value 25 can be accommodated by an i8 type.
Booleans are represented as i1, while floating-point types must be explicitly
specified as either 32 or 64 bits, emitted as £32 and £64, respectively. It is im-
portant to note that type size checks are not propagated at this stage, limiting
the scope of type inference.

Strings are currently represented as definite size memory references from the
MemRef dialect, albeit there are plans to change these to plain LLVM pointers.
Additionally, functions with string parameters will reference these as unranked
memory references for compatibility reasons. More specifically, because ranked
memory references cannot be associated with another ranked memory refer-
ences with a distinct rank. Lists of fixed size could also be represented by
ranked memory reference structures, but they are not yet supported.

External Callables

The AST is transversed searching for external callables, each of which are
generated as a private function declaration, with its linking occurring in a
subsequent step. These functions are declared using the Func dialect and
receive the same name as specified in the CAL specification. The function
signature depends on whether it is a CAL function or a CAL procedure, and the
parameter types are converted according to the aforementioned type generation
mechanisms. The private keyword indicates that the function is visible only
within the module operation in which it is declared. A set data structure is
maintained to prevent that external callables with the same name and signature
be emitted more than once.

Expression Emissions

Expression emission logic is centralized in the custom ExpressionEvaluator
interface. Whenever necessary, a new, uniquely named temporary SSA variable
is created to represent the operation at hand. T§jcho supports many types of
expressions, including unary and binary operations, variable references, let
statements, if-then-else conditions, literals, procedure calls, lambdas, and
other expressions. The prototype compiler developed here supports variable
references, literal expressions for integer, floating point, and strings, binary
addition, logical less-than, and function invocation expressions. Fach call for
the evaluation of an expression may result in multiple, potentially recursive
calls within the frontend. Each expression generation method returns the SSA
value of the root node of the expression being generated, ensuring that the
correct value is propagated throughout the emission process and maintaining
consistency across the entire emission sequence.
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Actor Definitions

Currently, actor definitions are derived from network entities. For each network
entity, the corresponding actor is determined, and its code is generatedﬁ. An
actor is first declared using the ActorOp of the DPN dialect, where its name
and parameter list are specified. The actor’s inputs and outputs are then
represented using PortQOps, followed by the sequential emission of its variables
and actions.

Variable Emission In Tjcho, functions and procedures are represented in
the IR as LocalVarDecl objects. When variables are emitted, a distinction is
made based on whether the declared type of the LocalVarDecl is callable or
not. If the type is not callable, variables are emitted as VariableOps, with
the emission logic differing depending on whether they are actor parameters
or actual actor variables. Actor parameters and uninitialized variables are
emitted as VariableOps without a definition, while initialized variables are
emitted along with their initialization expressions. If the LocalVarDecl is
of a callable type, the code generation is directed to the callable declaration
emission logic, where the callable header is determined and the function or
procedure is emitted. CAL functions and procedures are both emitted as
FuncOp operations from the Func dialect.

Action Emission Actions are emitted as ActionOps, where an initializer ac-
tion is explicitly identified through a flag. A non-initializer action can either
explicitly declare itself as such or be implicitly treated as a non-initializer by
default. Although both the frontend and the MLIR dialect support the defini-
tion of initializer actions, the prototype compiler does not currently implement
this feature. Aside from the distinction between initializer and non-initializer
actions, all actions are emitted in the same sequence. First, the action tag is
emittedﬂ followed by the ActionInputOps, ActionOutputOps, ActionGuardOp,
and finally the ActionBodyOp.

Tjcho has IRNode objects for input patterns and output expressions, re-
spectively InputPattern and OutputExpression. Both support single and
multi-channel constructs, as well as repeat expressions. However, the proto-
type currently supports only input patterns and output expressions with single
ports and without repetition statements. With these limitations, an input pat-
tern is easily emitted as an ActionInputOp by simply defining the name of the
variable that will receive the token and the input port. The emission of output
expressions as ActionOutputOp involves incorporating a body region with the

5During the code review conducted for this thesis, it was observed that there is no mecha-
nism to track which actors have already been defined. This results in duplicate declara-
tions when multiple instances of the same actor exist. This issue is specific to the current
frontend implementation and could be resolved by maintaining a set of already-defined
actor names.

"Currently, action tags are limited to being used by a single action only. The DPN dialect
requires extensions to allow action tags to be created as separate operations that can
then be referenced by multiple actions.
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expressions and then outputting their result to the target output port.

In T¥cho, action guards are a list of expressions that must all be true for
the action firing to take place. Action guard emission involves emitting all
expressions necessary for its evaluation, combining their results using a logi-
cal AND operation from the LLVM dialect, and yielding the resulting value.
At this stage, token and port requirements are not considered. The gener-
ated ActionGuardOp reflects only the guard expressions of the action. Further
stages of the compilation process will handle the resolution of token and port
constraints, ensuring the appropriate runtime context for action execution.

The action body in T§cho is represented as a list of statements to be exe-
cuted sequentially. Each statement has its own generation logic encapsulated
in the individual methods of the frontend’s custom Statements interface. The
currently supported statements are assignment and call statements. The as-
signment statement is represented by the StmtAssignment IRNode class. The
types of the assigning expression and assignee are determined, and, if neces-
sary, a bitcast operation is first issued before the DPN dialect’s store operation
is emitted. The call statement is represented by the StmtCall IRNode. Each
of its parameters is an evaluated expression, and their types are collected to
generate the CallOp functional type. Parameters typed as memory references
are first cast to the required function or procedure memory reference type, and
the SSA value resulting from the cast is passed as the parameter. To sup-
port more statements, the frontend could be easily extended by implementing
methods for their corresponding IRNode types.

Network Emission

In T¥cho, a network is represented by the Network IRNode. The root network
is emitted as a NetworkOp with its amalgamated name and the prototype
does not currently support hierarchical networks. Entities, represented by
the Instance IRNode, are emitted as ActorInstanceOps, each with a unique
name and the name of its actor declaration. Entity parameters, represented
as a list of ValueParameter IRNodes, are included in the parameters region of
the corresponding ActorInstanceOp as ActorParameterQOps, along with their
initialization expressions. Network connections, represented by Connection
IRNodes, are emitted as LinkOps and require explicit buffer sizes.

The frontend compiler utilizes the T¥cho and StreamBlocks Platforms frame-
works to parse and translate CAL and NL specifications into MLIR code.
T§cho’s parsing and AST-building capabilities, combined with StreamBlocks’
flexible and modular compiler infrastructure, provide the foundation for map-
ping high-level DPN specification code into the DPN dialect’s intermediate
representation. In the next section, we will delve further into the passes of the
prototype compiler, focusing on how they progressively transform and lower
the DPN dialect into LLVM code, while also defining the execution semantics
of the DPN specifications. Before that, let’s examine an example output of the
frontend compilation.
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Frontend Compilation Result Example

Let us consider an example similar to those provided in the background chap-
ter. provides the definitions necessary for describing a simple net-
work composed of a source and sink entities (lines 29-36), with their respective
actors’ definitions (lines 2-17 and 19-27, respectively).

Listing 3.1: SourceSink DPN Specification

1 mamespace sourcesink .example:

2 actor Source(int payload size) => int Out:

3 external procedure println(String value) end
4 external function concat str int(String str, int value) —> String end
5

6 int counter := 0;

7

8 transmit: action =——> Out:|[t]

9 guard

10 counter < payload_ size

11 var

12 t := counter

13 do

14 println (concat str_int("Tx: ", t));

15 counter := counter + 1;

16 end

17 end

18

19 actor Sink() imt In ==>:

20 external procedure println (String val) end
21 external function concat str int(String str, int value) —> String end
22

23 action In:[t] =—>

24 do

25 println (concat str_ int("Rx: ", t));

26 end

27 end

28

29 network SourceSink () =—> :

30 entities

31 source = Source(payload size = 20);

32 sink = Sink ();

33 structure

34 source.Out —> sink.In { bufferSize = 1; };
35

36 end

37

38 end

presents the compiled form of the DPN specification, with two
ActorOps (lines 5-58 and 59-88) and a NetworkOp (lines 90-99). All opera-
tions are contained within a ModuleOp named module. The external functions
and procedures declared by the actors in the DPN specification (Listing 3.1
lines 3-4 and 20-21) have been compiled into FuncOps from the built-in Func
dialect (lines 2-3), with their CAL types converted into MLIR types. Each
actor’s ports are transformed into PortOps, embedded within their respective
ActorOps, and contain a name, direction, and associated element type (lines
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6 and 60). The actor parameter from the Source actor is compiled into an
uninitialized variable (line 7), with a list of parameter symbols specified in the
Actor0Op declaration (line 5). Meanwhile, the counter variable is compiled into
an initialized VariableOp (lines 8-11).

Listing 3.2: SourceSink DPN Frontend Compilation Result

1 module @module {
2 func.func private @println (memref<* x i8>) —> ()
3 func.func private Qconcat_str_int(memref<x x i8>, i32) —> memref<x x i8>
4
5 dpn.actor @sourcesink example Source [@payload size| {
6 dpn.port @QOut output : i32
7 dpn.variable @payload size : i32
8 dpn.variable @Qcounter = {
9 %0 = arith.constant 0 : 132
10 dpn.yield %0 : 132
11 } o 132
12 dpn.action @Qtransmit {
13 dpn. variable @t = {
14 %1 = dpn.dereference @counter : 132
15 dpn.yield %1 : i32
16 } o 132
17 dpn.action output @Out <= {
18 %2 = dpn.dereference @t : i32
19 dpn.yield %2 : 132
20 }
21 dpn.action guard {
22 %3 = dpn.dereference @counter : 132
23 %4 = dpn.dereference @payload size : 132
24 %5 = arith.cmpi slt, %3, %4 : 132
25 dpn.yield %5 : il
26 }
27
28 dpn.action body {
29 %6 = memref. alloca () : memref<255 x i8> // "Tx: "
30 %7 = arith.constant 84 : i8 // T’
31 %8 = arith.constant 120 : i8 // ’x’
32 %9 = arith.constant 58 : i8 // ’:’
33 %10 = arith.constant 32 : i8 // ’ 7
34 %11 = arith.constant 0 : index
35 memref. store %7, %6{%11] : memref<255 x i8> // T’
36 %12 = arith.constant 1 : index
37 memref. store %8, %6(%12] : memref<255 x i8> // ’x’
38 %13 = arith.constant 2 : index
39 memref. store %9, %6{%13] : memref<255 x i8> // ’:’
40 %14 = arith.constant 3 : index
a1 memref. store %10, %6[%14] : memref<255 x i8> // ’ ~’
42 %15 = arith.constant 0 : i8 // ’\0’
43 %16 = arith.constant 4 : index
44 memref. store %15, %6[%16] : memref<255 x i8> // ’\0’
45
46 %17 = dpn.dereference @t : i32
47 %18 = memref. cast %6 : memref<255 x i8> to memref<x x i8>
48 %19 = dpn.call Qconcat_str_ int(%18, %17)
: (memref<x x i8>, i32) —> (memref<x x i8>)
49 dpn.call @println(%19) : (memref<x x i8>) —> ()
50 %20 = dpn.dereference @counter : 132
51 %21 = arith.constant 1 : i8
52 %22 = arith.extsi %21 : i8 to i32
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

84
85
86
87
88
89
90
91

92
93
94
95
96
97

98

99
100

%23 = arith.addi %20, %22 : i32
dpn.store %23, Qcounter : 132
}
}

}

dpn.actor @sourcesink example Sink {
dpn.port @In input : 132
dpn.action @ action0 {
dpn.action input @t <= Q@In
dpn.action body {

%24 = memref. alloca () : memref<255 x i8> // "Rx: "
%25 = arith.constant 82 : i8 // 'R’
%26 = arith.constant 120 : i8 // ’x’
%27 = arith.constant 58 : i8 // ’:’
%28 = arith.constant 32 : i8 // > 7
%29 = arith.constant 0 : index
memref. store %25, %24[%29] : memref<255 x i8> // 'R’
%30 = arith.constant 1 : index
memref. store %26, %24[%30] : memref<255 x i8> // ’'x’
%31 = arith.constant 2 : index
memref. store %27, %24[%31] : memref<255 x i8> // ’:’
%32 = arith.constant 3 : index
memref. store %28, %24[%32] : memref<255 x i8> // ’
%33 = arith.constant 0 : i8 // ’\0’
%34 = arith.constant 4 : index
memref. store %33, %24[%34] : memref<255 x i8> // ’\0’

%35 = dpn.dereference @Qt : i32
%36 = memref.cast %24 : memref<255 x i8> to memref<x x i8>
%37 = dpn.call @concat_str_int (%36, %35)
(memref<x x i8>, 132) —> (memref<x x i8>)
dpn.call @println(%37) : (memref<x x i8>) —> ()

}

dpn.network @sourcesink example SourceSink {
dpn.actor instance @sourcesink example source
is @sourcesink example Source {
dpn.actor parameter @payload size {
%38 = arith.constant 20 : i8
dpn.yield %38 : i8
} o8
}
dpn.actor instance @sourcesink example sink
is @sourcesink _example_Sink
dpn.link (@sourcesink example source, @Out)
to (@sourcesink example sink, @In) {size=1}

Actors’ actions are compiled into ActorOps (lines 12-56 and 61-86). Let

us first consider the Source actor’s action from the specification, tagged as
transmit (Listing 3.1] lines 8-17). Its local t variable is initialized with the
current counter variable’s value (line 12). The resulting MLIR code corre-
sponds to a VariableOp containing the same variable name and an expression
that includes a DereferenceOp of the counter variable and a YieldOp with
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its value (lines 13-16). The action’s output expression Out: [t] (line 8 in the
specification) is compiled into an ActionOutputOp with the corresponding ex-
pression (lines 17-20), whereas the action’s guard (specified in lines 9-10) is
compiled into an ActionGuardOp (lines 21-26). Finally, the action body (spec-
ified in lines 13-16) is transformed into an ActionBodyOp (lines 28-55) with
the corresponding "Tx: " string (lines 29-44), the call to the concat_str_-
int (lines 46-48) and println (line 49) functions, and the increment of the
counter variable (lines 50-54).

