
seminar report
Seminar: Embedded Systems and Robotics in Summer term 2025

Interference Channels and Their Mitigation
in Modern Systems on Chip

Lev Sonnenfeld
Rheinland-Pfälzische Technische Universität Kaiserslautern, Department of Computer Science

Note: This report is a compilation of publications related to some topic as a result of a student seminar.
It does not claim to introduce original work and all sources should be properly cited.

The increasing integration of multi-core processors in modern systems on chip (SoCs) has
enabled significant performance gains while meeting stringent size, weight, power, and cost
(SWaP-C) constraints. This is accompanied by a trend of consolidating systems into fewer
multi-task components that were originally implemented as many distributed, specialised
components. However, these trends also introduce timing interference between tasks that
are executing concurrently. This is particularly problematic in real-time and safety-critical
embedded systems such as avionics, automotive safety systems, and autonomous systems.

Such interference occurs when multiple processing units compete for shared hardware
resources, including caches, main memory, and system interconnects. This report surveys
the main interference channels in multi-core SoCs and analyses their impact on predictability
and performance. For each channel, it discusses in detail a representative software-based
mitigation strategy, such as cache partitioning through dynamic page colouring, memory
channel partitioning, and memory bandwidth regulation.

1 Introduction

An increase in computational demand, coupled with the need to optimise for constraints of size,
weight, power and cost (SWaP-C), has prompted a change in the design philosophy in embedded
systems.
Traditionally, single-core systems on chip (SoCs) were used in such systems. However, since

it is not possible to improve the performance of single-core CPUs efficiently by increasing the
clock frequency, additional CPU cores have been introduced instead. This enables performance
to be increased by harnessing the performance gains achieved through parallelism. Additionally,
rather than implementing individual functionalities on different physically distributed compo-
nents, systems are now being adapted to implement multiple functionalities on unified hardware
components.
However, while these changes address their respective requirements, they also necessitate

multiple tasks accessing the same hardware resource. Since processing units run in parallel
and independently, they may need to access the same resource simultaneously. Additionally,
even if they are not accessed simultaneously, one task’s operation might change the state of the
hardware. This could necessitate reverting the hardware for the other task once it requires the
resource again.

1



In both cases, some execution units must wait for the resource to become available again.
This means that processes that were previously independent in their execution can now affect
each other, leading to unpredictable increases in execution times. This undesired phenomenon
is called interference.
While interference can reduce the overall performance, in systems that additionally have time

constraints for response times, it can lead to additional complications. These systems are known
as real-time systems and are common in embedded and reactive environments. Typical examples
include avionics, autonomous driving and automotive safety systems [6, p. 2]. These systems
are usually safety-critical and must therefore be highly reliable and fail-safe. To ensure this,
those systems are extensively verified, tested and certified [9]. This requires high predictability
of each subsystem, since testing and verifying the whole system is practically impossible.
This predictability requirement is directly affected by interference. Here, since all systems

cannot be verified at once, a maximally pessimistic execution time must be assumed in each
component. This means the hardware cannot be utilised to its full potential. For example, in
some applications, only one core of a multi-core SoC is used to avoid interference altogether [8].
While deactivating all but one core has removed the interference, the hardware potential is
still wasted. Applying this solution, in turn, also increases the number of components, working
against the SWaP-C constraints. Therefore, interference and its impact on system performance
must be addressed differently.
In this report, typical interference channels causing timing interference in multi-core SoCs are

derived from the structure of typical SoCs and analysed. Then, techniques for minimising the
impact of interference on these channels are investigated and explained.
The following report is structured as follows. First, Section 2 introduces the background

knowledge necessary to understand the following sections. Specifically, it introduces real-time
systems as well as the architecture of multi-core SoCs. Using this background, Section 3 derives
common interference channels for the described real-time systems. Then, in Section 4, mitigation
methods for the different interference channels are presented and analysed. Following this, a
summary of related work and aspects not covered by this report is given in Section 5. Finally,
the report is then concluded by a summary of the key points that were discussed in the report
in Section 6.

2 Background

This section provides an overview of the fundamentals required for the analysis of interference
channels. The first part provides insight into real-time systems. Then Subsection 2.2 presents
the typical components of a multi-core SoC and how they interact.

2.1 Real-Time Systems

Real-time systems are time-critical systems that have to respond within a certain deadline when
receiving a signal. Generally, these systems can be categorised as either hard or soft real-
time [3]. Missing a deadline in a hard real-time system often leads to system failure, whereas in
a soft real-time system, the system only degrades with time and is usually able to recover. This

2



Deadline

Time

Va
lu
e

Hard Real Time

Deadline

Time

Va
lu
e

Soft Real Time

Figure 1: A comparison between soft and hard real-time systems. In hard real-time systems, the
value of the response is zero or negative after the deadline. By contrast, soft real-time
systems (right) still produce a response after the deadline, albeit with reduced value.

is illustrated in Figure 1.
In the hard real-time case, after missing the deadline, the response value is zero or less, whereas

in the soft real-time case, the response still has some value. The typical application domains,
therefore, differ between the two categories: hard real-time systems are found in safety-critical
applications such as automotive braking systems and avionics. Soft real-time systems, on the
other hand, are found in multimedia and telecommunications systems, where missing deadlines
is occasionally tolerable. Unless stated otherwise, a real-time system will always be assumed to
be hard real-time in the following.
To ensure that a real-time system can meet all its deadlines, a schedulability analysis must be

conducted. Although this report does not focus on schedulability analysis, a brief overview is
provided in Section 5.2. Such an analysis requires knowledge of either the worst-case execution
time (WCET) or the worst-case response time (WCRT) [5, 10]. While these two metrics are
closely related, the WCET describes the time required to execute the task. Conversely, WCRT
is the time required for the system to respond to a request. Both metrics assume worst-case
scheduling conditions and represent an upper bound. Once again, it is clear that both metrics
can be affected by hardware as well as interference.
Finally, since missing deadlines is considered catastrophic, predictability is valued more highly

than peak performance in real-time systems. Modern hardware features such as caches, pipelines
and shared memory interconnects complicate WCET and WCRT analysis because they make ex-
ecution times highly variable. For this reason, the design of real-time systems typically balances
performance improvements against the need for analyzable, dependable behaviour.

