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Abstract. The development of more complex computational systems, which interact continuously with the
environmental stimuli, has brought to our attention how specific, the system behaviour should be for the user.
Considering the high level specifications for inputs, outputs and temporal behaviour of the systems, reactive
synthesis procedure is taken into account. Temporal relationships can be specified through different specification
logics, among which linear temporal logic (LTL) is in focus. Furthermore, centering on the verification aspect of
reactive systems, it is important to expand on the translation from LTL to ω-automata. Significant progress has
been made on this aspect with the latest research exploring optimization techniques, alternative representations,
such as use of intermediate automata representations (e.g Limit-Deterministic Büchi Automata, LDBA) for
deterministic parity automata (DPA) construction and even reverse translation problem from ω-automata to LTL
formulas. Integrating the newest research insights [4, 9, 10, 24], we can represent a more structured framework
for LTL to ω-automata translations, with direct implications for improving the scalability of formal verification
and synthesis tools.

1. Introduction

Linear Temporal Logic LTL [22] and ω-automata [26],
as tools to specify and analyze the system behaviour
over infinite executions, play a central role in for-
mal verification, model checking [2] and reactive syn-
thesis. In order to achieve an automated reasoning
about the system correctness, translations methods
or processes have been proposed and developed (as
in [3, 27, 14]). However, during this process, several
issues related to state-space explosion, efficiency lim-
itations, and the complexity of determinization, have
arisen. Recent research has proposed new techniques
to alleviate these issues. The proposed methods vary
from normalization procedures [10, 24] to intermedi-
ate automata representations [9], and even the reverse
problem of translating automata back into LTL [4].
As mentioned previously, model checking and for-

mal verification rely heavily on the translation of
LTL expressions into equivalent automata, be it alter-
nating, deterministic or nondeterministic automata.
Since the translation process gives us the chance to
automatically verify systems for their complex tem-
poral specifications, it is of importance to dive in the
optimization of translations techniqueswith regard to
expressiveness and efficiency. Traditional approaches
usually involve intricate constructions among which
Safra’s determinization procedure [23] is used. Our
focus, in this paper, will be on four different perspec-
tives of the translation procedure based on the latest
findings.
Firstly, in the translation process, an important

aspect to address is the complexity of LTL formulas
themselves. Often, LTL formulas contain redundan-
cies or their structure is quite complex, making their
translations to an automata inefficient. To improve

on the automata construction, we refer to the normal-
ization of the input LTL formulas. Sickert and Esparza
[24] introduce a systematic method for normalizing
LTL formulas before translation into automata. The
procedure is based on the use of Very Weak Alternat-
ing Automata (VWAA) as an intermediate automaton.
In the newest paper, Esparza, Rubio, and Sickert [10] go
even further in the normalization process by introduc-
ing a rewrite system that formalizes and automates
the simplification of LTL formulas.
On the other hand, looking at another step of the

translation procedure, especially on the construction
of deterministic automata, Esparza et al. [9] proposes
a two step process. The traditional approach is to
convert an LTL formula into a deterministic parity
automata (DPA). Being computationally expensive,
Esparza et al. [9] addresses this by simplifying the de-
terminization process. The proposition is to translate
LTL into limit-deterministic Büchi automata (LDBA),
followed by a transformation into DPA. This interme-
diate transformation bypasses the state-space explo-
sion problem.
Lastly, we take a look into a less explored aspect,

the reverse translation from an automaton to an LTL
formula. Normally, we look at the translation LTL-to-
automata, however the reverse translation is equally
important for debugging, specification inference, and
synthesis. Boker, Lehtinen, and Sickert [4] offer in-
sights to help bridge the gap between logic and au-
tomata, enabling better introspection into the struc-
ture of automata. Furthermore, this translation can
be optimized to generate more readable LTL formulas,
which is beneficial in formal verification for under-
standing system properties.
The remainder of this paper is structured as fol-

lows: Section 2 offers an overview of LTL and au-
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tomata definitions, Section 3 will focus on two nor-
malization techniques, Section 4 looks into construct-
ing efficient automata by using as intermediate au-
tomata limit-deterministic Büchi automata, Section
5 diverges from the LTL-to-automata translation, to
reverse translation. At the end, we summarize and
offer suggentions for future work in Section 6 and 7,
respectively.

2. Preliminaries
2.1 LTL Definitions

In this section, we will outline a part of the theoretical
background needed with the focus on brief definitions
for the linear temporal logic, hierarchies and types of
automata.
Given a finite alphabet Σ, a word w over Σ is an

infinite sequence of letters a0a1a2... with ai ∈ Σ
for all i ≥ 0, while a language is a set of words
denoted as Σϕ(Σ∗). w[i] where i = 0, depicts
the i-th letter of a word w. We abbreviate the
infinite infix w[i]w[i + 1]...w[j − 1] to wi,j and
the infinite infix w[i]w[i + 1]... to wi. The infinite
repetition of a finite word σ1...σn is shown as
(σ1...σn)ϕ = σ1...σnσ1...σnσ1...
Definition 1. LTL formulas over a set of atomic
propositions Ap are established with the following
syntax:

ϕ ::= tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ

| Xϕ | ϕ U ϕ | ϕ W ϕ | ϕ R ϕ |ϕ M ϕ

where a ∈ Ap is an atomic proposition and the tempo-
ral operators X,U,W,R,M are respectively the opera-
tors for next, (strong) until, weak until, (weak) release,
and strong release.
For the semantics, we define the usual sematics:
Definition 2. Given a word w over the alphabet 2Ap

and a given formula ϕ, we inductively define the sat-
isfaction relation w � ϕ as the smallest relation satis-
fying:

w � tt
w � a iff a ∈ w[0]
w � ¬a iff a /∈ w[0]
w � ϕ ∧ ψ iff w � ϕ and w � ψ
w � ϕ ∨ ψ iff w � ϕ or w � ψ
w � Xϕ iff w1 � ϕ
w � ϕUψ iff ∃k.wk � ψ and ∀j < k.wj � ϕ
w � ϕMψ iff ∃k.wk � ϕ and ∀j ≤ k.wj � ψ
w � ϕRψ iff ∀k.wk � ψ or w � ϕMψ
w � ϕWψ iff ∀k.wk � ϕ or w � ϕUψ

The language of ϕ is denoted by L(ϕ) := {w ∈ (2Ap)ω :
w � ϕ}. By overloading the definition of �, we can
write ϕ � ψ as a shorthand for L(ϕ) ⊆ L(ψ).
The standard abbreviations Fϕ := tt U ϕ (eventually)
and Gϕ := ff R ϕ (always).
The equivalence of formulas and the equivalence

within the languages is defined as follows:
Definition 3. Two given formulas ϕ and ψ are equiv-
alent ϕ ≡ ψ, if L(ϕ) = L(ψ). Given a language L ⊆
(2Ap)ω, two formulas ϕ and ψ are equivalent within
the given language L, ϕ ≡L ψ, if L(ϕ) ∩ L = L(ψ) ∩ L.

2.2 The Safety-Progress Hierarchy

To navigate the process of the research from [10, 24],
in regard to the normalization precedure and later
on the use of Very Weak Alternating Automata, it is
necessary to be aware of the hierarchy of temporal
properties observed by Manna and Pnueli [18] and
formulated by Černá and Pelánek [6].
Definition 4. ([6, 10, 18, 24]) LetP ⊆ Σω be a property
over Σ.

• Safety property: A property P is considered a
safety property if there exists a set of finite words
L ⊆ Σ∗ such that every finite prefix of any word
w ∈ P belongs to L.

• Guarantee property: ApropertyP is a guarantee
property if there exists a set of finite words L ⊆
Σ∗ such that for every word w ∈ P, at least one
finite prefix of w belongs to L.

• Obligation property: A property P is a obliga-
tion property if it can be described as a positive
boolean combination of safety and guarantee
properties.

• Recurrence property: A property P is a recur-
rence property if there exists a set of finite words
L ⊆ Σ∗ such that for every word w ∈ P, infinitely
many prefixes of w belongs to L.

• Persistence property: A property P is a persis-
tence property if there exists a set of finite words
L ⊆ Σ∗ such that for every word w ∈ P, all but a
finite number of its prefixes belong to L.

• Reactivity property: A property P is a reactiv-
ity property if it can be described as a positive
boolean combination of recurrence and persis-
tence properties.

The relationships between these classes are illus-
trated in Figure 1.a. Chang, Manna, and Pnueli
provide a syntactic characterization of the safety-
progress hierarchy classes using fragments of LTL in
[18].
Definition 5. [24] The classes of LTL formulas are
depicted as follows:

• Σ0 = Π0 = ∆0: This is the smallest set that
includes all atomic propositions and their nega-
tions, and it is closed under conjunction and dis-
junction.

• Σi+1: This is the smallest set containing Πi,
closed under conjunction, disjunction, and the
operators X (next), U (until), and M (strong until).
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• Πi+1: This is the smallest set containing Σi, closed
under conjunction, disjunction, and the operators
X (next), R (release), and W (weak until).

• ∆i+1: This is the smallest set containing both Σi+1

and Πi+1 and closed under conjunction and dis-
junction.

According to [18, 24], an LTL property is a guarantee,
safety, obligation, persistence, recurrence, or reac-
tivity property if and only if it can be specified by
a formula from the classes Σ1,Π1,∆1,Σ2,Π2 or ∆2,
respectively.

2.3 Automata Definitions

A Büchi automaton (specifically a nondeterministic
word automaton with Büchi acceptance) is defined as
a tuple A = (Q, q0,Σ, δ, α), where Q is a finite set of
states, q0 ∈ Q is the initial state, Σ represents a finite
alphabet, δ ⊆ Q × Σ × Q is the transition relation
defining valid state transitions, and α ∈ δ is the set of
accepting transitions. The automaton is called deter-
ministic if, for every state q ∈ Q and every σ ∈ Σ, there
is at most one state q′ ∈ Q such that (q, σ, q′) ∈ δ. In
other words, for each state-symbol pair, there is at
most one valid transition or none at all. For a set of
states S ⊆ Q and a given σ ∈ Σ, the post-transition
set is defined as postσδ (S) = {q′ | ∃q ∈ S.(q, σ, q′) ∈ δ}.
If δ is clear from the context, as a shorthand annota-
tion for (q, σ, p) ∈ δ, p→σ q is used.
A run of a Büchi automaton A on an ω-word w:

N→ Σ is defined as an ω-sequence of states ρ : N→
Q, such that ρ(0) = q0 and ∀i ∈ N, the transition
(ρ(i), w(i), ρ(i+ 1)) holds. A run ρ is accepting if there
are infinitely many i ∈ N such that the transition
is (ρ(i), w(i), ρ(i + 1)) ∈ α. The language defined by
A, L(A), consists of all ω-words w for which the au-
tomaton has an accepting run.
A limit-deterministic Büchi automaton (LBDA) is de-

fined as a tuple A = (Q, q0,Σ, δ, α). The automaton
behaves nondeterministically in the initial part of
the run and then after a finite number of steps, the
automaton enters a deterministic mode where it be-
haves like a deterministic Büchi automaton (DBA). A
run is considered accepting if it eventually remains in
the deterministic part and infinitely often visits the
accepting states.
A parity automaton is a deterministic word automa-

ton A defined, the same as a deterministic Büchi au-
tomaton, by a tuple (Q, q0,Σ, δ, p), with the difference
that p is a function that assigns an integer from the
set 1,2,...,d, called a colour, to each transition in the
automaton. The colours are naturally ordered accord-
ing to their integer values. The acceptance condition
is defined based on the parity of the smallest colour
that appears infinitely often during a run.
An alternating Büchi word automaton (AWW) is a

tupleA = 〈Σ, Q, θ0, δ, α〉, where Σ is a finite alphabet,
Q is a finite set of states, θ0 ∈ B+(Q) is an initial

formula, δ : Q × Σ → B+(Q) is a transition func-
tion, α ⊆ Q is the acceptance condition, indicating
the set of accepting states. A run of A on a word w
is represented as a directed acyclic graph G = (V,E)
satisfying:

1. V ⊆ Q×N0 and E ⊆
⋃
l≥0((Q× {l})× (Q× {l+

1}))

2. There exists a minimal model S of θ0 such that
(q, 0) ∈ V if and only if q ∈ S

3. For each (q, l) ∈ V , the set {q′ : ((q, l), (q′, l +
1)) ∈ E}must be a minimal model of δ(q, w[l])

4. For every (q, l) ∈ V \(Q×{0}), there exists q′ ∈ Q
such that ((q′, l − 1), (q, l)) ∈ E

A run is accepting if δ(q, w[l]) 6≡ ff for every (q, l) ∈
V and every infinite path inG visitsα-nodes infinitely
often. An automatonA accepts awordw if there exists
an accepting run onw. The languageL(A) recognized
by A is the set of words accepted by A.
A weak automatonA = 〈Σ, Q, θ0, δ, α〉 is an alternat-

ing (co-)Büchi automaton with the following proper-
ties:
There exists a partition Q1, . . . , Qm of Q such that:

1. For every q, q′ ∈ Q, if q → q′ (i.e., there exists a
a ∈ Σ such that q′ belongs to a minimal model of
δ(q, a)), then there exist indices i ≤ j such that
q ∈ Qi and q′ ∈ Qj

2. For each 1 ≤ i ≤ m, Qi ⊆ α or Qi ∩ α = ∅

A very weak automaton is a weak automaton where
every class Qi in the partition is a singleton, i.e.,
|Qi| = 1.
AWW (weak alternating automata) and A1W (very

weak alternating automata) are the abbreviations for
weak and very weak alternating automata, respec-
tively. In the context of weak automata with co-Büchi
acceptance conditions, it is possible to define a Büchi
acceptance condition that recognizes the same lan-
guage, so weak automata are assumed to have a Büchi
acceptance condition for convenience.
A weak alternating automaton A is said to have

height n if every path in A alternates at most n − 1
times between α and Q \ α. The height defines how
"deep" the alternation between accepting and non-
accepting states can be. The setAWW [n] (orA1W [n])
consists of weak (or very weak) automata with height
at most n.

3. LTL Normalization: Preprocessing for Effi-
cient Translation

3.1 Motivation for LTL Normalization

The efficient translation of LTL formulas to ω-
automata is an important part in formal verification
and reactive synthesis. However, direct translation
can result in an exponential blow-up in the number
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Figure 1: Side-by-side hierarchies highlighting the correspondence established by ([24], Thm. 6)

of states of the resulting automation [1], where in
the worst case we may be faced with a double expo-
nential complexityO(22|n|

) or even a non-elementary
one. The complexity of nested temporal operators,
redundant or logically equivalent subformulas or the
combination of future and past operators may lead to
a worst case complexity.
To alleviate this issue, latest findings have brought

forward normalization techniques which simplify LTL
formulas before the automata, construction leading
to smaller resulting automata. Two key approaches
in LTL normalization are:

• A rewrite system that systematically simplifies
LTL formulas [10]

• An alternative method using Very Weak Alter-
nating Automata (VWAA) for an intermediate
representation [24]

3.2 An Efficient LTL Normalization Procedure

Esparza and Sickert in [24], develop a straightforward
algorithm for converting LTL formulas into determin-
istic Rabin automata (DRW). Firstly, the formula is
normalized, then it gets translated into a special very
weak alternating automatonwhere a simple determin-
isation procedure is applied, which is valid only for
these special automata. To reiterate, using the pro-
posed normalization procedure, every formula∆2 is
proved to be able to be translated into a very weak al-
ternating Büchi automaton (A1W), where every path
has at most one alternation between accepting and
non-accepting states. Afterwards, a very simple de-
terminisation procedure, based on breakpoint con-
struction, is used. The whole process is described as
the translation of LTL-to-DRW. Since, the desired au-
tomaton, at the end of the translation is a DRW, then
A1W is considered the intermediate automaton.

3.2.1 LTL Normal Form

We take into consideration, as the first step towards
the translation LTL-to-DRW, the normal form of LTL
formulas. Hence, the following definitions are ac-
knowledged:
Consider an LTL formula φ defined over a set of atomic

propositions Ap, a new normal form is defined in
terms of two key concepts:

• Apartition of the universeU := (2Ap)ω consists
of equivalence classes of words that exhibit the
same "limit behavior" with respect to the LTL
formula ϕ. Specifically, words within the same
equivalence class will satisfy similar conditions
concerning the formula’s future behavior.

