
Syntax-Driven Reachable State Space
Construction of Synchronous Reactive Programs

Eric Vecchi and Robert de Simone

INRIA Sophia-Antipolis,

Abstract. We consider in the current paper the issue of exploiting the
structural form of Esterel programs [BG92] to partition the algorith-
mic RSS (reachable state space) fix-point construction used in model-
checking techniques [CGP99]. The basic idea sounds utterly simple, as
seen on the case of sequential composition: in P ; Q, first compute en-
tirely the states reached in P , and then only carry on to Q, each time
using only the relevant local transition relation part. Here a brute-force
symbolic breadth-first search would have mixed the exploration of P
and Q instead. The introduction of parallel (state product) operators, as
well as loop iterators and local synchronizing signals make the problem
more difficult (and more interesting). We propose techniques to partition
statically (“at compile time”) the program body, so as to obtain a good
trade-off between locality and multiplicity of steps.

1 Introduction

In the last decade the advent of BDD-based implicit state-space representation
[Bry86] allowed to scale up various analysis techniques to large realistic syn-
chronous reactive system designs. But BDDs alone cannot be relied upon to
cope with all the complexity of the reachable state space construction. Specifi-
cally, while the BDD encoding of the final reachable state space may often be
very compact, the transition relation and the intermediate steps of next-state
computations can be exceedingly larger. Several clever techniques for partition-
ing the application of transition functions have been proposed, which partially
solve the problem [BCL91,BCL+94,HD93,ISS+03]. In the context of Esterel
we propose to use the structural syntactic nature of the design to apply transi-
tion relations piecewise, only when it may provide further states. Intuitively in a
sequential composition P;Q one clearly wants to compute all reachable states in
P first, then progress to states in Q. While this may seem a trivial idea at first
(after all, reachable state space construction can be seen as exhaustive symbolic
simulation of all behaviors), care has to be taken, specially in presence of parallel
components and internal signal communications, so that the approach retains
some of the advantages of symbolic approach, namely that all individual behav-
iors are not enumerated (or not even nearly so). This is a typical time/space
trade-off. Still, using the algorithmic structure of Esterel programs to guide
(symbolic, exhaustive, breadth-first search) state space construction is a clear,
simple idea that was never tried out before to the best of our knowledge. Other

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 213–22 , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

5

France

é

works with similar concern usually attempt to precede the symbolic breadth-
first search with partial explicit depth-first search simulations that identify new
initial configurations “ahead” in the potential behaviors [GB94,PP03].

In essence our refined algorithm proceeds as follows : initially a very restricted
transition relation is applied, with many locations of (internal or external) signal
receptions “blocked”. Then those signal reception occurrences are progressively
“re-allowed”, in a heuristically ordered fashion. Some transitions can be blocked
again in order to deal with loop constructs but in the general case, as the new
extensions are always applied to “most recent” states, the old and already largely
searched parts get “cleaned up” by some simplification properties of the TiGeR
BDD package [CMT93], which “cofactors” out the transition parts found to lay
outside the domain of states they are applied to. This operation simplifies dras-
tically the support (i.e, the set of variables that the relation effectively depends
upon), and thus the computations. Heuristics for ordering the “reception al-
lowances” are based on a graph structure extracted from the structural syntax,
so that it is compliant with the natural precedence that may exist (for instance,
when a reception on S causes the emission on T otherwise also expected, it is
obviously better to release S before T).

The paper is organized as follows : first we give a brief summary of (a re-
stricted micro-subset of) Esterel, as well as technical elements of symbolic
model-checking. We focus on how the TiGeR BDD package [CBM89] performs
transition partitioning and “transition cofactoring” in order to decrease the size
of data structures (and optimize the variables support) when applying the next-
state computation. These techniques will come handy later on to understand
ours. Then we provide a description of our approach with the actual algo-
rithm and its BDD implementation, relying on the already mentioned features
of TiGeR. We justify the correctness of our partitioned approach to build the
full RSS. We close with the description of our prototype implementation and
performance benchmarks.

2 Context

Esterel is an imperative synchronous reactive language. We shall only consider
here a simple version, where data variables and data-handling are discarded, as
often in model-checking. We shall thus only use Signals as (identifier) types. A
full program consists of a header (where an interface of input and output signals
are defined), followed by a body. Syntax of program statements is provided by
the following simple grammar :

P ::= pause | P ‖ P | present S then P else P end
| P ; P | emit S | abort P when S
| loop P end | signal S in P end

with S ranging over signals.

