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Préparée à l’Institut National de Recherche en Informatique
et en Automatique de Sophia Antipolis

par

Eric VECCHIÉ
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ii



Table des matières

1 Introduction 3
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2.1.3 Circuits séquentiels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Compilation des programmes Esterel en circuit . . . . . . . . . . . . . . 16

2.1.4.1 Interface des circuits . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4.2 Exécution des circuits . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4.3 Traduction circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.5 Interprétation des circuits en machines de Mealy . . . . . . . . . . . . . . 18
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Chapitre 1

Introduction

La raison de vivre d’une porte automatique est de s’ouvrir à l’approche d’un passant. De
ce fait, on comprendra aisément le désarroi du chaland qui, probablement très absorbé par la
relecture des dernières corrections apportées à son manuscrit de thèse par son directeur qui
écrit aussi petit que mal, et si possible dans une langue que seuls les autres directeurs de thèse
comprennent, entre en relation plus qu’amicale avec quatre mètres carrés de plexiglas en tentant
de franchir une porte caractérielle qui n’a pas souhaité s’ouvrir à son passage parce-que... parce-
que c’est son circuit de contrôle qui lui a pas dit. Ce sentiment hostile envers la technologie est
d’autant plus justifié si une porte d’ascenseur s’ouvre sur le vide, si l’airbag d’une voiture se
déclenche sans raison sur l’autoroute ou si le train d’un avion refuse de sortir de sa trappe au
moment de l’atterrissage.
Le premier point commun entre tous ces exemples est que ce sont tous des systèmes où le contrôle
(en opposition aux données) tient une place prépondérante. Le langage Esterel [15, 12] a été
conçu pour modéliser et programmer ce type d’application. Le second point commun est que
tous ces exemples sont des applications critiques qui peuvent mettre des vies en danger en
cas de dysfonctionnement. Le dysfonctionnement en question peut provenir soit d’une panne
de l’un des composants soit d’une erreur de conception. Le contenu de cette thèse se révélera
impuissant devant le premier cas. Dans le second cas, des méthodes automatiques permettent
de vérifier la correction d’une application vis à vis de critères formels. Par exemple, un critère
de fonctionnement correct d’un avion pourrait être de ne jamais rentrer le train d’atterrissage
lorsque l’avion est au sol. Dans certains cas, le processus de vérification consiste à calculer
l’espace des états atteignables du programme, c’est à dire toutes les configurations possibles du
programme et à vérifier que chacun de ces états est correct par rapport aux spécifications.

Cette thèse parle de calcul d’états atteignables. Ce calcul constitue un élément de base
dans la compilation de programmes Esterel. La vérification automatique, aussi appelée Model
Checking [25], est l’une des applications les plus intuitivement naturelle de ce calcul, mais en
réalité ce dernier est utilisé dans plusieurs étapes de la compilation comme l’optimisation des
programmes [71], la génération de séquences de test [6]. L’espace des états atteignables d’un
programme Esterel est toujours calculable en théorie car cet ensemble est fini. Cet ensemble
peut s’obtenir en énumérant un à un tous les états mais le nombre d’états peut être prohibitive-
ment grand. A l’énumération nous préférerons des méthodes symboliques qui nous permettent
de représenter les ensembles d’états par des formules qui les caractérisent. En Esterel, l’état
du programme est représenté par un vecteur de variables booléennes qui indiquent la position
du flot de contrôle (comme dans un réseau de Pétri [67]). Ainsi, les ensembles d’états des pro-
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4 CHAPITRE 1. INTRODUCTION

grammes peuvent être représentés par des formules logiques sur ces variables. Comme nous
le verrons dans ce document, il existe des méthodes permettant de calculer symboliquement
l’espace des états atteignables avec des structures de données qui permettent de représenter
efficacement ces formules logiques ; ces structures sont appelées des Diagrammes de Décision
Binaires ou BDD (Binary Decision Diagrams).

1.1 Méthodes symboliques

Depuis les années 90, les BDDs ont été utilisés dans diverses méthodes de vérification pour
représenter implicitement des espaces d’états [24, 23]. Ces méthodes partent d’une représentation
“circuit” des programmes. Les BDDs ont ainsi permis d’appliquer ces méthodes à la vérification
de larges applications synchrones réalistes. Le calcul de base de l’espace des états atteignables
d’un programme est un algorithme symbolique de point fixe utilisant des BDDs et permettant
de produire les états atteignables par un algorithme Breadth First Search : chaque étape de l’al-
gorithme permet de construire tous les successeurs des états atteints à l’étape précédente par
l’application d’une fonction de transition. Mais compter sur le seul pouvoir des BDDs ne suffit
pas toujours pour faire face à la complexité de la construction de cet espace. Plus précisément,
alors que le BDD représentant l’espace d’états atteignables final est souvent très compact, la
fonction de transition et les calculs des états successeurs dans les étapes intermédiaires de
l’algorithme peuvent nécessiter l’utilisation de BDDs beaucoup plus larges. Des techniques in-
telligentes ont déjà été proposées pour partitionner l’application de la fonction de transition et
permettent de résoudre ce problème en partie [21, 22, 50].

Jusqu’à présent, Esterel utilisait ces techniques à travers une traduction en circuits. Cette
traduction aplatit la structure mais permet de représenter les programmes dans un format direc-
tement exploitable par les outils de calcul. Dans le contexte d’Esterel, nous proposons d’utiliser
la structure syntaxique naturelle des programmes afin d’appliquer la fonction de transition par
morceau. Intuitivement, si P et Q sont deux blocs de programme composés en séquence P ; Q,
il semble naturel de calculer d’abord tous les états atteignables dans P , et ensuite seulement de
calculer tous les états atteignables dans Q. Un algorithme Breadth First Search aurait plutôt
combiné des états de P avec le “début” de ceux de Q dès lors que tous les comportements de
P ne sont pas de même durée. Un tel découpage est intuitivement une bonne idée puisqu’il
découpe linéairement un problème dont la complexité est fonction de P ; Q en deux problèmes
dont les complexités sont respectivement fonction de P seulement et fonction de Q seulement.
Alors que cette idée semble triviale, les difficultés réelles apparaissent en présence de pa-
rallélisme. Dans un programme parallèle P || Q, l’ensemble des états atteignables n’est pas
en général le simple produit cartésien des comportements de P et de Q du fait des échanges de
signaux internes entre P et Q introduisant de la synchronisation entre les blocs. Ceci rend le
calcul des états atteignables difficile en même temps qu’il justifie son utilité. Afin que notre ap-
proche retienne quelques avantages d’une approche symbolique, une attention toute particulière
doit être prise afin que notre partitionnement ne s’apparente pas à l’énumération de tous les
états possibles du programme ; une idée typiquement mauvaise consisterait à partitionner un
programme de la forme P1 ;P2 || Q1 ;Q2 suivant P1Q1, P1Q2, P2Q1 et P2Q2.
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1.2 Notre approche

En essence, notre algorithme partitionné procède de la manière suivante : initialement, une
fonction de transition très réduite est appliquée. Les parties de la fonction de transition qui
agissent sur les blocs de programme inactifs ne sont pas représentées. Au départ, nous “blo-
quons” explicitement les endroits du programme où un signal externe ou interne est reçu, faisant
progresser le contrôle dans des sous-blocs suivants. Ensuite, ces réceptions sont progressivement
“débloquées” dans un ordre adéquat de telle sorte que la fonction de transition ne fait que
crôıtre en explorant les sous-blocs de contrôle successifs. Parallèlement à cela, comme les nou-
velles extensions de la fonction de transition ne sont appliquées qu’aux états les “plus récents”
dans de nouvelles parties du programme, les anciennes parties de la fonction de transition qui
ont déjà servi sur les blocs “saturés” sont automatiquement simplifiées grâce à quelques pro-
priétés de simplification des BDDs (proposées par la librairie TiGeR [31]). Ces simplifications
permettent de ne représenter que la partie utile de la fonction de transition en fonction de son
domaine d’application. Cette opération permet en pratique de simplifier radicalement le support
de la fonction de transition, c’est à dire l’ensemble des variables dont dépend effectivement la
fonction. Ces simplifications ont un effet bénéfique immédiat sur les calculs.
Les heuristiques permettant d’ordonner le “débloquage” des réceptions de signaux sont basées
sur une structure de graphe extraite de la syntaxe des programmes. De cette manière, cet ordre
est conforme avec l’ordre naturel de propagation du contrôle qui peut exister dans le programme
source (en omettant les retours de boucle). Par exemple, quand la réception d’un signal S pro-
voque l’émission d’un signal T, si T est lui même attendu par une instruction réceptrice alors il
est évidemment sensé de débloquer la réception de S avant celle de T.

1.3 Un exemple

La montre à quartz [10] est l’une des applications classiques d’Esterel. Cette application,
illustrée par la figure 1.1, consiste en plusieurs modules et une interface composée de quatre
boutons en entrée et d’un écran LCD en sortie (avec également une sonnerie). Un des boutons
permet de faire basculer la montre d’un mode à l’autre, les trois autres boutons permettent
de contrôler la montre en fonction du mode courant. Les modules de ce programme sont les
suivants :

– Un module Alarm calcule la date et l’heure en fonction d’un signal d’entrée régulier en-
voyé par le quartz. Lorsqu’un changement intervient, ce module retransmet l’information
au module d’affichage Display.

– Un module Time set permet de régler la date et l’heure en utilisant les boutons de la
montre.

– Un module Alarm set permet de régler l’heure de l’alarme et d’activer ou de désactiver
cette alarme.

– Un module Stopwatch permet d’utiliser la montre comme un chronomètre. Le chro-
nomètre peut continuer à tourner même si il n’est pas affiché à l’écran.

– Un module Display permet d’afficher les bonnes informations sur l’écran LCD et de
gérer la sonnerie de la montre en fonction du mode sélectionné.

– Un module Button decoder permet de faire la liaison entre les boutons de la montre
et les signaux d’entrée spécifiques de chacun des sous-modules en fonction du mode
sélectionné. En particulier, le rôle du bouton situé en haut et à droite du schéma et
appelé “Mode Select” sera de passer d’un mode actif à un autre, c’est à dire d’alterner
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entre le mode du simple affichage, le mode de réglage de l’heure (Time set), le mode de
réglage de l’alarme (Alarm set) et le mode chronomètre (Stopwatch).

ALARM / DISPLAY

Mode_Select

BUTTONS

DISPLAY

STOPWATCH ALARM_SETTIME_SET

BUTTON_DECODER

mode
alarm_set display

mode

stopwatch
modemode

time_set

AM

CHRTMRDUALALM

Fig. 1.1 – La montre à quartz.

Dans cette application, les modules Time set, Alarm set et Stopwatch sont lancés en pa-
rallèle mais leurs comportements sont largement exclusifs en ce qui concerne leur réaction aux
événements d’entrée, c’est à dire aux boutons et en ce qui concerne l’affichage. En effet, les
boutons ne permettent de contrôler qu’un seul module à la fois et l’affichage varie selon le mode
sélectionné. L’analyse Breadth First Search basique d’un tel programme ne tire aucun avantage
du fait que tous ces sous-modules sont exclusifs et calcule l’espace des états atteignables sur le
programme tout entier.
L’analyse de ce programme pourrait être divisée en quatre partie : La première permettant de
calculer les états atteignables pour le mode d’affichage de l’heure et les trois autres permettant
de calculer les états atteignables dans les modules Time set puis Alarm set et enfin Stop-
watch. Ainsi, la recherche des états de chaque mode pourrait être réalisée indépendamment
des trois autres modes. Le gain en espace d’une telle approche est évident puisque l’analyse du
programme original peut alors être assimilée à l’analyse de quatre programmes, tous de taille
inférieur au programme original. Dans chacune de ces quatre phases, des fonctions de transitions
locales sont utilisées à la place d’une seule fonction de transition globale.

1.4 Travaux reliés

Utiliser la structure algorithmique des programmes Esterel afin de guider la construction
symbolique et exhaustive de l’espace d’états atteignables est une idée simple et claire qui n’a
jamais été expérimentée à notre connaissance. D’autres travaux en rapport avec les nôtres uti-
lisent des techniques Depth First Search pour la recherche explicite d’états atteignables afin
d’identifier un squelette de configurations initiales “en avance”. Une fois ces configurations cal-
culées, des méthodes symboliques Breadth First Search sont appliquées [66] en utilisant une
relation de transition partitionnée. Le but de ces travaux est plus d’ordonnancer le processus de
génération des états atteignables que de minimiser la représentation de la relation de transition.
D’autres travaux présentés dans [2] exploitent la structure hiérarchique de programmes asyn-
chrones afin d’optimiser le calcul des états atteignables. Ces travaux reposent entre autre sur
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l’hypothèse d’un opérateur parallèle asynchrone. Cette hypothèse ne permet malheureusement
pas d’appliquer ces résultats au cas d’Esterel où l’exécution de tâches en parallèle est syn-
chrone.
Certains travaux visent à optimiser le calcul des états atteignables afin de converger le plus
rapidement possible vers les états directement concernés par une propriété donnée [13, 79]. Le
but est de déterminer le plus rapidement possible si cette propriété n’est pas vérifiée par le
programme analysé.
Autour du vérificateur formel Murϕ [32, 45], de nombreux travaux visant à améliorer le calcul des
états atteignables ont été menés. L’idée d’utiliser des dépendances fonctionnelles entre les va-
riables du programmes a été introduite dans [46, 47] et améliorée dans [48]. La méthode consiste
à définir la valeur de certaines variables en fonctions d’autres variables indépendantes. Dès lors,
le calcul des états atteignables peut être réalisé à partir des variables indépendantes seulement.
Dans [49], la méthode consiste à exploiter les symétries dans la description des programmes.
L’introduction d’un type particulier permet au programmeur de définir des équivalences entre
les états du programme. Par la suite, lors de l’analyse du programme, il suffit d’explorer un seul
état par classe d’équivalence. Cette méthode permet de réduire la taille des BDDs utilisés par
le vérificateur Murϕ.

Certaines études visent à approcher le calcul des états atteignables. Dans [69] Ravi et So-
menzi calculent une sous-approximation de l’espace des états atteignables. La densité d’un BDD
se mesure en divisant le nombre d’états encodés par le nombre de noeuds de ce BDD. A chaque
étape de calcul, lorsque les BDDs atteignent une taille trop importante, les branches les moins
denses sont supprimées. Ceci permet d’obtenir des BDDs plus petits en conservant un maxi-
mum d’états atteignables. D’autres travaux s’appuient sur une surapproximation du calcul des
états atteignables [37, 38, 63]. L’intérêt de ces méthodes est de garantir certaines propriétés des
programmes. Si tous les états calculés vérifient ces propriétés alors tous les états atteignables
aussi. Dans le cas contraire, une analyse plus fine est nécessaire pour déterminer si les états qui
invalident ces propriétés sont réellement atteignables.

Le calcul des états atteignables à base de BDDs a également été adapté pour permettre
l’analyse de programmes C. Dans [33], Edwards et al. ont réalisé l’analyse de petits programmes
même si le passage à l’échelle demeure incertain. Dans [8, 9], Ball et Rajamani présentent
un vérificateur capable d’analyser des programmes C booléens. Alors que le calcul des états
atteignables s’effectue sur des programmes finis, ce vérificateur autorise des appels de fonction
récursifs et non bornés.

Les travaux les plus proches techniquement sont ceux de Yannis Bres. La thèse [17] présente
des méthodes d’abstraction permettant de simplifier le calcul des états atteignables. Plus pré-
cisément, ces techniques visent à remplacer certaines variables d’états par de simples variables
d’entrée ou bien à utiliser une logique de Scott trivaluée. Ceci permet de supprimer des blocs
entiers de programme lors de son analyse. Cette méthode conduit à une surapproximation de
l’espace des états atteignables, mais grâce à cela, Yannis Bres à réussi à valider un certain
nombre de propriétés. Concrètement, ces travaux et les nôtres ont été intégrés au sein d’un
même logiciel.



8 CHAPITRE 1. INTRODUCTION

1.5 Présentation du document

Cette thèse présente un algorithme de partitionnement permettant de calculer plus effica-
cement l’espace des états atteignables d’un programme Esterel. Cette efficacité se mesure en
espace plus qu’en temps. Ce document est organisé de la manière suivante :

Dans le chapitre 2, nous présentons le langage Esterel ainsi que les méthodes symboliques à
base de BDDs que nous utilisons. Nous présentons également l’algorithme Breadth First Search
de base que nous souhaitons améliorer.

Le chapitre 3 motive et présente notre algorithme de manière intuitive. Nous décrivons les
difficultés que peut représenter le parallélisme par rapport à notre approche et nous proposons
une solution à ces problèmes.

Le chapitre 4 définit formellement les opérateurs utilisés dans notre algorithme de partition-
nement. La construction d’un graphe permettant de guider ce partitionnement est donnée.

Le chapitre 5 présente formellement notre algorithme. Une démonstration de la validité de
cet algorithme est donnée.

Le chapitre 6 décrit les points clés de l’implémentation de notre méthode par rapport à
la châıne de compilation des programmes Esterel et par rapport aux outils d’analyse déjà
existants.

Le chapitre 7 présente des résultats expérimentaux montrant l’utilité de notre approche.

Le chapitre 8 conclut cette thèse et donne quelques perspectives.



Chapitre 2

Contexte de l’Etude

Ce chapitre présente le contexte de nos travaux. La section 2.1 présente le langage Esterel
ainsi que ses modèles sémantiques. La section 2.2 décrit plus particulièrement le modèle à partir
duquel est calculé l’espace des états atteignables des programmes Esterel (section 2.3). Enfin,
la section 2.4 introduit les notions théoriques qui permettent de modéliser et de calculer cet
espace de manière symbolique et la section 2.5 présente une solution permettant d’implémenter
ce calcul à l’aide de BDDs.

2.1 Esterel

A l’origine, le langage Esterel [12] a été conçu par deux chercheurs (Jean-Paul Marmorat
et Jean-Paul Rigault) dans le but de programmer le comportement d’une voiture automatique
pour un concours organisé par un journal d’électronique. Né d’un besoin anecdotique, ce langage
a su trouver sa place dans le monde des systèmes temps-réels en réalisant son dessein initial :
permettre l’expression d’algorithmes de contrôle au moyen d’un langage clair et intuitif. Ainsi
le langage Esterel est-il particulièrement adapté aux applications dans lesquelles le contrôle
tient une place prépondérante comme les systèmes temps-réel, les systèmes embarqués, les pro-
tocoles de communication ou les interfaces homme-machine. Esterel est un langage impératif,
déterministe, réactif [41] et synchrone [40] :

– Réactif : Par opposition à un programme transformationnel qui traite un ensemble de
données pour produire un résultat, un programme Esterel à pour vocation de réagir
continuellement à des événements provenant de son environnement. Un programme réactif
produit sans cesse de nouvelles sorties en réponse à des événements extérieurs. Ces pro-
grammes se composent souvent de sous-programmes s’exécutant en parallèle et commu-
nicant entre eux.

– Synchrone : Par rapport aux programmes réactifs, l’hypothèse synchrone stipule que
chaque réaction est synchrone avec l’événement qui l’a provoquée : la durée d’une réaction
est supposée nulle. De cette manière, chaque événement divise naturellement le temps en
instants. En Esterel, les instants sont cadencés par les émissions d’un signal particulier
appelé “tick” et les autres événements sont supposés synchrones avec les émissions de ce
signal.

– Déterministe : Une même séquence d’événements produit toujours la même séquence
de réactions.

9



10 CHAPITRE 2. CONTEXTE DE L’ETUDE

(a) (b) (c)

Fig. 2.1 – Différents types de programmes : transformationnel (a), réactif (b), synchrone (c).