• Stable word with respect to ϕ: A word w is con-
sidered stable with respect to ϕ if the subformu-
las of ϕ exhibit predictable, stable behavior over
time. The use of stable words is necessary in sim-
plifying and improving the structure of the LTL
formula, making it more amenable to the DRW
translation.

The behavior of an LTL formula, over time will be
depended on the limit behavior of its subformulas,
where µ(φ) depicts a set of subformulas of the form
ψ1Uψ2 or ψ1Mψ2 (future or until operators) and ν(φ),
a set of subformulas of the form ψ1Wψ2 or ψ1Rψ2

(weak or release operators).
For any word w, define:

GFϕw := {ψ : ψ ∈ µ(ϕ) ∧ w |= GFψ}

FGϕw := {ψ : ψ ∈ ν(ϕ) ∧ w |= FGψ}

Two words w, v have the same limit behavior w.r.t. ϕ
if:

GFw = GFv and FGw = FGv
Hence, an equivalence relation is defined, which parti-
tions the universeU into equivalence classes of words,
having the same limit behavior:

PM,N := {w ∈ U |M = GFw ∧N = FGw}

withM ⊆ µ(ϕ), N ⊆ ν(ϕ) and PM,N ⊆ U
The second perception, mentioned at the beginning

of this section is the concept of a stable word. A word
w is regarded as stable w.r.t. ϕ if:

• Every formula inµ(ϕ)holds either infinitely often
or never.

• Every formula in ν(ϕ) fails either infinitely often
or never.
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While not all words are stable, every word will even-
tually stabilize. Thus, we define the set of stablewords
Sϕ, as Sϕ := {w ∈ U : Fϕw = GFϕw ∧ Gϕw = FGϕw}.
Since we want to derive a normal form for LTL for-

mulas using concepts of partition and stable words,
then it is necessary to introduce the subsequent for-
mulas:

• ϕ[M ]Π1 defines a formula from the setM ⊆ µ(ϕ),
where we include the temporal operators U and
M.

• ϕ[N ]Σ1 defines a formula from the set N ⊆ ν(ϕ),
where the temporal operators R and W

Then we can deduct the normal form for stable
words as:

φ ≡Sϕ
∨
M⊆µ(ϕ)
N⊆ν(ϕ)

(
ϕ[M ]Π1 ∧

∧
ψ∈M GF(ψ[N ]Σ1 ) ∧

∧
ψ∈N FG(ψ[M ]Π1 )

)

However, as already stated, not all the words are
stable, therefore a need for a generalized normal form
arises, for which Esparza and Sickert [24] propose an
extension of the above normal form:

ϕ ≡
∨
M⊆µ(ϕ)
N⊆ν(ϕ)

(
ϕ[M ]Σ2 ∧

∧
ψ∈M GF(ψ[N ]Σ1 ) ∧

∧
ψ∈N FG(ψ[M ]Π1 )

)

Based on Section 6.1, in [24], Sickert and Esparza
prove that the complexity of the normalization proce-
dure has at most most single exponential blowup in
the length of the formula.

3.2.2 Translation of LTL to DRW

The translation of Linear Temporal Logic (LTL) to De-
terministic Rabin Automata (DRW) involves a struc-
tured sequence of intermediate translations and con-
structions. This process ensures that every LTL for-
mula can be represented by a DRW of double expo-
nential size.
Translation of LTL to A1W[2]
The process begins with the translation of LTL formu-
las into Alternating Automata of rank 1 with at most
one alternation (A1W). In the standard translation,
the states of the A1W for a formula ϕ correspond to
its subformulas or their negations. However, to en-
sure that the resulting automaton belongs to the class
A1W[2], the construction is slightly modified:

• State definition: States are defined as pairs of the
form 〈ψ〉Γ, where ψ is a proper subformula of
φ (i.e., not a Boolean constant, conjunction, or
disjunction) and Γ is the smallest class in the
syntactic-future hierarchy containing ψ, exclud-
ing the zeroth level.

• Transition structure: The transition relation is
designed to ensure that transitions are only al-
lowed between formulas at the same or lower

level in the syntactic-future hierarchy and ac-
cepting states correspond to Πi subformulas, en-
suring at most one alternation between Σ and Π
states.

• Disambiguation of ambiguous levels: Some formu-
las belong to multiple levels of the hierarchy. For
example,Xa belongs to both Σ1 and Π1. In such
cases, multiple states are introduced to represent
the ambiguity (e.g., both 〈Xa〉Σ1

and 〈Xa〉Π11 are
valid states).

By this construction, the resulting A1W[2] automa-
ton for a formula inΔi belongs to A1W[i]. The num-
ber of states in the automaton is bounded by 2|sf(ϕ)|,
where sf(ϕ) is the set of proper subformulas of ϕ.
Determinization of AWW[2]
The next step involves determinizing the A1W[2] au-
tomaton into a deterministic co-Büchi automaton
(DCW). The determinization procedure is based on a
breakpoint construction adapted from prior work on
alternating automata.

• Input automaton: The input is an Alternating
Weak Automaton of rank 2 (AWW[2]).

• State definition: A state in the resulting DCW is
a pair (Levels, Promising), where Levels ⊆ 2Q

represents the current level in the run of the au-
tomaton, while Promising ⊆ Levels ∩ a tracks
the accepting levels that can still produce an ac-
cepting run.

• Transition function: Upon reading an input sym-
bol if Promising is non-empty, the next state is
computed by propagating the successors of the
promising levels, however if Promising is empty,
the α-levels of the next state are added to Promis-
ing.