Naive semantics of Esterel goes as follows : programs behaviors are dis-
cretely divided between instants. Control threads are executed until reaching a

214 E. Vecchi and R. de Simoneé

pause statement, which is the main statement which cuts behaviors into atomic
instants. We call “reaction” the full behavior performed during a given instant.
In a reaction cycle, input signals are read/sampled, and internal computation
takes place until output signals are emitted in answer, and the program state is
progressed. Instants are based on a common logical clock, which paces all par-
allel threads. This (the fact that all components proceed with the same atomic
steps of instants) is why we call the model “synchronous”. Of course in a reac-
tion various parallel threads do not run independently, as they may synchronize
and affect one another causally (hardware people would say “combinationally”).
When control reaches a present S test statement, it may have to postpone
execution until a consistent definitive value (present or absent) is obtained for
the signal inside the current reaction (either because it is emitted somewhere in
parallel, or because other threads of execution provably progressed to a point
where provably all potential emissions were discarded).
While being a high-level imperative language, Esterel enjoys a semantic-pre-
serving translation to hardware RTL level (net-lists) where causality issue can
be more readily dealt with, and a second level of interpretation into Mealy FSMs
(again semantically sound). This second level actually looses information on fine
causality issues, but makes explicit the actual reachable state space, and thus
can be the definitional background for model-checking analysis techniques. Of
course the purpose of implicit (or symbolic) BDD-based model-checking is to
apply these analysis at the circuit level. In our case we try to lift them some
more by exploiting high-level structuring information from the source syntax.

Symbolic next-state operation. Starting from the initial state ι, the basic breadth-
first search Reachable State Space algorithm can be written:

Algorithm 1.1. Breadth-first search algorithm
1 reachable ← ι
2 new ← ι
3 while (new 6= ∅) do
4 new ← Image∆(new) r reachable
5 reachable ← reachable ∪ new
6 end while

The set of states reached at the nth iteration is built from the set of states
reached at the (n−1)th iteration and the set of valid inputs of the program, by
computing the image under a transition relation ∆. The algorithm stops when
no new state can be found. Each state of the program is a valuation of the set R
of boolean registers of the circuit and each input of the program is a valuation of
the set I of input signals. The unique global transition relation ∆ let us compute
the new states of the program with respect to the value of I and R :

∆ : Bm ×Bp → B
p

(I,R)→ R′ = ∆(I,R)

where B = {0, 1}, m is the number of input signals and p is the number of
registers of the circuit. In fact ∆ can be “partitioned” and decomposed into a

Syntax-Driven Reachable State Space Construction 215

vector of functions δi, where each δi concerns a different image register, and
depends only on a subset of the source registers and of the input signals :

δi : B
mi ×Bpi → B

(Ii, Ri)→ r′
i = δi(Ii, Ri)

Vectors Ii and Ri are called the support of these transition functions. mi and pi

are respectively the number of input signals and the number of registers of this
support. Such a partitioning scheme is used to speed up applications of BDDs
representing the individual δi [BCL91].

Extended cofactoring methods. We shall extensively use some well-known BDD
transformations, known in general as extended cofactoring techniques [Cou91].
In essence the principle is that, if the value of the BDD is only relevant on a
subset of the possible valuations of its variables, then this restricted domain of
definition can be used to simplify the expression of the BDD (possibly changing
its value outside of it). Generally the domain is itself provided as a BDD. We
note f↓S the cofactoring of f by the set S :

f↓S(X) = λX →

{
f(X) if X ∈ S

? if X 6∈ S

The value of f↓S out of S is not used and can be anything. It is set in order to
minimize the size of the BDD representing f↓S . In our algorithm, this operator
is used in the Image function. It lets us handle smaller BDDs during the image
computation since the transition relation is reduced with respect to the domain
it is applied on. More precisely, given a register r, if the activation condition of
r (the set of states for which r = 1) and the domain of the transition relation
are disjoint, then the transition function of r can be reduced to a very simple
expression λX → ¬ r. In other words, the BDD encoding the transition function
of registers that will not be activated in the next instant is very small.