En réalité, la réaction de durée nulle n’est qu’une abstraction. Une hypothèse équivalente mais
plus réaliste consiste à dire que le temps est divisé en une séquence d’instants logiques. Les
instants logiques sont vus comme des intervalles de temps communs à tous les composants et
sont deux à deux disjoints. A l’intérieur de ces instants, chaque réaction est non interruptible
et termine forcément avant le début de l’instant suivant.
L’hypothèse synchrone permet de définir clairement les notions de simultanéité entre occurrences
d’événements ainsi que la notion d’absence d’un événement.

En plus des constructions classiques des langages impératifs (séquence, boucle, if-then-else),
le noyau du langage Esterel procure un opérateur de parallélisme ainsi qu’un mécanisme d’ex-
ception et de suspension. La communication entre les différentes parties actives du programme
est réalisée par la diffusion de signaux purs (un signal est soit présent soit absent). Cette com-
munication est instantanée, ce qui signifie qu’un signal est reçu à l’instant précis où il est émis.
Une réaction consiste en une propagation des entrées vers les sorties. Cette propagation passe
par l’utilisation de variables et de signaux locaux. A chaque instant, un signal peut être émis,
donc présent ou bien ne plus être émissible, donc absent. L’absence d’un signal est donc une
notion effective et non une notion implicite. Les instructions du langage noyau sont :

– nothing : l’instruction vide du langage.
– pause : cette instruction marque un délai, elle se met en attente de l’instant suivant.
– emit S : instruction de durée nulle qui provoque l’émission du signal S.
– present S then p else q end : test de présence d’un signal.
– suspend p when S : suspend l’exécution du bloc p chaque fois que S est reçu.
– p;q : opérateur de séquencement. L’exécution de q suit immédiatement l’exécution de p.

La notion de séquence est orthogonale à la notion d’instant. Ainsi, la fin du bloc p et le
début du bloc q peuvent s’exécuter au sein d’une unique réaction (de durée nulle d’après
l’hypothèse synchrone).

– loop p end : exécute le bloc p en boucle. p ne doit pas être instantané.
– p || q : opérateur parallèle. L’exécution termine lorsque p et q ont tous les deux terminé.
– trap T in p end : exécute le bloc p jusqu’à la levée d’une exception T ou bien jusqu’à-ce

que p termine.
– exit T : lève l’exception T.
– signal S in p end : déclaration d’un signal local dans p.

A partir du langage noyau, d’autres instructions d’usage fréquent ont été introduites. Parmi
elles :

– halt : équivalent de loop pause end.
– await S : attend la réception du signal S.
– sustain S : émet S à chaque instant.
– every S do p end : démarre l’exécution de p à chaque réception du signal S.
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– abort p when S : préemption forte. Interrompt l’exécution de p dès la réception de S.
– weak abort p when S : préemption faible. Dès la réception de S, exécute les dernières

réactions instantanées du bloc p avant d’interrompre son exécution.
Par défaut, les instructions suspend, await, every et abort/weak abort ne réagissent à la
présence du signal S qu’à partir de l’instant suivant leur première activation. Le langage étendu
définit le mot-clé immediate qui, dans un exemple comme “abort p when immediate S”, per-
met de réagir à la présence de S dès le premier instant.

Un simple exemple. Le programme Esterel suivant modélise une porte automatique dont
le comportement consiste à s’ouvrir dès qu’un utilisateur appuie sur un bouton. La porte reste
ouverte pendant un délai de trois secondes après la dernière demande d’ouverture, puis se
referme. Le temps et le bouton d’ouverture sont les entrées du programme (portées par des
signaux purs, SECONDES et BOUTON). Comble de modernité, un système de sécurité empêche la
fermeture de la porte quand une présence est détectée (signal PRESENCE). Le signal OUVERTURE
en sortie indique si la porte est ouverte :

module porte:
input BOUTON, SECONDES, PRESENCE;
output OUVERTURE;

every BOUTON do

trap FERMER in

await 3 SECONDES;
suspend exit FERMER when immediate PRESENCE

||
sustain OUVERTURE

end trap;
end every

end module

Les données en Esterel. Dans sa version complète, le langage permet aussi de manipuler
des données : booléens, entiers, flottants et châınes de caractères. Nous avons présenté la partie
contrôle auparavant car elle constitue la partie novatrice du langage Esterel. Le traitement
des données est plus classique et souvent délégué à un langage hôte plus généraliste comme C ou
Java. Par ailleurs, Esterel procure également un mécanisme capable de créer et de manipuler
ses propres structures de données par une interface avec le langage C. Ces données peuvent
être manipulées par le biais de simples variables ou bien être transmises par des signaux. Dans
ce second cas, un signal est caractérisé à la fois par son statut de présence ou d’absence et
par la valeur qu’il transporte, ces deux notions étant orthogonales. Par exemple, un signal de
type booléen peut être à la fois présent et faux ou bien absent et vrai. La valeur portée par
un signal demeure inchangée tant que le signal n’est pas émis. La valeur d’un signal demeure
donc indéfinie ou bien initialisée à une valeur par défaut jusqu’à ce que le signal soit émis pour
la première fois. A la différence d’une variable, un signal ne peut pas prendre plusieurs valeurs
successives au cours d’un même instant.
Le langage propose évidemment quelques opérations de base : opérateurs logiques et arithmé-
tique, manipulation de châınes de caractères, instruction de test sur les variables, etc. . . En
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Esterel, toutes ces opérations (ou blocs d’opérations) sont appelées des actions. Toute action
est supposée être exécutée instantanément. Dans la version noyau du langage, chaque action
peut être abstraite par un signal pur : une opération est abstraite par l’émission d’un signal de
sortie et le résultat d’un test sur une variable est abstrait par un test de présence d’un signal
d’entrée. Pour notre étude, nous nous limiterons à cette version noyau du langage Esterel.

Les langages de la famille d’Esterel. Alors que le langage Esterel est particulièrement
adapté à la programmation du contrôle, il existe d’autres langages réactifs synchrones spécialisés
dans la programmation du flot de données. Ces langages incluent Lustre [39] et Signal [53].
Dans ces langages, la valeur de chaque variable est recalculée à chaque instant en fonction de
la valeur des variables aux instants précédents. Le traitement des données est beaucoup plus
simple qu’en Esterel mais la programmation d’une simple séquence devient rapidement très
complexe.
D’autres langages graphiques ont également été proposés. Le formalisme des SyncCharts [4, 5]
possède la même expressivité que le langage Esterel. Son formalisme graphique est inspiré
d’Argos [57], la version synchrone des StateCharts [42].

2.1.1 Aspects sémantiques

Le langage Esterel possède une sémantique opérationnelle structurelle [68] (SOS). Cette
sémantique se présente sous la forme de règles de réécriture de la forme de l’exemple suivant :

p
E′, 0−−−→

E
p′ q

F ′, l−−→
E

q′

p; q
E′∪F ′, l−−−−−→

E
q′

La règle sémantique présentée ci-dessus est celle de la séquence p;q, pour le cas où p termine
dans l’instant. La totalité des règles de la sémantique opérationnelle est détaillée dans [11].
Cette sémantique se décline en deux nuances : la sémantique comportementale logique et la
sémantique comportementale constructive qui est un raffinement de la sémantique logique. La
différence entre ces deux sémantiques réside dans les règles qui régissent la présence ou l’absence
d’un signal. Dans la sémantique logique, le statut d’un signal est déterminé en supposant suc-
cessivement que le signal est présent, puis absent. Un programme est correct si une et une seule
de ces deux suppositions permet d’aboutir a une solution. La sémantique constructive interdit
de présumer le statut d’un signal. Un signal n’est présent que si il est forcément émis et il n’est
absent que si il ne peut pas être émis.
Les sémantiques opérationnelles d’Esterel permettent une interprétation des programmes sous
forme de machine de Mealy à états finis. Autrement dit, tout programme Esterel correct peut
être compilé sous la forme d’un automate et exécuté symboliquement.

La possibilité de traduire les programmes Esterel sous forme de circuits logiques séquentiels
procure à Esterel une sémantique dénotationnelle. Le modèle des circuits séquentiels possède
également une sémantique constructive équivalente à celle d’Esterel : la sémantique dénota-
tionnelle qui consiste à propager les constantes booléennes 0 et 1 dans la traduction circuit est
équivalente à la sémantique constructive qui consiste à propager l’information selon laquelle un
signal doit être présent ou bien ne peut être présent.
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2.1.1.1 Réincarnation

A cause des boucles instantanées, les signaux peuvent avoir plusieurs instances simultanées
appelées réincarnations.

loop

signal S in

present S then emit O1 else emit O2 end;
pause;
emit S

end signal

end loop

Au premier instant, S n’est pas émis. Au deuxième instant, le corps de la boucle termine en
émettant S et se relance immédiatement. Un nouveau signal S distinct de l’ancien est déclaré.
Dans cette seconde incarnation, le signal S n’est pas émis. Dans cet exemple, le signal O2 est
émis à chaque instant.
En réalité, la réincarnation existe dans tous les langages de programmation. Dans les langages
séquentiels classiques (C, Java...) les réincarnations ne sont pas suscitées par les boucles mais
par les appels récursifs de fonctions. Le modèle d’exécution de ces programmes étant dynamique,
le problème de réincarnation est résolu de manière transparente puisque chaque instance de
variable est allouée dans la pile d’exécution. Le modèle d’exécution des programmes Esterel
est un modèle statique dans lequel chaque instance de variable doit être allouée de manière
statique à chaque instant. Les restrictions imposées par le langage Esterel par rapport aux
langages plus généralistes permettent de garantir que le nombre de ces instances est fini.

2.1.1.2 Correction logique

Programmes non-réactifs. L’instantanéité des réactions et de la diffusion des signaux per-
met d’écrire des programmes syntaxiquement corrects mais insensés comme le programme sui-
vant :

present S then nothing else emit S end

Dans ce programme, le signal S ne peut être présent car il n’est émis nulle part. Le signal ne
peut pas non plus être absent car dans ce cas, il est immédiatement émis. Ce programme est
donc incorrect.

Programmes non-déterministes. Esterel est un langage déterministe par conséquent,
tout programme non déterministe est incorrect. Considérons à présent l’exemple suivant :

present S then emit S end

Ici, le fait que S soit présent ou absent n’entre pas en contradiction avec la sémantique du
langage. L’existence de ces deux interprétations rend ce programme non-déterministe. Ce pro-
gramme est donc également incorrect.
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2.1.1.3 Constructivité

Un programme est logiquement correct si il est à la fois réactif et déterministe. Toutefois,
ce critère n’est pas suffisant. Pour un langage impératif comme Esterel, l’évaluation d’un test
doit toujours précéder l’évaluation de ses branches. Considérons l’exemple suivant :

present S then emit S else emit S end

Dans ce programme, la seule solution consiste à considérer que le signal S est présent. Le
programme est donc logiquement correct, mais pour savoir si S est présent, la seule solution
consiste à évaluer le contenu des branches then et else avant de pouvoir évaluer le test. Ceci
rentre en contradiction avec la propagation naturelle du contrôle dans le programme.

L’idée de la sémantique constructive consiste à interdire tout résonnement spéculatif. Pour
déterminer le statut des signaux, on utilise une logique tri-valuée : présent, absent ou bien
inconnu. A chaque instant, le statut des signaux d’entrée est donné par l’environnement. Ini-
tialement, le statut des autres signaux est inconnu. Les seules déductions autorisées sont les
suivantes :

1. Un signal est présent si il est émis.

2. Un signal est absent si il ne peut être émis par aucune instruction.

3. On ne peut exécuter les branches d’un test que si le statut du signal testé est connu.

On dit qu’un programme est constructif si le statut de chaque signal peut être déterminé en
utilisant les règles précédentes. Les règles mathématiques précises de la sémantique constructive
du langage Esterel sont données dans [11].

2.1.2 Machines de Mealy

Le comportement d’un programme Esterel peut être modélisé par un automate détermi-
niste à états finis appelé machine de Mealy [59]. Cette représentation est issue de la sémantique
opérationnelle (SOS) du langage par exploration de tous les états de contrôle. Dans cette
représentation, chaque transition de l’automate porte une étiquette exprimant les entrées et
les sorties du programme : un signal d’entrés peut être précédé par le symbole ’ ?’ indiquant
que le signal est présent ou bien par le symbole ’#’ indiquant que le signal est absent. Un signal
de sortie précédé du symbole ’ !’ indique que le signal est émis. Par exemple, une transition
étiquetée par “ ?I1.#I2. !O” est empruntée si I1 est présent et si I2 est absent, quel que soit
le statut des autres signaux d’entrée. Cette transition provoque l’émission du signal O.
La figure 2.2 représente le programme de la porte automatique sous forme de machine de Mealy.
Dans le graphe, les noms des signaux sont représentés par leurs initiales.

Cette représentation sous forme de machine de Mealy rend explicite l’ensemble des états et
des transitions d’un programme. Toutefois, l’automate peut avoir un nombre d’état exponentiel
par rapport à la taille du programme Esterel source. Il n’est donc pas souvent raisonnable de
représenter un programme réel par un tel automate ; ceci est vrai aussi bien pour la compilation
des programmes que pour leur vérification. Cette représentation n’en demeure pas moins un
excellent outils de référence pour définir nos techniques d’analyse de programme et donc un
modèle sémantique sous-jacent.
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?B.!O

#B

?B.!O
#B.?P.?S.!O

#B.?S.!O

#B.?S.!O

?B
.!
O

?B.!O

#B.#P.?S.!O

#B.#P.!O

else !O

else !O

else !O

else !O

Fig. 2.2 – Machine de Mealy de la porte automatique.

2.1.3 Circuits séquentiels

Les machines à états finis de Mealy (Mealy FSM) peuvent aussi servir de modèle opérationnel
aux circuits séquentiels. Un circuit séquentiel se présente sous forme d’un système d’équations
booléennes. Tout circuit séquentiel admet une traduction sous forme d’automate de Mealy.
Le langage Esterel bénéficie également d’une traduction sous forme de circuit. La traduction
des langages de la famille d’Esterel comme les automates hiérarchiques ou les SyncCharts
[4] vers les circuits booléens de contrôle est comparable à la traduction d’un calcul de processus
vers un réseau de Pétri.
Les circuits séquentiels sont issus d’une interprétation dénotationnelle du langage. Cette traduc-
tion est compositionnelle et préserve la sémantique du langage. On parle ici de format circuit
par analogie aux circuits électroniques composés de portes logiques.

I

X

O1

O2

R1

R2

O1 = I ∨X
O2 = ¬X
R1 = reg(O1)
R2 = reg(O2)
X = R1 ∧R2

Fig. 2.3 – Circuit séquentiel.

Parmi les portes logiques se distinguent les registres booléens qui constituent les délais
élémentaires du programme. Ils permettent de conserver des données de manière persistante
et donc de mémoriser l’état du programme :

Y = reg(X)

signifie que la valeur Y du registre à l’instant n + 1 est égale à la valeur de X à l’instant n. Le
reste des portes (∧, ∨, ¬ ) constitue la partie combinatoire du système. Les signaux d’entrée et
de sortie du programmes sont représentés par de simples fils, porteurs d’une valeur booléenne :
1 lorsque le signal est présent et 0 lorsque le signal est absent.

Modèle d’exécution des circuits séquentiels. Comme en Esterel, un circuit séquentiel
réagit à chaque instant. La notion d’instant est ici réalisée par l’utilisation des registres booléens.
Au premier instant, tous les registres sont positionnés à 0. A chaque instant, le statut de chaque
signal de sortie est calculé en fonction des signaux d’entrée et de la valeur des registres. Ce
calcul est réalisé en suivant les règles de propagation du courant électrique. Ainsi, la valeur
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I O

(a) O = reg(I)

I1

I2
O

(b) O = I1 ∧ I2

O
I1

I2

(c) O = I1 ∨ I2

I O

(d) O = ¬ I

Fig. 2.4 – Portes logiques

d’une porte “et” peut être déterminée dès que l’une de ses branches porte la valeur 0 ou bien
dès que toutes ses branches portent la valeur 1. Cette opération est réalisée instantanément par
la partie combinatoire du circuit. De la même manière, la prochaine valeur des registres est
calculée en fonction des valeurs courantes et des entrées.

Génération des circuits à partir des programmes Esterel. La sémantique construc-
tive d’Esterel permet de traduire récursivement chaque instruction du langage en un circuit
séquentiel. Cette traduction produit un registre booléen pour chaque instruction pause du lan-
gage source. En d’autres termes, le codage de l’état d’un bloc de programme repose sur un
ensemble précis de registres. Le reste de la traduction consiste à câbler les équations combina-
toires autour de ces registres.

Circuits cycliques. La traduction des programmes en circuits génère parfois des cycles dans
les équations combinatoires. Cela signifie que, au cours d’un même instant, la valeur d’un fil x
dépend de la valeur d’un second fil y et que la valeur de y dépend de x. Comme dans la section
2.1.1 traitant des aspects sémantiques du langage, il se peut que le programme soit logiquement
incorrect ou bien que le cycle ne pose pas de problème dans la résolution constructive de l’état
du circuit. Il existe une théorie de la causalité constructive qui identifie des circuits cycliques
corrects. Pour ces derniers, il existe des algorithmes, parfois coûteux en expansion, permettant
de les transformer en circuits acycliques et sémantiquement équivalents [73]. Pour notre étude,
nous pourrons simplement faire l’hypothèse que les circuits que nous manipulons sont acycliques.

2.1.4 Compilation des programmes Esterel en circuit

Cette section présente les principes de base de la traduction des programmes Esterel en
circuit. La traduction présentée ici est purement structurelle. En réalité, les phénomènes de
réincarnation présentés à la section 2.1.1.1 nécessitent la duplication de certaines parties du
circuit. Pour plus de détails, on pourra se référer à [11]. Chaque instruction du langage produit
un circuit dont l’interface est représentée dans la figure 2.5.

...

E
SEL

E’
GO

RES

SUSP

KILL K2

K1

K0

Fig. 2.5 – Interface circuit des instructions d’Esterel.
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2.1.4.1 Interface des circuits

Sur le schéma 2.5, les broches de gauche représentent les entrées de l’interface et les broches
de droite sont les sorties. La signification de chaque broche est la suivante :

– L’entrée GO est utilisée pour lancer l’exécution d’une instruction. Une instruction s’exécute
dès que GO vaut 1.

– L’entrée RES est utilisée pour reprendre l’exécution d’une instruction après son démarrage.
L’instruction continue son exécution après une pause tant que ce fil est à 1. Cette broche
est plus particulièrement utilisée par les instructions abort et suspend.

– L’entrée SUSP est utilisée pour suspendre l’exécution d’une instruction. Lorsque ce fil est
à 1, tous les registres de l’instruction conservent leur valeur à moins que le signal d’arrêt
KILL ne soit reçu (voir ci-dessous).

– L’entrée KILL permet de tuer l’exécution d’une instruction. Cette broche permet de mettre
la valeur de tous les registres de l’instruction à 0. Ce signal passe à 1 lorsqu’une exception
est lancée. Dans ce cas, le signal KILL est propagé par toutes les instructions vers les
instructions pause.

– La sortie SEL permet d’indiquer que l’instruction est toujours active après une pause et
doit être relancée au moyen du signal RES. Ce signal vaut 1 dès qu’une pause de l’instruc-
tion est active. Ce signal est donc la disjonction de tous les registres de l’instruction.

– Les sorties K0, K1, etc. correspondent aux codes de complétion (terminaison, pause, levée
d’exception, voir [11]). Si n représente le nombre d’instructions trap qui entourent l’ins-
truction, alors ces broches sont au nombre de n + 2. Lorsqu’une instruction est démarrée
ou bien relancée, la sortie correspondant au code de complétion de l’instruction est mise
à 1. Si l’instruction n’est pas exécutée, toutes ces sorties sont à 0.

– Les broches E et E’ correspondent à l’interface des signaux de l’instruction. E et E’ ne
sont pas de simples broches. Ce sont en réalités des vecteurs de signaux contenant un fil
par signal. Les broches E et E’ correspondent respectivement aux signaux d’entrée et de
sortie.