The compilation of the Sink actor’s action (lines 23-26 in the specification)
(lines 61-86) is mostly analogous, with the only differences being the generated
action tag (line 61) and the input pattern In: [t] (specified in line 23), which
is compiled into an ActionInputOp (line 62). Finally, the specified network
(lines 29-36) is compiled into a NetworkOp (lines 90-99). The network entities
are compiled into ActorInstanceOps, which specify their names and the actors
that define their behavior (lines 91 and 97). In the case of the source entity
(specified in line 31), it includes a parameter. This parameter is represented
with an ActorParameterQOp, which specifies the parameter’s name and contains
the expression that initializes it (lines 92795)ﬂ The network’s connector (line
34 in the specification) is then transformed into a LinkOp, connecting the
source entity’s Out port to the sink entity’s In port (line 98).

3.3 MLIR Compilation Process

In this section, we detail the structure behind the compilation process, which
follows a sequence of passes, progressively lowering all dialects to the LLVM
dialect. Once this is complete, the lowered MLIR code is translated into LLVM
IR, which is then linked with the necessary C object code containing the defini-
tions of external functions and procedures. In this prototype, the network does
not automatically include a main function. Instead, it is compiled into a li-
brary, and an Application Programming Interface (API) is provided to execute
its functions, enabling its integration into broader systems.

3.3.1 Compilation Passes

The compilation passes gradually transform MLIR code and its associated di-
alects into progressively lower-level constructs, ultimately leading to the LLVM
intermediate representation. Each dialect typically defines one or more spe-
cific passes, with each pass representing a distinct step in the transformation
process. In this section, we outline the sequence of passes developed during
this thesis specifically to transform the DPN dialect, followed by the additional
passes necessary to fully lower the MLIR code into LLVM IR.

8Note that the ActorParameterOp’s type here is i8, whereas in the actor’s definition, it
is 132. This discrepancy arises because type resolution is delegated to the frontend and
remains incomplete. Currently, this code would fail verification in the DPN dialect, as
implicit type casting is not yet supported. Therefore, in entity instantiations, parameter
types must be explicitly determined.
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DPN Specific Passes

The prototype currently implements ten dialect specific passes. These must
be executed in a correct sequence, as transformations executed in one pass do
influence the structure that is used by the next. First, network entities (or
instances) are transformed into separate named actor operations, with param-
eters propagated. Next, links are converted into FIFOs, and access information
is added to each instance. Token and space requirements are embedded into
action guard operations, and action output operations are concatenated into
their respective action bodies. Subsequently, actor variable operations are
instantiated as memory locations, and initialization logic is created. Action
input operations are then transformed into action variable operations, which
are further transformed and prepended to the action body. Actor operations
are converted into functions, followed by the transformation of the network op-
eration into functions, thereby defining the actor and network APIs. Finally,
DPN call operations are converted into Func call operations. Each of these
passes is described in detail below.

Build Instances Pass This pass traverses the NetworkOp structure, cloning
the parent actor operation of each entity operation into its own ActorOp. This
enables the propagation of parameters into each instance and provides dis-
tinct MLIR logic for subsequent transformations. The cloned actor operations
representing the instances are retained, while all other actor operations are

removed. This process is illustrated through pseudo-code in [Algorithm 3.1}

Algorithm 3.1: Build Instances Pass Logic

1 input: ModuleOp

2 output: modified ModuleOp

3 begin

4 notDeletable «+ {}

5

6 networkOp < ModuleOp. getNetworkOp ()

7 foreach op : ActorInstanceOp 4n networkOp

8 clonedOp <« op.clone ()

9 clonedOp .setSymName (op . getSymName () + " instance")
10 op.setActorRef (clonedOp .getSymName ())
11 ModuleOp. insert (clonedOp)

12 notDeletable.insert (clonedOp)
13 end

14

15 foreach op : ActorOp in ModuleOp
16 if mot op in notDeletable

17 op.erase ()

18 end

19 end

20

21 return ModuleOp

22 end

The ModuleOp containing all the DPN dialect operations is the pass entry
point. An empty set is created to contain all the ActorOps created during this
pass (line 4). The network entities, represented with ActorInstanceOps have
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their associated ActorOps cloned, and their copies are given a name suffixed
with the "__instance" string (lines 7-9). The new ActorOp is set as the
entity’s associated actor declaration, inserted into the ModuleOp, and added to
the non-deletable set of ActorOps (lines 10-12). Finally, all the ActorOps are
iterated, and those not listed in the set are erased (lines 15-19).

To illustrate, |[Listing 3.3| presents the resulting MLIR code after executing
this pass on the code from[Listing 3.2] For brevity, only the relevant NetworkOp
and ActorOp codes are shown. Note that the source entity’s parameter has
been propagated to the associated actor variable (lines 10-13) and erased from
the parameters region of the ActorInstanceOp (lines 2-3).

Listing 3.3: Build Instances Pass Result Example

1 dpn.network @sourcesink example SourceSink {

2 dpn.actor instance @sourcesink example source
is @sourcesink example source instance {

3 }

4 dpn.actor instance @sourcesink example sink
is @sourcesink example sink instance

5 dpn.link (@sourcesink_gxample_siourcei, @Out)
to(@sourcesink example sink, @In) {size = 1}

6}

7

8 dpn.actor @sourcesink example source instance {

9 dpn. port @QOut output : i32

10 dpn.variable @payload size = {

11 %c20_i32 = arith.constant 20 : 132

12 dpn.yield %c20 i32 : i32

13 b 132

15}

16 dpn.actor @sourcesink example sink instance {

18}

Link to FIFO Pass This pass traverses the NetworkOp structure, creating
memory regions for each LinkOp to represent its associated FIFO structure.
Each FIFO includes six functions: getSize, isEmpty, isFull, getNumElements,
enqueue, and dequeue. Currently, no initialization or peek function is pro-
vided, though these could be added in this pass. The FIFO is initialized with
the required static memory space, with all variables set to zero, except for its
size.

The FIFO implementation is based on a circular buffer, with the overall logic
divided into the previously mentioned functions. The FIFO structure includes
a buffer with a fixed size, a write index, a read index, and an element count.
The element count helps avoid the typical ambiguity in circular buffers that
rely solely on indexes (the write and read indexes are equal when the buffer is
either empty or full). Additionally, all state querying functions (i.e., isEmpty,
isFull, and getNumElements) rely on this element counter instead of the FIFO
indexes. It is assumed that at most one consumer and one producer thread
will access the buffer at any given time. In the multi-threaded compilation
case, the FIFO control logic is updated atomically using LLVM’s atomic load
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and store operations to ensure thread safety.

The functions getSize, isEmpty, isFull, and getNumElements are straight-
forward and do not rely on the read or write indexes, so they are not detailed
here. The enqueue and dequeue logic for the FIFO buffer are outlined in
[Algorithm 3.2 and |Algorithm 3.3| respectively.

Algorithm 3.2: FIFO enqueue function

1 input: FIFO, data
2 begin
3 idx <+ FIFO.writeldx
4 FIFO. buffer [idx]| « data
5 idx « idx + 1
6 idx < idx % FIFO.size
7 FIFO. writeldx <« idx
8 FIFO.numElements < FIFO.numElements + 1
9 end
Algorithm 3.3: FIFO dequeue function
1 input: FIFO
2 output: data
3 begin
4 idx «+ FIFO.readldx
5 data < FIFO.buffer [idx]
6 idx « idx + 1
7 idx <« idx % FIFO. size
8 FIFO.readldx <« idx
9 FIFO.numElements <« FIFO.numElements — 1
10
11 return data
12 end

Before executing the enqueue and dequeue functions, the FIFO user must
ensure that the current FIFO state supports their usage by first calling the
state querying functions. The enqueue function writes the
new data element to the current FIFO’s write index (lines 3-4), increments
it, and checks for buffer boundaries (lines 5-6), writes it back to the FIFO
data (line 7), and atomically increments the number of elements in the FIFO
structure (line 8). The dequeue function works analogously,
first reading the element from the FIFO at the read index (lines 4-5), updating
the temporary read index while checking for buffer boundaries (lines 6-8), and
atomically decrementing the FIFO’s number of elements (line 9).

Note that, based on the assumption that at most one producer and one con-
sumer access the FIFO concurrently, and that the modifying functions (i.e.,
enqueue and dequeue) are executed only after the state querying functions
(which verify there are enough elements/space to read/write), the FIFO struc-
ture ensures safe and consistent memory access. This is due to the fact that
updates to the element counter are executed atomically at the very end of the
FIFO-modifying functions. Since the state querying functions rely solely on
reading the element counter, and since the counter is updated atomically and
consistently by at most one producer or one consumer at a time, the FIFO can-
not be inconsistently accessed, ensuring that invalid memory reads or writes
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do not occur.

The creation of FIFO buffers requires them to be correctly referenced by
the actor instances. Each FIFO buffer is assigned a name that combines the
instance names and their respective ports. This name is then associated with
the port through a fifo-prefix attribute. Currently, the fifo-prefix ac-
cepts only a single string, meaning each port can have only one link. Future
iterations may allow ports to be associated with multiple FIFOs, provided
the FIFO logic is also adjusted to support multiple concurrent consumers and
producers.

To illustrate, presents the partial MLIR code resulting from the
execution of this pass on the example code from the previous pass .
It includes the FIFO data (lines 1-5), the getNumElements function (lines 9-
13), the enqueue function (lines 15-31), and the actor port’s reference to the
FIFO (lines 35-38 and 42-45).

Listing 3.4: Link To FIFO Pass Result Example

1 llvm.mlir.global internal constant

@sourcesink _example sourceOutsourcesink example sinkIn attr size(1 i64)
{addr _space = 0 : 132} : i64

2 llvm.mlir. global internal
@sourcesink example sourceOutsourcesink example sinkIn attr writeldx(0 : i64)

{addr_space = 0 : i32, alignment = 8 : 164} : i64

3 1llvm.mlir. global internal
@sourcesink _example sourceOutsourcesink example sinkIn attr readIdx (0
{addr space = 0 : i32, alignment = 8 : 164} : 164

4 1llvm.mlir. global internal
@sourcesink example sourceOutsourcesink example sinkIn attr nElements
{addr_space = 0 : 132, alignment = 8 : 164} : i64

5 memref. global "private"
@sourcesink example sourceOutsourcesink example sinkIn attr buffer

i64)

(0 : i64)

O

memref<1xi32>
6
7
8
9 func.func private
@sourcesink example sourceOutsourcesink example sinkIn getNumElements
—> 164
10 %0 = llvm . mlir.addressof
@sourcesink _example sourceOutsourcesink example_sinkIn_attr_ nElements
!llvm . ptr
11 %1 = llvm .load volatile %0 atomic acquire {alignment = 8 : 164}
'lvm . ptr —> i64
12 return %1 : 164
13}
14

15 func.func private
@sourcesink example sourceOutsourcesink example sinkIn enqueue(%arg0:
16 %0 = memref. get global

i32) {

@sourcesink example sourceOutsourcesink example sinkIn attr buffer

memref<1xi32>
17 %1 = llvm . mlir.addressof
@sourcesink _example_sourceOutsourcesink example_sinkIn_attr_size
'1lvmm . ptr
18 %2 = llvm .load %1 : !llvm.ptr —> 164

19 %3 = llvm . mlir.addressof

@sourcesink example sourceOutsourcesink example_ sinkIn_ attr writeldx

llvm . ptr
20 %4 = llvm . mlir.addressof

@sourcesink example sourceOutsourcesink example sinkIn attr nElements

'Mlvm . ptr
21 %5 = llvm .load volatile %3 atomic acquire {alignment = 8 : 164}
'lvm . ptr —> i64
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22 %6 = arith.index castui %5 : i64 to index
23 memref. store %arg0, %0[%6] : memref<lxi32>
24 %cl_i64 = arith.constant 1 : i64
25 %7 = arith.addi %5, %cl i64 : i64
26 %8 = llvm .urem %7, %2 : 164
27 llvim . store volatile %8, %3 atomic release {alignment = 8 : 164}
: 164, !llvm.ptr
28 %cl_i64_0 = arith.constant 1 : i64
29 %9 = llvm .atomicrmw add %4, %cl i64 0 acq_rel : !llvm.ptr, i64
30 return
31}
32
33
34
35 dpn.actor @sourcesink example source instance {
36 dpn.port @QOut output : i32
{"fifo—prefix" = "sourcesink example sourceOutsourcesink example sinkIn"}
37
38 }
39
40
41
42 dpn.actor @sourcesink example sink instance {
43 dpn.port @In input : 132
{"fifo—prefix" = "sourcesink example sourceOutsourcesink example sinkIn"}
44
45}

Add Port Check to Guards Pass This pass introduces data dependencies
checks to the GuardQOp to ensure that input token dependencies are met and
that sufficient output space is available in the associated FIFO buffers. The

simplified logic behind this pass is outlined in [Algorithm 3.4}
Algorithm 3.4: Add Port Check to Guard Pass Logic

1 input: ActionOp

2 output: modified ActionOp

3 begin

4 inputNumMap<FIFO, integer> < collectInputTokenNumber (ActionOp)
5 outputNumMap<FIFO, integer> <+ collectOutputTokenNumber (ActionOp)
6

7 guardOp < ActionOp.getGuard ()

8 if mot guardOp

9 guardOp < new GuardOp ()

10 ActionOp .setGuardOp (guardOp)

11 end

12

13 lastBlock < new Block (). withArgument (ilType ()).with({yield %arg})
14 guardOp . push back(lastBlock)

15

16 transformYieldOpsToBranches (guardOp, guardOp.back())

17

18 entryBlock <« new Block ()

19 foreach (fifo , value) in outputNumMap

20 entryBlock.insertOperations ({

21 availableSize <« fifo.size — fifo.getNumElements()

2 b

23

24 block < new Block()
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25 block.insertOperations ({

26 sufficientSpace <« availableSize > const value,
27 if sufficientSpace

28 branch(guardOp. front ())

29 else

30 branch(guardOp . back ()).withArgument (sufficientSpace)
31 end

52 b

33

34 guardOp . push front(block)

35 end

36

37 foreach (fifo , value) in inputNumMap

38 entryBlock.insertOperations ({

39 availableToken < fifo.getNumElements()

10 b

41

42 block < new Block()

43 block.insertOperations ({

44 sufficientTokens <« availableToken > const value,
45 if sufficientTokens

46 branch(guardOp. front ())

47 else

48 branch(guardOp.back ()).withArgument (sufficientTokens)
49 end

- b

51

52 guardOp. push front(block)

53 end

54

55 entryBlock.insertOperations ({

56 branch(guardOp. front ())

57 1))

58 guardOp . push front (entryBlock)

59

60 return ActionOp

61 end

Since each ActionInputOp and ActionOutputOp represents a single input
and output token, respectively, counting the required number of tokens per
port is straightforward. Two maps are created to track the number of tokens
and available space requirements per fifo-prefix (lines 4 and 5). If the action
operation does not have an action guard operation, an empty one is created
(lines 7-11). This is necessary because subsequent passes depend on the action
guard, which should, at a minimum, contain operations that check for the
action’s data dependencies.