• Acceptance condition: The co-Büchi condition en-
sures that if the Promising set becomes empty
infinitely often, the word is rejected; otherwise,
it is accepted.

The deterministic automaton produced by this step
has at most 32n

states, where n is the number of states
in the input AWW[2].
Construction of DRW
To obtain a deterministic Rabin automaton (DRW),
the deterministic co-Büchi automaton is further re-
fined:

• For each initial model of the starting formula θ0,
a separate DRW is constructed.

• Each individual DRW has at most 22n+2 states
and a single Rabin pair.

• The final DRW is obtained by taking the union
of the individual DRWs, resulting in at most
22n+log2m+2 states andm Rabin pairs, wherem
is the number of minimal models of the initial
formula.
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Final Translation
Finally, the LTL formula is normalised and converted
to the DRW using the established translation steps:

φ ≡
∨

M⊆µ(φ)

∧
N⊆ν(φ)

φM,N

where φM,N is translated into an A1W[2], deter-
minised into a DCW, and converted into a DRW. The
resulting DRW has a double-exponential number of
states in the size of the input LTL formula.

3.3 A Rule-Based Rewrite System for LTL

Past research from Lichtenstein, Pnueli, and Zuck
[17] introduced us to the classification of LTL proper-
ties, which was later extended fromManna and Pnueli
[18, 19], in what is known as the safety-progress hierar-
chy. According to it, LTL formulas are extended with
past temporal operators. The progress-safety hierar-
chy has a safety class of formulas, and five progress
classes, from which, the largest class, known as the
reactivity class, holds all properties expressible in LTL.
Manna and Pnueli prove that every reactivity property
can be expressed in the form of GFϕ ∨ FGψ, where ϕ
and ψ have only past temporal operators.
In 1992, Chang, Manna, and Pnueli [7] presented

a similar normal form, using standard LTL (without
past operators), with only future operators X (next),
U (until) and W (weak until), proving the Normaliza-
tion Theorem. According to the later, every reactiv-
ity formula is equivalent to an LTL formula, written
in negation normal form, where every path would
have at most one alternation of operators U and W
in the syntax tree. Furthermore, based on the nota-
tion [6, 20, 24], which parallels the definition ofΣi,Πi

and ∆i classes in arithmetical and polynomial hier-
archies, they demonstrated that every LTL formula
corresponds to an∆2-formula.
Even though normal forms play an influencial part

in model checking and verification, the complex and
indirect normalization procedures show impractical-
ity in implementation. Zuck’s proof [29] for the Nor-
malization Theorem [7], based on the 1985 theorem
[17], involves automaton translation and the Krohn-
Rhodes decomposition, leading to a non-elementary
blow-up with little progress in simplifying it. In 2020,
Sickert and Esparza offered a new proof for the Nor-
malization Theorem [24]. The proof shows that ev-
ery LTL formula ϕ can be rewritten as ∆2 formula
as

∨
M⊆ψ(ϕ),N⊆ν(ϕ)

ϕM,N , where M and N are sets of

subformulas with top operators in U, M and W, R, re-
spectively. This leads to a single-exponential normal-
ization procedure, used in [24, 25] for translating LTL
formulas into deterministic and limit-deterministic
ω-automata. However, the algorithm still has expo-
nential complexity in the best case since it considers
all possible setsM andN. To solve the aforementioned
problem, Esparza, Rubio, and Sickert[10] present a
normalization procedure for LTL formulas, similar to

converting a Boolean formula to conjunctive normal
form (CNF). Just as CNF ensures no conjunctions are
below disjunctions, the LTL procedure imposes con-
straints on the order of temporal operators. Rewritten
rules are used to remove nodes that violate these con-
straints, analogous to distributing conjunctions over
disjunctions in CNF.
The main idea of the proposed normalization form

is to treat the temporal operatorsGF and FG as atomic
limit operators GF and FG, focusing on their behavior
"in the limit." Hence, the syntax of LTL formulas is
extended as follows:
Definition 6. Extended LTL formulas over a set Ap
of atomic propositions are produced using the follow-
ing syntax: ϕ ::= tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨
ϕ | Xϕ | ϕ U ϕ | ϕ W ϕ | GFϕ | FGϕ.
The proposed normal form, more strict than∆2 for-

mulas, is defined in [10]:
Definition 7. Let ϕ be an LTL formula. A node of Tϕ is
a limit node if it is either a GF-node or a FG-node. The
formula ϕ is in normal form if Tϕ satisfies the following
properties:

1. No U-node appears under a W-node.

2. No limit node is beneath another temporal node.

3. NoW-node is under a GF-node, and no U-node
is under a FG-node.

Referred as temporal formulas, the U-, W-, X-, GF-, F
G-formulas are, respectively, forms of the formulas
ϕ U ψ,ϕ W ψ,X ϕ,GF ϕ,FG ϕ. The syntax tree Tϕ
of a formula ϕ is defined as usual, and | ϕ | designates
the number of nodes of Tϕ. If the subformula rooted
at a node of Tϕ is a U-formula, then the node is known
as U-node. Analogously, we defined the other temporal
nodes of W, GF and FG.
The normalization algorithm will apply the rules from

Table 1 to correct any violations of the defined proper-
ties:

1. Removing U-nodes under W-nodes
Rules (1) and (2) are applied to eliminate U-nodes
beneath W-nodes unless they are under limit nodes.
Applying rule (2) only to the highest U-nodes of ϕ1

ensures that the number of new GF-subformulas
remains linear relative to the original formula size.