3 Partitioned Algorithm

Our partitioned algorithm consists in performing each step of the reachable
states exploration in a reduced number of program blocks. State search will be
performed inside each block until stabilization, before moving to the next one ;
this algorithm is an adaptation of the algorithm 1.1. The BDD area represents
the set of all states (reachable or not) lying inside the program blocs we are
focusing. At each step of the algorithm, the cofactored image computation is
performed only on the pending reachable states lying inside area (line 8). At the
end of each step, the new-found states are stored in the pending set (line 9). area
is left unchanged as long as new states are found inside it (lines 5, 6, 7).

This algorithm does not describe the evolution of area (this will be developed in
section 4).

216 E. Vecchi and R. de Simoneé

Algorithm 1.2. Partitioned algorithm

1 reachable ← ι
2 pending ← ι
3 area ← area0 /∗ area0 : see algorithm 1.3 ∗/
4 while (pending 6= ∅) do
5 if ((pending ∩ area) = ∅) then
6 area ← area′ /∗ area′ : see algorithm 1.4 ∗/
7 end if
8 new ← Image∆(pending ∩ area) r reachable
9 pending ← (pending r area) ∪ new

10 reachable ← reachable ∪ new
11 end while

Partitioning into “macro-states” according to syntax. At the heart of the method
is the division of the program body into blocks (or macro-states) of proper
granularity. To disallow search in given blocks, one needs only to remove the
part of the transition relation where all registers of these blocks are inactive.
The bloc division of course relies heavily on the structural syntax, and mostly
on signal receptions (as in abort P when S) and, to a lesser extent, on signal
emissions. We use a control flow graph data structure to help us with this task.
We shall stick to the classical translation from Esterel to circuits described in
[Ber99], which generates exactly one boolean register for each pause statement.
In the sequel we shall consider an abstract syntax tree version for Esterel
programs where pause constructs are explicitly labeled by the corresponding
register names, providing the necessary association. In fact, we want to recognize
each instance of instruction that we identify here with a unique label mentioned
as exponent. Each node of the tree is typed with respect to the instruction it
represents. Thus, the tree node of an instruction of type instruction and labeled
by L is written :

(instructionL subtree1 l1 . . . subtreen ln)

The control flow graph of a given syntax tree T is defined as follows : G(T) =
(I, O, N,E, F) where N is the set of the nodes of the graph. These nodes are
the same as those of the syntax tree. I and O are subsets of N and represent
respectively the start and final nodes of the graph. The edges of our graph
(written i 7→ j) are divided into two categories : E contains “normal” edges and
F contains the edges used as frontiers. By construction, the set E ∩ F is empty.
Thus, edges corresponding to present and abort statements are settled in F.
Such edges are called “frontier” edges. Other edges are settled in E.

We describe here the way we build our control flow graph for each Esterel
instruction. This description uses labels of the syntax tree which are a lighter
way to identify the nodes. The usual operator “ × ” allows us to join each element
of a set I = {I1, . . . Im} to each element of a set J = {J1, . . . Jn}.

Syntax-Driven Reachable State Space Construction 217

(I, O, N,E, F). As well, for i ∈ [1, 2] we have G(Ii) = (Ii,Oi,Ni,Ei, Fi). Atomic
instructions produce graphs containing a single node and no edge :

G(emitL s) = ({L} , {L} , {L} , ∅, ∅)
G(pauseL r) = ({L} , {L} , {L} , ∅, ∅)

In our graph, we can abstract the beginnings and the ends of the scope. The
graph of a local signal declaration is thus the same as for I :

G(signalL s I endL′
) = G(I)

Choice operator. Consider a present S then P else Q end statement. If the
reachable state space is computed in a breadth-first search manner on a global
transition relation, then states in P and Q will be considered at the same time.
In this case the intermediate symbolic description is likely to be larger than the
final one, if one grants that intermediate forms of partially reached state spaces
are more irregular than final ones. Moreover, the sequentially partitioned state
space search here allows to use only the relevant part of the transition relation
when dealing with each component (P , then Q). Frontiers are thus placed before
and after the “then” branch and the “else” branch.