An additional block representing the sole yield of the guard operation is
appended to the end of the block list for the guard operation (lines 13-14). This
block contains a single block argument and a single operation yielding the block
argument’s value. All previous YieldOps within the guard are transformed into
branch operations leading to this final block, with the yield result passed to it
via its block argument (line 16). An entry block is then created to contain the
necessary FIFO metadata in a single place, before the data dependency checks
happen (line 18).

The list of test blocks is created in a back-to-front fashion, enabling efficient
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branch linking between them. For each pair of fifo-prefix, representing the
associated FIFO structure, and the corresponding number of required input to-
kens or output element space (foreach blocks at lines 37 and 19, respectively),
a new block containing the data dependency checks is created and prepended
to the action guard (lines 42-52 and 24-34). This forms a list of data depen-
dency check blocks. Finally, the entry block is set to branch to the first block
in this list.

Each of these new blocks contains operations that check whether the ac-
tion’s guard can proceed to the next check. Each block will have operations
to determine whether there are enough input tokens (line 44) or output space
(line 26). The boolean values from these operations are then passed to a con-
ditional branch operation (lines 45-49 and 27-31, respectively), which decides
the control flow: if the guard can proceed, it points to the current first block
in the guard operation; otherwise, it points to the guard’s return block and
provides a FALSE value as the block argument, causing the guard operation
to return FALSE. This embeds a short-circuit data dependency testing mech-
anism within the action guard operation’s execution flow.

Note that, since each of these blocks is prepended to the GuardOp, the first
block to be prepended will be executed last and will point to the first actual
guard block. This guard block starts the sequence of operations for the action’s
guard, and all the YieldOps will now be conditonal branches with an argument
to the return block. Additionally, if the guard operation does not initially exist,
the first guard block becomes the return block. Thus, this pass effectively
prepends the data dependency checks to the guard without altering the original
sequence of operations.

To illustrate the result of this pass, [Listing 3.5 shows the resulting action
guard operation for the source entity when this pass is applied to the complete
result code exemplified in The entry block of the guard operation
gathers the necessary data for the checks and then branches to the next block
(lines 6-9). The result of the subtraction operation (line 8) represents the
available space in the FIFO to be accessed. Block bb1 (lines 10-13) checks if
there is enough space, and a conditional branch (line 13) determines whether
the guard proceeds to the next block or moves to the final block, returning
FALSE. Block bb2 (lines 14-18) contains the original guard expressions (lines
22-25 in [Listing 3.2)). Finally, block bb3 (lines 19-20) returns the result of the

guard operation’s computations.

Listing 3.5: Add Port Check to Guard Pass Result Example

dpn.actor @sourcesink example source instance {

dpn.action @Qtransmit {

dpn.action guard {
%0 = dpn.call
@sz))urcesink7example7sourceOutsourcesink7examp1e7sinkIn7getNumElements()
: —> 164
7 %1 = dpn. call
@sourcesink example sourceOutsourcesink example sinkIn getSize ()
¢ () — i64
8 %2 = arith.subi %1, %0 : 164

U s W N =
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9 cf.br ~bbl

10 ~“bbl: // pred: ~bb0

11 %cl_i64 = arith.constant 1 : 164

12 %3 = arith.cmpi sge, %2, %cl i64 : i64
13 cf.cond br %3, ~bb2, ~bb3(%3 : il)

14 ~“bb2: // pred: ~bbl

15 %4 = dpn.dereference @counter : i32

16 %5 = dpn.dereference @payload size : 132
17 %6 = arith.cmpi slt, %4, %5 : i32

18 cf.br ~bb3(%6 : il)

19 “bb3(%7: il): // 2 preds: “bbl, ~“bb2
20 dpn.yield %7 : il

21 }

22 }

23}

Concatenate Action Outputs to Body Pass This pass transforms ActionOutputOps

into a sequence of operations that are appended to their respective action bod-
ies. The logic of this pass is outlined in

Algorithm 3.5: Concatenate Actions Outputs to Body Pass

1 input: ActionOp

2 output: modified ActionOp

3 begin

4 actionBodyOp <« ActionOp.getActionBody ()

5 if mnot actionBodyOp

6 actionBodyOp ¢« new ActionBodyOp ()

7 ActionOp .setActionBody (actionBodyOp)

8 end

9

10 foreach actionOutputOp : ActionOutputOp in ActionOp
11 actionOutputOp . transformYieldsToEnqueueCalls ()

12

13 lastBlock < actionBodyOp.last ()

14 actionOutputOp . getBody (). clonelnto (actionBodyOp.getBody ())
15 lastBlock . insertOperations ({

16 branch actionBodyOp.getBlocks (). getNextNode(lastBlock)
17 b

18 end

19

20 actionBodyOp.last ().insertOperations ({

21 new TerminatorOp ()

» 1}

23

24 return ActionOp

25 end

In the case where an action body is not present, an empty one is created
(lines 4-8). Each ActionOutputOp is modified by replacing its yield operations
with call operations to the corresponding port’s FIFO enqueue function (line
11), with the value being yielded passed as an input argument. The modified
operation’s block list is cloned and appended to the end of the action body
region (line 14). A branch operation is created from the last block prior to the
cloning to the first block of the cloned ActionOutputOp (lines 13 and 15-17).
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Note that introducing new blocks to the action body operation requires all
blocks to include terminator operations (lines 20-22).

To illustrate, shows the resulting code after this pass is applied to

the example code produced by the previous pass (Listing 3.5). It presents the

resulting action body for the source entity’s action, with previous operations
omitted. The original block is appended with a branch operation that directs
to the first output expression block (line 3), here named bbl. Note that the
output expression Out:[t] is simply an enqueue operation that places the
value of t into the FIFO, which is translated into the operations in the block
(lines 4-7).

D U s W N

N

Listing 3.6: Concatenate Actions Outputs to Bodies Pass Result Example

dpn.action body {

// Original operations
cf.br ~bbl

“bbl: // pred: ~bb0

}

%5 = dpn.dereference @t : i32

dpn. call @sourcesink example sourceOutsourcesink example sinkIn enqueue(%5)
(i32) — ()
dpn.terminate

Instantiate Actor Variables Pass This pass creates a global memory region
for actor variable operations and defines functions for initializing and destroy-
ing the actor’s variables. The simplified logic for this pass is outlined in
krithm 3.6l

Ut W N

© 0 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Algorithm 3.6: Instantiate Actor Variables Pass

input: ModuleOp
output: modified ModuleOp
begin

foreach actorOp : ActorOp in ModuleOp

variableUseMap<VariableOp, vector<Operations>>
< collectActorVariableUses (actorOp)

initFunctionOp <« createActorInitFunc(actorOp)
destroyFunctionOp < createActorDestroyFunc (actorOp)

ModuleOp. insertOperations ({initFunctionOp , destroyFunctionOp})

foreach variable : VariableOp im actorOp.getActorVariables ()
if not variableUseMap.find (variable)
continue
end

varNameRef < createVariableNameReference (actorOp, variable)
variableMemOp < createVariableMemory (variable, varNameRef)
variableGetFunc < createVariableGetFunc(variable, varNameRef)
variableSetFunc < createVariableSetFunc(variable, varNameRef)

ModuleOp. insertOperations ({
variableMemOp, variableGetFunc, variableSetFunc

9]
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26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

foreach op : Operation* in variableUseMap.find (variable).second
dereferenceActorVariableUse (op, variable.type, varNameRef)
end

initFuncLastBlock < initFunctionOp.last ()
variable. getInitializer (). clonelnto (initFunctionOp)

insertedBlockIt < nullptr
if initFuncLastBlock
insertedBlockIt <« initFunctionOp.getBlocks ()
.getNextNode (initFuncLastBlock)
end

if mot insertedBlockIt
addSetFuncCallBeforeYieldOps (initFunctionOp , varNameRef)
else
do
addSetFuncCallBeforeYieldOps(insertedBlockIt , varNameRef)
insertedBlockIt <« initFunctionOp.getBlocks()
.getNextNode (insertedBlockIt)
while insertedBlockIt
end
end

foreach block : Block in initFunctionOp.getBlocks ()
nextBlock < initFunctionOp.getBlocks ().getNextNode(block)
foreach yieldOp : YieldOp in block.getYieldOps ()
if nextBlock
yieldOp . prependOperations ({
branch nextBlock
})
else
yieldOp . prependOperations ({
return
b
end
end
end

eraseYieldOps (initFunctionOp)
if initFunctionOp .empty ()
initFunctionOp . insertOperations ({ return})
end
if destroyFunctionOp .empty ()
destroyFunctionOp . insertOperations ({ return})

end

eraseActorVariables (actorOp)

end

return ModuleOp

The pass starts by mapping each VariableOp to a vector of generic Operation

pointers that collect all variable dereference and store operations (line 5). Un-
used variables are ignored and will not have their code generated. Two function
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operations are created for managing actor variables: an init function (line 7)
and a destroy function (line 8), both prefixed with the actor’s name. Al-
though variable initializations could be generated in a back-to-front fashion,
as done in the Add Port Check to Guard Pass, a front-to-back approach is
chosen here. Although the back-to-front approach would be cleaner and more
efficient, this decision is made (1) to avoid potential errors from non-existent
symbols, as variables may depend on previously defined variables and derefer-
ences and stores are transformed to function invocationsﬂ and (2) to explore
handling this variation.

Each global actor variable’s memory region is assigned a name that com-
bines its parent actor with the variable name (lines 17-18), and getter and
setter functions are created for each variable (lines 19-20). The associated
Dereferencelps and StoreOps in the variable usage map are transformed into
calls to the variable’s get or set function, respectively (lines 26-28). The ini-
tialization logic for these variables is appended one at a time into the actor’s
init function (lines 30-63). Note that while the destroy function operation
is present, the logic for actor variable destruction is not yet implemented.

As VariableOps may have multiple blocks and more than one control flow,
extra care is required when multiple YieldOps are present. To handle this, the
last block of the init function is stored in a temporary variable (line 30). The
VariableOp’s initializer region is then cloned at the end of the init function
(line 31). If the init function is not empty, the first block in the list of
recently cloned blocks is retrieved (lines 34-36), and these blocks are iterated
to transform their YieldOps into invocations of the respective variable’s set
function (lines 41-46).

Due to the front-to-back nature of the variable generation we do not erase
YieldOps, as they are necessary posteriorly for determining control flow. Be-
cause of this, we cannot iterate over the entire function operation in all cases,
as this could lead to misinterpreting other variables’” YieldOps as belonging
to the current variable whose initialization code is being generated, resulting
in incorrect code. In the first iteration, however, the init function is empty,
causing the retrieval of the block next to a null pointer to fail (would occur at
line 35). In this case, we can simply iterate through all the YieldOps of the
function (line 39).

After all actor variables have been added to the initialization function,
YieldOps are transformed into either branch operations when a next block
is available or return operations when there is no next block (lines 52-54 and
56-58, respectively)m If no initialization or destruction logic is created, return
operations are introduced to the functions to ensure code validity (lines 65-67
and 69-71, respectively). Concluding this pass, all actor variable operations

9This could easily be avoided by first generating all the variable functions and then lowering
dereference and store operations into function calls in a second loop.

ONote that this logic is not generic and may cause errors when VariableOps have more
than one block, as the YieldOp of one variable might lead to another YieldOp of the
same variable in a second block, resulting in incorrect behavior. Thus, with the front-to-
back generation strategy, the first blocks of each variable’s initialization must be stored
in a data structure and queried appropriately for correct branching logic generation.
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are erased (line 73). However, note that action variable operations remain, as
they are not lowered at this stage.

illustrates the resulting MLIR code after executing this pass on
the example code produced by the previous pass . In this example,
the source entity’s counter variable is used to demonstrate the results. For
brevity, the dereference and store operations generated by the pass (Algorithm|
lines 26-28) are not shown here. The source entity’s initialization and
destruction functions are generated (lines 1-9 and 10-12, respectively). The
init function sets the initial values for the payload_size and counter vari-
ables (lines 2-3 and 6-7, respectively). A global memory reference is created for
both variables, here illustrated solely by the counter memory reference (line
16). Getter and setter functions are then created to handle their reading and
writing operations (lines 17-22 and 23-28, respectively).