2. Extracting limit nodes under other temporal nodes
Rules (3) and (4) pull out limit nodes from beneath
other temporal nodes. Since the rules are applied
only to the lowest limit nodes, each limit subfor-
mula needs to be processed just once.

3. Handling W-nodes under GF-nodes and U-nodes
under FG-nodes Rule (5) removes W-nodes under
GF-nodes, and rule (6) removes U-nodes under FG-
nodes. This might create smaller limit nodes, which
are handled recursively. By targeting the highest
W- and U-nodes, the algorithm limits the blowup
in formula size to a single exponential increase.
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Stage 1:
(1) ϕ1 W ϕ2 [ψ1 U ψ2] ≡ ϕ1 U ϕ2[ψ1 U ψ2] ∨ Gϕ1

(2)
ϕ1[ψ1Uψ2]W ϕ2 ≡ (GFψ2 ∧ ϕ1[ψ1W ψ2]W ψ2)

∨ ϕ1 [ψ1 U ψ2] U (ϕ2 ∨ Gϕ1[ff])

Stage 2:
(3) ϕ[GFψ] ≡ (GFψ ∧ ϕ[tt]) ∨ ϕ[ff]

(4) ϕ[FGψ] ≡ (FGψ ∧ ϕ[tt]) ∨ ϕ[ff]

Stage 3:
(5) GFϕ[ψ1Wψ2] ≡ GFϕ[ψ1Uψ2] ∨ (FGψ1 ∧ GFϕ[tt])

(6) FGϕ[ψ1Uψ2] ≡ (GFψ2 ∧ FGϕ[ψ1Wψ2]) ∨ FGϕ[ff])

Table 1: Normalization rules [10]

After following the steps above, the formula is trans-
formed into normal form, resulting in a single exponen-
tial increase in the number of nodes.
So far, only temporal operators U and W, have been

taken into consideration, exluding operators R and M.
The later can be expressed using other operators, hence
they are not included in the proof and normalization pro-
cedure. Nonetheless, directly handling them improves
efficiency, as their translation exponentially increases
the number of nodes. Their roles during the procedure
are similar to those of the U and W operators, with R
treated like W and M like U.
A formula is in dual normal form if it satisfies condi-

tions 2 and 3 of Definition 7, including that no W-node is
under a U-node. For a given formula ϕ, its dual normal
form can be obtained by negating it, converting it into
negation normal form, and then pushing the negation
into the formula to produce an equivalent formula in
dual normal form.
Apart from the standard LTL, there is also Past LTL,

an extension of LTL that includes past operators. Gab-
bay introduced a set of rewrite rules to transform past
operators into future operators [11]. Combining these
rules with the proposed normalization procedure from
Esparza, Rubio, and Sickert[10] enables the transforma-
tion of a past LTL formula into a normalized LTL formula,
where past operators are isolated into past-only subfor-
mulas and treated as atomic propositions.

4. Constructing Efficient Automata
We are faced with a significant challenge when it comes
to synthesizing controllers for general Linear Tempo-
ral Logic (LTL) objectives. The conventional method
requires converting the LTL objective into a determin-
istic parity automaton (DPA) using the Safra-Piterman
construction [21]. A major difficulty lies in the size of
the resulting DPA, which can grow very quickly, often
reaching double-exponential complexity in the length
of the LTL formula. Latest findings from Esparza et
al. [9] introduce a more efficient alternative: a single-
exponential translation from limit-deterministic Büchi
automata (LDBA) to DPA. This translation can be com-

bined with a recently developed efficient LTL-to-LDBA
translation, resulting in a double-exponential "Safra-
less" LTL-to-DPA construction.

4.1 From LDBA to DPA

The proposed construction a DPA from a LDBA is based
on the use of Run Directed Acyclic Graphs (Run DGAs),
originated from [15].

4.1.1 Structure of Run DGA

As observed from its name, a Run DAG is a graph struc-
ture that represents all possible runs of an automaton of
a given word w. Each run will correspond to a sequence
of states visited by the automaton as it runs through
the word. The graph is built by layers of Vi, where each
layer vi contains vertices to represent the states at a
time i. Layers are connected together via edges, where
the later portrays a transition from one state to another,
based on the transition relation of the given automaton.
Given an LDBA A = (Q,Qd, q0,Σ, δ, α), where Qd ⊆ Q
stands for the set of deterministic states of the automa-
ton, we can construct the following graph Gw = (V,E):

• Vertices V represent pairs (q, i), where q ∈ Q is a
state and i depicts a time step.

• Edges E connect the vertices V if there exists a tran-
sition between states, i.e, (q, w(i), q′) ∈ δ, where
w(i) is the input at position i.

The function Ord: Q → {1, 2, . . . , |Qd|,+∞} is re-
garded an ordering of the states of A w.r.t Qd if Ord
specifies a strict total order on q ∈ Qd and maps each
state q ∈ Qd , where Qd denotes Q\Qd, to +∞ as:

• ∀q ∈ Qd, Ord(q) = +∞

• ∀q ∈ Qd, Ord(q) 6= +∞

• ∀q, q′ ∈ Qd, Ord(q) = Ord(q′)⇒ q = q′

Extending Ord to the vertices in Gw, allows to define
pre-order relation on the set of run prefixes of the run
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DAG Gw .
We need to mention an important aspect of run DGA,
which is the colouring of the transition between vertices.
The colours assigned to each transition, are represented
as "positive" (even colours) or "negative" (odd colours):

• Even colours are used for accepting transitions.