G(presentL s I1 I2 endL′
) = ({L} , {L′} ,N1 ∪N2 ∪ {L,L′} ,E1 ∪ E2, F

′)
where F′ = F1 ∪ F2 ∪ ({L} × (I1 ∪ I2)) ∪ ((O1 ∪O2)× {L′})

Preemption. An abort P when S statement allows to add abortive transitions
to the natural terminations of P . Our partitioning technique will aim at exploring
fully P before exploring the next program blocks activated by P ’s terminations
(of course this will have the effect of blocking also the potential emissions causing
the abort, that would figure in the same global transition). Therefore, we want
to consider each transition exiting P as frontier. Each pause instruction may
lead to the end of the abort instruction that encloses it. Thus :

G(abortL s I endL′
) = (I, {L′} ,N ∪ {L′} ,E, F ∪ F′)

where F′ = (O ∪
{
l / (pausel r) ∈ N

}
)× {L′}

Sequence statement. Partitioning a P;Q sequence statement is a waste of energy.
If P is a constant-length program like pause;pause then the partitioning of P;Q
is naturally performed by the breadth-first search algorithm. Variable-length
programs are already partitioned since containing present or abort statements.

G(seqL I1 I2 endL′
) = (I1,O2,N1 ∪N2,E

′, F1 ∪ F2)
where E′ = E1 ∪ E2 ∪ (O1 × I2)

Parallel networks and signal synchronizations. The problem here is to estab-
lish which blocks put in parallel can be active in parallel, so that the global
search can be divided with matching progressions. This is shown in figure 1. The

In this section, we suppose that an instruction I produces a graph G(I) =

218 E. Vecchi and R. de Simoneé

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

S1

S2

S1

S2

S1

S2

Fig. 1. Partitioning method for a parallel component. There are two signals synchro-
nizing three parallel components. Our technique aims at partitioning according to the
black-colored blocks. Hatched blocks should be removed by cofactoring methods

only syntactic element at our disposal here to indicate synchronization will of
course be signal reception. These receptions must be matched by correspond-
ing emissions when signals are local (otherwise receptions of input signals can
occur anytime, but each parallel component must perceive it consistently). Nev-
ertheless it should be noted that, in the synchronous reactive framework, it is
possible that a local signal emission causes no reception, if none are ”actively
watching” at the time. So, while we shall use signal receptions to generate fron-
tier transitions, these will automatically generate simultaneous frontiers at emit
side when they are enabled, and otherwise emissions can be passed and
go unsynchronized. To clarify further, consider the following simple example :
P1; emit S; P2 || Q1; await S; Q2. If the design of this program is so that
any emission of S is received by the await S statement, then P2 can not be ac-
tive if Q2 is not. Thus partitioning according to Q1 and Q2 will partition the first
branch according to P1 and P2 as well. If some emissions of S are not received,
then partitioning according to Q1 and Q2 will have no precise effect on the first
branch. In all case there is a real benefit in partitioning this way. In the best
case, the reachable state space computation will concern P1 and Q1 first and
then, P2 and Q2. In the worst case, it will concern P1, P2 and Q1 and then, P2

and Q2.

G(parL I1 I2 endL′
) = ({L} ,O1 ∪O2,N1 ∪N2 ∪ {L} ,E′, F1 ∪ F2)

where E′ = E1 ∪ E2 ∪ ({L} × (I1 ∪ I2))

Loops. In loop constructs a new difficulty arises : whether blocks can be truly
concurrent is in general only known dynamically (this is in a large part why RSS
construction can be so hard). Loops are the only constructs in which we want
to lock frontiers during state space exploration. In Esterel programs, registers
which are not running in parallel cannot be active at the same time. We can
use this static information in order to deactivate registers in loop constructs.
Thus, each time a register r is activated we shall deactivate the set of registers
incompatible with r and belonging to the same loop as r. We call Lock (r) such
a set which of course can be refined at will. The graph of a loop statement is the
following :

G(loopL I endL′
) = (I, ∅,N,E ∪ E′, F) where E′ = O× I

Syntax-Driven Reachable State Space Construction 219

Frontier ordering. Currently, the order in which frontiers will be unlocked is
defined dynamically, “at run time” during the course of our successive fix-point
iterations searching new states in growing support domains. We select each time
a frontier that is likely to produce new states, and is not strictly preceded by
another one. This relies deeply on the shape of a pending set of states that
are incompletely processed, and can generate configurations beyond the current
frontiers. Details shall be provided in section 4.