2.2 Multi-Core Systems on Chip

To analyse and identify possible interference channels in multi-core SoCs, it is essential to under-
stand the system components and how they interact. A high-level system overview of a typical
SoC is given in Figure 2. Here, all components are interconnected by a central bus. Each pro-
cessing core is connected to the interconnect through its private cache hierarchy. The memory
is also connected through a last-level cache (LLC) to the system. Peripheral components, such
as timers, general-purpose I/O (GPIO) controllers, direct memory access (DMA) engines, and

3



Core

L1 Cache

Core

L1 Cache

Core

L1 Cache

BusLLCMemory I/O Bridge

Figure 2: Overview of a typical Multi-Core SoC architecture. All cores are connected via a
central bus. This bus is then connected to memory and external components. This
overview is derived from the overview given in [3].

external interfaces (e.g. PCIe, Ethernet, UART), are connected via an I/O bridge to the same
internal bus. While instruction and data caches are often physically separated in modern de-
signs, this overview treats them generically as data caches for simplicity. In the following, each
component is described in detail.

2.2.1 Processing Cores

Processing cores are the primary computational units of the SoC. In a multi-core SoC, several
identical or heterogeneous cores are integrated in the design, enabling parallel execution of mul-
tiple software threads or processes. In the following, they are handled like homogeneous cores
for simplicity. Each core typically consists of an instruction fetch unit, decode logic, execution
units, and register files, often supported by hardware features such as branch predictors and
vector processing extensions. Additionally, Cores are typically equipped with Hardware Perfor-
mance Counters (HPCs) used for measuring different performance characteristics [11,12]. Cores
typically execute instructions in a pipeline and access data through their local cache hierarchy.

2.2.2 Caches

Caches are small but fast memory units that are positioned between the cores and the main
memory. They are used to overcome the performance gap between processor speeds and memory
latency. This is achieved by saving recently used data blocks in the cache, assuming they will
be reused. A cache always loads and unloads whole cache lines containing multiple addresses,
not just the single requested address. If a requested memory address is currently stored in a
line in the cache, a cache hit is triggered, and the result is returned. Otherwise, a cache miss is
triggered, which requires loading the data from a larger memory.
Since caches are limited in size, an existing cache line must be replaced when a new one is

loaded. First, a placement policy decides where the cache line can be placed. There are three
policies: direct mapping, which maps a fixed set of addresses to a specific cache line; fully
associative mapping, which allows any memory block to be stored in any cache line; and set
associative mapping, which is a compromise between the other two. In this case, a fixed set of

4



Figure 3: DRAM Device Organisation Overview from [3].

addresses is mapped to a set of cache lines, which can then be placed in any of those lines. Most
modern systems use set associative mapping [11].

When the placement policy allows the memory block to be placed in multiple cache lines,
the replacement policy decides which cache line is replaced. Simple replacement policies include
Least Recently Used (LRU), which replaces the cache line that has not been used for the longest
time, and Pseudo-LRU (PLRU), which uses a simple heuristic to approximate the behaviour of
LRU. Other, more sophisticated heuristic-based policies may also be used [6, p. 120].

Caches are usually organised into cache hierarchies. The L1 caches, which are located closest
to the cores, offer the lowest access latency but are the smallest in size. They are usually each
dedicated to one core. The LLC, on the other hand, is shared by all cores and acts as the main
point of coherence before accessing main memory. Depending on the design, some architectures
employ additional intermediate caches, such as L2 caches.

Modern SoCs implement hardware cache coherence protocols (e.g., MESI, MOESI) to ensure
consistency of data across private caches. These protocols rely on the interconnect to propagate
coherence messages. To keep coherency after a write of a core, two different write policies
can be employed: write-through and write-back. Write-through updates cache and memory
simultaneously, whereas write-back updates cache and delays updates to other memory until
later.

5



2.2.3 Memory

A variety of memory types can be used in SoCs, including programmable read-only memory
(PROM), dynamic random access memory (DRAM), and flash memory. In most modern SoCs,
DRAM is used for memory [9]. Therefore, in the following, DRAM is assumed to be used as
the main memory. As DRAM is usually realised outside of the SoC, it is accessed by a memory
controller.
The typical structure of a DRAM is visualised in Figure 3. The memory is subdivided into

channels, which contain one or multiple ranks. A rank consists of multiple banks, which consist
of a matrix of rows and columns. Each bank is accessed through its row buffer, which contains
the most recently accessed row of that bank. If the requested address is stored inside the buffer,
a row hit is triggered, and the stored data is returned. Otherwise, a row miss is triggered, and
the requested row must first be loaded from the bank. At the same time, as writes are only
performed on the row buffer, the buffered updates must be applied to the bank. Similar to
caches, a memory always accesses a whole row, not just a single memory address [11].
In order to optimise throughput and fairness, the memory controller arbitrates access requests

by applying a scheduling policy. The most common policy is First Ready First-Come First-Serve
(FR-FCFS) [3, 4, 11]. This policy prioritises requests for open rows since those can be accessed
the fastest.