2.1.4.2 Exécution des circuits

Le schéma d’exécution des circuits consiste tout d’abord à émettre le signal GO afin de
démarrer l’exécution. Ensuite, à chaque cycle d’horloge, le signal RES est émis. A chaque cycle,
le contrôle se propage par toutes les portes combinatoires du circuit. Les fils correspondants aux
codes de complétion sont calculés et les registres correspondants aux instructions pause actives
sont recalculés à chaque instant en fonction de leur valeur à l’instant précédent. Les signaux
sont reçus et émis par les broches E et E’.

2.1.4.3 Traduction circuit

La traduction structurelle complète des instructions Esterel est donné dans [11]. Cette
traduction produit exactement un registre booléen par instruction pause. La figure 2.6 montre
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la traduction d’une instruction pause sous forme de circuit.

K1

K0

SEL

GO

RES

SUSP

KILL

Fig. 2.6 – Circuit d’une instruction pause.

Les autres instructions du langage ne produisent que des portes combinatoires. La figure 2.7
illustre par exemple la traduction de l’instruction present s then p else q. Les broches de
l’interface du present sont reliées aux broches de l’interface du bloc p par des portes logiques.

...

...

E
SEL

E’
GO

RES

SUSP

KILL K2

K1

K0

GO

RES

SUSP

KILL

E
SEL

E’
GO

RES

SUSP

KILL K2

K1

K0

SEL

K1

K0

K2

s
E E’

Fig. 2.7 – Circuit d’une instruction present.

Au niveau global, la traduction d’un programme Esterel produit un registre supplémen-
taire appelé registre de boot. Ce registre est relié à la broche GO et permet de lancer l’exécution
du programme au premier instant.

2.1.5 Interprétation des circuits en machines de Mealy

Les modèles de circuit et de Mealy FSM permettent de représenter les programmes Esterel
à des niveaux différents :

– La représentation circuit permet de conserver la causalité en rendant explicite les dépen-
dances entre les différentes instructions du programme. En revanche, l’espace des états
atteignables n’est pas calculé explicitement.
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– La construction d’une Mealy FSM rend explicite l’espace des états atteignables mais la
causalité n’est pas préservée.

Partant de ce constat, nous introduisons la notion de machine séquentielle (également appelée
“automate symbolique”). Ce modèle est utilisé par des outils de vérification comme SMV [58] ou
TiGeR [31]. Le modèle de machine séquentielle apporte une vision opérationnelle à la sémantique
d’exécution des circuits ; les fonctions de transition de l’automate décrit implicitement sont
représentées par des formules booléennes.

2.2 La machine séquentielle

Le calcul symbolique des états atteignables s’obtient traditionnellement sur le modèle de la
machine séquentielle. A chaque réaction, ce modèle consomme un ensemble de données I en
entrée et produit un ensemble de données O en sortie, calculé en fonction de I et de l’état R de
la machine. De manière formelle, une machine séquentielle se définit par le triplet :

fsm = (ι,Υ,∆,Γ)

où ι désigne l’état initial, ∆ désigne la fonction de transition et Γ désigne la fonction de sortie
de la machine. Υ désigne l’ensemble des entrées valides de la machine. Il est possible d’abstraire
Υ en supposant que cet ensemble désigne l’univers des entrées tout entier. Ceci revient à ne
poser aucune restriction sur les entrées.
Les fonctions ∆ et Γ calculent respectivement le prochain état et les sorties de la machine en
fonction des entrées courantes et de l’état courant. Si nous notons In, On et Rn les entrées, les
sorties et l’état de la machine à la nème réaction, alors :

On = Γ(In, Rn) pour tout n ≥ 0 (2.1)

R0 = ι

Rn = ∆(In−1, Rn−1) si n > 0 (2.2)

Dans la traduction des programmes Esterel sous forme de circuit, les entrées et les sorties
se composent d’un vecteur de signaux booléens. L’état du circuit est codé par un ensemble de
registres booléens. Soit B = {0, 1} l’ensemble des booléens. Nous avons alors Υ ∈ Bm, I ∈ Bm,
ι ∈ Bp, R ∈ Bp et O ∈ Bq où m, p et q sont le nombre de signaux d’entrée, le nombre de
registres et le nombre de signaux de sortie. La fonction de transition globale ∆ : Bm×Bp → Bp

et la fonction de sortie globale Γ : Bm×Bp → Bq sont naturellement modélisées par un système
d’équations booléennes, comme le montre la figure 2.8.

∆ : (I,R) → R′ = ∆(I, R) (2.3)

Γ : (I, R) → O′ = Γ(I, R) (2.4)

En réalité, chaque registre et chaque signal de sortie possède sa propre fonction de transition
[26]. ∆ et Γ se décomposent ainsi en vecteurs de fonctions δi et γi qui ne dépendent chacune
que de certains registres et de certains signaux d’entrée :

δi : Bmi ×Bpi → B

(Ii, Ri) → r′i = δi(Ii, Ri) (2.5)
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I O

R

Fig. 2.8 – Machine séquentielle.

De même :

γi : Bmi ×Bpi → B

(Ii, Ri) → o′i = γi(Ii, Ri) (2.6)

Les vecteurs Ii et Ri, sous-vecteurs respectifs de I et R, constituent le support de ces fonctions.
mi et pi sont respectivement le nombre de signaux d’entrée et le nombre de registres de ce
support. Si R′ désigne le vecteur 〈r′1 . . . r′p〉 et O′ le vecteur 〈o′1 . . . o′q〉 alors les applications
partitionnées des fonctions de transition et de sortie s’écrivent de la manière suivante :

R′ = ∆(I, R) ⇐⇒
p∧

i=1

r′i = δi(Ii, Ri) (2.7)

et

O′ = Γ(I,R) ⇐⇒
q∧

i=1

o′i = γi(Ii, Ri) (2.8)

2.3 Calcul des états atteignables d’une machine séquentielle

L’espace des états atteignables se calcule sur la représentation circuit du programme Es-
terel par un algorithme de recherche en largeur (ou Breadth First Search) qui traite donc
d’ensembles d’états. La fonction de transition est appliquée successivement à tous les ensembles
d’états atteignables à une certaine profondeur, en partant du singleton formé par l’état initial
jusqu’à ce qu’un point fixe soit atteint quand plus aucun nouvel état n’est découvert. L’algo-
rithme de base est le suivant :
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1 reachable ← ι
2 new ← ι
3 tantque ( new 6= ∅ ) faire
4 new ← Image∆(Υ, new) r reachable
5 reachable ← reachable ∪ new
6 fin tantque

Algorithme 2.1 – Algorithme Breadth First Search

A chaque itération, l’algorithme produit les successeurs de l’ensemble “new” des nouveaux états
découverts à l’itération précédente. Ce travail est réalisé par un calcul de l’image de l’ensemble
new par la fonction de transition ∆ (ligne 4). Parmi tous les successeurs, seuls les nouveaux
états sont conservés (ligne 4). Au début de l’algorithme, new contient l’état initial ι du circuit
(ligne 2). Le point fixe est atteint lorsque l’ensemble des nouveaux états est vide (ligne 3).
Cet algorithme explore les états atteignables par couche successive comme l’illustre la figure

...

niveau 1
niveau 2

niveau n

ι

Fig. 2.9 – Algorithme de base du calcul des états atteignables.

2.9. Par construction, la couche numéro k contient l’ensemble des états accessibles dès la kème

réaction du circuit.

2.4 Calcul symbolique des états atteignables

L’implantation de l’algorithme de calcul des états atteignables requiert l’usage de structures
de données capable de modéliser des ensembles, des fonctions de transitions et permettant de
calculer l’image d’un ensemble par une fonction.

Représentation symbolique des ensembles. Le calcul symbolique des états atteignables
repose sur l’utilisation de fonctions booléennes :

f : BK → B

X → f(X)

où X est le vecteur de dimension K des paramètres de f. De telles fonctions permettent de
représenter symboliquement des ensembles dans BK : implicitement, f est la fonction ca-
ractéristique de l’ensemble Sf =

{
x ∈ BK / f(x)

}
. L’ensemble des états atteignables d’un cir-

cuit, autrement dit l’ensemble des valuations valides de ses registres est ainsi représenté.
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Les opérations propres aux ensembles comme l’union, l’intersection, la soustraction et le calcul
de l’ensemble complémentaire peuvent également être définies à l’aide d’opérations booléennes.
Ainsi, si F et G représentent symboliquement des ensembles, alors :

F ∪G = λX → F (X) ∨G(X) (2.9)
F ∩G = λX → F (X) ∧G(X) (2.10)
F r G = λX → F (X) ∧ ¬G(X) (2.11)

F = λX → ¬F (X) (2.12)

L’ensemble vide est représenté par la fonction f∅ = λX → 0 et son complémentaire, l’ensemble
BK est représenté par la fonction fBK = λX → 1.

2.4.1 Calcul d’image

Notons Φ un ensemble d’états atteignables. Si R appartient à l’ensemble Φ (c’est à dire
si Φ(R) est vrai) et si R′ est l’image de R par la fonction de transition ∆ pour une certaine
valuation valide des entrées (c’est à dire si Υ(I) est vrai et si ∃I / R′ = ∆(I,R)), alors R′

appartient à l’image de Φ par la fonction ∆. L’intégralité de l’image de Φ par ∆ est l’ensemble
Ψ des états R′ tels que R′ est l’image d’une certaine valuation des entrées et d’un certain état
de Φ. L’ensemble Ψ s’écrit formellement de la manière suivante :

Ψ = λR′ →
[
∃I,R / Υ(I) ∧ Φ(R) ∧ R′ = ∆(I, R)

]
(2.13)

Pour que Ψ soit réellement l’expression symbolique d’un ensemble d’états, la dernière opération
consiste à remplacer le nom des variables auxiliaires du vecteur R′ = 〈r′1 . . . r′p〉 par le nom des
variables de registre du vecteur R = 〈r1 . . . rp〉 dans l’expression de Ψ.

Quantification existentielle. La complexité du calcul symbolique de l’image réside dans
la résolution de l’opérateur existentiel. Si f [x→ v] désigne l’expression booléenne obtenue en
remplaçant x par v dans f alors, d’après la décomposition de Shannon, nous avons :

∃x / f = f [x→0] ∨ f [x→1] (2.14)

On parle alors d’élimination existentielle car les variables quantifiées sont éliminées et rem-
placées par des constantes. La complexité de cette décomposition est d’ordre exponentielle par
rapport au nombre de variables quantifiées comme l’illustre l’exemple suivant :

∃x, y / f(x, y)
⇐⇒ ∃y / f(0, y) ∨ f(1, y)
⇐⇒ f(0, 0) ∨ f(0, 1) ∨ f(1, 0) ∨ f(1, 1)

Quantification existentielle partitionnée. Dans la formule du calcul de l’image (équation
2.13), nous pouvons remplacer l’application de la fonction de transition globale par l’application
partitionnées des fonctions suivant les registres [20, 21, 22, 35] (voir l’équation 2.7 à la section
2.2). Ce calcul devient alors :

∃I, R / Υ(I) ∧ Φ(R) ∧
p∧

i=1

r′i = δi(Ii, Ri) (2.15)
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Chaque fonction de transition δi possède son propre support de variable. L’opérateur existentiel
n’est pas distributif par rapport à l’opérateur “∧” ce qui nous interdit de simplifier l’équation
précédente par une formule de la forme

∧p
i=1 ∃Ii, Ri / r′i = δi(Ii, Ri). En évitant de rentrer dans

les détails, la solution consiste à fractionner l’opération existentielle en cherchant les fonctions
ayant des supports communs. Par exemple, une formule comme :

∃x, y, z / f(x) ∧ g(x, y) ∧ h(x, z)

peut se réécrire de la manière suivante :

∃x / f(x) ∧
[
∃y / g(x, y)

]
∧
[
∃z / h(x, z)

]
Dans le calcul de l’image, chaque quantification est ainsi appliquée sur un nombre minimal
de fonctions de transitions. Par rapport à une élimination existentielle globale, cette technique
permet souvent en pratique de briser la complexité exponentielle originale.

L’ordre dans lequel est appliqué l’opérateur existentiel a une influence sur les performances
de ce partitionnement. Dans une formule comme :

∃x, y, z / f(x, y) ∧ g(x, z) ∧ h(y, z)

nous pouvons partitionner le calcul de trois manières différentes selon que l’on souhaite quantifier
en priorité x, y ou z :

∃x, y / f(x, y) ∧
[
∃z / g(x, z) ∧ h(y, z)

]
∃x, z / g(x, z) ∧

[
∃y / f(x, y) ∧ h(y, z)

]
∃y, z / h(y, z) ∧

[
∃x / f(x, y) ∧ g(x, z)

]
Des travaux permettent d’améliorer le partitionnement proposé dans [21] afin de déterminer un
ordre intéressant. Dans [62, 60, 61], cet ordre est déterminé directement à partir des formules
booléennes. Dans [74], des informations de haut niveau permettent de guider et d’améliorer ce
calcul.

2.4.2 Cofacteur

Le calcul symbolique de l’image d’un ensemble par une fonction utilise largement des tech-
niques de simplification connues sous le nom de techniques de cofactoring [28, 29, 30]. Contraire-
ment à d’autres méthodes de simplification, cette technique s’accompagne de perte (contrôlée)
d’information. Le principe est que si la valeur d’une fonction f n’est pertinente que sur un
domaine de définition restreint S, alors S peut être utilisé pour simplifier l’expression de f
(éventuellement en changeant la valeur de f en dehors de S). Nous notons f↓S le cofacteur de
f par l’ensemble S :

f↓S(X) = λX →

{
f(X) si X ∈ S

? si X 6∈ S
(2.16)

La valeur de f↓S en dehors de S n’est pas utilisée et peut valoir n’importe quoi. En pratique,
des techniques existent pour simplifier la taille de la représentation de la fonction f↓S . La figure
2.10 illustre l’effet du cofacteur sur une fonction.
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Fig. 2.10 – Action du cofacteur sur la représentation d’une fonction.

Le cofacteur dans le calcul de l’image. Dans le calcul de l’image, un opérateur de cofacteur
approprié est systématiquement utilisé pour réduire les fonctions de transitions en utilisant
l’ensemble des nouveaux états comme domaine de définition. Le calcul de l’image de l’équation
2.15 devient :

∃I, R / Υ(I) ∧ Φ(R) ∧
p∧

i=1

r′i = δi↓Φ(Ii, Ri) (2.17)

En réalité, les fonctions de transition sont construites à la volée à partir de la machine à états
finis. De cette manière, les fonctions de transition ne sont jamais complètement représentées afin
de simplifier leur représentation. Plus précisément, soit r un registre, si la condition d’activation
de r (l’ensemble des états pour lesquels r = 1) et le domaine de la fonction de transition sont
disjoints, alors la fonction de transition de r peut se réduire à une très simple expression :
λr → ¬ r. Autrement dit, les fonctions de transition construites à partir de registres inactifs
sont très simples.

2.5 Les Diagrammes de Décision Binaires

Afin d’implanter l’algorithme de calcul des états atteignables de la section 2.3, il est né-
cessaire de représenter les fonctions booléennes f : BK → B par des structures de données
efficaces, incluant du partage d’information : les Diagrammes de Décision Binaires ou BDDs
[3]. Les BDDs ont été originellement introduits par Lee [54] et Akers [1]. La forme actuelle des
BDDs est due à Bryant [18, 19].

2.5.1 Notions de base

Arbres de décision. Un arbre de décision se compose de noeuds de la forme (v ? t, e) où v est
une variable booléenne et t et e sont des arbres de décision. Les feuilles d’un arbre de décision
sont des constantes booléennes (1 ou 0). Les arbres de décision sont utilisés pour représenter des
formules booléennes : tout noeud (v ? t, e) s’interprète comme un opérateur if-then-else, c’est à
dire “if v then t else e” formellement défini par la formule :

(v ? t, e) = (v ∧ t) ∨ (¬ v ∧ e) (2.18)

Cette représentation est aussi appelée If-then-else Normal Form (INF). Il est facilement démon-
trable que toute expression booléenne peut se traduire en expression INF. En effet, un arbre de
décision n’est intuitivement rien de plus que la traduction arborescente d’une table de vérité.
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Diagrammes de Décision Binaires. Conceptuellement, un Diagramme de Décision Binaire
est un arbre de décision dans lequel on aurait supprimé toute information redondante. Ainsi, un
BDD n’est plus un arbre d’expression booléennes mais un graphe acyclique orienté (DAG). La
figure 2.11 présente un exemple de représentation INF et BDD de la même expression booléenne.

10 1 0 0 10 1 0 1 0 1 0

F

y

xx

yy
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10
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y

F

w

zz

Fig. 2.11 – Arbre de décision (à gauche) et Diagramme de Décision Binaire (à droite)
représentant la même expression booléenne F . Les lignes pleines correspondent aux instances
positives des variables, les lignes discontinues aux instances négatives.

Ordre des variables. Dans un BDD, les variables sont strictement ordonnées de telle
sorte que, en parcourant un BDD depuis sa racine :

1. les variables sont toujours placées dans le même ordre, quel que soit le chemin parcouru,
2. chaque variable n’est rencontrée qu’une seule fois.

Le choix de l’ordre des variables est très important dans la construction d’un BDD. Il peut
faire la différence entre un BDD de taille polynomiale et un BDD de taille exponentielle. La
figure 2.12 présente deux exemples d’ordre de variables pour représenter une même fonction.
Trouver le meilleur ordre de variable est un problème NP-complet [75]. Toutefois, il existe des
heuristiques qui permettent de trouver un ordre convenable [56, 77, 7].
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Fig. 2.12 – Deux BDDs représentant l’expression booléenne (w = x) ∧ (y = z). Le choix de
l’ordre des variables a une influence directe sur la taille des BDD.
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Règles de réduction. Conceptuellement, un BDD se construit à partir d’un arbre de
décision en appliquant, autant que possible, les règles de réduction suivantes :

1. Unicité : Les noeuds identiques sont fusionnés. Deux noeuds distincts ne doivent pas être
composés de la même variable et des mêmes sous-graphes :

si U = (v ? t, e) et V = (v′ ? t′, e′)
alors (v = v′) ∧ (t = t′) ∧ (e = e′) =⇒ U = V (2.19)

2. Non-redondance : Les noeuds dont les deux sous-graphes sont identiques sont sup-
primés. Pour tout noeud de BDD de la forme (v ? t, e) on a :

t 6= e (2.20)

En pratique, les BDDs sont directement construits sous leur forme réduite sans générer l’arbre
de décision complet.

vv v v vv

Fig. 2.13 – Règles de réduction des noeuds de BDDs.

Canonicité. Pour un ordre de variable donné, la représentation BDD des fonctions booléennes
est canonique [18]. Les règles de réduction nous garantissent que deux expressions booléennes
équivalentes sont représentées par un graphe unique. Ainsi, la comparaison de deux expressions
booléennes est une opération en temps constant qui consiste à vérifier si les racines des graphes
sont égales. En particulier, pour vérifier si une expression est une tautologie, il suffit de vérifier
si son BDD se réduit à la constante 1.

2.5.2 Raffinements

Marquage des arcs. Une optimisation supplémentaire permet de représenter en même temps
une expression et sa négation avec un unique BDD [55, 16]. Pour cela, certains arcs sont marqués
d’une négation : si U est un noeud de BDD, alors nous notons ¬U le marquage négatif de U .
Cette expression représente naturellement la négation de l’expression U . Dans ce formalisme, la
constante 0 n’est plus nécessaire car elle se traduit par ¬ 1.
Afin de conserver une représentation canonique, il est nécessaire d’imposer une restriction pour
le marquage des arcs. Si (v ? t, e) est un noeud de BDD non marqué alors il est interdit de
marquer le noeud t. Autrement dit, seuls (v ? t, e) et (v ? t,¬ e) sont des noeuds marqués valides.
La figure 2.14(a) présente les règles qui permettent de conserver des noeuds marqués sous forme
canonique.
Ce raffinement permet d’éliminer quelques noeuds supplémentaires dans les BDDs comme le
montre la figure 2.14(b) représentant l’expression (w = x) ∧ (y = z). Il permet en outre de
calculer la négation d’une expression en temps constant.
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Fig. 2.14 – Marquage canonique des arcs (a). BDD de (w = x) ∧ (y = z) (b).