Listing 3.7: Instantiate Actor Variables Pass Result Example

1 func.func private @sourcesink example source instance init() {
2 %c20 _i32 = arith.constant 20 : 132

dpn. call @sourcesink example source instance payload size set(%c20 i32)
(i32) — ()

w

4 cf.br ~bbl

5 “bbl: // pred: ~bb0

6 %c0 132 = arith.constant 0 : i32

7 dpn. call @sourcesink example source instance counter set(%c0 132)
(i32) — ()

8 return

o}

10 func.func private @sourcesink example source instance destroy() {
11 return

12}

13

14

15

16 memref. global "private" @sourcesink example source instance counter

memref<1xi32>
17 func.func private @sourcesink example source instance counter get ()
— i32 {
18 %0 = memref. get _global @sourcesink_example_source_instance_counter
memref<1xi32>
19 %c0 = arith.constant 0 : index
20 %1 = memref.load %0[%c0] : memref<lxi32>
21 return %1 : 132

22}
23 func.func private
@sourcesink _example source_instance_counter_set(%arg0: i32) {

24 %0 = memref. get global @sourcesink example_ source_instance_counter
memref<1xi32>

25 %c0 = arith.constant 0 : index

26 memref. store %arg0, %0[%c0] : memref<1xi32>

27 return

28}

29

Transform Action Inputs to Variables Pass This pass transforms ActionInputOps
into action variable operations. The logic for this transformation is outlined

in [Algorithm 3.
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Algorithm 3.7: Transform Action Inputs to Variables Pass

input: ActionOp
output: modified ActionOp
begin
symTable < ActionOp.getSymbolTable ()

foreach actionlnput : ActionlnputOp in ActionOp
newVar < new VariableOp ()
newVar.setName (actionInput . getSymName ())
newVar.setType (actionInput.getPort ().getType())

© 0 N O U e W N

=
= o

newVar. getInitializer ().insertOperations ({
callOp <« new CallOp(
getDequeueFunctionName (actionInput.getPort ()),
newVar.getType ()

) 7
new YieldOp(callOp.getResult (), newVar.getType())

[ B S R
N o Ot ke WN

1)

==
©

ActionOp. insert (newVar)

NN
= o

symTable.remove (actionInput)
symTable. insert (newVar)

NN
~ W N

actionInput.erase ()
end

NN
~N O >

return ActionOp
end

N
oo

For each ActionInputOp, a new VariableOp is created with the same symbol
and type as the action input operation (lines 6-9). The variable initializer
consists of two operations: a call to the dequeue function of the corresponding
port’s FIFO (lines 12-15) and a YieldOp to represent its value (line 16). The
new variable operation is then inserted into the ActionOp, the ActionInputOp
is removed from the action’s symbol table and erased, and the new variable
operation is inserted into the action’s symbol table (lines 19-24).

illustrates the resulting MLIR code produced by this pass when
executed on the code from the previous pass, as exemplified in
The ActionInputOp (last seen in line 62) is transformed into a
VariableOp, whose initializer region executes a dequeue operation on the re-
spective port’s FIFO, followed by yielding its value.

Listing 3.8: Transform Action Inputs to Variable Pass Result Example

1 dpn.variable @t = {

2 %0 = dpn.call

@sourcesink example sourceOutsourcesink example sinkIn dequeue ()
: () — i32

dpn.yield %0 : i32

4} ¢ oi32

w

Prepend Action Variables to Body Pass This pass lowers action variable
operations by prepending their initialization logic to the action body. The

logic of this pass is outlined in [Algorithm 3.8
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Algorithm 3.8: Prepend Action Variables To Body Pass

1 input: ActionOp
2 output: modified ActionOp
3 begin
4 variableUseMap<VariableOp, vector<Operationx>>
< collectActionVariableUses (ActionOp)
5
6 foreach op : VariableOp in ActionOp.getOperations ().reverse ()
7 if op in variableUseMap.keys ()
8 actionBody < ActionOp.getActionBody ()
9 firstBlock <+ actionBody. front ()
10
11 op.getInitializer ().clonelnto (actionBody .begin())
12
13 foreach yieldOp : YieldOp in actionBody
14 foreach derefOp : DereferenceOp in actionBody
15 if getSymbolDefinition (derefOp.getSymRef()) = op
16 derefOp .replaceAllUsesWith (yieldOp.getValue())
17 derefOp . erase ()
18 end
19 end
20
21 yieldOp . prependOperations ({
22 branch firstBlock
2 )
24 yieldOp . erase ()
25
26 end
27 end
28 end
29
30 return ActionOp
31 end

Similar to the Instantiate Actor Variables Pass, this pass begins by mapping
each action VariableOp to a vector of generic Operation pointers (line 4).
Unused variables are ignored, and their code is not generated. The action
variables are iterated in reverse order (line 6), and their initializer regions
are prepended to the action body (line 11), preserving the original definition
sequence. Assuming each variable has a single YieldOp, the value it yields
is connected to all dereferences of the corresponding variable (lines 13-19).
Finally, the YieldOps are transformed into branches to the action’s first block
(lines 21-24), which was stored in a temporary variable before cloning (line 8).

Note that the pass is currently incomplete, as it only supports dereferencing
action variables and does not analyze whether a variable is exclusively used
by store operations, potentially allowing it to be discarded. Additionally, it
does not handle variables with multiple YieldQOps, which may result in errors.
Future iterations could introduce corrections for such cases alongside support
for storing back into variables. This could easily be achieved by creating a
stack memory reference for each action variable and transforming dereference,
store, and yield operations to read from and write to this memory.

To illustrate the result of this pass, shows the outcome of exe-
cuting it on the example code from the previous pass (Listing 3.8|). Here, only
the sink action is shown, and the original action’s body block is omitted for
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brevity. The VariableOps (as seen in|Listing 3.8|) within the action’s operation
have their initializer regions copied and adapted into blocks, which are then
prepended to the action body (lines 2-3).

Listing 3.9: Prepend Action Variables to Body Pass Result Example

1 dpn.action body {

2 %0 = dpn.call
@sourcesink example sourceOutsourcesink example sinkIn_dequeue ()
: () — 132

3 cf.br ~“bbl

4 “bbl: // pred: ~bbo

5

6 }

Actors to Functions Pass This pass generates a guard function and a step
function for each ActorOp. The guard function determines whether any action
within the actor is ready for execution, returning an action identifier greater
than zero if one is available. The step function takes an action identifier as
input and executes the body of the corresponding action.

To generate separate guard and step functions, the dpn-separate-action-
guard-and-body-functions option must be set to TRUE. If this option is not
enabled, the pass generates a single step function. In this case, the step
function consists of a sequence of blocks that evaluate the action guards in
order, executing the body of the first action whose guard evaluates to TRUE.
At the end, the function returns TRUE if any action was executed, or FALSE
otherwise. Here, we focus on the case where separate guard and step func-

tions are created. outlines the logic of this pass when the

dpn-separate-action-guard-and-body-functions option is enabled.

Algorithm 3.9: Actors to Functions Pass

1 input: ModuleOp

2 output: modified ModuleOp

3 begin

4 foreach actorOp : ActorOp in ModuleOp

5 guardFuncOp < createGuardFunctionOp (actorOp)

6 guardFuncOp. createEntryBlock ()

7 stepFuncOp <+ createStepFunctionOp (actorOp)

8 stepFuncOp . createEntryBlock ()

9

10 ModuleOp. insertOperations ({ guardFuncOp, stepFuncOp})
11

12 guardRetBlock < new Block (). withArgument (i32Type())
13 guardRetBlock . insertOperations ({ return guardRetBlock.getArgument()})
14 guardFuncOp.push back(guardRetBlock)

15

16 stepRetBlock <« new Block ()

17 stepRetBlock.insertOperations ({ return})

18 stepFuncOp . push back (stepRetBlock)

19

20 // Used for creating the switch operation later

21 vector<Block> stepCaseSuccessors;

22 vector<integer > stepCaseValues;

23
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24 lastGuardBlock <« guardRetBlock

25 currActionldx « 0

26 foreach actionOp : ActionOp in actorOp.getActionOps ().reverse ()
27 currActionldx < currActionldx + 1

28

29 bodyOp < actionOp.getBodyOp ()

30

31 // Skip entry block

32 bodyOp. getBody (). clonelnto(++stepFuncOp .begin ())
33

34 transformTerminatorOpIntoBranch (stepFuncOp, stepRetBlock)
35

36 // Store switch operation information

37 nextNode <« stepFuncOp. getBlocks ().getNextNode (stepFunc. front ())
38 stepCaseSuccessors .push back (nextNode)

39 stepCaseValues.push back(currActionldx)

40

41 guardOp < actionOp.getGuardOp ()

42 guardOp . getBody (). cloneInto (guardFuncOp .begin())
43

44 if lastGuardBlock = guardRetBlock

45 foreach yieldOp : YieldOp in guardFuncOp

46 yieldOp . prependOperations ({

47 branch (

48 yieldOp . value (),

49 // true case: block, argument

50 guardFuncRetBlock, actionldxValue,

51 // false case: block, zero

52 guardFuncRetBlock, 0

53 )

» b

55 yieldOp.erase ()

56 end

57 else

58 foreach yieldOp : YieldOp in guardFuncOp

59 yieldOp . prependOperations ({

60 branch (

61 yieldOp . value (),

62 // true case: block, argument

63 guardFuncRetBlock, actionldxValue,

64 // false case: block, zero

65 last GuardBlock

66 )

67 })

68 yieldOp . erase ()

69 end

70 end

71

72 lastGuardBlock < guardFuncOp. front ()

73 end

74

75 stepFuncOp . getEntryBlock (). insertOperations ({

76 createSwitchOp (

77 // default , no arguments

78 guardRetBlock , None,

79 // step cases: case values, block successors, arguments
80 stepCaseValues, stepCaseSuccessors, None

81 )

5 b

83 end
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84
85 return ModuleOp
86 end

For each ActorOp, the pass generates guard and step functions (lines 5-8).
The guard function returns an i32 type representing an action identifier. Sim-
ilarly, the step function receives an i32 as an input parameter, representing
which action should be executed. The guard function’s return block has a
block argument representing the action identifier and an operation that simply
returns this argument (lines 12-13). The step function’s entry block will exe-
cute a switch operation based on this action identifier to branch to the entry
block of the action that should be executed, discussed shortly.

The ActionOps are generated in reverse order and given identifiers starting at
1 (lines 25-27), as zero is reserved for no action. The action body is prepended
to the step function, skipping the entry block, which is reserved for the switch
operation (line 32). The TerminatorOps are transformed into branches to the
return block (line 34). The data for the switch operation is then collected,
consisting of the action identifier and the action’s entry block (lines 37-39).

In the guard function, a differentiation is made as to whether the last guard’s
front block is the guard’s return block or another block (line 44). If the last
guard’s front block is the guard return block, all yield operations are trans-
formed into branches to the return block, passing either zero or the current
action’s identifier (lines 45-56). In other cases, the branch passes the control
flow to the guard return block with the action identifier in the TRUE case,
or moves to the next guard block in the FALSE case (lines 58-69). The last
guard’s front block variable is then updated, and iteration continues (line 72).

After all the ActionOps of an actor operation have been generated, the step
function’s entry block remains empty. At this point, the switch operation
is created using the previously collected data on action identifiers and their
respective starting blocks (lines 75-82).

illustrates the result of applying this pass to the previous pass
(exemplified in . Here, the generation of functions for the sink
entity is demonstrated.

In the case of the checkGuard function (lines 1-17), its entry block reads the
number of available tokens in the In port and initializes the necessary constant
values (lines 2-3). Block bbl then checks whether the available tokens are
sufficient and branches accordingly (lines 5-7). Block bb2 corresponds to the
action body, which, for the sink entity, is absent and trivially evaluates to
TRUE (lines 8-10). Block bb3 is the final block before the return block, where
either the last action guard being tested proceeds to execution or no action
is executed (lines 11-14). The identifier of the last tested action guard is a
hardcoded value (line 13), which is passed to the return block if the received
block argument evaluates to TRUE (line 14).

On the other hand, the sink entity’s step function (lines 18-49) begins
with a switch operation (lines 19-22) that determines the control flow based
on the function’s input argument. By default, the switch operation executes
nothing, leading to block bb3 (lines 47-48). If the received value matches the
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action identifier (one, in this case), control flows to block bb1 (line 23), which
corresponds to the action’s body as transformed by previous passes.

Listing 3.10: Actors to Functions Pass Result Example

1 func.func @sourcesink example sink instance checkGuard () — i32 {

2 %0 = dpn. call

@s(o;JrcisipﬁkLl_example_sourceOutsourcesink_example_sinkln_getNumElements @)
—> i

3 %cl 164 = arith.constant 1 : i64

4 cf.br ~bbl

5 “bbl: // pred: ~bbo

6 %1 = arith.cmpi sge, %0, %cl i64 : i64

7 cf.cond br %1, ~bb2, ~“bb3(%l : il)

8 “bb2: // pred: ~bbl

9 Jtrue = arith.constant true

10 cf.br ~bb3(%true : il)

11 “bb3(%2: il): // 2 preds: “bbl, ~bb2

12 %c0_i32 = arith.constant 0 : 132

13 %cl_i32 = arith.constant 1 : 132

14 cf.cond br %2, “bb4(%cl _i32 : i32), ~bb4(%c0_i32 : i32)

15 “bb4(%3: i32): // 2 preds: ~bb3, ~bb3

16 return %3 : 132

17}

18 func.func @sourcesink example sink instance step(%arg0O: i32) {

19 cf.switch %arg0 : 132, |

20 default: ~bb3,

21 1: ~bbl

22 |

23 ~bbl: // pred: ~bb0

24 %0 = dpn.call
@sourcesink example sourceOutsourcesink example sinkIn dequeue()
: () — 132

25 cf.br ~“bb2

26 “bb2: // pred: ~bbl

27 %alloca = memref. alloca () : memref<255xi8>

28 %c82 _i8 = arith.constant 82 : i8

29 %c120 i8 = arith.constant 120 : i8

30 %c58 i8 = arith.constant 58 : i8

31 %c32 i8 = arith.constant 32 : i8

32 %c0 = arith.constant 0 : index

33 memref. store %c82 i8, %alloca|[%c0] : memref<255xi8>

34 %cl = arith.constant 1 : index

35 memref. store %cl120 i8, %alloca|[%cl] : memref<255xi8>

36 %c2 = arith.constant 2 : index

37 memref. store %c58 i8, %alloca[%c2]| : memref<255xi8>

38 %c3 = arith.constant 3 : index

39 memref. store %c32 i8, %alloca|[%c3]| : memref<255xi8>

40 %c0_i8 = arith.constant 0 : i8

41 %c4 = arith.constant 4 : index

42 memref. store %c0_i8, %alloca|[%c4]| : memref<255xi8>

43 %cast = memref. cast %alloca : memref<255xi8> to memref<xxi8>

44 %1 = dpn.call @concat_str_int(%cast , %0)

(memref<xxi8 >, 132) —> memref<*xi8>

45 dpn.call @println(%1) : (memref<*xi8>) —> ()

46 cf.br ~bb3

47 “bb3: // 2 preds: ~bb0, ~bb2

48 return

49 }
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Network to Function Pass This pass generates initialization, destruction,
and step functions for the network. The initialization and destruction functions
simply invoke the corresponding functions for each actor in sequence. While
there are several variations of this pass, we focus on the configuration that
generates the step function based on separate guard and step functions for
each actor, which is enabled by the dpn-actors-with-two-functions option.
Additionally, we consider the scenario where actors are executed as many times
as possible, governed by the dpn-execute-maximum-actor-steps option.