2.2.4 System Bus

The system bus or interconnect is a central structure that is the communication backbone of
the SoC. Here, a different architecture is used depending on the SoC. In earlier designs, pre-
dominantly single shared buses were used, but modern SoCs also frequently employ hierarchical
buses, crossbars, or network-on-chip (NoC) fabrics to increase concurrency and scalability.
Modern bus designs typically include multiple channels, which can be accessed concurrently.

The interconnect transports both data and control messages, including memory access requests,
cache coherence transactions, and I/O communications. It includes arbitration logic to decide
which accessor (e.g., a core, DMA engine, or peripheral) gains access to shared resources at any
given time. The characteristics of this arbitration directly influence the timing behaviour of the
system.

2.2.5 External Devices

The SoC is connected to the external environment and external devices through the I/O bridge.
Such devices are, on the one hand, peripheral interfaces such as USB, Ethernet, PCI Express,
and display controllers. On the other hand, the devices are interfaces like timers, network buses,
sensors or actuators.
Generally, the devices are accessed as if they were memory addresses. This principle is called

memory-mapped I/O. There are two ways that are used to communicate with the external
devices. This is done either in programmed I/O mode, where a core explicitly reads or writes
data to a device, or in direct memory access (DMA) mode, where data transfer occurs directly
between the device and main memory without core intervention. In the latter case, the DMA
controller acts like a core regarding memory access [9].

6



2.2.6 Virtual Memory

Modern systems typically hide the physical memory architecture from software and program-
mers. This is achieved by introducing virtual memory, which software then accesses via virtual
addresses rather than raw physical memory. The virtual addresses are defined in a continuous
memory space and mapped to the physical addresses by the operating system (OS) [4]. It uses
specialised hardware, the so-called memory management unit (MMU), to translate virtual ad-
dresses into physical addresses. Every core is equipped with such an MMU, which is situated
between a core and its private caches [9].
Instead of translating every possible single virtual address to a physical address, the translation

is typically organised in blocks. Those blocks partition the virtual address space and are called
pages. Page tables contain the mapping from the virtual memory address of a process to the
physical page address and are used for lookup. When a page is not loaded in the memory, a page
fault is fired during lookup, requiring the intervention of the OS. The amount of intervention
depends on the specific hardware architecture.
In order to speed up the address translation, the MMU contains translation lookaside buffers

(TLBs) that act like caches for recent translations from virtual to physical addresses. Similar
to caches, TLBs can also be arranged in a hierarchical structure. A TLB miss triggers a page
table walk, looking for a translation in the page table [9].

2.2.7 Other Architectures

Having examined the most common system on a chip (SoC) architecture, this section briefly
summarises how other SoCs might be structured. While some of the aspects covered in later
sections may be relevant for architectures presented here, this will not necessarily be the case
for all of them.
The SoC discussed above employed a uniform memory access (UMA) architecture, where all

cores share equal access latency to the main memory. In non-uniform memory access (NUMA)
architectures, each core or group of cores instead has its local memory. This local memory yields
lower latency for local cores [2]. Remote cores have a larger latency to that memory instead.
Some architectures employ scratchpad memories instead of traditional caches [3]. Here, in-

stead of having a classical cache hierarchy, scratchpads provide fast memory that can be accessed
by the cores. The writes and reads to that memory have to be explicitly specified by the pro-
grammer, requiring more manual programming work.

3 Interference Channels
Having examined the typical structure of a SoC in Section 2.2, this section focuses on deriving
common interference channels from this structure and examining their potential impact on the
performance and predictability of multi-core SoCs.
For timing interference to occur, two or more accessors (e.g. cores or DMA controllers)

must attempt to access a shared resource simultaneously, but the resource cannot handle such
concurrent access. Alternatively, the resource may have an internal state that is altered by one
accessor’s access, requiring the state to be refreshed before the other accessor can be handled.

7



Without complete knowledge of all concurrent accessors, these scenarios lead to unpredictable
timing delays.
In general, three main types of interference channels can be identified in SoCs: shared cache,

main memory, and system bus [2,3]. The causes and effects of the different types of interference
channels are explained below.

3.1 Shared Cache

Caches introduce multiple sources of interference. Firstly, when running multiple tasks, even on
one core, when a suspended task resumes, the contents of the caches have been altered since it
was suspended. Thus, resuming the task leads to many more cache misses in multiple levels of the
cache hierarchy than usual until the task has restored the cache state. This type of interference
is called inter-task interference [3]. In a system with multiple accessors, this interference can
even cause more interference when the system bus or the main memory is accessed to load the
data for the task.
On shared caches, like the LLC, interference occurs when one accessor’s cache operations

evict or overwrite cache lines that another accessor is actively using. This phenomenon results
in increased cache miss rates for the affected accessor, forcing it to fetch data from other levels of
the cache hierarchy or the memory. Here, the cache placement policy and the cache replacement
policy, if applicable, can strongly affect the severity of this interference. Additionally, this effect
might even be amplified by the cache policies when both tasks are constrained to the same set
of cache lines, not utilising the full available space, causing more frequent cache line evictions.
This type of interference is called inter-core interference [3, 11].
A third source of interference is induced by cache coherence. On the one hand, cache coherence

generates extra traffic on the system bus to synchronise cache states. On the other hand, writes
by other tasks can invalidate cache lines in some private caches, requiring the affected lines to be
refreshed. Here, write-back is not an option for real-time systems. This is because the WCET
cannot be analysed due to decoupled memory writes [3].
When analysing the sources of interference for caches, it stands out that several of those

sources can combine and trigger each other. This is especially significant if the system has
multiple accessors that are running multiple tasks in parallel. Then the cache misses can cascade
and add even more misses in the cache hierarchy, adding multiple delays to the cache requests.
Additionally, the other interference channels are also affected by interference caused in caches.
This is because, as cache misses cascade through the hierarchy, they induce system bus access
and main memory requests that must be handled.