Fonctions Booléennes Compactées. Le dernier raffinement concernant le codage des BDD
est apporté par l’introduction des Fonctions Booléennes Compactées ou CBF. Le principe
consiste à détecter dans un BDD toutes les équivalences et les non-équivalences entre les va-
riables. La CBF d’un BDD U se compose :

– d’un BDD V épuré de toute redondance, de taille inférieure à celle de U ,
– d’un ensemble R = {x1 ∼ y1 . . . xn ∼ yn} de relations entre variables de la forme xi = yi

ou bien xi 6= yi.
Une CBF (V, {x1 ∼ y1 . . . xn ∼ yn}) représente ainsi l’expression :

U = V ∧

(
n∧

i=1

xi ∼ yi

)
(2.21)

Sur un exemple précis, l’expression (w = x)∧(y = z) se traduit par la CBF : (1, {w = x, y = z}).
Lors d’un calcul entre deux CBFs, cette représentation permet de factoriser l’ensemble des
relations communes sans nécessairement reconstruire le BDD original. Cette factorisation n’est
pas possible pour n’importe quelle opération logique. Si ? désigne l’un des opérateurs booléens
“∨”, “∧” ou “∧¬ ” et si (U1,R1) et (U2,R2) sont deux CBFs tels que r = {x ∼ y} ∈ R1 et
r ∈ R2, alors :

[
U1 ∧ R1

]
?
[
U2 ∧ R2

]
= r ∧

([
U1 ∧ R1rr

]
?
[
U2 ∧ R2rr

])
(2.22)

Les opérateurs désignés par ? permettent de calculer l’union, l’intersection et la soustraction de
deux ensembles comme nous l’avons vu à la section 2.4. Les CBFs sont ainsi particulièrement
adaptées à la représentation et à la manipulation des ensembles.

Travaux autour des BDDs. Des travaux un peu éloignés des nôtres utilisent des BDD par-
titionnés [51] pour calculer l’espace des états atteignables [50, 64]. L’idée consiste à partitionner
l’espace booléen afin de pouvoir utiliser un ordre des variables différent dans chaque partition.
D’autres travaux décrits dans [43, 52, 70] choisissent de modifier localement et dynamiquement
l’ordre des variables afin de réduire la taille des BDDs selon les besoins des calculs en évolution.
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2.5.3 Calculs symboliques et BDDs

Afin de construire les BDDs dans leur forme réduite, il est nécessaire de s’assurer que chaque
noeud U = (v ? t, e) est unique. Pour cela, nous supposons l’existence d’une table T qui à chaque
triplet (v ? t, e) associe un unique noeud U :

T : (v ? t, e) → U

Nous supposons également que l’opération consistant à associer un triplet à un noeud est ef-
fectuée en temps constant. En pratique cette complexité peut être obtenue en représentant T

par une table de hachage.

2.5.3.1 Formules propositionnelles

La décomposition de Shannon nous permet de transformer une expression booléenne f en
une représentation sous forme de BDD notée bdd(f). Si un ordre sur les variables v1, . . . vn est
fixé alors la construction de bdd(f) s’effectue récursivement de la manière suivante :

bdd(f) = (v1 ? bdd(f [v1→1]), bdd(f [v1→0]))

La complexité en temps de cette construction est mauvaise car le nombre d’appels récursifs est
exponentiel par rapport au nombre n de variables dans f et comme nous l’avons déjà dit, le
BDD généré peut être de taille exponentielle.
Il est malheureusement difficile de faire mieux car la construction d’un BDD à partir d’une
expression booléenne est un problème NP-complet. Rappelons que tester si une expression
booléenne est satisfiable est un problème NP-complet. Dans un BDD, ce test est réalisé en temps
constant. Il est donc aussi difficile de trouver un algorithme polynomial capable de transformer
une expression booléenne en BDD que de démontrer que P est égal à NP.

2.5.3.2 Opérations basiques

La négation d’un BDD peut se calculer en temps constant (voir section 2.5.2). Si ? désigne
un opérateur booléen binaire quelconque, et si U = (v ? t1, e1) et V = (v ? t2, e2) désignent deux
noeuds de BDD portant sur la même variable v alors l’application de ? à U et V s’effectue de
la manière suivante :

U ? V = (v ? t1 ? t2, e1 ? e2)

On pourra facilement se convaincre de la véracité de cette formule en utilisant la décomposition
de Shannon sur U et V. Pour éviter l’explosion exponentielle du nombre d’appels récursifs, il
est possible d’utiliser une table permettant de mémoriser chaque résultat intermédiaire Ui ? Vj .
Nous supposons que l’accès à cette table en fonction de Ui et Vj peut être réalisé en temps
constant. Si nous appelons m le nombre de noeuds de BDD de U et n le nombre de noeuds de
BDD de V alors la complexité en temps et en espace du calcul de U ? V dans le pire des cas est
de l’ordre de m× n.

2.5.3.3 Quantification

Restriction. Les calculs de quantification d’un BDD utilisent un opérateur de restriction. La
restriction d’un BDD consiste à remplacer une variable par une constante (0 ou bien 1) dans le
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BDD d’origine. Cette opération est réalisée d’après les relations suivantes :

(v ? t, e)[v→1] = t

(v ? t, e)[v→0] = e

(v′ ? t, e)[v→b] = (v′ ? t[v→b], e[v→b])

Cette opération a un coût linéaire en temps et en espace par rapport au nombre de noeuds dans
le BDD original.

Quantification existentielle. La quantification existentielle est issue de la décomposition
de Shannon comme dans les expressions booléennes de la section 2.4.1 :

∃v / U = U [v→0] ∨ U [v→1]

Nous ne dirons rien sur la quantification universelle qui se déduit facilement de la quantification
existentielle. Le coût théorique de cette quantification est égal au coût de deux restrictions
ajouté au coût de l’application de l’opérateur “∧”, c’est à dire quadratique par rapport au
nombre de noeuds. En pratique, cette opération tend à diminuer le nombre de noeuds dans le
BDD quantifié car elle permet de supprimer des variables et donc de réduire le support du BDD.

Quantification dans le calcul de l’image. La complexité en espace du calcul de l’image par
les BDDs réside dans le fait que l’expression de l’image repose simultanément sur les variables
décrivant les anciennes et les nouvelles valeurs des registres. La relation de transition désigne
l’expression :

R′ = ∆(I,R)

qui, dans l’expression du calcul de l’image, possède le plus grand support. Les techniques de
partitionnement du calcul de l’image présentées à la section 2.4.1 et appliquées aux BDDs n’ont
pas pour but principal de simplifier le calcul de la quantification existentielle mais avant tout
d’éviter la représentation de la relation de transition complète. En revanche, les moyens mis en
place sont les mêmes que ceux décrits dans cette section.

2.5.3.4 Substitution

La substitution de la variable v par le BDD V dans le BDD U est l’opération consistant à
remplacer chaque occurrence libre de la variable v par l’expression décrite par V dans l’expression
de U . Cette opération est notée :

U [v→V]

Dans un BDD, autrement dit une expression INF ne contenant aucun quantificateur, toutes les
variables sont libres. Si l’expression V s’évalue à 1 alors U [v→V] se réduit en U [v→1]. Sinon,
l’expression se réduit en U [v→0]. L’opération de substitution est donc une opération if-then-else
dans laquelle le test est conditionné par la valeur de l’expression V. La définition de l’opérateur
if-then-else est donnée à la section 2.5.1. Ainsi, nous avons :

U [v→V] = (V ∧ U [v→1]) ∨ (¬V ∧ U [v→0])
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Substitution dans le calcul de l’image. Le calcul de l’image nécessite un renommage des
variables afin d’exprimer l’ensemble des nouveaux états découverts à partir des variables de
registres (voir section 2.4.1). L’opérateur de substitution permet de réaliser cette opération.

2.5.3.5 Cofacteur et BDDs

Les opérateurs de cofacteur peuvent s’appliquer aux BDDs. Le cofacteur d’un BDD U par
un BDD V noté U↓V permet de supprimer des noeuds dans U en restreignant le domaine de U
à l’ensemble V (voir section 2.4.2). Un algorithme pour cet opérateur a été proposé par Olivier
Coudert et al. dans [27]. Cet algorithme permet de supprimer des noeuds dans trois cas. Si le
domaine est vide, c’est à dire représenté par le BDD 0, alors le résultat est un BDD constant
(0 ou bien 1, nous avons choisi 0) :

(v ? t, e)↓0 = 0

Les deux autres simplifications s’appliquent si les variables à la racine des BDDs sont identiques
et si l’une des deux branches de V est 0. Supposons par exemple que la branche “then” de V soit
0. Dans ce cas, la branche “then” de U peut être remplacée par n’importe quel BDD. Le choix
le plus efficace consiste à lui attribuer le même BDD que sa branche “else” et donc à supprimer
la racine de U (voir les règles de simplification des BDDs à la section 2.5.1). Ces simplifications
sont formellement données par les relations suivantes :

(v ? t, e)↓(v ? t′,0) = t↓t′

(v ? t, e)↓(v ? 0,e′) = e↓e′

Dans le cas général, l’opérateur de cofacteur s’applique comme n’importe quel opérateur booléen
binaire. Ainsi, si U = (v ? t, e) et V = (v ? t′, e′) désignent deux noeuds de BDD portant sur la
même variable v alors :

U↓V = (v ? t↓t′ , e↓e′)

Le coût théorique en temps de cet opérateur est proportionnel au produit du nombre de noeuds
dans U et dans V. Le BDD résultant de cette opération est souvent plus simple que U . Dans le
pire des cas, l’algorithme proposé par Olivier Coudert peut toutefois produire un BDD plus large
que U . Des méthodes permettent d’améliorer cet opérateur et de garantir de ne pas augmenter
la taille de U [44].



Chapitre 3

Présentation Intuitive

L’économie de la consommation mémoire est un enjeu majeur dans l’implémentation des
calculs symboliques d’espaces d’états. La consommation mémoire est liée à la taille des BDDs
nécessaires aux calculs. Les ressources mémoire sollicitées par les BDDs dans l’algorithme de
base rendent l’analyse de certains programmes impossible (à cause du dépassement de la capacité
mémoire). Plus précisément, on constate en pratique que les plus gros besoins en mémoire sont
transitoires et induits par l’application de la fonction de transition sur un ensemble “provisoire”
d’états, lors du calcul de son image. En particulier, les itérations intermédiaires de l’algorithme
de base sur des représentations d’ensembles d’états “non saturés” produisent les plus gros BDDs
comme le montre la figure 3.1. Ce phénomène peut s’expliquer par le fait que la représentation
symbolique d’un ensemble vide est aussi simple que la représentation de l’ensemble de tous les
états. De ce fait, l’exploration des états atteignables tend en pratique à simplifier les BDDs dans
les dernières étapes de calcul.

Etapes de l’algorithme
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Fig. 3.1 – Evolution typique de la taille des BDDs dans l’algorithme Breadth First Search. La
ligne discontinue représente l’évolution de la taille du BDD des états atteints au cours du calcul.
La ligne pleine représente la taille des BDDs nécessaires au calcul de l’image. La consommation
tend à diminuer sur la fin des calculs car la représentation des états atteints tend à se régulariser
en se saturant.

Nos travaux visent à réduire ces besoins en mémoire. Notre stratégie a pour but de par-
titionner le domaine d’application de chaque fonction de transition et de saturer les BDDs
intermédiaires au plus tôt afin de :

31
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– diminuer la taille des BDDs nécessaires au calcul de l’image,
– diminuer la taille des BDDs intermédiaires nécessaires à la représentation des états at-

teints.
Nous nous attendons à ce que cette stratégie nécessite un temps de calcul plus important que
par l’algorithme Breadth First Search car la fonction de transition est appliquée un plus grand
nombre de fois. Notre stratégie propose donc un compromis entre le temps et l’espace nécessaire
aux calculs. Toutefois, il est possible qu’un plus grand nombre d’opérations appliquées à des
structures plus petites soit plus rapide qu’un nombre réduit d’opérations appliquées à des objets
plus gros. L’évolution espérée de la taille des BDDs au cours des calculs est illustrée par la figure
3.2.

Etapes de l’algorithme
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Fig. 3.2 – Evolution attendue de la taille des BDDs dans l’algorithme partitionné. Les états
intermédiaires sont idéalement encodés par des BDDs dont la taille est inférieure à celle du
BDD final (ligne discontinue). La courbe représentant la taille attendue des BDDs nécessaires au
calcul de l’image (ligne pleine) présente également moins de fluctuations que dans l’algorithme
Breadth First Search.

Pour y parvenir, nous partons de l’observation que toutes les instructions du programme
ne sont pas actives simultanément à chaque instant dans l’exécution d’un programme. Dans le
simple exemple suivant :

present S then P else Q end

l’exécution de P ou Q est conditionnée par la présence d’un signal S. Les états correspondant
à l’activation du bloc P sont distincts des états correspondant à l’activation du bloc Q. Les
registres des deux blocs ne sont jamais actifs simultanément. Ainsi, le calcul des états attei-
gnables dans P ne nécessite pas l’intégralité de la fonction de transition. En particulier, le bloc
Q étant inactif, la représentation de ses comportements dans la fonction de transition n’est pas
nécessaire.
Plus généralement, la structure des programmes Esterel décrit souvent un enchâınement de
blocs (ou de macros-états) dans lesquels seule une partie des registres (et donc des comporte-
ments) est active. Ces blocs sont naturellement décrits par la syntaxe des programmes.
Plutôt qu’appliquer une fonction de transition globale avec une politique Breadth First Search,
nos travaux visent à appliquer successivement des parties de la fonction de transition. Le but est
de savoir combiner les applications de ces parties de fonction de transition afin d’être équivalent
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avec l’application de la fonction de transition globale. Pour cela, nous proposons de suivre au-
tant que possible la syntaxe et donc la logique de l’enchâınement du contrôle entre les états
décrits par cette syntaxe, comme dans une exécution symbolique. D’une manière générale, nous
cherchons à saturer l’exploration de chaque bloc avant d’aller prospecter les comportements ac-
tivés par la terminaison de ce bloc. Lorsqu’aucun nouvel état ne peut être découvert, le calcul se
poursuit avec une autre partie de la fonction qui concerne un autre macro-état du programme.
Ainsi, en explorant les états valides bloc après bloc, nous espérons réduire les besoins en mémoire
du calcul de l’image.

Notre partitionnement du calcul des états atteignables consiste à construire ces parties de la
fonction de transition et à réorganiser les calculs d’image afin de prendre en compte séparément
plusieurs fonctions de transition disjointes contre une seule monolithique dans l’algorithme de
base. Pour cela, nous nous appuyons sur la structure des programmes source : nous voulons
construire progressivement l’espace des états accessibles en suivant la structure algorithmique
naturelle du programme.
Alors que le calcul des états atteignables s’effectue sur une représentation circuit, le partitionne-
ment que nous proposons puise son inspiration au niveau du code Esterel source. Nous verrons
dans un chapitre ultérieur comment nous effectuons la liaison entre ces deux représentations.
Pour le moment, nous admettrons que les raisonnements que nous faisons ici au niveau du code
source peuvent être reportés au niveau circuit pour partitionner la description de la fonction de
transition, puis le calcul des états atteignables.

3.1 Description générale de la méthode

Notre méthode de partitionnement repose sur l’idée que le corps d’un programme peut se
diviser suivant des blocs (ou macro-états) de granularité appropriée. Dans des composants dits
“séquentiels”, les blocs sont combinés en séquence, en boucle ou bien en alternative par le
biais d’une instruction if-then-else. La recherche partitionnée des états atteignables s’effectue à
l’intérieur de chacun de ces blocs individuellement. On ne passe d’un bloc à un autre qu’une fois
que l’algorithme s’est stabilisé pour le premier. L’exploration de chaque nouveau bloc démarre
à partir d’un nouvel ensemble d’états initiaux, états obtenus à partir de l’exploration des blocs
précédents : les états situés exactement sur une frontière entre deux blocs sont en même temps
les états finaux du premier bloc et les états initiaux du second (voir figure 3.3). En réalité,

Q
P

Fig. 3.3 – Frontière entre deux blocs P et Q. Les états finaux de P servent d’états initiaux à
Q.

les états situés sur une frontière appartiennent clairement au second bloc mais les transitions
qui mènent à eux proviennent du premier bloc. Pour interdire l’exploration de certains blocs,
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il suffit d’interdire l’activation des registres qui les constituent, ce qui simplifie drastiquement
l’expression BDD des fonctions de transition.

Cette méthode soulève un problème en présence de parallélisme, dans le cas où deux frontiè-
res peuvent être traversées de manière concurrente dans des composants s’exécutant en parallèle.
Le cas est illustré par l’exemple suivant qui contient une frontière entre P1 et P2 d’une part et
Q1 et Q2 d’autre part :

P1; P2

||
Q1; Q2

Prendre alors en compte toutes les combinaisons de blocs possibles, autrement dit le produit
cartésien, mènerait à une explosion du nombre de cas possibles : ici [P1 || Q1], [P1 || Q2],
[P2 || Q1] ou bien [P2 || Q2].

Schéma général. Nous choisissons donc de mettre en place la stratégie suivante : tout
d’abord, il est important de trouver un “bon” ordonnancement des frontières afin de suivre
la progression naturelle de l’exploration des états. Ensuite, nous commençons avec un nombre
minimal de blocs actifs et nous activons progressivement les blocs un à un, à chaque fois que
nous décidons d’ouvrir une nouvelle frontière. Quand une frontière a été ouverte, elle n’est plus
refermée. Ainsi, la fonction de transition initialement très réduite, ne fait que crôıtre vers la
fonction de transition globale complète. Dans le même temps, les parties déjà atteintes par les
fonctions de transition antérieures n’auront plus à être considérées. Les fonctions de transi-
tion étendues poursuivent l’exploration des états atteignables à partir des dernières frontières
ouvertes.

Fig. 3.4 – Méthode de partitionnement selon quatre blocs de programme. Les frontières entre
les blocs (représentées par des lignes discontinues) sont ouvertes une à une et ne sont jamais
refermées.

Nous choisissons de n’ouvrir une frontière que lorsque l’exploration des blocs présentement
actifs ne permet plus de découvrir de nouveaux états. De cette manière, les états atteints lors
des étapes précédentes du calcul le sont à partir d’une fonction de transition réduite. Dans le
même temps, nous n’appliquons les fonctions de transition grandissantes qu’à l’ensemble des
états situés à l’extérieur des blocs précédents, car ce sont les seuls capables d’engendrer de
nouveaux états. Là-dessus, l’utilisation d’opérateurs de cofacteur nous permet d’espérer alléger
la représentation de la fonction de transition en ne conservant que la description des nouveaux
comportements, c’est à dire les transitions portant sur des blocs nouvellement activés. L’action
combinée des frontières et du cofacteur nous permet d’espérer réduire le calcul des états attei-
gnables en se focalisant à chaque fois sur un nombre de blocs actifs réduit. Cette progression
par “vague” est illustrée par la figure 3.4 et la figure 3.5 montre un détail des comportements
à la frontière.
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Fig. 3.5 – Détail de notre méthode de partitionnement sur une frontière entre deux blocs P et Q.
Au cours des trois premières étapes, P est entièrement exploré. Les états qui “débordent” hors
de P ne sont pas utilisés dans le calcul de l’image. Dans les trois dernières étapes, l’exploration
de P et de Q est effectuée à partir des états “en attente” obtenus précédemment. Comme P
a été entièrement exploré, cette seconde phase d’exploration ne concerne plus que les états de
Q. Dans cette figure, les ronds blancs désignent les états source et les ronds noirs désignent
les nouveaux états cible à une étape donnée. Les ronds gris sans cercle représentent les états
précédemment atteints et les ronds gris avec cercle représentent les états en attente.