The pass can execute actors in their defined order or shuffle the order at
compile time, depending on the dpn-shuffle-actors-except-first option.
When shuffling is enabled, the first actor remains fixed as the first to execute,
while subsequent actors are reordered. This shuffling provides insights into
multi-threaded executions, discussed in Section Furthermore, multi-
threaded execution is enabled through the dpn-use-omp option.

Listing 3.11: Multi-threaded Step Function Logic Example

begin
executed <+ false

#pragma unroll
foreach actor in static actor order
actionToExec < actor.checkGuard()
canExecute ¢ actionToExec > 0
1f canExecute
executed < true
#pragma omp task
{
do
actor. execute (actionToExec)
actionToExec < actor.checkGuard ()
while actionToExec > 0
}
end
end

© 0 N O U kse W N
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#pragma omp taskwait

V]
-

return executed
end

NN
w N

As observed in previous passes, the logic can be quite extensive, and this pass
is no exception. Given the similarities to other passes, we will omit the detailed
logic here and focus on the final result. The logic for the multi-threaded step
function is illustrated in For each actor, the guard function is
executed (line 7), and its value is checked (line 8). If the value is greater than
zero, the respective actor’s action is executed via the previously generated
step function (lines 9-14). The actor’s execution and guard checking continue
in a loop until the guard fails (lines 13-16). Once all actors have been checked
for execution and possibly executed, a boolean is returned from the network’s
step function (line 23), indicating whether any actions were executed.

Note that in the multi-threaded case, a single OpenMP thread evaluates
each actor’s execution readiness. If an action is ready to execute, an OpenMP
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task is launched to run the actor until no further executions are possible (lines
9-18). At the end of the network’s step function, a barrier is introduced to
synchronize and wait for all tasks to complete before returning a value to
the caller (line 21). This approach incurs additional overhead, which may
be optimized in future iterations. No parallel region is created within the
network, nor are any OpenMP single-thread constructs declared. As a result,
it is expected that the caller will manage the parallel region and invoke the
network functions within a single-thread OpenMP block.

Calls to Func Calls Pass This pass converts DPN dialect call operations into
Func dialect call operations, and is executed as the very last pass to guarantee
that no nested symbol tables are present. The logic of this pass will be omitted,
as it is a mere rewriting of the operations.

The DPN-specific passes outlined above transform high-level network and
actor structures into a full lowering from the DPN dialect into other MLIR
dialects. By addressing the translation of each DPN dialect construct, such as
entities, links, actors, actions, and variables; these passes establish the seman-
tics of the DPN specification and progressively transform these constructs into
computable sequences of instructions. Furthermore, by configuring different
sequences of these passes, it is possible to adapt the behavior of the generated
code and implement tailored strategies for aspects like scheduling and memory
management. The following section delves into the additional passes required
to fully lower the resulting MLIR code into legal LLVM dialect code.

Additional Passes

After the DPN dialect has been fully transformed into lower-level constructs by
the custom developed passes, it is still necessary to lower each of the remaining
dialects into the LLVM dialect. These dialect provide their own dialect-specific
passes for their lowering. The passes that are utilized for the final compilation
stage of the prototype are briefly described below:

e canonicalize: This pass simplifies and reduces the number of operations
by applying canonicalization patterns to a set of operations.

e cse: This pass applies an algorithm to eliminate common sub-expressions,
reducing redundancy in the code.

e buffer-deallocation: This pass automatically detects when dealloca-
tion is necessary and generates the corresponding deallocation operations
in the input program.

e convert-arith-to-1lvm: This pass converts operations from the Arith
dialect into equivalent LLVM dialect operations.

e convert-cf-to-11lvm: This pass converts operations from the ControlFlow
dialect into equivalent LLVM dialect operations.
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e convert-func-to-11lvm: This pass converts operations from the Func
dialect into equivalent LLVM dialect operations.

e convert-index-to-11lvm: This pass converts operations from the Index
dialect into equivalent LLVM dialect operations.

e convert-openmp-to-1lvm: This pass converts operations from the OpenMP
dialect into equivalent LLVM dialect operations.

e convert-scf-to-cf: This pass converts operations from the SCF dialect
into equivalent ControlFlow dialect operations.

e convert-ub-to-11lvm: This pass converts operations from the Undefined-
Behavior dialect into equivalent LLVM dialect operations.

e arith-expand: This pass legalizes operations from the Arith dialect to
be converted into LLVM operations.

e ecxpand-strided-metadata: This pass expands the metadata of MemRef
dialect operations into a sequence of operations that are easier to analyze.

e finalize-memref-to-11lvm: This pass finalizes the conversion of opera-
tions from the MemRef dialect into equivalent LLVM dialect operations.

e 1llvm-legalize-for-export: This pass legalizes LLVM dialect opera-
tions to ensure they can be converted into valid LLVM IR.

e reconcile-unrealized-casts: This pass simplifies and removes unreal-
ized conversion cast operations, which are typically introduced by partial
dialect conversions.

Some of these passes require a specific execution sequence, while others may
be executed multiple times. For instance, the canonicalize and cse passes are
useful for reducing the number of instructions processed after other passes and
can be applied multiple times. In the current use cases, the sequence of these
passes is as follows: convert-scf-to-cf, canonicalize, csearith-expand,
convert-arith-to-11lvm, expand-strided-metadata, canonicalize, finalize-
memref-to-11lvm, convert-index-to-1lvm, convert-scf-to-cf, convert-cf-
to-11lvm, convert-openmp-to-11lvm, convert-ub-to-11vm, buffer-deallocation,
convert-func-to-11lvm, reconcile-unrealized-casts, 11lvm-legalize-for
-export, cse, and canonicalize.

3.3.2 Linking and Executable Generation

The frontend compiler is compiled, resulting in an executable named stream-
blocks. This executable accepts the following inputs: the target platform to
compile to (in our case, mlir), a source directory path containing the collection
of CAL and NL specification files, a target directory path for the output files,
and the name of the root network. A sample command might look like the
following: streamblocks mlir -source-path my_source_dir -target-path
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my_output_dir my.network.Name. In this example, the frontend compilation
process will execute with the my.network.Name network as the root IRNode,
and the files contained in the my_source_dir will be considered during com-
pilation.

Before further compiling the frontend-generated MLIR, code, the backend
dialect must first be compiled. After compilation, an executable named dpn-
opt is created. This executable requires a sequence of MLIR passes, along
with the MLIR code file to be manipulated. Once the MLIR code has been
fully lowered into the LLVM dialect and its operations have been legalized,
the LLVM IR can be generated by executing the mlir-translate executable
with the mlir-to-1lvmir option. After obtaining the LLVM IR, the Clang
compileIE-] can be used to compile the IR into object code.

Once the object code is generated, additional files containing external func-
tions must be compiled before proceeding with the linking process. Once these
files are prepared, one can choose to create either a static or dynamic library, or
directly compile the object code into a larger source code. In the next chapter,
a static library compilation strategy is selected. Concrete compilation steps for
a specific use case are demonstrated, and the resulting executable is analyzed
and compared to a third-party solution.

Yhttps://clang.1lvm.org/
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4 Results and Evaluation

This chapter outlines the data generation process and presents the results. Re-
stating the primary research goal, this thesis evaluates the feasibility of using
MLIR as a unified framework for developing dataflow compilers. As a first
step, a prototype compiler was developed, and results for its generated exe-
cutables are presented, focusing on metrics such as file size, memory usage, and
execution time. While these results don’t directly address the fragmentation
problem, they highlight MLIR’s potential as a robust and efficient foundation,
paving the way for future advancements toward a unified dataflow compilation
framework.

The process of generating results is detailed in Section which demon-
strates the concrete compilation steps for a specific DPN specification and
outlines the data collection strategy. The findings are subsequently presented
and discussed in Section providing a foundation for the discussion and
outlook presented in the next chapter.

4.1 Compilation Process and Data Collection

This section describes the DPN specification, the compilation process, and the
data collection methodology. Multiple executables are generated for perfor-
mance comparison, compiled using both the prototype compiler developed in
this thesis and the StreamBlocks Platforms multicore compiler, which serves
as a baseline for comparison. The DPN specifications, written in the CAL
and NL languages, are first parsed and compiled into executables. Key per-
formance metrics, including executable file size, memory usage, and execution
times, are then collected and analyzed for each executable.

First, Section lays out the DPN specifications used, including the ac-
companying C code that defines their external functions and procedures. Next,
Section details the steps required to compile these specifications into ex-
ecutable code. Finally, Section outlines the data collection strategy, in-
troducing the variations in the generated executables and elaborating on the
execution of the data collection process.

4.1.1 DPN Specifications

StreamBlocks Platforms multicore is a compiler that converts a DPN spec-
ification written in CAL and NL languages into C code for execution on a
standard multi-core processor. During this process, it introduces additional
definitions via an automatically included prelude, which provides functions
such as println and string concatenation utilities. For example, it enables the
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use of the + operator between string and other types, resulting in actual con-
catenation (see line 10 and 18 of . This functionality is outside the
CAL language specification and is not supported by the prototype compiler.
As a result, two distinct but equivalent versions of the DPN speciﬁcationlﬂ
are required, as outlined in [Listing 4.1| and [Listing 4.2 which are compiled
separately by the StreamBlocks and prototype compilers, respectively. Note
that results in a more compact representation, while

explicitly declares the external functions to be used.

Listing 4.1: DPN Specification Compiled with the StreamBlocks Compiler

namespace hetero.simple:

© 0 N O U s W N
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actor Source(int payload size) =—> int Out:
int counter := 0;
transmit: action =—> Out:[t]
guard
counter < payload size
var
t =
do
println ("Tx:
counter :=
end
end

counter

")
counter + 1;

actor Sink () int In
action In:[t] =—>
do

==>:

println ("Rx: " + t);
end

end

actor Pass() imt In = int Out:
action In:[t] => Out:[t]
end

end

network PassThrough () =—> :
entities
source = Source(payload_size =
pass = Pass();
sink = Sink ();
structure
source.Out —> pass.In { bufferSize =
pass.Out —> sink.In { bufferSize = 1;
end

20);

1;
}

end

Listing 4.2: DPN Specification Compiled with the Prototype Compiler

namespace hetero.simple:

actor Source(int payload size) =—> int Out:

external procedure println(String value) end

[ N

external function concat str int(String str,
—> String end

int value)

!The specification used here is originally from the StreamBlocks Platforms repository. Link:
https://github.com/streamblocks/streamblocks-platforms,
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5

6 int counter := 0;

7

8 transmit: action =—> Out:[t]

9 guard

10 counter < payload_size

11 var

12 t := counter

13 do

14 println (concat str int("Tx: ", t));

15 counter := counter + 1;

16 end

17 end

18

19 actor Sink () int In ==>:

20 external procedure println (String val) end

21 external function concat_str_int (String str, int value)
—> String end

22

23 action In:[t] =—>

24 do

25 println (concat str_int("Rx: ", t));

26 end

27 end

28

29 actor Pass() int In =—> int Out:

30 action In:[t] = Out:[t]

31 end

32 end

33

34 network PassThrough() =—> :

35 entities

36 source = Source(payload size = 20);

37 pass = Pass();

38 sink = Sink ();

39 structure

40 source.Out —> pass.In { bufferSize = 1; };

41 pass.Out —> sink.In { bufferSize = 1; } ;

42 end

43

44  end

Both specifications are equivalent and define the Source, Pass, and Sink
actors. The network structure creates an instance of each actor and connects
them sequentially. In these specifications, the source entity generates twenty
tokens, one per action firing. Each token is transformed into a string that
is used as input to a println function, the entity’s state is updated, and
the token is then transmitted to the output port. This port is connected to
the pass entity, which simply receives the token and forwards it to its output
port, which is connected to the sink entity. The sink entity receives the token,
converts it into a string, and provides it as input to the println function.

External Procedures and Functions As discussed in earlier chapters, the
meanings of the external procedures and functions are delegated to a separate
source code, and their signatures must match the expected type interpretations.
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Since CAL does not enforce type interpretation, the external functions must be
adapted for each compiler specific type definitions. [Listing 4.3] and [Listing 4.4]
outline the C code defining the external functions for the prototype compiler.
The external definitions for StreamBlocks are omitted.

Note that the use of structures named MemRefDescriptor and Unranked-
MemRefDescriptor are required. This is because the CAL’s string type is in-
terpreted as memory references by the prototype compiler. Furthermore, these
are cast to unranked memory references between functions for compatibility

reasons. presents both structure definitions.

Listing 4.3: External Function Definition: println

1 woid println (int64 t memrefRank, MemRefDescriptor* memref) {
2 charx ptr = memref—>alignedPtr;

3 if (ptr != NULL) {

4 printf("%s\n", ptr);

5 fflush(stdout);

6 }

)

Listing 4.4: External Function Definition: concat_str_int

1 UnrankedMemRefDescriptor concat_str_int (int64_t memrefRank,
MemRefDescriptor* memref, const int32 t rhs) {

2 if (memref = NULL) {

3 UnrankedMemRefDescriptor res = {
4 0,

5 NULL

6 }s

7 return res_ ;

s}

9 void* str = memref—>alignedPtr;

=
= o

size_t str_size = snprintf(NULL, 0, "%s%d", (charx)str, rhs) + 1;

=
w N

charx resStr = (charx) calloc(l, str_size);

—
IS

15 if (resStr = NULL) {

16 UnrankedMemRefDescriptor res = {

17 0,

18 NULL

19 }s

20 return res;

21 }

22

23 MemRefDescriptor* result = (MemRefDescriptorx) calloc(1,
sizeof (MemRefDescriptor));

24 if (result =— NULL)

25 free(resStr);

26 UnrankedMemRefDescriptor res = {

27 0,

28 NULL

29 }s

30 return res;

31 }

32

33 result —>basePtr = resStr;

34 result —>alignedPtr = result—>basePtr;
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35 result —offset = 0;

36 result —>sizes [0] = str_size;

37 result —strides [0] = 1;

38

39 snprintf(result —alignedPtr , str size, "%s%d", (charx)str, rhs);
40

41 UnrankedMemRefDescriptor res = {
42 1,

43 result

44 b

45

46 return res;

47}

Listing 4.5: MemRefDescriptor and UnrankedMemRefDescriptor Declarations

1 typedef struct {

2 voidx basePtr; // Base pointer to the allocated memory.