3.2 Main Memory

Since the main memory is shared between all cores and the DMA controllers in the SoC and
accessed by a single memory controller, it poses as a bottleneck and a source of interference in
the system. When multiple requests are issued at once, the memory controller has to serialise
them. The order of that serialisation is then decided by the employed scheduling policy. Since
the scheduling policy reorders the requests issued to the memory, the response time can now vary
based on the prioritised requests. This type of interference is called inter-bank interference [3].

8



Another type of interference is caused by access to memory banks through a row buffer. If
several tasks read from the same bank, but require access to different rows, two possible sources
of time delay are introduced. The first delay is caused by the tasks unloading each other’s
currently used rows, leading to a longer access time for each memory operation. The second
delay is introduced by requests being delayed for requests of a higher priority. This type of
interference is called intra-bank interference [3].

3.3 System Bus
Since all memory-related traffic is routed through the system bus, there is some potential for
interference due to bus contention. When multiple accessors issue transactions simultaneously,
the interconnect’s arbitration logic determines which transaction proceeds first. Here, arbitra-
tion schemes such as Fixed Priority, Round Robin, or First Come First Served (FCFS) based
policies are used. The arbitration scheme can heavily influence the timing delay and its pre-
dictability, as well as the usable bandwidth. While a simple bus only allows for one concurrent
communication, even more sophisticated interconnects have a limit to the number of possible
connections. Additionally, bus transactions can differ in size and type (read or write), and the
induced delay can vary widely [2, 3].
Due to its central placement in the SoC, the system bus can heavily influence the system

performance and timing predictability. Additionally, since it is involved in the fetching of data
after cache misses and accessing the main memory, it can directly influence the interference
delays induced by the other two sources of interference. This makes bus-level contention a
critical factor in the overall timing behaviour of shared memory systems.

4 Interference Mitigation
Now that common interference channels of SoCs have been investigated, they can be analysed for
their mitigation techniques. To achieve this, a coarse overview of techniques for each interference
channel is given. Then, one of those approaches to mitigate the interference channel is discussed
in detail for each interference channel. All methods below are software-based and do not require
hardware features that are not present in most modern SoCs.

4.1 Shared Cache
The approaches for cache interference mitigation can be divided into the following categories:
cache partitioning techniques, cache locking techniques and predictable cache coherence proto-
cols [3].
Cache partitioning focuses on subdividing the cache into a partition per task or core. The

accessor then only uses their assigned part of the cache, avoiding interference. Those techniques
can either be static or dynamic, trading off predictability against cache utilisation. Cache
locking techniques, on the other hand, can block sections of the cache from eviction. This
increases access predictability, but requires careful evaluation of which parts should be locked.
The final technique focuses on designing more predictable cache coherence protocols.
In the following, the cache partitioning technique presented by [11] is discussed in detail.

9



Figure 4: Address With Page Colour Bits [11].

Figure 5: COLORIS Architecture Overview [11].

4.1.1 Dynamic Page Colouring

COLORIS, the cache interference mitigation method presented in [11], is structured into two
components: a Page Colour Manager and a Colour-aware Page Allocator. It aims to mitigate
LLC interference by partitioning the cache and assigning partitions to processes using page
colouring. An overview of the structure of the method is given in Figure 5.
A colour is defined by the index bits of the physical address, which are not used by the OS

as the page byte offset, as shown in Figure 4. Pages that have the same colour are mapped to
the same set in a set-associative cache. This phenomenon is used by COLORIS and other page
colouring techniques to control which cache lines are used by which tasks or cores by assigning
them pages of specific colour.
The colour-aware page allocator is responsible for allocating pages of specific colours. To

achieve this, the allocator keeps a set of free pages in a memory pool. Here, pages with the same
colour are linked together. When receiving a request from a process, the allocator determines
the colours assigned to the process by polling the page colour manager. A page of one of those
colours, which is selected by round-robin, if the resulting colour is available, is then returned.
If no pages with any of those colours are available, the allocator requests new pages of different
colours from the OS. Freed pages are returned to the page pool unless the pool is already full.
The page colour manager controls which colours are assigned to which processes. This allo-

cation can be static or dynamic.
In the static allocation case, the available cache space is divided into N sections in a system

with N cores, assigning each to a core. With C colours available, each section and its corre-
sponding processes are then assigned C

N colours. Now, a process running on a core can utilise

10



Figure 6: Example of the COLORIS Page Colouring Scheme [11].

the whole cache space assigned to that core. This partitioning is visualised in Figure 6.
Since this scheme can still lead to sub-optimal cache utilisation, COLORIS further imple-

ments a dynamic recolouring scheme. The partitioning is initialised with the static allocation
scheme. The page colour manager monitors the cache miss rate of each process using HPCs.
The algorithm used for monitoring is shown in Algorithm 1.
To achieve this, the function monitor is executed for each process in a set interval. The cache

miss rate (cmr) of the process (current) is given as an argument.
It is then compared to the two configurable thresholds HighThreshold and LowThreshold.