Support syntaxique. La division du programme en blocs ainsi que la définition de frontières
pertinentes dépend fortement de la structure et donc de la syntaxe des programmes. Plus par-
ticulièrement, cette division repose principalement sur la réception des signaux comme dans
l’exemple :

abort P when S

Nous utilisons un graphe de flot de contrôle pour nous aider dans cette tâche. Le graphe est
construit directement au dessus de l’arbre syntaxique du programme de telle sorte que l’arbre
syntaxique et le graphe de contrôle partagent les mêmes noeuds. Le graphe décrit tous les che-
mins possibles suivis par le contrôle entre chacune des instructions du programme Esterel
et en particulier entre les registres qui dans le programme correspondent aux points d’arrêt
possibles du contrôle entre les instants (et qui correspondent à l’opérateur pause dans le pro-
gramme source). La frontière entre les blocs actifs et inactifs est alors décrite en sélectionnant
un sous-ensemble des arcs du graphe. Au cours des calculs, ce sous-ensemble est amené à varier
au fur et à mesure que des frontières sont ouvertes, que des blocs sont activés et que la fonction
de transition est étendue, comme nous l’avons décrit précédemment. A partir du graphe courant
contenant des arcs ouverts et fermés, chaque macro-étape de l’algorithme itératif consiste à :

– calculer l’ensemble des registres inactifs afin de construire une description BDD de l’en-
semble des blocs considérés,

– sélectionner parmi les états dits “en attente” un nouvel ensemble d’états initiaux pour la
prochaine étape,

– achever l’exploration à l’intérieur des blocs actifs courants. Les états découverts à l’exté-
rieur des blocs actifs sont placés “en attente”,

– une fois l’exploration des blocs actifs courants terminée, d’autres frontières sont ouvertes
et de nouveaux blocs sont activés.

L’algorithme se termine une fois que l’ensemble des états en attente est vide. Dans les sections
suivantes, nous décrivons les critères du choix de nos frontières en fonction de la syntaxe des
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programmes.

3.2 Partitionnement des blocs séquentiels

Dans cette section, nous nous intéressons au découpage des blocs séquentiels dont le traite-
ment est simple. Ce découpage peut s’opérer de manière récursive. De plus, il existe de nom-
breuses similitudes dans le traitement des opérateurs de séquence, de choix et de préemption.
Le partitionnement que nous proposons permet de suivre fidèlement la structure de contrôle
du programme source. Nous présentons ici le partitionnement de chacune des constructions
séquentielles.

3.2.1 L’opérateur de séquencement

Considérons un programme formé de deux blocs d’instructions composés en séquence :

P ; Q

Si l’ensemble des états atteignables est calculé par un algorithme de recherche Breadth First
Search et si la progression à chaque niveau de profondeur est réalisée par l’application d’une
fonction de transition globale, alors il se peut que des états de Q soient découverts avant d’avoir
épuisé la recherche des états dans P . Le problème concerne plus particulièrement la terminaison
de P .

3.2.1.1 Terminaison des blocs de programme

Il y a deux cas où partitionner une séquence ne constitue qu’une dépense d’énergie inutile.
Le premier est le cas évident où P ou bien Q ne contient aucune instruction pause. Le second
est en rapport avec la durée de P .

Blocs de durée fixe. Si le comportement de P est de longueur fixe, alors toutes les termi-
naisons possibles de P se produisent “à la même date”. En d’autre terme, le calcul en largeur
des états de P ; Q ne peut exhiber des états de Q que lorsque tous les états de P sont explorés.
Par exemple, si P est de la forme :

present S then

pause1

else

pause2

end;
pause3

alors les deux exécutions possibles de P se déroulent toujours en deux instants. Dans ce cas,
l’algorithme Breadth First Search se comporte de la manière suivante :

– La première itération permet de découvrir deux états de P , un état dans lequel seule
pause1 est active et un état dans lequel seule pause2 est active.

– La deuxième itération permet de découvrir un état supplémentaire de P dans lequel seule
pause3 est active.
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– A partir de la troisième itération, tous les états de P ont été explorés et l’algorithme passe
automatiquement à l’exploration de Q.

Pour le cas où P est un bloc de durée fixe, il n’y a donc aucun intérêt particulier à partitionner
explicitement la séquence P ; Q suivant sa syntaxe (mais il n’y a également aucun inconvénient).

Blocs de durée variable. Si le comportement de P est de longueur variable, alors l’algo-
rithme Breadth First Search peut commencer à explorer Q sans que P soit “saturé”. On obtient
alors des représentations mélangeant “des bouts” de P avec “des bouts” de Q (voir figure 3.6).
Dans un exemple plus précis, si P est de la forme :

Q

P

Q

P

Q

P

Q

P

Q

P

Fig. 3.6 – Exploration des états atteignables dans une séquence P ; Q. L’exploration de Q
commence avant que celle de P soit achevée.

abort R when S

où S est un signal externe, alors Q est potentiellement actif dès le deuxième instant ; à la n-ème
itération, l’algorithme de calcul des états atteignables est capable de produire de nouveaux états
dans P de profondeur n et de nouveaux états dans Q de profondeur n− 1.

3.2.1.2 Points faibles de l’algorithme Breadth First Search

L’algorithme de recherche en largeur présente les points faibles suivants :
– La représentation des états atteignables dans les calculs intermédiaires encode en même

temps des états de P et de Q. Or, c’est précisément dans les étapes de calcul intermédiaires
que la représentation des états atteignables suscite les plus gros BDDs, plus que dans les
étapes initiales ou finales de l’algorithme. Ainsi, le fonctionnement de l’algorithme fait
que les gros BDDs nécessaires à la représentation de l’ensemble des états provisoirement
atteints de P sont automatiquement combinés avec les gros BDDs représentants les états
provisoirement atteints de Q. De plus, comme les BDDs représentant les états de P et
de Q reposent sur des supports disjoints, la combinaison de ces deux ensembles d’état ne
permet pas de bénéficier pleinement du partage de l’information propre aux BDDs ; par
conséquent, le résultat d’une telle combinaison est souvent un très gros BDD.

– La représentation de la fonction de transition combine les transitions de P et de Q. Ce
point est particulièrement préjudiciable car, dans l’algorithme Breadth First Search, la
représentation de la fonction de transition constitue, avec le calcul de l’image qui en
découle, l’opération nécessitant les plus gros BDDs.
La syntaxe du programme nous indique que P et Q s’exécutent en séquence. En d’autre
termes, cela signifie que lorsque le bloc P est actif, alors le bloc Q est inactif et récipro-
quement ; P et Q sont mutuellement exclusifs. Or, cette propriété n’est pas exploitée dans
l’algorithme de recherche en largeur.
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3.2.1.3 Partitionnement

Partitionner séquentiellement la recherche des états atteignables en traitant intégralement
P , puis Q peut nous permettre d’alléger la représentation des ensembles d’états provisoires
mais aussi et surtout la représentation de la fonction de transition et le calcul de l’image en se
focalisant sur une partie du programme à chaque étape du calcul comme l’illustre la figure 3.7.

R1 R2 R3 R4 R5R1 R2 R3 R4 R5 R3 R4 R5R2R1

100 1 0 1

; P QP Q

Fig. 3.7 – Représentation de la fonction de transition de P ; Q dans l’algorithme Breadth
First Search (à gauche) et dans l’algorithme partitionné (à droite). P et Q étant indépendants,
le partage de l’information dans les BDDs (représenté par les zone sombres) ne s’opère pas bien
entre P et Q. Le partitionnement permet de simplifier l’expression de la fonction de transition.

Dans cet exemple, le partitionnement que nous proposons consiste à découper le proces-
sus en deux phases. La première phase consiste à saturer l’exploration des états accessibles à
l’intérieur de P uniquement. Il s’agit de bloquer explicitement les transitions correspondant à la
terminaison normale du bloc P et interdire ainsi l’exploration des états de Q. De cette manière,
seuls les ensembles d’états intermédiaires de P sont encodés et seule la partie de la fonction
de transition correspondant au bloc P est utilisée. De manière analogue, la deuxième phase
parachève le calcul par la saturation des états de Q. Dans cette deuxième phase, la fonction
de transition que nous utilisons encode les comportements de P et de Q, mais comme tous les
états de P ont déjà été découverts dans la première phase, l’opérateur de cofacteur permet de
ne conserver que les transitions issues du bloc Q.

3.2.2 L’opérateur de choix

Nous reconsidérons à présent l’exemple de l’introduction :

present S then P else Q end

Ici, la situation est très similaire à celle de l’opérateur de séquencement. Si nous supposons
qu’aucune des deux branches ne termine instantanément alors les états accessibles dans P et
Q peuvent être construits indépendamment alors que l’algorithme de recherche en largeur s’ac-
complit en parallèle dans les deux blocs. Ici encore, nous proposons de partitionner la recherche
des états, d’abord dans P puis dans Q afin de réduire la taille des BDDs nécessaires aux calculs.

Plus concrètement, les calculs se déroulent comme pour la séquence. Dans un premier temps,
nous supposons que la fonction de transition a été appliquée de telle sorte que les états initiaux
de P et Q ont été construits. Dans un second temps il s’agit de bloquer explicitement l’ex-
ploration des états de Q. De cette manière nous saturons P . Dans un troisième temps, nous
utilisons l’opérateur de cofacteur sur la fonction de transition globale (qui encode la totalité
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des comportements de P et Q) de telle manière que seules les transitions de Q sont réellement
encodées.

3.2.3 Le mécanisme de préemption ou d’exception

Notre calcul partitionné des états atteignables consiste à saturer l’exploration d’un bloc
avant d’aller prospecter les comportements activés par la terminaison de ce bloc. Considérons
l’exemple suivant :

abort P when S

dans lequel un programme P est exécuté jusqu’à réception d’un signal S. En plus des terminai-
sons normales liées à l’achèvement du bloc P , l’opérateur de préemption permet d’ajouter des
moyens de terminaisons “prématurées”. De ce point de vue, ce mécanisme est similaire à celui
des exceptions. Pour notre partitionnement du calcul des états atteignables, nous souhaitons
bloquer explicitement les transitions correspondant à toutes les terminaisons de P , aussi bien
les terminaisons normales que celles engendrées par l’instruction abort et ce tant que tous les
états de P ne sont pas explorés. Nous voulons donc considérer toutes les transitions sortant de
P comme des frontières.
Le fait de bloquer explicitement toutes les terminaisons prématurées de P aura bien évidemment
pour effet de bloquer aussi toutes les émissions du signal S dans le reste du programme qui pour-
raient la causer car les émissions et les réceptions de S sont en relation directe dans la fonction
de transition globale : “si S n’est pas reçu c’est qu’il n’a pas été émis”.

3.2.4 Découpage de programme séquentiel : un exemple

Considérons le programme séquentiel suivant :

abort P when S1;
present S2 then Q1 else Q2 end;
R

Ce programme est constitué de trois blocs en séquence P , Q et R. Le bloc Q se décline en
deux blocs Q1 et Q2 articulés par l’opérateur de choix. L’exploration Breadth First Search de
ce programme est illustrée par la figure 3.8. Le partitionnement de la séquence ne produit en

P

QQ

R

21

Fig. 3.8 – Exploration Breadth First Search d’un programme séquentiel.
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lui-même aucune frontière. L’instruction abort produit automatiquement des frontières à la
sortie de P . Le partitionnement de l’instruction present produit des frontières autour de cha-
cune des branches Q1 et Q2 (avant et après chaque branche). Certaines des frontières produites
automatiquement sont donc redondantes (notamment à la sortie de P et à l’entrée de Q1 et Q2)
mais cela ne pose pas de problème particulier à notre algorithmique.
L’algorithme partitionné consiste à saturer successivement l’exploration des blocs P , Q1 (resp.
Q2), Q2 (resp. Q1) et R (voir figure 3.9). Précisons que le partitionnement des programmes

PPP

QQ

R
Q

Q

Q

P

1

1

2

1 2

Fig. 3.9 – Exploration partitionnée d’un programme séquentiel.

séquentiels est complètement récursif. Chacun des blocs P , Q1, Q2 et R peut ainsi être par-
titionné récursivement. L’ordre de l’exploration des blocs est évident. Pour une séquence, il
s’agit de l’ordre des blocs dans la séquence et pour un if-then-else, l’ordre n’a pas d’importance.
Malheureusement, la prise en compte du parallélisme dans le partitionnement remet en cause
tous ces avantages.

3.3 Partitionnement des boucles

Dans un contexte purement séquentiel, sans parallélisme, l’exploration d’un programme de
la forme :

loop P end

se résume à l’exploration de P puisque la boucle mènera soit aux mêmes états initiaux de P déjà
explorés, soit vers des blocs de P complètement inexplorés comme dans le programme suivant :

signal S in

loop

present S then [ Q1 ; emit S ] else P1 end;
present S then Q2 else [ P2 ; emit S ] end

end

end

Dans cet exemple, l’exploration du corps de la boucle consiste à explorer successivement P1,
P2, Q1 puis Q2 sans qu’aucune nouvelle frontière ne soit ajoutée par l’instruction loop. D’autre
part, comme une boucle ne termine jamais spontanément, il est inutile de chercher à partitionner
de tels programmes, sauf à l’intérieur de P . Une boucle peut être terminée par un mécanisme
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de préemption ou d’exception. Dans ce cas, le partitionnement doit être géré au niveau de l’ins-
truction abort (ou trap) et non pas au niveau de l’instruction loop.

Dans le contexte plus fréquent d’un programme parallèle, le partitionnement des boucles
pose quelques difficultés. Le problème vient du fait qu’il est très difficile de savoir quels blocs
sont susceptibles d’être actifs simultanément. A cause des synchronisations successives entre les
différents blocs, cette information est souvent impossible à obtenir statiquement (ceci explique
en grande partie pourquoi le calcul de l’espace des états atteignables peut être aussi complexe).
Comme nous l’avons décrit en section 3.1, notre solution actuelle consiste uniquement à élargir
la fonction de transition en autorisant à chaque étape l’exploration de nouveaux blocs de pro-
gramme. Nous comptons sur l’opérateur de cofacteur pour éviter d’encoder le comportement
des blocs déjà explorés dans la fonction de transition. Toutefois, cette méthode présente une
faiblesse. Si nous considérons l’exemple suivant :

loop P end

||
Q

alors à chaque tour de boucle de P , le bloc Q peut se retrouver dans un état différent. Plus
précisément, supposons que P soit de la forme :

P1; P2; emit S

et que Q soit de la forme :

Q1; await S; Q2

Le partitionnement de P et Q produit deux frontières. La première se situe entre P1 et P2 et la
deuxième entre Q1 et Q2. Après avoir exploré P1 et Q1, nous supprimons la frontière entre P1 et
P2. Le calcul se poursuit par l’exploration de [P2 ; emit S] et Q1. La branche P boucle et finit
par activer le bloc Q2. Dans l’exploration de P , il peut arriver que S soit émis alors que Q1 n’est
pas terminé mais au bout du compte, tous les états initiaux de Q2 finissent par être atteints.
La seconde frontière est alors ouverte. A partir du deuxième tour de boucle, la frontière entre
P1 et P2 n’existe plus et la branche P n’est donc plus partitionnée. Ce phénomène est illustré
par la figure 3.10. Ce phénomène est un cas bien particulier et nous pouvons espérer que, dans

P Q P Q P Q

Fig. 3.10 – Application du partitionnement à une boucle dans un contexte parallèle. Au premier
tour de boucle, la frontière de P est ouverte. Ensuite, la frontière de Q est ouverte. Au deuxième
tour de boucle de P , la frontière n’existe plus et P est exploré d’un seul coup.

le cas général, la plupart des états de P sont explorés lors du premier tour de boucle. Cette
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supposition pourrait alors nous affranchir du besoin de partitionner P à partir du deuxième tour
de boucle. Dans le futur, de plus amples études pourraient nous aider à corriger cette lacune,
par exemple en autorisant de refermer certaines frontières après ouverture afin que les frontières
soient préservées à chaque tour de boucle.

3.4 L’opérateur parallèle et les signaux

Le rôle de l’opérateur parallèle d’Esterel est d’exécuter ses différentes branches de façon
synchrone. Considérons un exemple de programme parallèle à deux branches séquentielles :

signal S1, ... Sn in

P || Q
end

Dans ce programme, les branches P et Q sont supposées purement séquentielles. Supposons que
le partitionnement de ces branches décompose P en un ensemble de blocs {P1, . . . Pm} et Q en un
ensemble de blocs {Q1, . . . Qn}. L’absence d’information supplémentaire sur ce programme nous
laisse supposer que chaque bloc Pi est susceptible de s’exécuter en même temps que chaque bloc
Qj . Un partitionnement purement structurel de ce programme parallèle consisterait näıvement
à découper le calcul des états atteignables suivant le produit cartésien de {P1, . . . Pm} et de
{Q1, . . . Qn}. Ainsi, chaque partie de la fonction de transition encoderait en même temps les
comportements d’un bloc Pi et les comportements d’un bloc Qj . Par cette technique, le nombre
de ces parties de fonction de transition serait de l’ordre de m× n.
Pour un programme Esterel quelconque contenant des instructions parallèles à divers niveaux
de profondeur dans le code, cette technique de partitionnement n’est pas satisfaisante : elle
engendre rapidement un très grand nombre de morceaux de fonction de transition qu’il s’agit
de savoir ordonner et combiner. Nous cherchons ici à exhiber des solutions moins complexes
exploitant des relations d’exclusion mutuelle entre les blocs parallèles, comme nous l’avons fait
pour les opérateurs séquentiels.

L’opérateur parallèle en lui-même ne nous donne aucune information d’exclusion. Il est
toutefois rare de trouver des programmes Esterel dans lesquels de grands composants pa-
rallèles s’exécutent de manière purement indépendante. Le programmeur Esterel est souvent
amené à faire dialoguer et à synchroniser à l’aide de signaux des tâches lancées en parallèle. De
manière plus générale, en Esterel, tout le style de programmation vise à démarrer, tuer ou
bien cadencer des modules. Nous proposons donc d’utiliser les signaux comme autant d’éléments
synchronisants entre les différentes branches de l’opérateur.

3.4.1 Un programme parallèle au comportement séquentiel

Le partitionnement des programmes parallèles est fondé sur l’idée que l’utilisation de l’opé-
rateur “‖” d’Esterel, combiné aux synchronisations et aux préemptions dûes aux signaux
internes, peut autoriser certains composants à démarrer, suspendre ou stopper certains autres.
Considérons l’exemple suivant, une abstraction de la montre à quartz présentée en introduction :
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input BUTTON;
signal START_1, START_2, START_3 in

every START_1 every START_2 every START_3
abort abort abort

run TASK_1 || run TASK_2 || run TASK_3
when START_2 when START_3 when START_1

end end end

||

pause;
loop

emit START_1; await BUTTON;
emit START_2; await BUTTON;
emit START_3; await BUTTON;

end loop

end signal

Dans cet exemple illustré par la figure 3.11, quatre programmes apparaissent en parallèle.
Trois d’entre eux possèdent la même structure, une tâche principale (TASK 1,2,3) qui est démarrée
et stoppée en fonction de la réception de signaux START 1,2,3. Le quatrième module séquentiel
que nous qualifierons de “principal” permet de piloter les trois autres en émettant des ordres
de lancement et d’interruption spécifiques à chacun des autres modules. Les tâches TASK 1,
TASK 2 et TASK 3 s’exécutent de manière séquentielle malgré la forme “parallèle” apparente du
programme global. L’utilisation des signaux permet de faire transiter le programme d’un mode
à un autre, chaque mode n’activant que certains blocs du programme. Dans cet exemple simple,
les TASKs sont cycliquement exécutés en séquence, mais le scheduler pourrait être un sélecteur
plus sophistiqué.