This partial order is statically refined according to the syntax of the pro-
grams. This static order written “≺” is a guarantee that frontiers will not be
opened prematurely. The statement “a frontier x should be opened before a fron-
tier y” is written x ≺ y. In fact, defining a static order between frontiers consists
in defining an order between the target nodes of the frontiers. Thus, if u and
v are two nodes, u ≺ v means that any frontier leading to u should be opened
before any frontier leading to v :

u ≺ v⇐⇒ (x 7→u) ≺ (y 7→v) ∀x,∀y

The definition of “≺” is purely syntactic. In a sequence (seqL I1 I2 endL′
), one

wants to open frontiers in I1 before frontiers in I2. Thus we have N1 ≺ N2.

In an (abortL s I endL′
) statement, one wants to open frontiers inside I before

frontiers leading outside I. This can be written N ≺ L′.

4 The Precise Algorithm and ts BDD Implementation

We shall introduce useful notations. Given a set R = {r1, . . . rn} of BDD vari-
ables, we introduce the operator :

NOr(R) = λX → ¬ (r1 ∨ . . . ∨ rn)

If r1, . . . rn are variables representing boolean registers R1, . . . Rn then NOr(R)
represents the set of states in which all registers Ri are inactive for all i ∈ [1..n].
We notice that Or(R) = NOr(R) represents the set of states in which at least
one register Ri is active for i ∈ [1..n]. Given a set X of graph nodes, we introduce
the operator Register (X) which returns the set of register BDD variables in X :

Register (X) = {r | (pause r) ∈ X}

This operator will help us to make the link between our control flow graph and
the symbolic BDD-based computations. Source and target node of an edge u 7→v

are written :

Src(u 7→v) = u and Dest(u 7→v) = v

Given a “classical” directed graph (N , E), we write :

Succ(N,E)(X) = {j ∈ N | i ∈ X ∧ i 7→j ∈ E}

I

the set of target nodes of edges of E whose source belongs to X and we write :

220 E. Vecchi and R. de Simoneé

Out (N,E)(X) = {i 7→j ∈ E | i ∈ X}

the set of edges of E whose source belongs to X. The operator :

Closure(N,E) (Y) = µ(λX→ Y ∪ Succ(N,E)(X))

represents the set of nodes reachable from Y through edges in E. The following
operator computes the “surface” of a program block. Given a set Y ⊆ N of nodes
(corresponding to a set of active registers), the surface is the set of edges that
can be crossed in the immediate instant following the activation of one or more
registers in Y. If P is the set of nodes of type “pause”, then :

Surface(N,E) (Y) = µ(λX→ Y ∪ (Succ(N,E)(X) r P))

Given a set R = {r1, . . . rn} of registers, we write :

Lock (R) = Lock (r1) ∩ . . . ∩ Lock (rn)

the set of registers which we want to deactivate when all r1, . . . rn are activated.

4.1 Graph-Guided Algorithm

In this section, we describe the evolution of the set area in the algorithm 1.2
with respect to the control flow graph. We assume that the syntax tree of the
analyzed program is given in T .

Control flow graph and restricted area initializations. The initialization process
consists in building the graph to obtain an initial set of locked edges and then
build the set area0 with respect to these initial conditions.

Algorithm 1.3. Initialization of area0

1 (I, O, N,E, F) ← G(T)
2 inner ← Closure(N,E) (I)
3 R ← Register (N), R+ ← Register (inner)
4 area0 ← NOr(R r R+)

The first step consists in building the graph (line 1). Then, we need to know the
set R+ of registers which are allowed to be active (line 3). Finally, area is defined
as the set of states such that no register but those in R+ is active (line 4).

Restricted area enlargement. When area is required to be enlarged, we want to
unlock “good” edges. We only want to unlock edges which allow us to include
some pending states inside the growing area set. Such edges can only be found in
the surface of inner (line 1) and are sorted according to “≺” (line 2). Further-
more, more than one edge may be required to be unlocked. This is the typical
case where two parallel branches are awaiting the same signal. Thus, while no
pending state lies inside area, a new edge is analyzed in order to decide whether
it should be unlocked or not.