If the miss rate of the process exceeds the HighThreshold, the manager initiates the allocation
of new colours for the process by calling the function alloc_colors. Additionally, if the process
is not marked as cold, it is marked as hot; otherwise, the mark as cold is removed. If the miss
rate falls below LowThreshold and the task is marked as hot, some of the assigned colours can
be reclaimed and redistributed. This is done by calling the function pick_victims. UNIT is a
parameter describing the number of colours to be allocated or removed in a recolouring step.
To decide which pages to recolour, COLORIS uses the concept of ’hotness’, which is defined

as the number of processes currently sharing a colour. New pages are allocated to cold colours,
while hot colours are selected for reclaiming. An additional factor that is considered is whether
a colour is local or remote. It is considered local when it was originally assigned to the core
running the process; otherwise, it is called remote. When allocating new colours, local colours
are considered first. Only if no local colour is available, remote colours are allocated. Conversely,
when assigned colours are removed, remote colours are removed first.
This prioritisation and the recolouring step are also visualised in Figure 6. White blocks

are colours owned by the respective process before and after recolouring. Dashed white blocks
are colours lost after recolouring, while black blocks are colours gained by recolouring by the
respective process.
The recolouring step itself is performed by the recolouring engine. For removing colours, a

lazy recolouring scheme is used. Here, all pages that have those colours are marked for later
recolouring. When a marked page is accessed by a process, a page fault occurs. A new page is
then allocated in one of the remaining colours, and the data of the marked page is copied to it.
For adding new cache colours, two recolouring policies are implemented: selective moving and

11



Algorithm 1: COLORIS Cache Utilisation Monitor, taken from [11]
1 function monitor(cmr) begin
2 assignment← assignment_of(current);
3 if cmr > HighThreshold then
4 if isCold = false then
5 isHot← true;
6 return;
7 end
8 new ← alloc_colors(UNIT);
9 assignment += new;

10 isCold← false;
11 else if cmr < LowThreshold then
12 if isHot = true then
13 isHot← false;
14 isCold← true;
15 victims← pick_victims(UNIT);
16 assignment −= victims;
17 end
18 end
19 end
20 function alloc_colors(num) begin
21 new ← ∅;
22 while num > 0 do
23 if need_remote() then
24 new += pick_coldest_remote();
25 else
26 new += pick_coldest_local();
27 end
28 num← num− 1;
29 end
30 return new;
31 end
32 function pick_victims(num) begin
33 victims← ∅;
34 while num > 0 do
35 if has_remote() then
36 victims += pick_hottest_remote();
37 else
38 victims += pick_hottest_local();
39 end
40 num← num− 1;
41 end
42 return victims;
43 end

12



redistribution. In selective moving, the characteristic of n-way set-associativity of the LLC is
utilised. The entire page table of the current process is traversed, and every n + 1 pages of one
colour, one page is recoloured, using the round robin scheme of the colour-aware page allocator.
When using the redistribution approach, COLORIS makes use of an access bit that is present
per page table entry. All access bits are first reset. Then, after waiting for a fixed time (WIN),
all pages of which the access bit was set in that time frame are then recoloured. The pages
found by this process are then recoloured by using the same lazy recolouring scheme that was
used for removing colours. In experiments conducted by [11], redistribution, despite requiring
a higher overhead, resulted in a better overall system performance.

4.2 Main Memory

In general, main memory interference mitigation techniques can be distinguished: spatial isola-
tion, temporal isolation, improved DRAM controller protocols and memory channel partition-
ing [3].
Spatial isolation techniques are characterised by assigning memory banks exclusively to a task

or core. Temporal isolation techniques, on the other hand, focus on partitioning the memory
access in time instead of space. This is achieved by allowing memory access only at specific
times per task. The next approach aims to implement DRAM controllers that prioritise small
latency. The last technique utilises that modern memory is equipped with more than one
memory channel. The access to specific channels is then restricted to specific tasks.
Next, the memory channel partitioning technique discussed in [4] is analysed in detail.

4.2.1 Memory Channel Partitioning

The Memory Channel Partitioning (MCP) approach presented in [4] aims to reduce interference
by separating applications that are likely to interfere with each other into different memory
channels.
Two characteristics of applications emerge here that influence the likelihood of interference

between two applications. The Memory Access Intensity is the rate at which an application
produces cache misses on the LLC. It is measured in Misses per Kilo Instructions (MPKI). The
other attribute is Row-Buffer Locality, which is calculated as the average Row-Buffer Hit Rate
(RBH). It describes the fraction of how many requests fire row-buffer hits.
On one side, applications with high memory access intensity are more likely to interfere

with applications with low intensity. This is visualised in Figure 7. In the conventional case,
application B reads from memory bank 0 of channel 0, which delays the last access of app A,
requiring 5 time units overall. When partitioning A and B into two different channels, this
interference cannot occur, and both applications finish their accesses earlier.
On the other side, applications with high row-buffer locality and apps with low row-buffer

locality are more likely to interfere with each other. This effect is shown in Figure 8. In the
conventional case here, following FR-FCFS, both accesses of app B to bank 1 in channel 0 are
delayed, because they result in a row-buffer miss, while the row required by A is already in the
buffer. This then requires 6 overall time units for the whole access sequence. When separating

13



Figure 7: Comparison between conventional page mapping (a) and MCP (b), showing the ad-
vantages of mapping low and high-memory-intensity applications to different channels.
The figure was taken from [4].