START_3

START_1START_2

TASK_1 TASK_2

TASK_3

Fig. 3.11 – Programme parallèle au comportement séquentiel. Au centre, le module principal
permet de passer d’un mode actif à un autre par l’envoi de signaux.

Nous pouvons appliquer à cet exemple le même type de partitionnement que celui décrit
pour l’opérateur de séquencement. Le module principal est toujours actif. Par conséquent, le
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comportement de ce bloc de programme sera encodé dans chacune des parties de la fonction de
transition. Parallèlement à cela, nous proposons de partitionner les calculs en saturant succes-
sivement la recherche des états atteignables dans les modules TASK 1, TASK 2 puis TASK 3.
Dans un premier temps, nous saturons l’exploration de TASK 1 en bloquant explicitement les
transitions menant aux deux autres modules. En quelque sorte, cela revient à interdire l’émission
du signal START 2.
Dans un second temps, nous interdisons l’émission du signal START 3. A cette étape du calcul,
la fonction de transition que nous utilisons encode les comportements de TASK 1, TASK 2 et du
module principal. Tous les états de TASK 1 étant explorés, l’opérateur de cofacteur nous permet
de n’appliquer qu’un morceau de notre fonction de transition dépourvu des comportements de
TASK 1.
Dans un troisième et dernier temps, l’autorisation du signal START 3, l’application de la tran-
sition globale et l’utilisation de l’opérateur de cofacteur permettent d’achever les calculs par
l’exploration du bloc TASK 3.

Dans cet exemple, nous voyons comment l’utilisation de signaux peut induire un comporte-
ment séquentiel dans un programme écrit comme parallèle. D’une manière plus générale, nous
pensons que l’analyse de l’utilisation des signaux nous permet de partitionner le calcul des états
atteignables dans les opérateurs parallèles, sans toutefois toujours tomber dans des situations
aussi favorables que celle présentée ici (pur séquencement).

3.4.2 Partitionnement des blocs parallèles

Pour partitionner les programmes parallèles nous considérons chaque programme Esterel
dans sa globalité. Afin d’introduire progressivement les difficultés, cette section présente une
collection de petits exemples. Chacun de ces exemples est un cas particulier permettant de
mettre l’accent sur une difficulté précise.
Etant donné un programme Esterel quelconque, nous nous focalisons sur les couples d’ins-
tructions formés d’une instruction émettrice et d’une instruction réceptrice d’un même signal
local. Les instructions émettrices sont de la forme “emit S” ou bien “sustain S”. Les instruc-
tions de la forme “present S ...”, “await S” ou bien “abort ... when S” sont qualifiées de
réceptrices. Pour simplifier l’exposition du problème, nous supposerons que chaque signal local
n’est émis et reçu qu’à un seul endroit dans tout le programme. De cette manière, à chaque
signal local correspond une instruction émettrice et une instruction réceptrice placées dans deux
branches parallèles distinctes, comme dans l’exemple ci-dessous :

P1; Q1

emit S; || await S
P2 Q2

Pour cet exemple, nous supposons aussi que chaque émission du signal S est interceptée par
l’instruction await. Ce programme est donc équivalent à :

[ P1 || Q1 ];
[ P2 || Q2 ]

Le partitionnement des programmes parallèles est basé sur l’idée que l’utilisation de chaque
signal permet de diviser le programme en deux parties : la première partie concerne tous les
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comportements du programme avant l’émission du signal et la deuxième concerne les comporte-
ments du programme après l’émission. Il s’agit ici de l’ordre des réactions et non pas de l’ordre
des instructions instantanées dans l’instant. Avant l’émission de S, seuls les blocs P1 et Q1 sont
actifs. Lorsque S est émis, seuls les blocs P2 et Q2 sont actifs.

En partitionnant les programmes parallèles de cette manière, le nombre de partitions ob-
tenues est linéaire par rapport au nombre de signaux locaux. L’exemple suivant présente un
parallèle à trois branches synchronisées par deux signaux locaux :

P1; Q1;
emit S1; || await S1;
P2 Q2; R1;

emit S2; || await S2;
Q3 R2

Ici encore, nous supposons que chaque signal émis est intercepté. L’utilisation des signaux S1 et
S2 permet de partitionner ce programme en trois parties. Dans la première partie, aucun signal
n’est émis. Ainsi, seuls les blocs P1, Q1 et R1 sont actifs. Dans un deuxième temps, S1 est émis.
A la suite de cet événement, seuls les blocs P2, Q2 et R1 sont actifs. Enfin, le signal S2 est émis
et seuls les blocs P2, Q3 et R2 sont actifs.

S2

S1

S2

S1

S2

S1

Fig. 3.12 – Méthode de partitionnement d’un bloc parallèle. Trois blocs en parallèle sont syn-
chronisés par deux signaux. Notre technique vise à partitionner suivant les blocs en noir. Les
blocs en gris sont censés être supprimées automatiquement par les méthodes de cofactoring.

Comme pour le partitionnement des programmes séquentiels, nous faisons grossir progressi-
vement la fonction de transition. Le partitionnement que nous proposons est illustré par la figure
3.12. La première étape consiste à saturer l’exploration du bloc [P1||Q1||R1] avec une fonction
de transition dans laquelle nous avons enlevé toutes les transitions consécutives à l’émission
et à la réception de S1 et de S2. En pratique, cela revient à dire que nous construisons une
fonction de transition qui n’encode que les comportements de P1, Q1 et R1, soit les blocs situés
en amont de toute émission et de toute réception de S1 et S2. Dans la deuxième étape, nous
rajoutons à la fonction de transition les transitions consécutives à l’émission et la réception de
S1 (nous rajoutons les comportements de P2 et Q2 à la fonction de transition). L’application
de l’opérateur de cofacteur sur cette nouvelle partie de fonction de transition nous permet ainsi
de ne saturer que l’exploration du bloc [P2||Q2||R1]. Dans la dernière étape, nous rajoutons les
transitions consécutives à l’émission et la réception de S2. Nous recouvrons ainsi la fonction de
transition globale qui, après utilisation de l’opérateur de cofacteur, nous permet d’achever les
calculs par l’exploration du seul bloc [P2||Q3||R2].
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3.4.2.1 Partitionnement sur les couples émetteur/récepteur

Pour partitionner les branches parallèles synchronisées par les signaux locaux, il n’est pas
nécessaire de partitionner en même temps la branche contenant l’instruction émettrice et la
branche contenant l’instruction réceptrice.

Partitionnement suivant l’émission des signaux Partitionner l’exemple précédent sui-
vant l’émission des signaux consiste à découper le programme de la manière suivante :

1. Dans la première étape, nous ne considérons que les blocs situés en amont de toute émission
de S1 et S2. Ainsi, la fonction de transition que nous utilisons encode a priori les com-
portements des blocs P1, Q1, Q2, R1 et R2. Or, il est impossible d’exécuter le bloc Q2

sans exécuter le bloc P2 et il est impossible d’exécuter le bloc R2 sans exécuter le bloc Q3.
Ainsi, les blocs Q2 et R2 sont automatiquement supprimés de la fonction de transition
par l’application de l’opérateur de cofacteur. La fonction de transition n’encode ainsi que
les blocs P1, Q1 et R1.

2. Dans la seconde étape, nous débloquons l’émission du signal S1. La fonction de transition
encode donc a priori les comportements des blocs P1, P2, Q1, Q2, R1 et R2. Pour les
mêmes raisons que précédemment, le bloc R2 n’est pas réellement encodé. Comme nous
avons déjà saturé l’exploration des états avant l’émission de S1, l’opérateur de cofacteur
permet de n’encoder que les blocs P2, Q2 et R1.

3. Dans la troisième étape, nous utilisons l’opérateur de cofacteur sur la fonction de transition
globale qui permet de n’encoder que les blocs P2, Q3 et R2.

Partitionnement suivant la réception des signaux De manière similaire, partitionner les
programmes parallèles suivant la réception des signaux seulement permet d’obtenir finalement
le même résultat. La seule différence se situe dans les blocs qui sont a priori encodés et qui sont
automatiquement supprimés par l’opérateur de cofacteur.

1. Dans la première étape, nous choisissons de saturer l’exploration des états atteignables
dans les seuls blocs P1, P2, Q1 et R1. Comme toute émission de S1 est interceptée par
hypothèse, il est impossible que le bloc P2 soit actif alors que Q2 est inactif. Ainsi, seuls
les blocs P1, Q1 et R1 sont encodés.

2. De la même manière, dans la seconde étape, des blocs P1, P2, Q1, Q2, Q3 et R1 a priori
encodés, seuls subsistent les blocs P2, Q2 et R1.

3. Dans la troisième étape, comme toujours, seuls les comportements des blocs P2, Q3 et R2

sont encodés.

De cette manière, nous partitionnons les branches parallèles suivant un point unique du pro-
gramme. Le fait de partitionner seulement sur l’instruction émettrice ou l’instruction réceptrice
nous permet de prendre en compte plus facilement les synchronisations mettant en jeu plus de
deux instructions dans un programme. Par exemple, dans le cas où un seul signal (que nous
supposons toujours intercepté) permet de synchroniser un programme en deux points, comme
c’est le cas dans :
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loop Q1;
P1; await S;
emit S || Q2

P2 await S;
end loop Q3;

Ici, le signal S émis en un seul point dans la première branche est reçu en deux point dans la
deuxième branche. Nous proposons de partitionner le calcul des états atteignables suivant les
instructions réceptrices. Dans la deuxième branche, cela se traduit par saturer Q1 seulement,
puis saturer Q2 seulement et enfin saturer Q3 seulement. Ceci nous permet de partitionner les
calculs sans avoir besoin de savoir partitionner la première branche en fonction de la deuxième.

De manière générale, nous choisissons de partitionner les branches parallèles suivant les ins-
tructions réceptrices, comme dans l’exemple précédent. Nous considérons toutes les instructions
réceptrices y compris les réceptions de signaux externes.

3.4.2.2 Vraies et fausses synchronisations

Dans un programme Esterel réel, un signal émis n’est pas forcément intercepté. Avant de
chercher à savoir si un signal interne est toujours reçu par une quelconque analyse du programme,
nous constatons qu’il n’est pas obligatoirement nécessaire de savoir répondre à cette question
pour appliquer notre technique de partitionnement. Dans l’exemple suivant, supposons que le
signal S est potentiellement émis trop tôt, avant que le contrôle ne passe dans l’instruction
await :

P1; Q1

emit S; || await S
P2 Q2

Nous partitionnons suivant l’instruction réceptrice. Dans un premier temps, le calcul des états
atteignables s’effectue dans les blocs P1, P2 et Q1, avant réception de S. Comme le signal S peut
être émis sans être intercepté, nous ne savons pas dire si le bloc P2 sera ou non encodé dans la
fonction de transition après usage de l’opérateur de cofacteur. Néanmoins, cette étape permet de
saturer l’exploration des états dans lesquels le bloc Q1 est actif. Dans un deuxième temps, nous
explorons les états atteignables après réception de S. A cette étape des calculs, nous sommes
certains que S a été émis. Nous savons alors que l’opérateur de cofacteur permettra de ne pas
encoder le bloc P1 dans la fonction de transition. Le calcul des états atteignables s’effectue donc
uniquement dans les blocs P2 et Q2. Si le signal S n’est jamais reçu, cette deuxième étape ne
produit aucun nouvel état.
Il peut arriver aussi qu’un signal soit émis trop tard, comme dans l’exemple suivant où le bloc
Q1 peut terminer avant le bloc P1 :

P1; abort Q1

emit S; || when immediate S;
P2 Q2

Encore une fois, nous partitionnons suivant l’émission réceptrice. Dans la première étape du
calcul, l’exploration des états atteignables s’effectue a priori dans les blocs P1, P2 et Q1. Ici,
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nous savons qu’il est impossible d’émettre S sans activer le bloc Q2. Autrement dit, cela signifie
que le bloc P2 est forcément inactif. Dans cette première étape, seuls les blocs P1 et Q1 seront
encodés dans la fonction de transition. Nous saturons ainsi l’exploration des états dans lesquels
le bloc Q1 est actif. Dans la deuxième étape, l’opérateur de cofacteur permet de ne pas encoder
le bloc Q1 dans la fonction de transition. Dans cet exemple, le fait que le bloc Q2 soit actif ne
signifie pas que le signal S ait été émis. La fonction de transition est donc susceptible d’encoder
le bloc P1 en plus des blocs P2 et Q2.

Pour partitionner un programme parallèle suivant un couple d’instructions formé d’une ins-
truction émettrice et d’une instruction réceptrice d’un même signal, il n’est donc pas nécessaire
de savoir si toute émission du signal est interceptée. Si le programme est conçu de telle sorte
que toute émission du signal S est reçue, alors le partitionnement que nous proposons permet
de suivre fidèlement le comportement du programme à l’exécution. Dans le cas contraire, le
partitionnement peut parâıtre plus artificiel, car partitionner selon Q1 et Q2 n’entrâınera pas
de conséquence précise sur la branche P . Dans tous les cas, il est bénéfique de partitionner
de cette manière. Dans le meilleur des cas, le calcul des états atteignables concernera tout
d’abord P1 et Q1 et ensuite, P2 et Q2. Dans le pire des cas, cela concernera P1, P2 et Q1 et
ensuite P2 et Q2. Nous proposons donc de partitionner le calcul des états atteignables suivant
toutes les réceptions de signaux internes sans discrimination. Comme pour le partitionnement
des programmes séquentiels, cela revient donc à placer des frontières autour des branches des
instructions present et sur toutes les terminaisons des instructions abort ou trap.

3.5 Exploration partitionnée des programmes Esterel

Le calcul partitionné des états atteignables suivant les blocs de programme s’appuie sur
un graphe de flot de contrôle dans lequel les frontières entre les blocs sont représentées par
un sous-ensemble des transitions du graphe. Les frontières qui sont ouvertes progressivement
permettent de guider l’exploration des états atteignables afin de suivre autant que possible la
structure du programme source.
Les frontières du graphe sont construites à partir du programme Esterel source en suivant
la syntaxe du programme. Chaque frontière correspond à une réception de signal. Ainsi, les
frontières sont générées par les instructions de choix (present) ainsi que par les instructions de
préemption ou d’exception (abort ou trap) bien qu’en réalité, seules les frontières situées entre
les instructions pause nous permettent de partitionner le programme.
Au début de ce chapitre, nous avions évoqué le besoin de savoir ouvrir les frontières dans le
“bon” ordre en demeurant évasif sur la question. La syntaxe du programme peut nous aider
à définir un ordre a priori idéal qui suit strictement la syntaxe du programme. Toutefois, le
parallélisme des programmes, les boucles et les diverses synchronisations réalisées par les envois
de signaux impliquent que cet ordre défini statiquement ne peut être que partiel. L’ordre total
de l’algorithme sera donc défini en grande partie de manière dynamique, au vu des résultats en
évolution.

3.5.1 Ordonnancement statique des frontières

Dans un programme de la forme :

abort P when S
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nous souhaitons saturer P avant d’explorer les états accessibles après la réception de S. Pour
cela, nous introduisons une relation d’ordre statique et partielle sur les frontières. Ici, toutes
les frontières construites dans le bloc P doivent être antérieures aux frontières relatives à la
réception de S. Cette relation d’ordre est utilisée pour ordonner les frontières a priori, avant de
décider pour chacune d’elle si elle doit ou non être ouverte. De la même manière, nous définissons
un ordre partiel pour toutes les constructions du langage. Ainsi, dans :

P ; Q

toutes les frontières dans P sont antérieures aux frontières dans Q. Cet ordonnancement se
définit à partir du programme Esterel source. Notre but étant l’exploration exhaustive des
états d’un programme, cet ordre est quasiment l’ordre d’apparition des instructions dans le texte
du programme, excepté pour les instructions parallèles et present. Pour ces deux constructions
en effet, nous ne souhaitons pas imposer d’ordre a priori entre les différentes branches.
On aurait tout aussi bien pu imaginer un ordre dont le but serait de converger le plus rapidement
possible vers une zone particulière du programme. Si le but du calcul des états atteignables était
de confirmer ou d’infirmer une propriété particulière, comme par exemple l’émission d’un signal
particulier, alors nous aurions tout intérêt à ouvrir en priorité les frontières menant le plus
rapidement à la partie du programme directement concernée.
L’ordre que nous avons choisi est donc celui qui privilégie une exploration exhaustive des états.
Il est formellement défini à la section 4.3.

3.5.2 Ordonnancement du déblocage des frontières

Contrairement au partitionnement des opérateurs séquentiels qui permet d’ouvrir les fron-
tières en suivant fidèlement la syntaxe du programme, l’ordre de l’ouverture des frontières
dans le partitionnement des programmes parallèles peut s’avérer complexe ou arbitraire. Le
problème provient des synchronisations. La difficulté consiste à débloquer les frontières dans un
ordre intéressant. En particulier, nous cherchons à ne pas débloquer des frontières trop tôt. Il
n’est pas forcément facile de définir cet ordre statiquement même si des indications partielles
importantes sont souvent déductibles. Dans l’exemple ci-dessous, les émissions et les réceptions
des signaux S1 et S2 sont croisées.

loop loop

P1; emit S2;
emit S1; await S1;
P2; || Q
await S2; end loop

P3

end loop

Ici, la première émission de S2 n’est pas interceptée. Le signal S2 n’est reçu qu’à partir du
deuxième tour de boucle. Si nous débloquons S2 avant S1, alors nous libérons prématurément
l’accès au bloc P3 et de ce fait, le partitionnement suivant la réception du signal S2 ne s’effectue
pas. Pour partitionner correctement le calcul des états atteignables de ce programme il faut
donc débloquer la réception du signal S1 avant la réception du signal S2.
Plutôt que de chercher un critère permettant d’ordonner statiquement le déblocage des frontiè-
res, nous choisissons de résoudre le problème de manière dynamique, c’est à dire en s’appuyant



50 CHAPITRE 3. PRÉSENTATION INTUITIVE

sur le calcul partitionné des états atteignables. La solution consiste à débloquer uniquement
les frontières qui permettent de faire progresser les calculs. Ces frontières sont de fait assez
facilement identifiables car nous aurons stocké les états en attente dans notre algorithme (voir
figure 3.5 ou 3.13). Dans l’exemple précédent, le fait de débloquer la réception de S2 avant
la réception de S1 ne permet pas de faire progresser les calculs. Pour débloquer les bonnes
frontières, nous nous appuyons sur l’ensemble des états situés à la frontière entre les blocs actifs
et les blocs inactifs. Il s’agit en réalité d’états accessibles depuis un bloc actif en une réaction
instantanée, mais qui “débordent” dans un bloc inactif.

3.5.3 Débordement des états atteignables

L’état d’un programme Esterel est caractérisé par l’état de tous les registres booléens
qui le constituent. Plus particulièrement, l’ensemble des registres actifs permet de déterminer
l’ensemble des blocs actifs du programme. Lorsque l’algorithme partitionné produit des états
qui débordent à l’extérieur d’une frontière, nous savons déterminer précisément l’ensemble des
blocs activés par ce débordement. A partir de cette information et à l’aide du graphe de flot de
contrôle il est alors facile de déterminer les frontières qui ont été franchies. Cette technique est
illustrée par la figure 3.13.

F1

F2

F3

S 3

S 1

Fig. 3.13 – Débordement des états atteignables. Les frontières F1, F2 et F3 sont situées autour
des blocs actifs courants. La frontière F2 n’a pas été franchie et doit demeurer fermée. La
découverte des états S1 et S3 en dehors des blocs actifs indique que les frontières F1 et F3

peuvent être ouvertes.

Ainsi, le débordement des états permet de guider l’algorithme partitionné et de n’ouvrir que
les frontières qui permettent de faire progresser l’exploration des états atteignables. De cette
manière, nous évitons d’ouvrir des frontières prématurément.