Syntax-Driven Reachable State Space Construction 221

Algorithm 1.4. Enlargement of area′

1 surface ← Surface(N,E∪F) (inner)
2 frontier ← Sort≺(Out (N,F)(surface))
3 i ← 1
4 while ((pending ∩ area) = ∅) do
5 f ← frontier[i]
6 /∗ check if f should be opened, see algorithm 1.5 ∗/
7 if (open?) then
8 /∗ open f, see algorithm 1.6 ∗/
9 /∗ close some frontiers, see algorithm 1.7 ∗/

10 end if
11 i ← i + 1
12 end while

Edge crossing. To determine whether an edge should be unlocked, one has to
focus on the new active registers in the set pending.

Algorithm 1.5. Crossing a frontier

1 innernew ← Closure(N,E) (Dest(f))
2 Rnew ← Register (innernew) r R+

3 open? ← false
4 if (Rnew = ∅) then
5 open? ← true
6 else if (pending ∩Or(Rnew) 6= ∅) then
7 open? ← true
8 end if

First, we compute the set of nodes in the graph that would be reached if the
edge f was unlocked. We just need to know the new-found registers which are
stored in Rnew at line 2. If f leads to no register, it can be unlocked but this
will have no effect on the set area (line 4, 5). If Rnew is not empty, we check if
there are some states in pending that have activated one or more new registers
contained in Rnew (line 6, 7). In this case, the edge can be unlocked.

Unlocking an edge. Once an edge has been decided to be unlocked, we just have
to perform the following updates : first, the unlocked edge is moved from F to
E. Then, the set area is enlarged.

Algorithm 1.6. Opening a frontier

1 E ← E ∪ {f}, F ← F r {f}
2 inner ← inner ∪ innernew , R+ ← R+ ∪Rnew

3 area′ ← NOr(R r R+)

222 E. Vecchi and R. de Simoneé

Locking some edges. Finally we close some edges to deal with loop constructs.
In this algorithm, graph updates have been discarded.

Algorithm 1.7. Closing frontiers

1 R+ ← R+ r Lock (Rnew)
2 ...

4.2 Correctness Arguments (ints)

Formally, one should prove that our new partitioned technique computes the
same RSS as the global one. But the correctness assumption relies on a simple
argument, that we shall state only informally.

In the last iteration of the algorithm’s main loop, the (ever-growing) tran-
sition relation will be the global one, as used in the classical single iteration
breadth-first search. But it is only applied to a selection of new initial states
(those taken from the temporary pending sets), and thus will reach only all states
reachable from there. But older states were only discarded from the pending po-
tential new state generators when all theirs successors were produced (because
they could be so in a more restricted transition relation form. So it is harmless
not to consider them any longer.

5 Experimental Results

The results presented here have been obtained by executing our program on a
Bi-Pentium III - 550 MHz with 1 GByte of memory and running under the Linux
operating system. The memory was limited to 900 MBytes in order to avoid the
use of disk swap. These results have been obtained without closing frontiers in
loop constructs.

We implemented our method with the help of the TiGeR BDD package and
we tested it on numerous Esterel designs. Still, many were small programs
which primarily helped us validate our implementation. Results here are not so
significant since memory consumption is not an issue, as intermediate BDDs
blow-ups are very limited. 2 presents experimental results obtained on
pretty big Esterel designs. Concerning computation time, our method was
slower on the sequencer example as expected since more iterations are required
to reach RSS completion. But, surprisingly it appeared to win on bigger designs
(mmid, sat). This is so since each iteration step works on much smaller objects
(BDD DAGs). We still need more experiments to be fully conclusive on our
findings.

6 Conclusion

To the best of or knowledge our method is the only partitioning method based
on syntactic {sequential/alternative/parallel/synchronized} structural informa-
tion drawn from (synchronous) programs. Our method tends to mimic the be-
havioral progression of control through time, but in a context where all paths

gureFi

Syntax-Driven Reachable State Space Construction 223

H

Program Steps Found states Crossed states Memory Time

globalopt def. 3 342 858 276 099 583 065 603 > 900M 34m40s
598 regs. part. 80 705 085 932 547 5 542 740 483 > 900M 26h45m32s

site def. 3 232 705 179 1 049 601 > 900M 22m51s
308 regs. part. 91 2 380 837 289 452 110 875 > 900M 9h58m45s

cabin def. 3 13 321 534 > 900M 14m22s
919 regs. part. 147 719 031 955 484 744 348 > 900M 18h54m29s