Figure 8: Comparison between conventional page mapping (a) and MCP (b), showing the advan-
tages of mapping low and high row-buffer hit rate applications to different channels.
The figure was taken from [4].

14



Figure 9: MCP Application Grouping Procedure, taken from [4].

A and B in case (b), app B does not experience interference anymore and finishes after 4 time
units, while the time required by A is not changed.

Using the insights gained from the application characteristics described above, the MCP
algorithm is described below. MCP runs in set periodic intervals. During each interval, all
running applications are profiled by measuring their MPKI and RBH.

At the end of every interval, each application is categorised in one of three groups by comparing
its MPKI with the threshold MPKIt and RBH with the threshold RBHt. This step is visualised
in Figure 9. The threshold value of MPKIt is dynamically set by averaging the MPKI values
of all applications. This average is then multiplied by a scaling factor. The RBHt value is set
statically to 50%.

Each of the three groups of applications is now assigned a number of memory channels. At
first, the memory channels are split into high and low-intensity channels proportional to the
number of apps in the groups. Then, the high intensity channels are split into low and high
locality, now proportional to the sums of MPKI. Within each group, the applications are then
assigned to a specific memory channel. This is done by starting from the app with the smallest
MPKI, assigning the app to one of the group channels until the sum of MPKI of apps in the
channel is the sum of MPKI of apps in the group divided by the number of channels assigned
to the group.

Now that each app has been assigned to a preferred channel, the MCP attempts to enforce
this. This is achieved by allocating pages to the preferred channels. If a page fault occurs,
this indicates that the page is not yet resident in any memory channel. Then, if a free page is
found, the new page is allocated. Otherwise, a search lasting N steps, starting from the oldest
unallocated page, is conducted. If an unallocated page in the preferred channel is found, it
is used; otherwise, the oldest unallocated page is used instead. Even if a page hit is not in
the preferred memory channel, it is still used (although implementing page migration would be
possible).

15



4.3 System Bus

Interference mitigation of system bus interference can be classified in memory bandwidth regu-
lator approaches, phased execution models, offline scheduling and hardware isolation [3].
Memory bandwidth regulation techniques divide the total memory bandwidth into partitions

and allocate them to a core each. Approaches categorised as phased execution models extend
the execution model of the tasks. Each task is modelled to have multiple phases in which it
has different access rights. A scheduling algorithm is then used to schedule the tasks in such
a way that eliminates contention. In offline scheduling, a precomputed static table is used to
restrict access to the bus. Finally, hardware isolation techniques reduce interference by using
predictable arbitration to isolate the bus to specific cores at a time.
The memory bandwidth regulation approach discussed in [12] is presented below.

4.3.1 Memory Bandwidth Regulation

The solution, called MemGuard, addresses system/memory bus interference, as presented in [12].
The mitigation is achieved by reserving a part of the minimum bandwidth of the bus for each
core. Unused bandwidth is then made available to all cores. The method assumes that the LLC
is partitioned so that no interference is introduced by the cache.
A high-level overview of the algorithm is given in Algorithm 2. It uses a bandwidth reg-

ulator per core that runs periodically in a set period P , by calling the function the function
periodic_timer_handler. The overall minimum service rate budget is rmin, which is deter-
mined by a previous benchmark run on that system. Each core i is statically assigned a memory
access budget Qi for a period. The sum of individual budgets Qi must not exceed the minimum
service rate budget.
First, the function periodic_timer_handler predicts the bandwidth usage Qpredict

i of the
core. Then, the bandwidth usage at which a HPC overflow interrupt is called qi is the to
min{Qpredict

i , Qi}. This is done to not use unavailable budget when Qpredict
i > Qi and to be

able to donate budget that it predicts that it doesn’t need. The donated budget of all cores
is tracked by the global budget G, which is reset at the beginning of each period. Finally, the
HPC is set to trigger its interrupt at qi, and the core is enabled to resume its tasks.
Now, when the HPC triggers its interrupt, the function overflow_interrupt_handler is

called. At first, the budget ui, which was used in the current period, is determined. Then,
if some global budget is still available, a new budget qi is set at which the HPC interrupt is
triggered for that core. Here, qi is either set to the difference between the minimum budget Qi

and the used budget ui or a static small budget Qmin, when the core has already used more
than its allocated budget Qi. Then G is reduced by the reclaimed budget, the HPC interrupt is
programmed at qi, and the core is allowed to continue. It is also ensured that only the budget
available in G is used.
When the global budget has already been consumed, three cases are possible: If the core has

not fully used its budget Qi yet, it is allowed to continue regardless. This is the case when the
prediction for that period was wrong, the predictor is then notified and compensates for the
difference in the next period. In the second case, all cores have used their assigned budgets
part of rmin, meaning the bus has additional bandwidth, exceeding rmin, left. Then the bus is

16



Algorithm 2: MemGuard Implementation, taken from [12]
1 function periodic_timer_handler begin
2 Qpredict

i ← output of usage predictor;
3 Qi ← user assigned static budget;
4 if Qpredict

i > Qi then
5 qi ← Qi;
6 else
7 qi ← Qpredict

i ;
8 end
9 G += max{0, Qi − qi};

10 program PMC to cause overflow interrupt at qi;
11 re-schedule all dequeued tasks;
12 end
13 function overflow_interrupt_handler begin
14 ui ← used budget in the current period;
15 if G > 0 then
16 if ui < Qi then
17 qi ← min{Qi − ui, G};
18 else
19 qi ← min{Qmin, G}};
20 end
21 G −= qi;
22 program PMC to cause overflow interrupt at qi;
23 return;
24 end
25 if ui < Qi then
26 return;
27 end
28 if