Chapitre 4

Notations

Ce chapitre à pour but de formaliser la mise en oeuvre algorithmique des notions décrites
au chapitre précédent. Dans la section 4.1, nous introduisons une notation permettant de
représenter les programmes Esterel sous forme d’arbre syntaxique. A partir de cet arbre,
la section 4.2 décrit la construction d’un graphe de flot de contrôle contenant des frontières.
Enfin, la section 4.3 définit une relation d’ordre entre les frontières de ce graphe.

4.1 L’arbre de syntaxe abstraite

Pour notre étude, nous nous restreindrons à un sous-ensemble du langage Esterel dans
lequel nous n’avons conservé qu’un noyau caractéristique des instructions du langage original.
Les variables et la gestion des données ont été supprimées par abstraction comme il est d’usage
pour les techniques liées au model-checking vu comme exploration des états de contrôle. Un
programme complet est composé d’une en-tête de déclarations définissant l’ensemble des signaux
d’entrée et de sortie, suivie d’un corps dont la syntaxe est définie par la grammaire suivante :

P ::= nothing
| pause
| P ; P
| loop P end
| P ‖ P
| emit S
| signal S in P end
| present S then P else P end
| abort P when S

Les autres instructions du langage n’introduisent pas de difficultés particulières et ne sont
pas nécessaires à la compréhension de notre méthode de partitionnement. Par exemple, dans
le contexte de nos travaux, l’instruction trap peut être traitée de la même manière que
l’instruction abort. Ces instructions ne font par conséquent pas partie du langage noyau µ-
Esterel. En revanche, ces instructions ont été prises en compte pour l’implémentation de
notre logiciel présenté au chapitre 6.

Avant de commencer la description du graphe de flot de contrôle que nous allons utiliser, nous
supposerons que nous possédons une représentation du programme Esterel sous forme d’arbre
syntaxique. Chaque noeud de l’arbre est typé en fonction de l’instruction qu’il représente mais

51



52 CHAPITRE 4. NOTATIONS

nous nous intéressons en fait aux occurrences des instructions dans le programme source. Ainsi,
dans l’arbre syntaxique, chaque instance d’instruction sera identifiée de manière unique par un
label unique. Au besoin, ces derniers seront explicitement mentionnés en position d’exposant
de l’instance d’instruction considérée. Le noeud d’une instruction de type instruction portant
le label L s’écrit alors de la manière suivante :

(instructionL argument1 . . . argumentn)

Les pauses. Le calcul des états atteignables s’obtient à partir d’une représentation des pro-
grammes Esterel sous forme de circuit alors que le partitionnement que nous proposons s’ap-
puie sur la syntaxe du langage source. Il est donc nécessaire de savoir relier un programme
source à sa représentation sous forme de circuit. Dans la traduction d’Esterel en circuits que
nous utilisons, chaque instruction pause produit exactement un registre booléen. Dans le format
circuit, un registre est identifié de manière unique par son nom. Ce nom apparâıt explicitement
dans chaque instruction pause de l’arbre syntaxique ce qui nous procure l’association nécessaire
entre le code source et le format circuit. Ainsi, une instruction pause est représentée par un
noeud de la forme :

(pauseL register id)

où register id représente le nom du registre généré par la traduction de l’instruction pause.
Dans un arbre syntaxique, chaque pause possède évidemment un register id distinct.

Les instructions atomiques. Dans l’arbre syntaxique, les instructions nothing et emit sont
naturellement représentées par des feuilles de la forme :

(nothingL)

(emitL signal id)

où signal id représente le nom du signal dans la traduction en circuit. Le nom des signaux et
le nom des registres constituent les seuls liens entre l’arbre syntaxique et la traduction sous
forme de circuit mais contrairement aux registres, le nom des signaux n’est pas utilisé par notre
technique de partitionnement.

Les constructions hiérarchiques. Une déclaration de signal local est représentée par un
noeud de la forme :

(signalL signal id instruction l endL′
)

où instruction est un sous-arbre représentant le corps de l’instruction signal. La fin de la
portée est marquée par le délimiteur end. Par la suite, nous verrons que ce type de délimiteur
est utilisé dans la construction du graphe de flot de contrôle.
De la même manière, une boucle est représentée par un noeud de la forme :

(loopL instruction l endL′
)

Une séquence est un noeud de la forme :

(seqL instruction l1 instruction l2 endL′
)
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Deux blocs s’exécutant en parallèles se notent :

(parL instruction l1 instruction l2 endL′
)

Les deux instructions permettant de réagir à la présence d’un signal sont present et abort.
Elles sont représentées par des noeuds de la forme :

(presentL signal id instruction lthen instruction lelse endL′
)

(abortL signal id instruction l endL′
)

4.2 Le graphe de contrôle

Notre graphe de flot de contrôle est un graphe orienté construit au dessus de l’arbre syn-
taxique des programmes Esterel. Etant donné un arbre T , le graphe de flot de contrôle est
défini de la manière suivante :

G(T) = (I , O , N , E , F)

dans lequel :
– N représente l’ensemble des noeuds du graphe. Ces noeuds sont communs avec ceux de

l’arbre syntaxique et sont par conséquent typés.
– I, sous-ensemble de N, représente l’ensemble des noeuds initiaux du graphe.
– O qui est aussi un sous-ensemble de N, représente l’ensemble des noeuds finaux du graphe.

Les arcs du graphe se divisent en deux catégories :
– E désigne l’ensemble des arcs “normaux”.
– F désigne l’ensemble des arcs considérés comme frontières dans le graphe. Par construction,

l’ensemble E ∩ F est vide.
Ainsi, les arcs correspondant aux transitions des instructions present ou abort sont placés
dans F. Ces arcs sont naturellement appelés “frontières”. Les autres arcs sont placés dans E.
Dans E et F, les arcs orientés représentent le chemin du contrôle entre les instances d’instructions
et sont de la forme :

instruction l1 7→ instruction l2

En réalité, la description du graphe utilise les labels qui permettent d’identifier les noeuds de
manière plus légère. L’arc précédent est donc noté :

l1 7→ l2

Le noeud source d’un arc x est noté Src(x). Le noeud de destination est noté Dest(x) :

Src(u 7→v) = u (4.1)
Dest(u 7→v) = v (4.2)

4.2.1 Construction du graphe

Construire le graphe de flot de contrôle consiste à construire les arcs entre les noeuds de
l’arbre syntaxique. Ce travail s’effectue de manière structurelle à partir de l’arbre syntaxique et
en s’appuyant sur l’ensemble des noeuds initiaux et finaux du graphe. L’opérateur traditionnel
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“×” permet de joindre chaque élément d’un ensemble U = {u1, . . . um} à chaque élément d’un
ensemble V = {v1, . . . vn} :

U× V =
m⋃

i=1

n⋃
j=1

{ui 7→vj} (4.3)

Les instructions atomiques produisent des graphes formés d’un unique noeud et ne conte-
nant aucun arc :

G(pauseL r) = ({L} , {L} , {L} , ∅ , ∅) (4.4)
G(nothingL) = ({L} , {L} , {L} , ∅ , ∅) (4.5)

G(emitL s) = ({L} , {L} , {L} , ∅ , ∅) (4.6)

La déclaration de signaux locaux. Dans le graphe, nous pouvons abstraire le début et la
fin des déclarations de signaux. En effet, notre technique de partitionnement ne repose pas sur
une analyse fine des émissions et des réceptions des signaux : seules les instructions réceptrices
génèrent des frontières. Le graphe d’une déclaration de signal local est donc identique au graphe
de son corps P :

G(signalL s P endL′
) = G(P ) (4.7)

La séquence binaire. Dans une séquence binaire, les noeuds finaux du premier graphe sont
reliés aux noeuds initiaux du second graphe :

si G(Pi) = (Ii , Oi , Ni , Ei , Fi) pour i ∈ [1, 2]
alors G(seqL P1 P2 endL′

) =
(
I1 , O2 , N′ , E′ , F′

)
où N′ = N1 ∪ N2

E′ = E1 ∪ E2 ∪ (O1 × I2)
F′ = F1 ∪ F2 (4.8)

Les boucles. Une boucle ne termine jamais. L’ensemble des noeuds finaux du graphe est donc
vide. Les noeuds finaux du graphe du corps de la boucle sont reliés aux noeuds initiaux :

si G(P ) = (I , O , N , E , F)
alors G(loopL P endL′

) =
(
I , ∅ , N , E′ , F

)
où E′ = E ∪ (O× I) (4.9)

L’opérateur parallèle binaire. Les deux branches d’un parallèle sont démarrées au même
instant. Par conséquent, le point de départ d’un parallèle est un unique noeud relié aux noeuds
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initiaux de chacune de ses branches :

si G(Pi) = (Ii , Oi , Ni , Ei , Fi) pour i ∈ [1, 2]
alors G(parL P1 P2 endL′

) =
(
{L} , O′ , N′ , E′ , F′

)
où O′ = O1 ∪ O2

N′ = N1 ∪ N2 ∪ {L}
E′ = E1 ∪ E2

∪ {L} × (Ii ∪ I2)
F′ = F1 ∪ F2 (4.10)

Test de présence d’un signal. Dans une instruction present, nous souhaitons placer nos
frontières afin d’explorer P1, puis P2, puis tous les blocs qui sont exécutés après cette instruction
dans le programme. Par conséquent, les frontières sont placées avant et après la branche “then”
et la branche “else” :

si G(Pi) = (Ii , Oi , Ni , Ei , Fi) pour i ∈ [1, 2]
alors G(presentL s P1 P2 endL′

) =
(
{L} ,

{
L′
}

, N′ , E′ , F′
)

où N′ = N1 ∪ N2 ∪
{
L,L′

}
E′ = E1 ∪ E2

F′ = F1 ∪ F2

∪ {L} × (I1 ∪ I2)
∪ (O1 ∪ O2)×

{
L′
}

(4.11)

La préemption. Une instruction abort est susceptible de se terminer après chaque instruc-
tion pause qui la constitue. De telles transitions sont des frontières qui nous aideront à par-
titionner le calcul des états atteignables et sont donc placées dans l’ensemble F. Pour réaliser
notre partitionnement, il est nécessaire que le corps de l’instruction abort soit parfaitement
isolé par des frontières. Ainsi, les terminaisons naturelles du corps du abort sont également
considérées comme des frontières :

si G(P ) = (I , O , N , E , F)
alors G(abortL s P endL′

) =
(
I ,
{
L′
}

, N′ , E , F′
)

où N′ = N ∪
{
L′
}

F′ = F

∪ O×
{
L′
}

∪
{

l / (pausel r) ∈ N
}
×
{
L′
}

(4.12)

4.2.2 Exemple

Nous présentons ici un exemple de programme Esterel avec sa représentation sous forme
de graphe de flot de contrôle correspondante (figure 4.1).
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abort

loop pause1 end

||
pause2; pause3

when S;
present T then

pause4;
[ pause5 || pause6 ]

else

pause7; pause8

end;
pause9

La construction des frontières permet de diviser le programme en quatre blocs. Le premier
constitue le corps de l’instruction abort, le second et le troisième correspondent à la branche
“then” et à la branche “else” du present et le dernier bloc est constitué de la dernière pause
située après l’instruction present.

||

F1
||

?T

F F

F

2.1

2.2F

2.1

2.2

1

2 3

4
5

6
7 8

9

Fig. 4.1 – Exemple de graphe de flot de contrôle de programme Esterel. Les frontières F1,
F2.1 et F2.2 représentées par les lignes discontinues ont été produites par les instructions abort

et present.

4.2.3 Graphe de contrôle et partitionnement

Dans notre graphe de flot de contrôle, les arcs de type “frontière” permettent de diviser le
programme en deux parties : à l’intérieur de la frontière se trouve l’ensemble des blocs actifs
que nous souhaitons explorer. A l’extérieur de la frontière se trouve l’ensemble des blocs que
nous ne souhaitons pas explorer et qui doivent demeurer inactifs.
La traduction des programmes Esterel en circuit produit un registre de contrôle pour chaque
instruction pause. Cette traduction nous permet de caractériser très précisément l’ensemble des
états du programme situés à l’intérieur de la frontière. Si P désigne les blocs de programme
situés à l’intérieur de la frontière et si Q désigne les blocs de programme situés à l’extérieur de
la frontière, alors les états situés à l’intérieur de la frontière sont les états dans lesquels aucun
registre de Q n’est actif. L’intérieur de la frontière n’est donc pas décrit à partir de l’ensemble
des registres potentiellement actifs mais à partir des registres que nous forçons à être inactifs.

Codage des blocs actifs. Etant donné un ensemble de variables de BDD R = {r1, . . . rn},
nous introduisons l’opérateur NOr(R) défini de la manière suivante :

NOr(R) = λX → ¬ r1 ∧ . . . ∧ ¬ rn (4.13)
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Si r1, . . . rn sont des variables représentant les registres booléens R1, . . . Rn alors NOr(R) repré-
sente l’ensemble des états dans lesquels tous les registres Ri sont inactifs pour tout i ∈ [1..n].
Nous remarquons que l’ensemble Or(R) = NOr(R) défini par :

Or(R) = λX → r1 ∨ . . . ∨ rn (4.14)

représente l’ensemble des états dans lesquels au moins un registre Ri est actif pour i ∈ [1..n].
L’ensemble des variables de registres inactifs est déterminé à partir du graphe de flot de contrôle,
plus particulièrement en considérant les noeuds de type pause. Etant donné un ensemble X

de noeuds du graphe, nous introduisons l’opérateur Register〈X〉 qui retourne l’ensemble des
variables de registres contenues dans les instructions de X :

Register〈X〉 = {r / (pause r) ∈ X} (4.15)

Cet opérateur nous permet d’établir le lien entre le graphe de flot de contrôle et les calculs
symboliques à base de BDDs.

Opérations de base dans le graphe de flot de contrôle. Soit (N , E) un graphe “tradi-
tionnel” où N représente l’ensemble des noeuds du graphe et E représente l’ensemble des arcs
du graphe. Nous notons Succ(N,E)(X) l’ensemble des noeuds successeurs de X, c’est à dire les
destinations des arcs de E dont l’origine appartient à X :

Succ(N,E)(X) = {j ∈ N / i ∈ X ∧ i 7→j ∈ E} (4.16)

Nous introduisons également l’opérateur Trans(N,E)(X) qui retourne l’ensemble des arcs du
graphe dont l’origine appartient à l’ensemble de noeuds X :

Trans(N,E)(X) = {i 7→j ∈ E / i ∈ X} (4.17)

Calcul des blocs actifs. L’ensemble des registres situés à l’intérieur de la frontière se calcule
à l’aide du graphe de flot de contrôle par fermeture transitive en excluant l’ensemble des arcs
de type frontière. L’opérateur Closure(N,E) (Y) permet de calculer l’ensemble des noeuds attei-
gnables à partir d’un ensemble de noeuds initiaux Y en passant par les arcs de l’ensemble E. N

représente l’ensemble des noeuds du graphe. La fermeture transitive de Y se calcule par point
fixe de la manière suivante :

Closure(N,E) (Y) = µ(λX→ Y ∪ Succ(N,E)(X)) (4.18)

où µ(f) désigne l’opérateur calculant le plus petit point fixe de f .

Calcul de la surface. La fonction suivante calcule la “surface” d’un bloc de programme.
A partir d’un ensemble de noeuds Y ⊆ N correspondant à un ensemble d’instructions de type
pause, la surface Surface(N,E) (Y) de Y est l’ensemble des noeuds du graphe qui peuvent être
atteints dans le même instant que l’une des instructions contenue dans Y. La surface se calcule
selon le même principe que la fermeture transitive, en calculant les successeurs de Y qui ne sont
pas de type pause. Si P représente l’ensemble de tous les noeuds de type pause contenus dans
N :

P = {i ∈ N / i = (pause r)} (4.19)
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alors Surface(N,E) (Y) est définie de la manière suivante :

Surface(N,E) (Y) = µ(λX→ Y ∪ (Succ(N,E)(X) r P)) (4.20)

La définition de cette fonction demeure correcte même si tous les éléments de Y ne sont pas de
type pause.

4.3 Une relation d’ordre pour les frontières du graphe

Cette section a pour but de formaliser les idées présentées à la section 3.5.1. Il s’agit de
donner un ordre statique, a priori idéal pour une exploration exhaustive des états atteignables,
et partiel sur l’ensemble des frontières du graphe.

4.3.1 Notations

Nous cherchons ici à définir formellement une relation d’ordre stricte notée “≺” entre les
frontières du graphe. Cette relation nous permet de définir un ordre pour l’ouverture des
frontières. Ainsi, si x et y désignent deux frontières, alors le prédicat : «la frontière x doit
être ouverte avant la frontière y» s’écrit :

x ≺ y

Cette relation d’ordre se construit avec l’aide de l’arbre syntaxique et complète l’information
donnée par le graphe de flot de contrôle. L’arbre syntaxique ne permet pas de définir directement
une relation entre les frontières puisque l’arbre ne se compose que d’instructions, autrement dit
de noeuds. Ainsi, si u et v sont deux instructions, alors nous cherchons avant tout à définir un
prédicat : «l’accès à l’instruction u doit être ouvert avant l’accès à l’instruction v». Le prédicat
s’écrit de la même manière que précédemment :

u ≺ v

Dès lors, dire que l’accès à l’instruction u doit être ouvert avant l’accès à l’instruction v est
équivalent à dire que tout arc-frontière menant à u doit être ouvert avant tout arc-frontière
menant à v, quelle que soit l’origine des arcs. Ceci s’écrit :

u ≺ v ⇐⇒ (x 7→u) ≺ (y 7→v) ∀x,∀y (4.21)

De cette manière, décrire une relation entre les noeuds de l’arbre est strictement équivalent à
décrire implicitement une relation entre les frontières du graphe. Par commodité, nous définis-
sons également l’opérateur “Î” qui permet de définir des relations d’ordre à partir d’ensembles
de noeuds. Ainsi, si U et V sont deux ensembles de noeuds, alors l’opérateur “Î” est défini de
la manière suivante :

U Î V ⇐⇒ u ≺ v ∀u ∈ U,∀v ∈ V (4.22)

4.3.2 Définition structurelle

La séquence. Comme il est écrit dans la section 3.5.1, dans un programme séquentiel de la
forme P ; Q, toutes les frontières de P doivent être ouvertes avant n’importe quelle frontière
de Q.
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Si nous notons G(Pi) = (Ii , Oi , Ni , Ei , Fi) pour i ∈ [1, 2], alors un noeud de séquence dans
l’arbre syntaxique de la forme :

(seqL P1 P2 endL′
)

induit les relations d’ordre suivantes :

N1 Î N2 (4.23)

La préemption. De la même manière, dans une instruction abort, toutes les frontières situées
à l’intérieur du bloc doivent être ouvertes avant n’importe quelle frontière menant à la fin du
bloc.
Si nous notons G(P ) = (I , O , N , E , F) alors un noeud de l’arbre de la forme :

(abortL s P endL′
)

induit les relations d’ordre suivantes :

N Î
{
L′
}

(4.24)

L’opérateur parallèle. L’opérateur parallèle n’induit aucune relation d’ordre. Il se peut en
revanche que le point d’entrée de l’instruction parallèle soit aussi le noeud de destination d’une
frontière.
Par conséquent, si nous notons G(Pi) = (Ii , Oi , Ni , Ei , Fi) pour i ∈ [1, 2], alors un noeud
parallèle de la forme :

(parL P1 P2 endL′
)

induit les relations d’ordre suivantes :

{L} Î N1 ∪ N2 (4.25)

L’opérateur de choix. L’instruction present n’induit aucune relation d’ordre entre ses deux
branches. Pour les mêmes raisons que précédemment, le point d’entrée et le point de sortie
doivent être pris en compte par notre relation d’ordre.
Par conséquent, si nous notons G(Pi) = (Ii , Oi , Ni , Ei , Fi) pour i ∈ [1, 2], alors un noeud
present de la forme :

(presentL s P1 P2 endL′
)

induit les relations d’ordre suivantes :

{L} Î N1 ∪ N2

N1 ∪ N2 Î
{
L′
}

(4.26)

En réalité, les relations d’ordre induites par l’opérateur de choix sont plus compliquées qu’il n’y
parait. En effet, elles n’interdisent pas d’alterner l’ouverture de frontières dans P1 et dans P2.
Ainsi, dans un programme de la forme :

present S then P else Q end
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rien ne permet d’espérer que le bloc P (resp. Q) sera intégralement exploré avant le bloc Q (resp.
P ). Pour corriger cela, nous pouvons tout simplement choisir d’ouvrir toutes les frontières de la
branche then avant toutes les frontières de la branche else :

N1 Î N2 (4.27)

Ce choix est purement arbitraire car nous aurions très bien pu choisir l’ordre inverse mais il
permet d’établir un ordre.