3 void* alignedPtr; // Aligned pointer to the first element.

4 int64 t offset; // Offset from alignedPtr to the first element.
5 int64 t sizes|[1];

6 int64 t strides[1];

7 } MemRefDescriptor;

8

9

10 typedef struct {

11 int64 t rank; // Rank of the memref

12 MemRefDescriptor* descriptor; // Pointer to ranked memref descriptor

13} UnrankedMemRefDescriptor;

4.1.2 Compilation Process

The StreamBlocks Platforms multicore and mlir code generation compilation
can be initiated using the command provided in Section [3.3.2] specifying the
appropriate platform. This will generate either the multicore or MLIR code. In
the multicore case, the resulting C code can be compiled further using CMake.
First, the cmake command is executed within a build folder to configure the
build, followed by the running make command to generate the executable. The
binaries are named after the network’s name, in this case, PassThrough. Here,
CMake version 3.30 was used together with GCC 13.2.

The MLIR case is more involved, as it requires several steps: first, the MLIR
code is lowered to the legalized LLVM dialect, then translated into LLVM
IR. Following this, the object code is compiled and linked with the necessary
external definitions, which have already been compiled. Additionally, a main
function must be defined. outlines the logic of a Bash script created
to lower and transform the MLIR input code referenced by the FILE variable
into LLVM IR. The DPN_MLIR_BASE variable specifies the base directory of the
DPN dialect repository, while other input variables consist of boolean flags
that configure the compilation process. The OUT variable defines the file path
where the LLVM IR will be output.

Note that an additional pass in the sequence, namely the dpn-check-call-
memref-results pass (line 15), has not been previously described. This exper-
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imental pass assumes that all functions returning a memory reference allocate
the memory within the function and, consequently, require freeing these mem-
ory references after their last use in the scope. However, this assumption does
not hold universally across all executions, and deferring memory deallocation
to the user would generally be a better approach.

That said, this is not always feasible when considering the usual CAL lan-
guage, particularly in cases where memory is retained as part of an entity’s
state. Additionally, the CAL language model does not explicitly refer to mem-
ory, and integrating such an approach would diverge from its goal of imple-
mentation independence. A potential solution could involve a method similar
to what Ciambra et al. proposed, where C code and the dataflow implementa-
tion are co-optimized [Cia+22|, enabling memory references to be marked for
destruction. However, implementing this solution lies beyond the scope of this
thesis.

Listing 4.6: DPN Dialect Translation to LLVM IR Script

input: FILE MLIR BIN PATH DPN MLIR BASE USEOMP SHUFFLEACTORS OUT
begin

1

2

3

4  $DPN MLIR BASE/build /bin/dpn—opt \

5 —dpn—build—instances \

6 —dpn—link—to—fifo="dpn—use—atomic—instructions=8${USEOMP}" \
7 —dpn—add—port—check—to—guards \

8 —dpn—concatenate—action—outputs—to—body \

9 —dpn—instantiate —actor—variables \

10 —dpn—transform—action—inputs—to—variables \

11 —dpn—prepend—action—variables —to—body \

12 —dpn—actors —to—function="dpn—separate —action—guard—and—body—functions=1" \
13 —dpn—network—to—function=

"dpn—use—omp=${USEOMP} dpn—shuffle —actors—except—first=${SHUFFLEACTORS}
dpn—execute—maximum—actor-steps=1 dpn—actors—with—two—functions=1" \

14 —dpn—check—call -memref—results \
15 —dpn—calls —to—func—calls \

16 —convert—scf—to—cf \

17 ——canonicalize \

18 —cse \

19 —arith—expand \

20 ——convert—arith—to—llvm \

21 —expand—strided —metadata \

22 ——canonicalize \

23 —finalize —memref—to—Ilvm \

24 —convert—index—to—llvm \

25 ——convert—scf—to—cf \

26 —convert—cf—to—1lvm \

27 —convert—openmp—to—llvm \

28 —convert—ub—to—Ilvm \

29 —buffer—deallocation \

30 —convert—func—to—llvm \

31 —reconcile—unrealized —casts \

32 —Illvm—legalize —for—export —cse —canonicalize $FILE \
33 | SMLIR_BIN_PATH/mlir—translate —mlir—to—llvmir > $OUT
34

35 end
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The auxiliary C files are compiled into object code using Clang version
18.1. The generated LLVM IR is then linked to the auxiliary object codes
and compiled using the same compiler. The resulting object code is subse-
quently transformed into a static library using the ar command. Depending
on whether single-threaded or multi-threaded execution is configured, a dif-
ferent main function is used. The C code using the network functions is then
compiled into an executable with the generated static library. [Listing 4.7)shows
the multi-threaded version of the main function used. The single-threaded case
is identical, with the only difference being the removal of the OpenMP prag-
mas.

Listing 4.7: Multi-threaded C Main Function Code

1 wvoid hetero_simple PassThrough init ();

2 wvoid hetero simple PassThrough destroy ();
3 char hetero simple PassThrough step ();

4

5 4nt main(int argc, charxx argv) {

6 #pragma omp parallel

T Aq

8 #pragma omp single

9 {
10 hetero simple PassThrough init ();
11
12 while(hetero simple PassThrough step()) {}
13
14 hetero simple PassThrough destroy ();
15 }
16 }
17 return 0;

=
oo

}

The print sequence from the single-threaded execution of the executable
generated by the above compilation process, with line breaks substituted by
the - character, is shown below:

Tx: 0 - Rx: 0 - Tx: 1 - Rx: 1 - Tx: 2 - Rx: 2 - Tx: 3 - Rx: 3 - Tx: 4
- Rx: 4 - Tx: 5 - Rx: 5 - Tx: 6 - Rx: 6 - Tx: 7 - Rx: 7 - Tx: 8 - Rx: 8
- Tx: 9 - Rx: 9 - Tx: 10 - Rx: 10 - Tx: 11 - Rx: 11 - Tx: 12 - Rx: 12
- Tx: 13 - Rx: 13 - Tx: 14 - Rx: 14 - Tx: 15 - Rx: 15 - Tx: 16 - Rx: 16
- Tx: 17 - Rx: 17 - Tx: 18 - Rx: 18 - Tx: 19 - Rx: 19

Additionally, a print sequence from the execution of the multi-threaded ver-
sion is presented below:

Tx: 0 - Tx: 1 - Rx: 0 - Rx: 1 - Tx: 2 - Tx: 3 - Rx: 2 - Tx: 4 - Rx: 3
- Tx: 5 - Rx: 4 - Tx: 6 - Rx: 5 - Tx: 7 - Rx: 6 - Tx: 8 - Rx: 7 - Tx: 9
- Rx: 8 - Tx: 10 - Rx: 9 - Tx: 11 - Rx: 10 - Rx: 11 - Tx: 12 - Tx: 13
- Rx: 12 - Tx: 14 - Rx: 13 - Rx: 14 - Tx: 15 - Rx: 15 - Tx: 16 - Tx: 17
- Rx: 16 - Tx: 18 - Rx: 17 - Tx: 19 - Rx: 18 - Rx: 19

It is important to note that the order in which OpenMP tasks are created
does not necessarily dictate the order of their executiorﬂ In the multi-threaded
sequence above, we can observe sequences of more than one token transfer, even

2If task dependencies are explicitly defined using the depend clause, the execution order of
tasks can be controlled to a certain degree through data dependencies.
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though the buffer size is set to one. To investigate this behavior, a printf
command is added to the while loop in the main function, printing an IT
string to indicate the completion of each iteration. The resulting sequence,
shown below, confirm that during each iteration, either the pass entity is
transferring a token from the source to the sink (resulting in a sequence of
two IT strings), or the source and sink entities are processing their respective
actions in parallel.

Tx: 0 - IT - IT - Tx: 1 - Rx: O - IT - IT - Rx: 1 - Tx: 2 - IT - IT
- Tx: 3 - Rx: 2 - IT - IT - Rx: 3 - Tx: 4 - IT - IT - Tx: 5 - Rx: 4 - IT
- IT - Tx: 6 - Rx: 5 - IT - IT - Tx: 7 - Rx: 6 - IT - IT - Rx: 7 - Tx: 8
- IT - IT - Tx: 9 - Rx: 8 - IT - IT - Tx: 10 - Rx: 9 - IT - IT - Tx: 11
- Rx: 10 - IT - IT - Tx: 12 - Rx: 11 - IT - IT - Tx: 13 - Rx: 12 - IT
- IT - Tx: 14 - Rx: 13 - IT - IT - Tx: 15 - Rx: 14 - IT - IT - Tx: 16
- Rx: 16 - IT - IT - Tx: 17 - Rx: 16 - IT - IT - Tx: 18 - Rx: 17 - IT
- IT - Tx: 19 - Rx: 18 - IT - IT - Rx: 19 - IT

This concludes the discussion on the specifics of the concrete compilation
processes from specification to executable. With these established, we can
generate multiple executables with varying characteristics to analyze their be-
havior. The next section outlines the variations applied during executable

generation and details the data collection procedure.

4.1.3 Data Collection

For assessing the prototype solution, the following key performance metrics
have been established: file size, memory usage, and execution time. These
metrics serve as indirect indicators of the compiler’s efficiency and its ability
to produce optimized code. By analyzing these metrics, we can evaluate how
effectively the compiler handles tasks such as eliminating code redundancy and
optimizing memory usage and performance, offering a practical approach to
reason about its overall effectiveness.

Executable Variations

For the variations of the executables, the number of intermediate pass entities
are varied, as well as the buffer sizes and the number of tokens. The token
count variation is dependent in the number of pass entities to account for dif-
ferent levels of saturation of the DPN. Both DPN specifications from |[Listing]
[4.1] and are transformed into template texts for their automatic
generation. Scripts for both of the compilers were created to execute their
associated specification generation, intermediate code generation, executable
compilation, and performance metrics collection. The varying parameters com-
mon to both solutions are presented in Table In the case of the prototype,
both single-threaded and multi-threaded executables are generated, with the
multi-threaded configuration allowing for additional variations, including the
shuffling of actor order (described in Section and adjustment of the num-
ber of threads.

Varying the number of pass entities offers insights into the scaling proper-
ties of the solutions. Since both solutions execute the maximum number of
transitions per scheduling window, experimenting with different buffer sizes
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# Pass Entities | Buffer Sizes | Number of Tokens
25 1,5 #Pass/2, #Pass*2
50 1,5 #Pass/2, #Pass*2
75 1,5 #Pass/2, #Pass*2
100 1,5 #Pass/2, #Pass*2
250 1,5 #Pass/2, #Pass*2
500 1,5 #Pass/2, #Pass*2
750 1,5 #Pass/2, #Pass*2

Table 4.1: Common variation values for the executable generations: number of
pass entities, buffer sizes, and token counts.

provides information on their scheduling behavior and action execution speed.
Meanwhile, varying the number of tokens provides information on the system’s
behavior under different token saturation conditions, i.e., how the system be-
haves when the network is operating below capacity (half the number of pass
entities) or saturated with tokens (double the number of pass entities). Ad-
ditionally, in the prototype’s multi-threaded case, the sequential nature of the
DPN specification in use, combined with the task barrier at the end of the net-
work’s firing, limits the network’s concurrency. Shuffling the entity execution
order provides additional insights into the behavior of OpenMP’s task schedul-
ing mechanics in conjunction with the current entity scheduling algorithm and
could indicate whether the solution might benefit from improved scheduling
algorithms.

Performance Metrics Collection

The file sizes were determined by querying the filesystem for their size in bytes.
Memory usage was measured using Valgrind’s Massif tool, which provides snap-
shots of heap memory allocation over time through the mem_heap_B variable.
Due to Valgrind’s limited support for multithreaded execution, the prototype’s
execution required setting the OMP_NUM_THREADS environment variable to 1
beforehand. In contrast, StreamBlocks” memory usage collection did not en-
counter such issues and could proceed without any additional environment
modifications. Here, we keep only the peak memory usage, i.e., the maximum
value of mem_heap_B during execution. Execution time data was gathered us-
ing the hyperfine tooEL which was configured to run 50 warmup executions and
collect data from 1500 subsequent executions. The high number of executions
is intended to ensure that the average execution times are not significantly
affected by system fluctuations.

The data collection process was executed under Windows 11’s Windows
Subsystem for Linux (WSL) 2, using an 11th generation Intel(R) Core(TM)
15-1135G7 processor with 4 cores and 8 logical processors, running at a base
frequency of 2.40GHz. The system was equipped with 16GB of RAM (8
slots) operating at a speed of 4267 MT/s. To reduce the likelihood of the

3https://github.com/sharkdp/hyperfine
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system influencing the benchmarks, protection mechanisms such as anti-virus
and anti-malware tools were deactivated, along with other system services like
the system’s network or Windows’ SysMain. The system was left idle while the
benchmarks executed. The StreamBlocks compiler executables were compiled
using GCC version 13.2, with the default optimization flag (-00), and CMake
3.30 was used for the build process. The prototype compiler was based on
LLVM 20 and the assessed executables are compiled with Clang 18.1 with the
default optimization flag (-00).

The above outlines the necessary steps to generate meaningful data for eval-
uating the prototype compiler, using StreamBlocks Platforms as a baseline.
In the following section, the variations in performance metrics of the resulting
executables, driven by different parameters, are presented and analyzed.

4.2 Results

In this section, the results of the data collection and analysis for the executables
generated by the prototype compiler and StreamBlocks Platforms multicore
are presented. The performance variations, influenced by parameters such as
the number of pass entities, buffer sizes, and network token saturation, are
explored to assess the effectiveness of the prototype compiler. As a reminder,
in the saturated case, the network is executed with token count equals to
half the number of pass entities. In the unsaturated case, the network is
executed with token count equals to twice the number of pass entities. By
comparing these results, we aim to evaluate the performance of the prototype
relative to StreamBlocks Platforms multicore, highlighting the strengths and
weaknesses of both solutions, providing insights into MLIR’s potential as a
dataflow compilation framework.