• Odd colours are used for transitions that abort or
lead to smaller runs, marking this as a more nega-
tive event.

The specific colour assignment depends on the follow-
ing:

• In case there is no abort run and we have an accept-
ing transition, an even colour is assigned based on
the smallest index of an accepting vertex.

• In case there are abort runs present and no ac-
cepting transitions, which is known as negative
event, hence an odd colour is assigned based on
the smallest index of an aborting vertex.

• If both events occur, meaning there is an accept-
ing transition and an abort run, then the colour is
decided by the minimum of the two events.

4.2 Construction of DPA

Given an LDBA A = (Q,Qd, q0,Σ, δ, α) and an ordering
function Ord: Q → {1, 2, . . . , |Qd|,+∞} compatible
with Qd, we define a deterministic parity automaton
B = (QB , qB0 ,Σ, δB , p), that simulates the previously
described run DGA and the colouring. The construction
should yield a DPA which accepts the same language
as the original given LDBA. Subsequently, the DPA B is
described as [9]:

1. States and initial state. The set of states QB =
P(Qd) × OP(Qd), where P(Qd) is a set of sub-
sets of Qd and OP(Qd), is a set of totally ordered
subsets of Qd. A state in DPA is a pair (s, (t, <))
with s being a set of states outside Qd, t is an
ordered subset of Qd and < represents the strict
total order on the elements in t. The initial state is
qB0 = ({q0}, ({}, {})).

2. Transition function. Given (s1, (t1, <1)) ∈ QB and
σ ∈ Σ, let us presume that there is a state q ∈ s1∪t1
and a state q′ ∈ Q so that (q, σ, q′) ∈ δ. Then
δB((s1, (t1, <1)), σ) = (s2, (t2, <2) where:

• s2 = postσδ (s1) ∩Qd
• t2 = postσδ (s1 ∪ t1) ∩Qd
• The new order <2 on t2 is defined based on
the previous order <1 and the order function
Ord:
– If neither state has a predecessor in <1,
order them using Ord

– If one state has a predecessor in <1 and
the other does not, the one with a prede-
cessor is ranked higher.

– If both states have predecessors, they are
ordered according to the order of their
minimal predecessors in <1.

Afterwards, we have to take care of the colouring defi-
nition. A colour is assigned to transitions depending on
the properties fulfilled by the transitions taken into con-
sideration. We start the colouring process by identifying
two sets of states:

• Dec(t1), which includes states q1 ∈ t1 where ei-
ther:

– The indices associated with state q1 de-
crease with the transition t1 (with ordering
<1) to t2 (with ordering <2), i.e., Ind(t2, <2

)(δ(qi, σ)) < Ind(t1, <1)(qi).

– There exists no successor state for the transi-
tion with input σ, as indicated by ¬∃(q1, σ, q).

• Acc(t1), consisting of accepting transitions from
the subset of states in t1 to a subset of states in t2,
i.e, Acc (t1) = {q|∃q′ ∈ t2 : (q, σ, q′) ∈ α}.

The colouring rules are then applied based on the fol-
lowing rules [9]:

1. If Dec(t1) = ∅ and Acc(t1) 6= ∅, the colour is 2 ·
minq∈Acc(t1) Ind(t1,<1)(q)

2. If Dec(t1) 6= ∅ and Acc(t1) = ∅, the colour is 2 ·
minq∈Dec(t1) Ind(t1,<1)(q)− 1

3. If Dec(t1) = ∅ and Acc(t1) = ∅, the colour is de-
cided by taking the minimum among

• codd = 2 ·minq∈Dec(t1) Ind(t1,<1)(q)− 1

• ceven = 2 ·minq∈Acc(t1) Ind(t1,<1)(q)

4. If Dec(t1) = Acc(t1) = ∅, the colour is 2 · |Qd|+ 1

Based on Theorem 2 in [9], the language recognized
by both LDBA and DPA remains consistent. As per this
statement, if we are able to achieve a correct trans-
lation, we can translate any LDBA into an equivalent
DPA, where both types of automata recognize the same
language.

4.3 Translating LTL to DPA

After going through the process of translating a LDBA
in a DPA, we have to discuss its relevance to our main
goal of translating an LTL formula to DPA. The approach
from Esparza et al. [9] is the use of an intermediate
step of translation to LDBA first, and then achieving the
DPA automaton. The standard method of translating LTL
to DPA is by using the Safra-Piterman construction[21],
through the involvement of a non-deterministic Büchi
automaton (NBA) as the intermediate step. However,
this method can lead to a DPA size that is doubly ex-
ponential. To improve the translation, there are two
recommended methods which utilize the translation to
LDBA as an intermediate step and specific properties of
the language structure of these automata. The methods
include:
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Pruning by Language Decomposition. This tech-
nique aims at identifying parts of the LDBA,
to be later simplified based on their language
characteristics, more specifically safety languages
and suffix-closed languages. As a result, we can
reduce the number of nodes while still preserving
important information for acceptance decisions.
We achieve reduced run DGAs with fewer vertices
which ensues smaller DPAs, in comparison to
standard constructions.

Pruning by Language Subsumption. Here, we take
an oracle-based approach where the identification
of redundant vertices is based on the inclusion
relationships between the recognized languages
at different states within the automaton. Hence,
we allow further simplification without concurring
information loss for accepted runs.

While the use of traditional translation methods can
lead to a double exponential size blowup, the improved
methods by [9] on the conversion of a given LTL formula
to an efficient representation through LDBA, using tech-
niques based on [25], shows that a single-exponential
growth can be achieved.