∑
ui = rmin then

29 wake up all cores;
30 return;
31 end
32 de-schedule tasks in the CPU run-queue;
33 end

17



opened to best-effort access to be able to use that bandwidth, all cores are notified and are free
to resume until the next period tick. In the third case, the core has used its full budget Qi, while
the bus is still in the guaranteed bandwidth mode. Then the core is paused by de-scheduling all
tasks in its run queue. It resumes either when the next period starts or when the bus switches
into the best-effort mode.
When running hard real-time tasks, a core must deactivate the bandwidth sharing feature

by using qi = Qi in the function periodic_timer_handler. This prevents the case where the
predictor underestimates the required bandwidth, but other cores have already reclaimed it
for themselves. The more tasks use the bandwidth reclaiming and sharing feature, the better
the overall bandwidth usage of the whole system. Another consideration is the period Mem-
Guard regulates. Larger periods lead to less accurate predictions, while smaller periods increase
interrupt handling and performance overhead required for monitoring the cores.

5 Related Work

This section summarises and highlights literature and related topics that were not covered by
this report. They can be divided into methods for interference analysis, interference-aware
scheduling, further types of interference and other interference mitigation methods.

5.1 Methods for Analysing Interference Channels

Methods for analysing interference channels can mainly be categorised into empirical and formal
methods. An overview of both approaches is given in the following.

5.1.1 Empirical Analysis

The focus of research in this field is on empirically measuring possible interference in the system
and its impact on predictability and performance. Two approaches in this field are, for example,
those described in [1], [2] and [8]. For measurement purposes, two types of tasks are introduced:
attacker tasks and victim tasks. Victim tasks behave normally and are used to measure the
effect of interference. Attacker tasks, on the other hand, are programmed to cause maximum
interference by accessing shared resources erratically and as frequently as possible. Attackers are
typically optimised for specific interference channels. Additionally, attackers employ adaptive
parameter tuning to maximise the interference caused.

5.1.2 Formal Analysis

Methods in this category take a more formal approach to interference analysis. For example,
in [7], the bus contention is analysed. This work uses a formal system model to estimate the
WCET for such a system. Additionally, introducing a cache persistence model to multi-core
results in a much more precise calculated WCET in the experiments conducted. The bounds
resulting from such a formal analysis can then be used in schedulability analysis (see Section 5.2).

18



5.2 Schedulability Analysis

Some other works, for example [10] and [5], have also explored interference channels from a
different angle. Rather than attempting to mitigate the effects of interference, these works have
integrated them into schedulability analysis. Using formal models of shared resource interference
leads to more accurate WCET and WCRT predictions. This means that more executions are
deemed schedulable because they do not have to compensate for delays that are unpredictable
without a proper shared resource model. This leads to higher utilisation of the hardware and the
possibility of executing more tasks, while also guaranteeing that a system is real-time capable
for a given scheduler.

5.3 Further Types of Interference

Timing interference is not the only type of interference that can occur. In safety-relevant systems
such as avionics, data interference is also an important factor. While timing interference causes
unpredictable response times, the interference analysed in [9] can directly alter the behaviour
of the system in unpredictable ways. This work focuses on avionics and analyses data access in
shared resources in terms of which processes have access rights. It examines the potential for
unauthorised data alteration and presents data isolation techniques.

5.4 Other Mitigation Methods

In addition to the interference mitigation approaches presented in this report, many more can
be found in the literature. These methods target different use cases and interference channels
or are specialised for specific system architectures. Additionally, some methods focus on overall
performance, disregarding the response times of individual tasks, while others focus exclusively
on hard real-time. A comprehensive review of various interference mitigation methods can be
found in [3].
Some work also combines mitigation approaches in order to mitigate multiple channels or

to maximise the hardware performance. Such an example is given in the work of [4], which
has also introduced the MCP mitigation method discussed in Section 4.2.1. The integrated
memory partitioning and scheduling (IMPS) method combines MCP and memory scheduling.
It prioritises tasks that are very low memory-intensive before others, allowing them to use any
memory channel. It then uses MCP for all other tasks.

6 Conclusion

This report investigated the problem of timing interference in multi-core system-on-chip de-
vices, which is a key challenge for modern embedded and real-time systems. As SoCs evolve to
meet performance demands under tight SWaP-C constraints, sharing critical hardware resources
between multiple users inevitably leads to unpredictable execution delays if not adequately com-
pensated for. This unpredictability undermines the primary requirement of real-time systems,
which is to provide timely and reliable responses in all circumstances.

19



Analysis of a typical SoC architecture identified three major sources of interference: shared
caches, main memory and the system bus. These shared resources introduce contention mecha-
nisms that can degrade performance and introduce unpredictability. It was also observed that
the effects of interference often cascade across multiple levels of the memory hierarchy and can
interact with other interference channels. While no universal solution exists, the study of miti-
gation strategies has shown that targeted approaches can reduce timing variability. Techniques
such as dynamic page colouring, memory channel partitioning and memory bandwidth regula-
tion demonstrate how interference can be contained through software-level control, eliminating
the need for specialised hardware.
A recurring observation is the trade-off between predictability and resource utilisation. Ap-

proaches that strictly isolate resources can provide high timing guarantees since they can entirely
circumvent the interference source, but they may also leave significant hardware capacity un-
used. Conversely, approaches that employ more dynamic schemes improve utilisation at the
cost of increased complexity and monitoring overhead. For safety-critical tasks, conservative
strategies may be necessary, but these approaches often allow strict guarantees to be enabled
for certain tasks while maximising hardware utilisation for soft or non-real-time tasks, creating
hybrid approaches.
In conclusion, it is essential to understand and mitigate interference to deploy multi-core SoCs

effectively in real-time domains such as avionics, automotive safety and autonomous systems.
Although this report has focused on software-based mitigation techniques, interference-aware
scheduling and analytical models, as well as hardware features, are also viable mitigation meth-
ods. Furthermore, these methods can be combined to maximise the mitigation effect of each.
These methods are crucial for fully harnessing the computational power of multi-core SoCs while
maintaining the high level of predictability demanded by real-time applications.