4.2.1 File Sizes

Figure [£.T]shows the relationship between the number of entities and the corre-
sponding executable file sizes, measured in kilobytes. As the number of entities
increases, all executables show an increase in file size, as each solution gener-
ates additional code for each entity instance. It is also noticeable that buffer
sizes do not have a visible impact on the file size. While the exact reason
remains uncertain in the case of StreamBlocks, in the MLIR, case, the buffers
are always initialized to zero. This allows the compiler to represent them in
a compressed form, requiring only information about their actual sizes and
initialization values.

A notable variation in file sizes is observed between the MLIR code com-
piled with and without OpenMP as the number of entities increases. This
difference occurs because each entity’s execution is encapsulated in OpenMP
tasks, introducing additional computational logic for each entity. Nevertheless,
the executables generated by the prototype compiler with OpenMP have file
sizes roughly half the size of those produced by the StreamBlocks compiler.
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File Sizes

MLIR Without OpenMP - Buffer size 1
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Figure 4.1: Relationship between the number of entities and the resulting exe-
cutable file sizes (in kilobytes).

This may be due to StreamBlocks’ compiling the specifications into C code,
thus requiring extra C logic for scheduling and managing entity information,
such as state variables and action functions, in additional C structures.

4.2.2 Memory Usage

Memory usage does not show significant changes between the unsaturated and
saturated network cases, so we focus only on the saturated case and omit the
unsaturated results. The memory usage as a function of the number of entities
is illustrated in Figure [£.2] Although the comparison is limited by the proto-
type’s OpenMP versions being executable under Valgrind with only a single
thread, the difference in memory usage between the MLIR and StreamBlocks
solutions approaches a factor of 12.5. Even in the unlikely scenario where
each thread in the MLIR case would increase memory usage by the depicted
value, i.e., multiplying the depicted value by the number of threads, the total
would reach a maximum of 50000 KB, approximately 27000 KB less than the
maximum memory usage of the StreamBlocks solution.
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MLIR With OpenMP - Buffer size 1 - Not Shuffled
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MLIR With OpenMP - Buffer size 5 - Not Shuffled
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StreamBlocks - Buffer size 1

StreamBlocks - Buffer size 5
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Figure 4.2: Relationship between the number of entities and the resulting heap
memory usage (in kilobytes).

No significant changes in memory usage are observed with the variation
in buffer sizes. Additionally, it is challenging to determine from Figure [.2]
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whether the observed memory usage variations are substantial as the number
of entities increases. To provide more clarity, Figure [£.3] illustrates this rela-
tionship. From this, we observe that for all variations in the number of entities,
the MLIR solution exhibits a scaling factor of less than 0.5 when compared to
StreamBlocks, demonstrating efficient memory handling as the system scales.

Memory Usage Variation

mmm MLIR Without OpenMP
1000 MLIR With OpenMP
StreamBlocks
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o

Figure 4.3: Relationship between the variation of number of entities and the re-
sulting heap memory usage variation (in kilobytes).

4.2.3 Execution Time

The DPN specifications used in this evaluation have an inherent sequential
nature. Given this and the fact that the scheduler is synchronized at each
network’s firing, it is expected that single-threaded executions would outper-
form their multi-threaded counterparts. That said, to ensure a more accurate
and fair comparison, the execution time results are therefore separated into
single-threaded and multi-threaded categories, allowing for a clearer analysis.

The single-threaded category presents the prototype’s solutions with and
without OpenMP, highlighting the differences between these configurations.
The multi-threaded category compares the unshuffled prototype executables
with the StreamBlocks ones, followed by a comparison between the unshuffled
and shuffled prototype executables.

Single-threaded Solutions

As previously mentioned, given the sequential nature of the DPN used and the
scheduler generated by the prototype, single-threaded solutions are expected
to outperform their multi-threaded counterparts in terms of execution time.
Furthermore, single-threaded executions utilizing OpenMP are likely to be
slower than those without OpenMP due to the overhead introduced by the
library.

Figures [4.4] and [£.5] illustrate the execution time performance of the single-
threaded solutions with distinct buffer sizes for the unsaturated and saturated
cases, respectively. Across all scenarios, the OpenMP variation consistently
demonstrates higher execution times, emphasizing that the overhead of task
creation and synchronization is substantial, even in a single-threaded context
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where scheduling plays a less critical role compared to the multi-threaded case.
Nonetheless, the figures also show that increasing buffer sizes leads to signifi-
cantly faster executions in both scenarios. As one may expect, as buffer sizes
grow the performance gap caused by the OpenMP overhead diminishes. This
is because actors execute more than once per scheduled task, reducing the total
number of launched tasks while maintaining the same number of actor firings.

Single Thread Execution Time Average - Unsaturated - Buffer Size = 1 Single Thread Execution Time Average - Unsaturated - Buffer Size = 5
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Figure 4.4: Average execution time per buffer size as a function of the number of
entities for the unsaturated single-threaded executables.
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Figure 4.5: Average execution time per buffer size as a function of the number of
entities for the saturated single-threaded executables.

Multi-threaded Solutions

Figures[f.6)and [£.7 present the average execution times for unsaturated and sat-
urated network executables, respectively, under varying buffer sizes. Compared
to the single-threaded MLIR executables, these multi-threaded executions are
slower due to the reasons previously discussed. Focusing solely on the multi-
threaded cases, the figures reveal that for buffer sizes of one, the StreamBlocks
solution outperforms or matches the performance of the MLIR solutions. This
performance advantage stems from StreamBlocks Platforms’ use of Pthreads,
which enables finer-grained control over scheduling. Furthermore, unlike the
prototype compiler, the StreamBlocks solution does not repeatedly create and
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destroy threads at each network step. In contrast, the prototype’s OpenMP-
based implementation incurs significant overhead from the repeated creation
and destruction of tasks, reflected in the results.

0 Multi Thread Execution Time Average - Unsaturated - Buffer Size = 1 Multi Thread Execution Time Average - Unsaturated - Buffer Size = 5
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Figure 4.6: Average execution time per buffer size as a function of the number of
entities for the unsaturated multi-threaded executables.
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Figure 4.7: Average execution time per buffer size as a function of the number of
entities for the saturated multi-threaded executables.

Even though the prototype exhibits the overhead previously discussed, the
MLIR solution demonstrates potential when buffer sizes are set to five, par-
ticularly as the number of entities increases. While the exact reason remains
uncertain, this could be attributed to a reduced number of instructions per
loop in the scheduling logic for individual actors’ actions. The MLIR solution,
leveraging lower-level constructs, inherently provides more opportunities for
optimization. In contrast, the StreamBlocks implementation, which relies on
sequences of for-loops to populate data structures, incurring in overhead, and
since both executables were compiled without additional optimization flags,
the StreamBlocks executable might be at a disadvantage due to its reliance on
such higher-level constructs.

Shuffled Multi-threaded Solution

In order to further explore to the behavior of the current multi-threaded proto-
type’s scheduler, a shuffling mechanism was introduced to alter the execution
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order of entities. This approach is motivated by the sequential nature of the
DPN specification being used, where the sequence of OpenMP task instan-
tiations and the runtime’s scheduling latency can influence performance. By
varying the temporal separation between the creation of tasks for dependent
entities, this method aims to achieve potential gains in execution time through
improved scheduling efficiency and better data availability. To ensure fairness,
all shufflings use the same random seed value and random sequence generation
strategy.

Figures and display the results of the shuffled entity execution order
for distinct buffer sizes in both the unsaturated and saturated network cases.
In the unsaturated case with a buffer size of one, small improvements in ex-
ecution time are observed when compared to the unshuffled solutions. These
improvements become more noticeable as the number of entities increases. In
contrast, for the unsaturated case with a buffer size of five, the difference is
minimal when the number of entities is below two hundred and fifty, with
even slightly worse performance observed at certain points (e.g., fifty entities
with eight threads or two hundred and fifty entities with four threads). How-
ever, as the number of entities surpasses five hundred, the shuffled executables
demonstrate a clear speed-up in execution time compared to their unshuffled
counterparts. This can be attributed to actors being sparsely executed, and
the distancing between producer task creation and consumer guard checks cre-
ating enough time for one producer execution to have taken place before it is
determined whether the consumer may execute or not.

In the saturated case, shuffling the execution order negatively impacts the
execution time when the buffer size is one. As the network is saturated with
tokens, varying the order of execution offers no advantage, since tasks are lim-
ited to executing only one action at a time. However, when the buffer size is
increased to five, tasks can process more tokens in parallel. In this scenario,
changing the order of entity execution introduces sufficient time differential
between action scheduling and task creation, allowing for better parallel exe-
cution and resulting in small speed-ups.
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Figure 4.8: Average execution time per buffer size as a function of the number of
entities for the unsaturated multi-threaded executables with shuffled
entity execution order.
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Shuffled Execution Time Average - Saturated - Buffer Size = 1 Shuffled Execution Time Average - Saturated - Buffer Size = 5

=== MLIR - 4 Threads - Not Shuffled == MLIR - 4 Threads - Not Shuffled
mmm MLIR - 4 Threads - Shuffled 120 1 mmm MLIR - 4 Threads - Shuffled
500 MLIR - 8 Threads - Not Shuffled MLIR - 8 Threads - Not Shuffled
MLIR - 8 Threads - Shuffled MLIR - 8 Threads - Shuffled
100

s
8
3

Time (ms)
w
&
3
Time (ms)

~
S
3

40

100

0 = 0-
25 50 75 100 250 500 750 25 50 75 100 250 500 750
# Pass Entities # Pass Entities

Figure 4.9: Average execution time per buffer size as a function of the number
of entities for the saturated multi-threaded executables with shuffled
entity execution order.

In conclusion, the data collected from the prototype and StreamBlocks exe-
cutables highlight distinct performance differences in file size, memory usage,
and execution time, offering insight into the prototype compiler’s efficiency
and optimization capabilities. While the prototype demonstrated a clear ad-
vantage in memory usage and file size, its execution time performance varied
across different configurations, indicating that there are still opportunities for
better scheduling algorithms. These results set the stage for the next chapter,
where we will discuss the implications of these findings, focusing on the poten-
tial of MLIR as a dataflow compilation framework, as well as the challenges
and opportunities for future work.
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5 Discussion

This thesis aimed to evaluate the feasibility of MLIR as a unifying framework
for developing dataflow compilers, addressing the software fragmentation issue
faced by the dataflow community. In a first step towards this goal, a prototype
compiler was developed, comprising a frontend compiler to parse DPN spec-
ifications written in the CAL actor language and the NL network language,
along with a backend MLIR compiler. The backend compiler includes a cus-
tom DPN dialect and necessary compilation passes to lower code written in
this dialect into other MLIR dialects. Executables were generated and com-
pared with the equivalent StreamBlocks Platforms multicore implementation,
yielding promising results. These findings suggest that MLIR holds significant
potential as a foundation for the development of dataflow compilers, though
challenges remain.

This chapter elaborates on the findings and insights derived from the de-
velopment and evaluation of the prototype compiler. It begins with Section
which discusses the implications of the results presented in the previous
chapter. Subsequently, Section explores the potential of MLIR as a uni-
fied framework for compiler development. Section then examines the role
of the custom DPN dialect in supporting dataflow modeling and optimiza-
tion. Finally, Section addresses the limitations and challenges encountered
throughout the study and suggests directions for future work.

5.1 Result Implications

When compared to StreamBlocks Platforms multicore, the prototype com-
piler’s executables demonstrated significant improvements in memory efficiency.
This suggests that it may be better suited for applications with strict memory
constraints, particularly as system complexity scales. Smaller executables are
also beneficial for deployment in resource-limited environments, where storage
and transfer overheads are critical factors. At the same time, execution time
analysis showed that increasing buffer sizes significantly enhances performance,
as larger buffers allow actors to process more data per scheduling window. This
highlights the importance of careful buffer tuning to mitigate scheduling over-
head. Still, StreamBlocks’ superior execution time performance at smaller
buffer sizes suggests that task creation and thread management strategies are
crucial in multi-threaded execution and should be further optimized in the
prototype.

One of the primary inefficiencies in the current prototype is its scheduling
strategy, which repeatedly creates and destroys tasks, introducing unnecessary
overhead. Refining this approach, such as by removing execution barriers in the
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step function, implementing persistent tasks, and improving task monitoring
algorithms, could lead to measurable execution time improvements while still
enabling querying of the DPN state. This would also require adapting the API
to better align with the new execution semantics. Additionally, the prototype’s
reliance on lower-level constructs presents another avenue for optimization, as
these constructs inherently provide more opportunities for fine-tuned compiler
optimizations, for example, reducing redundant computations.

The observed differences in file size, memory usage, and execution time ac-
centuate the inherent trade-offs in designing a dataflow compilation framework.
Developers must carefully balance memory efficiency, executable size, and ex-
ecution speed based on the specific requirements of their applications. For
instance, embedded systems and real-time applications may prioritize mini-
mal memory usage, whereas high-performance computing workloads may favor
execution speed over memory constraints. Ultimately, these findings empha-
size the need for continued research in dataflow compilation, particularly in
hybrid scheduling models, task division, load balancing, requirement-specific
optimizations, among others. As data-driven applications continue to evolve,
future compilation frameworks must adapt to diverse architectural demands
while being able to maximize both performance and efficiency.

5.2 MLIR as a Compiler Framework

The prototype compiler demonstrated MLIR’s modularity and extensibility,
validating its suitability for dataflow compilers. Its ability to support domain-
specific constructs, optimize memory usage, and improve execution times high-
lights its flexibility. By providing a customizable backend for processing domain-
specific dialects and integrating custom transformations with generic passes,
MLIR showed its potential in addressing the specific needs for developing cus-
tom compilers. Furthermore, the layered design of MLIR facilitated the inte-
gration of custom transformations with pre-existing generic passes, reducing
development time and fostering code reuse.