sequencer def. 18 122 597 all 40 359K 3m47, 22s
154 regs. part. 145 122 597 all 17 022K 8m56, 59s

mmid def. 13 10 308 357 all 205 214K 45m59s
111 regs. part. 113 10 308 357 all 42 368K 19m38

chorusBin def. 6 16 928 480 441 417 > 900M 5h39m35s
92 regs. part. 79 136 329 824 all 851 369K 238h10m45s

cdtmica def. 10 12 538 388 785 10 651 674 353 > 900M 15h24m46s
208 regs. part. 185 23 384 736 769 all 748 971K 36h31m23s

steam def. 3 3 865 747 524 396 566 399 > 900M 48m36s
128 regs. part. 101 41 774 141 026 all 762 153K 25h30m21s

sat def. 17 43 487 202 056 17 566 150 006 > 900M 6h42m50s
192 regs. part. 339 35 740 420 392 968 all 77 797K 3h00m56s

Fig. 2. Comparison between the default and the partitioned method : the first column
(Steps) is the number of computation steps achieved with success, the second column
(Found states) is the number of found states, the third column (Crossed states) is
the number of states whose image has been successfully computed, the forth column
(Memory) shows the memory required and the fifth column (Time) shows the compu-
tation times.

have to be followed (exhaustive search, as opposed to single path simulation).
We presented a solution to partition the RSS computation, primarily according
to signal receptions, and then order the evaluation of blocks according to pro-
gression of control. This latter information is drawn from a control-flow graph,
itself directly extracted from the abstract syntax tree. The graph is also used to
actually build the precise transition relation selected at any given macro-step,
by including the parts where registers enclosed inside proper frontiers are found.
Frontiers are progressively expanded, in a hopefully “sensible” order, so that
all reachable states can be captured. Sometimes, frontiers are closed in order to
deal with loop constructs as if they were “unrolled”. This method provides good
experimental results showing the relevance of the approach.

References

[BCL91] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with
partitioned transition relations. In A. Halaas and P.B. Denyer, editors, In-
ternational Conference on Very Large Scale Integration, pages 49–58, Edin-
burgh, Scotland, August 1991. IFIP Transactions, North-Holland.

224 E. Vecchi and R. de Simoneé

[BCL+94] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Sym-
bolic model checking for sequential circuit verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–
424, April 1994.

[Ber99] Grard Berry. The Constructive Semantics of Pure Esterel. INRIA, 1999.
http://www-sop.inria.fr/esterel.org/.

[BG92] Grard Berry and Georges Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation. Sci. of Comput. Program.,
19(2):87–152, 1992.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequen-
tial machines using symbolic execution. In Proceedings of the International
Workshop on Automatic Verification Methods for Finite State Systems, vol-
ume 407 of Lecture Notes in Computer Science, pages 365–373, Grenoble,
France, June 1989. Springer-Verlag.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[CMT93] Olivier Coudert, Jean-Christophe Madre, and Herv Touati. TiGeR Version
1.0 User Guide. Digital Paris Research Lab, December 1993.

[Cou91] Olivier Coudert. SIAM: Une Boite Outils Pour la Preuve Formelle de
Systmes Squentiels. PhD thesis, Ecole Nationale Suprieure des Tlcommuni-
cations, Octobre 1991.

[GB94] D. Geist and I. Beer. Efficient model checking by automated ordering of
transition relation partitions. In Proc. 6th International Computer Aided
Verification Conference, volume 818, pages 299–310, 1994.

[HD93] Alan J. Hu and David L. Dill. Reducing BDD size by exploiting functional
dependencies. In Design Automation Conference, pages 266–271, 1993.

[ISS+03] S. Iyer, D. Sahoo, Ch. Stangier, A. Narayan, and J. Jain. Improved symbolic
verification using partitioned techniques. In Proceedings CHARME’03, pages
410–424. LNCS 2860, 2003.

[PP03] E. Pastor and M.A. Peña. Combining Simulation and Guided Traversal for
the Verification of Concurrent Systems. In Proceedings of DATE’03. IEEE
publisher, 2003.

Syntax-Driven Reachable State Space Construction 225

	Introduction
	Context
	Partitioned Algorithm
	The Precise Algorithm and ts BDD Implementation
	Graph-Guided Algorithm
	Correctness Arguments (ints)

	Experimental Results
	Conclusion
	References