20



References
[1] Dan Iorga, Tyler Sorensen, John Wickerson & Alastair F. Donaldson (2020): Slow and Steady:

Measuring and Tuning Multicore Interference. In: 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pp. 200–212, doi:10.1109/RTAS48715.2020.000-6.

[2] Ao Li, Marion Sudvarg, Han Liu, Zhiyuan Yu, Chris Gill & Ning Zhang (2022): PolyRhythm:
Adaptive Tuning of a Multi-Channel Attack Template for Timing Interference. In: 2022 IEEE Real-
Time Systems Symposium (RTSS), pp. 225–239, doi:10.1109/RTSS55097.2022.00028.

[3] Tamara Lugo, Santiago Lozano, Javier Fernández & Jesus Carretero (2022): A Survey of Techniques
for Reducing Interference in Real-Time Applications on Multicore Platforms. IEEE Access 10, pp.
21853–21882, doi:10.1109/ACCESS.2022.3151891.

[4] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir & Thomas
Moscibroda (2011): Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning. In: Proceedings of the 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-44, Association for Computing Machinery, New York, NY,
USA, pp. 374–385, doi:10.1145/2155620.2155664.

[5] Luis Ortiz, Ana Guasque, Patricia Balbastre, José Simó & Alfons Crespo (2024): Schedulability
Analysis in Fixed-Priority Real-Time Multicore Systems with Contention. Applied Sciences 14(10),
p. 4033, doi:10.3390/app14104033.

[6] Luis Miguel Pinho, Eduardo Quinones & Marko Bertogna, editors (2022): High Performance Em-
bedded Computing. River Publishers, New York, doi:10.1201/9781003338413.

[7] Syed Aftab Rashid, Geoffrey Nelissen & Eduardo Tovar (2020): Cache Persistence-Aware Memory
Bus Contention Analysis for Multicore Systems. In: 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 442–447, doi:10.23919/DATE48585.2020.9116265.

[8] William Vance, Roshini Ashok, John Ross, Bruce Jacobs, Tuan Bui & Mark Wotell (2024): Analysis
of Cache Memory Interference on Multicore Systems Utilizing Shared Memory Aggressor Applica-
tions. In: 2024 AIAA DATC/IEEE 43rd Digital Avionics Systems Conference (DASC), pp. 1–6,
doi:10.1109/DASC62030.2024.10749008.

[9] Steven H. VanderLeest, Jesse Millwood & Christopher Guikema (2018): A Framework for Analyzing
Shared Resource Interference in a Multicore System. In: 2018 IEEE/AIAA 37th Digital Avionics
Systems Conference (DASC), pp. 1–10, doi:10.1109/DASC.2018.8569651.

[10] Jun Xiao, Sebastian Altmeyer & Andy D. Pimentel (2020): Schedulability Analysis of Global Schedul-
ing for Multicore Systems With Shared Caches. IEEE Transactions on Computers 69(10), pp. 1487–
1499, doi:10.1109/TC.2020.2974224.

[11] Ying Ye, Richard West, Zhuoqun Cheng & Ye Li (2014): COLORIS: A Dynamic Cache Partitioning
System Using Page Coloring. In: Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, Association for Computing Machinery, New York, NY,
USA, pp. 381–392, doi:10.1145/2628071.2628104.

[12] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo & Lui Sha (2013): MemGuard: Memory
Bandwidth Reservation System for Efficient Performance Isolation in Multi-Core Platforms. In: 2013
IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 55–64,
doi:10.1109/RTAS.2013.6531079.

21

http://dx.doi.org/10.1109/RTAS48715.2020.000-6
http://dx.doi.org/10.1109/RTSS55097.2022.00028
http://dx.doi.org/10.1109/ACCESS.2022.3151891
http://dx.doi.org/10.1145/2155620.2155664
http://dx.doi.org/10.3390/app14104033
http://dx.doi.org/10.1201/9781003338413
http://dx.doi.org/10.23919/DATE48585.2020.9116265
http://dx.doi.org/10.1109/DASC62030.2024.10749008
http://dx.doi.org/10.1109/DASC.2018.8569651
http://dx.doi.org/10.1109/TC.2020.2974224
http://dx.doi.org/10.1145/2628071.2628104
http://dx.doi.org/10.1109/RTAS.2013.6531079

	Introduction
	Background
	Real-Time Systems
	Multi-Core Systems on Chip
	Processing Cores
	Caches
	Memory
	System Bus
	External Devices
	Virtual Memory
	Other Architectures


	Interference Channels
	Shared Cache
	Main Memory
	System Bus

	Interference Mitigation
	Shared Cache
	Dynamic Page Colouring

	Main Memory
	Memory Channel Partitioning

	System Bus
	Memory Bandwidth Regulation


	Related Work
	Methods for Analysing Interference Channels
	Empirical Analysis
	Formal Analysis

	Schedulability Analysis
	Further Types of Interference
	Other Mitigation Methods

	Conclusion