MLIR’s ability to define and manipulate intermediate representations at
multiple levels of abstraction was instrumental in capturing the structures of
the target dataflow models. This hierarchical approach made it easier to de-
velop optimizations and debug the intermediate transformations. MLIR also
enabled the rapid prototyping of new features, such as specialized lowering
passes for experimentation of runtime optimizations. Additionally, MLIR’s
support for multi-threaded compilation and OpenMP integration proved valu-
able for handling concurrency in both code generation and execution. The
ability to parallelize certain passes and leverage existing runtime constructs,
e.g., OpenMP, demonstrated its adaptability to execution models and modern
hardware, capabilities particularly critical for scaling compilation pipelines and
for creating dataflow applications.

MLIR’s modularity allows the ecosystem to evolve with community con-
tributions, enhancing its maintainability and robustness. Since many of its
components are widely used and actively maintained, reusing them within
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one’s toolchain integrates regular improvements and fixes, reducing long-term
maintenance efforts. The collaborative nature of MLIR, driven by an active
community, enables it to adapt to emerging needs and challenges, fostering a
more trustworthy and sustainable compiler framework while minimizing devel-
opment overhead.

Additionally, MLIR offers great interoperability potential, facilitating in-
teractions between various tools and programming languages. Its modular
structure enables the integration of intermediate representations, making it a
versatile choice for multi-language projects, as demonstrated by Ciambra, Dar-
daillon, Pelcat, and Yviquel |[Cia+22|. Since dialect semantics are defined by
their passes, tools like profilers and optimizers also can be integrated into the
MLIR toolchain, executing within these passes, communicating the required
data, and retrieving outputs directly. These capabilities enhance cross-tool
compatibility and enable performance optimizations at multiple stages of the
compilation process, creating an integrated environment that leverages existing
codebases and promoting broader MLIR adoption across diverse settings.

However, despite these strengths, MLIR introduces certain complexities that
must be addressed in practice. For example, managing interactions between
dialects and ensuring correctness across lowering stages highlighted the steep
learning curve associated with using MLIR. This is largely due to dialects defin-
ing their own semantics, requiring that each dialect be learned individually.
Consequently, debugging transformations and identifying optimization bot-
tlenecks in a multi-dialect environment require significant expertise. Despite
these challenges, the results presented in this work reaffirm MLIR’s potential
as a framework for building efficient, scalable, and domain-specific compilers,
with its flexibility and rich ecosystem making it a promising choice for future
compiler research and development initiatives in the context of dataflows and
beyond.

5.3 The DPN Dialect

The development of the custom DPN dialect in MLIR was pivotal in achiev-
ing the results of this work. By capturing DPN structures through tailored
constructs, it provided a unified representation that transformed high-level
dataflow specifications into optimized, lower-level intermediate representations
for code generation. This alignment between the DPN dialect’s expressive-
ness and the dataflow execution model enabled compilation passes for actor
scheduling, memory management, and parallel actor execution, key factors in
executable performance. The prototype compiler’s finer-grained compilation
led to promising execution times and efficient memory usage, further highlight-
ing the potential of this approach.

The DPN dialect enabled experimentation with optimization strategies such
as shuffling execution orders and scaling buffer sizes, demonstrating its flex-
ibility and improving runtime performance. While conventional compilation
pipelines rely on generic representations (e.g., C) for actual compilation, MLIR’s
multi-level IR provides a more direct and granular path from high-level dataflow
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models to efficient lower-level code. Traditional dataflow compilers often in-
troduce unnecessary overhead and significant manual intervention or custom
tooling to achieve results similar to the prototype compiler. In contrast, the
DPN dialect allows the compiler to directly represent DPN specifications and
define dataflow semantics, integrating domain-specific transformations at mul-
tiple levels. Consequently, the MLIR-enabled, DPN dialect approach offers a
more specialized and adaptable method for compiling dataflow models, func-
tioning effectively in both low-level optimizations and overall versatility.

Due to its generic nature, the DPN model allows various dataflow paradigms
to leverage the DPN dialect within a unified compilation framework. This en-
ables the integration of multiple dataflow models, including synchronous, dy-
namic, and boolean dataflows. By utilizing the DPN dialect, these models can
take advantage of both existing and newly developed custom passes to optimize
their MLIR code in a configurable manner, ensuring efficient code generation
across diverse use cases. Additionally, the dialect supports the incremental
integration of new dataflow models, making it adaptable to a wide range of
applications and system architectures without requiring major modifications
to the underlying compiler infrastructure.

The DPN dialect, combined with MLIR’s adaptability and interoperability,
could encourage collaboration across diverse domains. The dialect enables in-
tegration with specialized compilers and tools, supporting the development of
hybrid systems that leverage multiple paradigms. For example, incorporating
performance profiling tools into the dataflow compiler could open avenues for
new optimization techniques. Similarly, the DPN dialect can define resource re-
quirements, data dependencies, and scheduling strategies for, e.g., data-driven
machine learning agents. MLIR’s expanding ecosystem of passes, utilities, and
backends further extends the dialect’s applicability beyond its initial scope.
This collaborative framework sets the stage for future advancements in com-
piler design, positioning the DPN dialect as a flexible foundation for addressing
challenges and advancing the field.

Moreover, as the DPN dialect continues to evolve, it is likely to benefit
from advancements in other areas of compiler technology, such as just-in-time
(JIT) compilation and dynamic dataflow optimization. Supporting dynamic
transformations during runtime that leverage the DPN dialect could enable
more efficient use of system resources and further enhance the performance
of dataflow-based applications. Additionally, combining the DPN dialect with
emerging technologies like heterogeneous computing and distributed processing
could provide new opportunities for scaling dataflow systems across diverse
hardware environments. These possibilities highlight the long-term potential
of MLIR and the DPN dialect as key components for next-generation dataflow
compilers, offering a flexible framework that evolves alongside both software
and hardware innovations.
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5.4 Limitations and Future Work

While the possibilities outlined above show promise, much remains to be done
to fully and accurately represent the structure of DPN specifications written
in the CAL and NL languages within the DPN dialect. Although the current
prototype demonstrates the feasibility of compiling dataflow models within the
MLIR framework, several technical challenges and system integration issues
must also be addressed to maximize the utility of the DPN dialect in practice.
Overcoming these limitations will enable more effective modeling of DPNs and
broaden the use cases for MLIR-based compilers in dataflow applications.

Type System  One key area for improvement that could enable further compile-
time analysis and optimizations is the integration of a type system into the
DPN dialect. Currently, no type system is provided, which shifts the responsi-
bility of type handling to the compiler’s frontend, thus reducing the reusability
potential of the DPN dialect. Additionally, the lack of a complete type system
limits the expressiveness of the dialect, making it harder to capture and analyze
more complex dataflow operations. Future work should focus on integrating an
opaque type system into the dialect, allowing for better representation of data
types used in dataflow models and shifting the responsibility of type semantics
to the compiler’s backend.

MLIR Parsing Verification Completing the verification process during the
MLIR code parsing is another important next step. The current prototype
lacks comprehensive checks at the parsing stage, which could lead to errors or
inefficiencies later in the compilation process. Implementing a more thorough
verification process will help identify potential issues early, ensuring that the
dataflow specifications are correctly interpreted and translated into efficient
executable code.

Language Features The DPN dialect also faces significant gaps in supporting
certain language features crucial for practical dataflow applications. The cur-
rent version of the dialect does not support several important features, such as
action variable assignment, structured control-flow statements, action sched-
ules and delays, hierarchical networks, among others. While not all of these
require specific DPN dialect constructs (e.g., control-flow statements could be
directly translated to other MLIR dialects), many of the missing features do
require specific dialect constructs. These limitations significantly restrict the
types of dataflows that can be effectively represented. To offer more robust and
practical representations, it is essential to implement a more complete set of
language features, enabling a broader and more accurate modeling of dataflow
systems.

Input Patterns and Output Expressions Another notable limitation lies in
the incomplete handling of input patterns and output expressions. The current
implementation does not fully capture the diversity of input/output mappings
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found in the CAL language specification, which limits the ability of the DPN
dialect to model complex data interactions. Addressing this gap will require
modifying or extending the dialect’s structure to fully represent input pat-
terns and output expressions, thereby enabling more comprehensive dataflow
specifications.

Compilation Passes Some of the current compilation passes are incomplete,
inefficient, or fail to consistently produce correct code in all use cases. These
limitations restrict the full potential of the prototype, particularly in scenarios
involving variables with multiple initialization blocks or multiple control-flow
paths. Additionally, the integration of additional optimization passes within
the MLIR-based DPN framework is also an important area for future work.
While the current set of passes enables basic optimizations and supports fun-
damental execution flows, further development of domain-specific optimization
and scheduling strategies is necessary to optimize task execution across mul-
tiple cores and devices. Since dataflow systems inherently rely on parallelism
and concurrency, it is crucial to design robust scheduling algorithms that effec-
tively balance workloads, minimize runtime overhead, and maximize resource
utilization across various execution environments.

Memory Management Another area that requires attention is the integra-
tion of memory management schemes. Neither the CAL nor the NL languages
support explicit memory representations. Given the additional flexibility pro-
vided by external functions and procedures, it is necessary to assess when a
function allocates memory and transfers the responsibility for its destruction to
the user. Therefore, strategies for managing externally allocated memory are
required. The DPN dialect includes a simple compilation pass that assumes
any memory reference returned from a function must be freed at the end of the
action scope. However, this approach is simplistic and does not account for
more complex cases, such as when the returned memory belongs to the stack
or when the memory is assigned to an actor’s variables. The possibility of co-
optimizing C and MLIR code, as suggested by Ciambra et al. [Cia+22], could
lead to better memory management strategies, along with other optimizations,
while offering greater flexibility in leveraging existing C-based codebases within
the MLIR context.

Heterogeneous Systems Integration In terms of system integration, while
the prototype has shown initial success on multi-core platforms, the integra-
tion of heterogeneous systems remains a challenge. Future efforts should focus
on enabling the DPN dialect to work across a range of heterogeneous envi-
ronments, such as those composed of GPUs, multi-core CPUs, and FPGAs.
Supporting processors and architectures like GPUs and distributed process-
ing systems is crucial, as dataflow applications often require a high degree of
parallelism, which can be facilitated by leveraging diverse hardware resources.

MLIR provides an extensive suite of dialects that could help address dis-
tributed and heterogeneous system architectures. For example, the acc dialect
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offers OpenACC constructs, while the mpi dialect supports OpenMPI con-
structs. Similarly, dialects like gpu allow the creation and invocation of GPU
kernels, along with technology-specific dialects such as amdgpu, nvgpu, nvvm,
xegpu, and spirv. These capabilities position MLIR as a robust framework for
unifying dataflow compiler development across diverse system architectures.

Alternative Runtimes The introduction of alternative runtimes is another
avenue for future exploration. While the current implementation leverages
OpenMP for execution, integrating additional runtimes could provide greater
flexibility and adaptability in response to changing runtime resource availabil-
ity and varying system architectures. Supporting a broader range of execution
models, including dynamic and heterogeneous runtimes, would make the DPN
dialect more versatile and applicable to a wider variety of use cases.

Exploring runtimes is particularly beneficial, as they allow dataflow systems
to scale up or down according to available resources across diverse hardware
environments, such as multi-core CPUs, GPUs, and distributed systems. By
leveraging specialized runtimes optimized for specific hardware, the DPN di-
alect could fully exploit the potential of these systems, leading to enhanced
performance and better resource utilization. This approach could also facili-
tate the adaptation of dataflow applications to different system configurations
and workloads, ensuring efficient execution regardless of the underlying hard-
ware architecture.
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6 Conclusion

This thesis set out to address the challenges posed by software fragmenta-
tion within the dataflow community, where numerous independently developed
frameworks for specification, modeling, and compilation exist. The goal was to
determine whether the Multi-Level Intermediate Representation (MLIR) com-
piler framework could serve as a unifying solution. Building on the foundations
of Dataflow Process Networks (DPNs), the CAL actor language, and the NL
network language, this work explored the development of a custom MLIR di-
alect to interpret and compile DPN structures, evaluating MLIR’s potential to
meet the specific needs of dataflow compilers.

The key contributions of this thesis include the development of a proto-
type compiler for the CAL actor language and the NL network language, us-
ing StreamBlocks T¥jcho as the frontend and MLIR as the backend. This
work also involved the creation of a custom dpn dialect within MLIR, along
with custom compilation passes for both single- and multi-threaded executions,
demonstrating MLIR’s capability to represent and compile DPN specifications.
Experimental results presented promising reductions in executable file sizes
and memory usage while maintaining competitive execution times compared
to the StreamBlocks multicore platform compiler, highlighting the feasibility
and potential of this approach.

The findings underscore MLIR’s potential as a unifying platform for dataflow
compilation frameworks, particularly through the development of the custom
DPN dialect. MLIR’s modular and extensible dialect design fosters collabora-
tion and co-optimization across domains, paving the way for a more integrated
dataflow compiler ecosystem and reducing redundant cross-team work. The
DPN dialect, with its specialized constructs for dataflow specifications, enables
the transformation of high-level models into optimized intermediate represen-
tations and, ultimately, executable code. This approach provides a promising
solution to the increasing complexity and heterogeneity of industrial and com-
mercial dataflow systems.

Despite these promising results, several limitations remain. The DPN dialect
and its associated compilation passes require further refinement to handle more
complex dataflow specifications. Additionally, the current implementation does
not yet fully address the integration of frameworks and heterogeneous system
architectures. Future work should focus on extending the dialect’s support
for features of the CAL and NL languages. Moreover, the development of
advanced memory management strategies, scheduling algorithms, and domain-
specific optimization passes would enhance the practicality and utility of the
proposed framework. Further extensions could also explore leveraging MLIR’s
multi-target capabilities by adding support for heterogeneous architectures,
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including GPUs, FPGAs, and distributed systems.

In conclusion, this thesis demonstrates MLIR’s potential as a unifying frame-
work to address the fragmentation of the dataflow compilation ecosystem,
promoting efficiency, scalability, and collaboration. The development of the
custom DPN dialect and its compilation passes highlights MLIR’s ability to
capture and optimize complex dataflow models for diverse execution environ-
ments. Building on this foundation, future work can lead to more robust and
adaptable dataflow solutions, empowering developers to tackle the growing
complexity of modern industrial and commercial systems with greater ease
and confidence.
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