5. Reverse translation: From automata to LTL
The several methods described until now, take a look
at the different techniques of LTL formulas’ translation
to automata. However, the work from Boker, Lehtinen
and Sickert [4] offer a view on the reverse translation,
from general counter-free deterministic ω-regular au-
tomata into LTL formulas, using an intermediate Krohn-
Rhodes cascade decomposition of the automaton. Until
now, no other literature, has given insights on the non-
elementary upper bound on the size blowup for the
reverse translation.
Before, we dive into the reverse translation, the in-

vestigation of the succinctness of different automata
models [13], when translating them into LTL over a
unary alphabet, lays the groundwork for the later part
of the reverse translation. A unary alphabet consists
of only one symbol, such as a, which allows for a fo-
cused analysis on languages formed by repetitions of
that single symbol. Hence, it is in our interest to com-
pare automata’s ability to recognize specific patterns
and extends it to arbitrary languages over this simplified
setting.
Based on Theorem 1 [4], built on Propositions 1-5

[28] and Lemmas 1-3 [16, 5], Boker, Lehtinen and Sick-
ert establish that deterministic finite automata (DFAs),
nondeterministic finite automata (NFAs), and alternat-
ing finite automata (AFAs) exhibit distinct size blow-ups
when translated into LTL formulas: DFAs result in lin-
ear growth, NFAs yield quadratic growth, while AFAs
lead to exponential growth in size relative to their state
count. The results are established using an adaptation
of Leiss’s construction [16] and two-way deterministic
automata for counting [8, 12]. Based on the previous re-
sults, we can generalize the complexity results about au-

tomata over general alphabets, demonstrating that the
complexity increases to double-exponential depth and
triple-exponential length when using a Krohn-Rhodes
decomposition-based translation.
To this end, Boker, Lehtinen and Sickert expand on

the translation of counter-free ω-regular automata into
LTL formulas, with the main focus on reset cascade au-
tomata derived from Krohn-Rhodes-Holonomy decom-
position. As our primary objective, we want to construct
parameterized LTL formulas that capture reachability
conditions within these cascades.
However, we are face with two challenges: firstly, how

do we capture past states Two significant challenges
arise in this context: first, capturing past states through
cascading transitions while only being able to express
future properties in LTL and secondly, how are we able
to represent internal states of cascaded semiautomata
without direct support in LTL syntax. To tackle these
issues, auxiliary reachability formulas are defined induc-
tively based on levels within the cascade structure and
utilize both strong and weak temporal operators.
The depth and length analysis reveals that as one pro-

gresses through levels of configurations within reset cas-
cades—where each level can have multiple states—the
resulting nested structures lead to exponential growth
rates concerning both temporal nesting depth and over-
all length when expressed as LTL formulas.

6. Applications and Experimental Results
In this paper, we focus on investigating the latest meth-
ods for translating LTL formulas to automata and the
practical applications in model checking and formal
verification. Each of the four papers, considered as the
foundation of this work, offer their own applications
and experimental results.
According to Esparza et al. [9], we have a new take on

the translation of LTL to DPAwith the intermediate trans-
lation to a limit deterministic Büchi automaton. The
work is directly applicable to automata-based model
checking, which is widely used in both hardware and
software verification tasks. The paper provides a foun-
dation for improving the efficiency of model checking
by translating LTL formulas into deterministic automata
that are easier to handle computationally. As shown by
the experiments conducted, the proposed translation
from LDBAs to deterministic parity automata reduces
the complexity of model checking, in comparison to
other translation methods. Furthermore, it performs
better in both time and memory usage for large LTL
formulas and automata.
Sickert and Esparza, in [24], propose an efficient nor-

malization procedure for Linear Temporal Logic (LTL), by
introducing the use of very weak alternating automata
as an intermediate step in the normalization process.
The experimental results show that using very weak
alternating automata allows for faster processing of
LTL formulas, particularly when dealing with large or
complex formulas. The authors compare their method
with existing normalization techniques and find that

9



it performs significantly better in terms of execution
time, making it highly suitable for real-world verifica-
tion tasks.
Expanding on their previous work, Esparza, Rubio and

Sickert, in [10], propose normalization of LTL formulas
to a canonical form, before the conversion to automata,
through rewriting system. The experiments showed a
significant reduction of formula size and the improve-
ment of the performance for the subsequent steps, such
as the translation into automata. Besides, this approach
was shown to be time-efficient and scalable. The pa-
per’s approach is aimed at improving the scalability and
efficiency of model checking by converting LTL formulas
into automata that are easier to process and analyze.
Boker, Lehtinen and Sickert [4], address the challenge

of reverse translation of converting automata models
to LTL specifications. Until now no insights was given
on the non-elementary upper bound on the size blowup
for the reverse translation, hence this work brings an
important understanding for the topic.

7. Conclusion and Future Work
To summarize, the latest normalization and translations
techniques show an improvement on efficiency and scal-
ability, as they outperform previous methods in terms of
execution time and memory usage, when dealing with
complex systems with numerous temporal properties.
Future work will focus on further exploring the use

of the proposed techniques different classes of LTL for-
mulas. Additionally, it would be interesting to see how
these methods can be integrated into existing model-
checking tools so they could be applied to industrial-
scale software verification tasks.
As final remarks, we need to mention, that due to

space constraints for this paper, only a general out-
line of the whole research of the referenced papers was
taken into consideration. For further information, on the
proofs, lemmas, theorems, experimental methods and
used applications, it is advised to consult the original
papers, like [4, 9, 10, 24] and other references to have
a better understanding of the information presented on
this work.
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