Chapitre 5

Calcul des Etats Atteignables
Partitionné

Nous présentons ici notre algorithme partitionné du calcul des états atteignables introduit
au chapitre 3 et basé sur le graphe de flot de contrôle des programmes Esterel défini au
chapitre 4. Notre technique repose sur certaines propriétés des diagrammes de décision binaires
(voir chapitre 2), déjà existantes dans l’algorithme originel. Dans la section 5.1, nous présentons
notre algorithme partitionné et nous démontrons sa correction dans la section 5.2. Enfin, nous
terminons ce chapitre par une analyse de quelques propriétés de notre approche à la section 5.3.

5.1 Algorithme partitionné

L’algorithme présenté dans cette section permet de calculer l’espace des états atteignables
d’une machine séquentielle fsm = (ι,Υ,∆,Γ). Notre algorithme partitionné est guidé par le
graphe de flot de contrôle dans lequel les arcs de type “frontière” sont progressivement débloqués.
Dans un premier temps, nous choisissons de présenter une version simplifiée de l’algorithme
partitionné dans laquelle toutes les opérations s’appuyant le graphe de flot de contrôle ont été
abstraites. L’algorithme complet est donné à la page 66. Ce premier algorithme ne décrit pas la
façon dont le graphe est utilisé.

Dans l’algorithme suivant, toutes les variables sont des BDDs ou bien des structures équi-
valentes comme les CBFs (voir section 2.5.2). Le BDD pending contient les états atteignables
dont l’image par la fonction de transition n’a pas encore été calculée. Le BDD area représente
l’ensemble de tous les états (atteignables ou non) situés à l’intérieur de la frontière définie par
le graphe. Ainsi, à chaque itération de l’algorithme, le calcul de l’image est réalisé uniquement
à partir des états de pending qui sont situés à l’intérieur de area (ligne 10). A la fin de chaque
itération, les nouveaux états découverts sont placés dans l’ensemble pending (ligne 12).
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1 reachable ← ι
2 pending ← ι
3 −− Calcul de area0 voir algorithme 5.2
4 area ← area0

5 tantque ( pending 6= ∅ ) faire
6 si ( (pending ∩ area) = ∅ ) alors
7 −− Calcul de area′ tel que area′ ⊃ area voir algorithme 5.3
8 area ← area′

9 fin si
10 domain ← pending ∩ area
11 new ← Image∆(Υ, domain) r reachable
12 pending ← (pending r area) ∪ new
13 reachable ← reachable ∪ new
14 fin tantque

Algorithme 5.1 – Algorithme partitionné

La valeur initiale area0 de l’ensemble area (ligne 4) est calculée à partir du graphe de flot de
contrôle comme nous le verrons par la suite. Nous pouvons remarquer que si area0 désigne
l’ensemble BK alors cet algorithme est identique à l’algorithme 2.1 présenté à la section 2.3.
Tant que des nouveaux états sont découverts à l’intérieur de l’ensemble area, aucune frontière
n’a besoin d’être ouverte (ligne 6). Dans le cas contraire, certaines frontières du graphe sont
ouvertes. Un nouvel ensemble area′ contenant strictement l’ancien ensemble area est alors calculé
à partir du graphe (ligne 8).

5.1.1 Initialisations dans le graphe de contrôle (calcul de area0)

Nous supposons que l’arbre syntaxique du programme est donné dans T . La phase d’initia-
lisation consiste à construire le graphe de flot de contrôle afin d’obtenir un ensemble d’arcs-
frontière fermés initial. A partir de ces conditions initiales, l’ensemble area0 est initialisé.

1 (I , O , N , E , F) ← G(T)
2 R ← Register〈N〉
3 inner ← Closure(N,E) (I)
4 R+ ← Register〈inner〉
5 area0 ← NOr(R r R+)

Algorithme 5.2 – Calcul de area0

La première étape consiste à construire le graphe (ligne 1). A partir du graphe, nous construi-
sons l’ensemble inner contenant l’ensemble des noeuds situés à l’intérieur de la frontière. Cet
ensemble est construit par fermeture transitive en partant des noeuds initiaux I et en passant
par les arcs de E (ligne 3). L’ensemble R contient la totalité des registres du graphe (ligne 2).
Seuls les registres situés à l’intérieur de la frontière peuvent être actifs. L’ensemble R+ des re-
gistres actifs est construit à partir de l’ensemble inner à la ligne 4. Finalement, area0 est défini
comme l’ensemble des états tels qu’aucun registre exceptés ceux de R+ n’est actif (ligne 5).
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5.1.2 Elargissement des blocs actifs (calcul de area′)

Lorsque l’ensemble area des blocs actifs a besoin d’être élargi, nous voulons ouvrir les “bon-
nes” frontières. Nous ne voulons ouvrir que les frontières qui nous permettent d’inclure des états
en attente de l’ensemble pending à l’intérieur de l’ensemble area des blocs actifs. Les frontières
permettant de faire progresser l’algorithme ne peuvent se trouver qu’à la surface des blocs ac-
tifs, c’est à dire parmi les arcs de l’ensemble F dont l’origine appartient à l’ensemble surface

des noeuds situés à la surface de inner. Par ailleurs, il peut être nécessaire d’ouvrir plus d’une
frontière avant que area ne soit suffisamment élargi pour inclure des états en attente. Le cas
typique est celui de deux branches parallèles qui attendent la réception d’un même signal :

P1 ; await S ; P2

||
Q1 ; await S ; Q2

Si nous supposons que S est toujours reçu dans chacune des branches de ce programme, alors les
deux frontières générées par les deux instructions await S doivent être ouverte en même temps.
De ce fait, tant qu’aucun état en attente ne se situe à l’intérieur de l’ensemble area, une nouvelle
frontière est analysée afin de décider si elle doit être ouverte ou pas. Dans cet algorithmne, la
fonction Sort≺(E) permet de trier topologiquement un ensemble d’arcs E suivant la relation
“≺” :

1 surface ← Surface(N,E∪F) (inner)
2 frontier ← Sort≺(Trans(N,F)(surface))
3 i ← 1
4 tantque ( (pending ∩ area) = ∅ ) faire
5 f ← frontier[i]
6 −− Vérifier si f doit être ouverte (variable open?) voir algorithme 5.4
7 si ( open? ) alors
8 −− Ouvrir f voir algorithme 5.6
9 fin si

10 i ← i + 1
11 fin tantque

Algorithme 5.3 – Calcul de area′

L’ensemble de noeuds surface représente la surface des blocs situés à l’intérieur de la frontière
(ensemble inner à la ligne 1). Les arcs-frontière dont l’origine appartient à surface sont les seuls
que nous pouvons ouvrir. Ces arcs-frontière sont triés d’après la relation d’ordre “≺” décrite
à la section 4.3 et placés dans l’ensemble frontier (ligne 2). Chaque arc-frontière est ensuite
analysé un à un dans l’ordre jusqu’à ce que l’ensemble area soit suffisamment élargi (lignes 4 à
11). Cet ordonnancement nous permet d’analyser et d’ouvrir chaque frontière dans l’ordre que
nous jugeons a priori le meilleur.

5.1.2.1 Franchissement des frontières

Pour déterminer si un arc-frontière doit être ouvert, nous nous focalisons sur les nouveaux
registres actifs de l’ensemble pending. Les états situés dans l’ensemble pending sont des états
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atteignables qui activent des registres situés à l’extérieur de la frontière. Si l’ouverture d’un
arc-frontière permet d’inclure un de ces registres à l’intérieur de la frontière, alors l’arc-frontière
doit être ouvert :

1 innernew ← Closure(N,E) (Dest(f))
2 Rnew ← Register〈innernew 〉r R+

3 si ( Rnew = ∅ ) alors open? ← true
4 si ( pending ∩Or(Rnew ) 6= ∅ ) alors open? ← true
5 sinon open? ← false
6 fin si

Algorithme 5.4 – Test de franchissement d’une frontière

Dans un premier temps, nous calculons l’ensemble innernew des noeuds atteignables par l’ou-
verture de l’ arc-frontière courant f. Cet ensemble se calcule par fermeture transitive depuis le
noeud destination de f en passant par les arcs de E (ligne 1). En réalité, nous ne nous intéressons
qu’aux nouveaux registres découverts dans innernew . Ces nouveaux registres sont placés dans
l’ensemble Rnew (ligne 2). Trois cas peuvent alors se présenter :

1. Si l’arc-frontière f ne débouche sur aucun nouveau registre, alors il peut être ouvert mais
ceci n’aura aucune influence sur l’élargissement de l’ensemble area (ligne 3).

2. Si l’ensemble Rnew des nouveaux registres n’est pas vide, nous vérifions si l’ensemble
pending contient des états ayant activé un ou plusieurs registres de l’ensemble Rnew . Dans
ce cas, l’arc-frontière f peut être ouvert, ce qui permettra d’élargir l’ensemble area (ligne
4).

3. Si nous ne sommes dans aucun des cas précédents, cela signifie que l’arc-frontière courant
débouche sur des registres non activés et qui doivent par conséquent demeurer inactifs
(ligne 5). f ne doit pas être ouvert.

5.1.2.2 Sélection des frontières compatibles

L’algorithme précédent est susceptible d’ouvrir des arcs-frontière qui ne sont pas “compati-
bles” entre eux.

Un exemple. Supposons que r1, r2 et r3 sont trois registres inactifs dont l’accès est maintenu
fermé par trois arcs-frontière distincts. L’ensemble pending contient deux états : le premier dans
lequel seuls r1 et r3 sont actifs et le second dans lequel seuls r2 et r3 sont actifs. Nous ouvrons
une première frontière qui nous permet d’activer r1. A cette étape de l’algorithme, rien ne nous
interdit alors d’activer r2 avant r3 alors que nous préférerions activer seulement r3.

La solution consiste à effectuer une copie de l’ensemble pending appelée pending′ avant de
commencer à analyser et à ouvrir nos arcs-frontière (ligne 2). Chaque fois qu’un arc est ouvert,
nous réduisons l’ensemble pending′ afin de ne conserver que les états “compatibles” c’est à dire
les états dont les registres actifs font aussi partie de l’ensemble Rnew des registres que nous
sommes sur le point d’activer (ligne 6) :



5.2. CORRECTION DES ALGORITHMES 65

1 . . .
2 pending′ ← pending
3 tantque ( (pending ∩ area) = ∅ ) faire
4 . . .
5 si ( pending′ ∩Or(Rnew ) 6= ∅ ) alors
6 pending′ ← pending′ ∩Or(Rnew )
7 open? ← true
8 . . .

Algorithme 5.5 – Test de franchissement d’une frontière “compatible”

Dans notre exemple précédent, une fois que r1 a été activé, il est impossible d’activer r2 avant
r3 par cette technique.

5.1.2.3 Ouverture d’une frontière

A partir du moment où nous avons décidé l’ouverture d’un arc-frontière, nous devons sim-
plement effectuer quelques mises à jour :

1 E ← E ∪ {f}
2 F ← F r {f}
3 inner ← inner ∪ innernew

4 R+ ← R+ ∪Rnew

5 area ← NOr(R r R+)

Algorithme 5.6 – Ouverture d’une frontière

Tout d’abord, l’arc f est déplacé de l’ensemble des frontières F vers l’ensemble des noeuds
normaux E (lignes 1 et 2). L’intérieur de la frontière est élargi en conséquence (ligne 3) et les
nouveaux registres actifs de Rnew sont ajoutés à l’ensemble des registres actifs de R+ (ligne 4).
Enfin, l’ensemble area est élargi (ligne 5).

5.2 Correction des algorithmes

Nous définissons formellement l’ensemble des états atteignables d’une machine séquentielle
fsm = (ι,Υ,∆,Γ) comme le plus petit point fixe d’une fonction Θ définie de la manière suivante :

Θ(X) = ι ∪∆(X) (5.1)

Ce point fixe est forcément défini puisque Θ est une fonction croissante et que nous travaillons
dans l’ensemble fini BK . Dans cette section, nous choisissons de ne pas tenir compte de l’en-
semble des entrées valides Υ de la machine séquentielle qui ne pose aucun problème particulier
sinon rendre la lecture plus difficile.
Si nous appelons Rbfs l’ensemble des états atteignables calculé par l’algorithme traditionnel et
Rpart l’ensemble des états atteignables calculé par notre algorithme partitionné, alors le but de
cette section est de montrer que :

Rbfs = µ(Θ) (5.2)
et Rpart = µ(Θ) (5.3)



66 CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNÉ

1 reachable ← ι
2 pending ← ι
3 (I , O , N , E , F) ← G(T)
4 R ← Register〈N〉
5 inner ← Closure(N,E) (I)
6 R+ ← Register〈inner〉
7 area ← NOr(R r R+)
8 tantque ( pending 6= ∅ ) faire
9 surface ← Surface(N,E∪F) (inner)

10 frontier ← Sort≺(Trans(N,F)(surface))
11 i ← 1
12 pending′ ← pending
13 tantque ( (pending ∩ area) = ∅ ) faire
14 f ← frontier[i]
15 innernew ← Closure(N,E) (Dest(f))
16 Rnew ← Register〈innernew 〉r R+

17 si ( Rnew = ∅ ) alors
18 E ← E ∪ {f}
19 F ← F r {f}
20 inner ← inner ∪ innernew

21 sinon si ( pending′ ∩Or(Rnew ) 6= ∅ ) alors
22 pending′ ← pending′ ∩Or(Rnew )
23 E ← E ∪ {f}
24 F ← F r {f}
25 inner ← inner ∪ innernew

26 R+ ← R+ ∪Rnew

27 area ← NOr(R r R+)
28 fin si
29 i ← i + 1
30 fin tantque
31 domain ← pending ∩ area
32 new ← Image∆(Υ, domain) r reachable
33 pending ← (pending r area) ∪ new
34 reachable ← reachable ∪ new
35 fin tantque

Fig. 5.1 – Algorithme partitionné complet
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Afin de démontrer la correction de notre algorithme, nous traduisons les algorithmes 2.1 et
5.1 précédents sous forme de fonctions mathématiques récursives.

5.2.1 Rappels et hypothèses

Propriétés du point fixe. Le théorème de Tarski nous permet d’expliciter la valeur de notre
point fixe µ(Θ) :

µ(Θ) = lim
n→∞

Θn(∅) (5.4)

Comme nous travaillons dans l’ensemble fini BK , il existe un entier m tel que :

µ(Θ) = Θm(∅) (5.5)

Calcul de Θn(∅). Par commodité, nous définissons la suite Θn de la manière suivante :

Θn = Θn(∅) ∀n ≥ 0 (5.6)

Nous cherchons à traduire l’expression de Θn sous la forme d’une équation récursive. Nous
voulons montrer que :

Θn = Θn−1 ∪∆n−1(ι) ∀n > 0 (5.7)

Vrai pour n = 1 :

Θ1 = ι ∪∆(∅)
= ι ∪∅
= Θ0 ∪∆0(ι)

Si vrai pour n− 1 alors vrai pour n :

Θn = Θ(Θn−1) par définition
= Θ

(
Θn−2 ∪∆n−2(ι)

)
par hypothèse de récurrence

= ι ∪∆
(
Θn−2 ∪∆n−2(ι)

)
par définition de Θ

= (ι ∪∆(Θn−2)) ∪∆n−1(ι) d’après 5.8
= Θ(Θn−2) ∪∆n−1(ι) par définition de Θ
= Θn−1 ∪∆n−1(ι)

Vrai pour tout n > 0.

Propriétés de la fonction de transition. La fonction de transition ∆ est une fonction
croissante. Ainsi :

∆(F ∪G) = ∆(F ) ∪∆(G) (5.8)

Il est également facilement démontrable que :

∆(F r G) ⊇ ∆(F ) r ∆(G) (5.9)
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Algorithme Breadth First Search. L’algorithme traditionnel se traduit par la définition
d’une fonction bfs (R, N) où la variable R représente l’ensemble des états atteints et N repré-
sente l’ensemble des nouveaux états. Le calcul de la fonction se décompose en deux cas selon
que l’ensemble des nouveaux états est vide ou non. Ainsi, l’algorithme 2.1 page 21 se traduit de
la manière suivante :

bfs (R, N) =

{
R si N = ∅
bfs (R′, N ′) sinon

(5.10)

avec R′ = (∆(N) ∪R)
N ′ = (∆(N) r R)

Cette fonction nous permet de définir Rbfs mathématiquement, en calculant l’ensemble des états
atteignables à partir de l’état initial ι :

Rbfs = bfs (ι, ι) (5.11)

Algorithme partitionné Notre algorithme partitionné (algorithme 5.1 page 62) se traduit
par la définition d’une fonction part (R, P, A) où R représente l’ensemble des états atteints, P
représente l’ensemble des états en attente et A représente l’intérieur de notre frontière. L’en-
semble A′ désigne ici un ensemble quelconque contenant A.

part (R, P, A) =


R si P = ∅
part (R, P, A′ ⊃ A) si P 6= ∅ et P ∩A = ∅
part (R′, P ′, A) sinon

(5.12)

avec R′ = (∆(P ∩A) ∪R)
P ′ = (∆(P ∩A) r R) ∪ (P r A)

Fondamentalement, l’algorithme partitionné se décompose en trois cas. Si l’ensemble des états
en attente est vide alors la fonction retourne R. Si l’ensemble des états en attente situés à
l’intérieur de notre frontière est vide (P ∩ A = ∅), alors nous faisons crôıtre A en A′. Sinon,
nous calculons l’image des états en attente situés à l’intérieur de la frontière.
Cette fonction permet de définir Rpart de la manière suivante, à partir de l’état initial ι et d’un
ensemble A initial que nous pouvons supposer vide dans le pire des cas :

Rpart = part (ι, ι, ∅) (5.13)

Nous pouvons par ailleurs remarquer que :

part
(
ι, ι, BK

)
= bfs (ι, ι) (5.14)

5.2.2 Correction de l’algorithme traditionnel

5.2.2.1 Calcul de bfs (R, N)

Soient Rn et Nn les suites décrivant l’évolution de R et N dans les appels successifs de la
fonction bfs :
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– si n = 1

R1 = ι

N1 = ι (5.15)

– si n > 1

Rn = ∆(Nn−1) ∪Rn−1

Nn = ∆(Nn−1) r Rn−1 (5.16)

5.2.2.2 Convergence de bfs (R, N)

Par définition de Θ, µ(Θ) 6= Θ0. µ(Θ) converge vers Θn dès que Θn = Θn+1. L’algorithme
traditionnel converge vers Rbfs = Rn lorsque Nn = ∅, c’est à dire lorsque ∆(Nn−1) ⊆ Rn−1,
c’est à dire lorsque Rn = Rn−1. Les suites Rn et Θn convergent donc vers un même point fixe
µ(Θ).

5.2.2.3 Rn = Θn

Nous allons montrer que pour tout n > 0 nous avons :

Rn = Θn (5.17)
Nn = Θn r Θn−1 (5.18)

Vrai pour n = 1 :

R1 = ι

= Θ1

N1 = ι

= Θ1 r ∅

Si vrai pour n− 1 alors vrai pour n :

Rn = ∆(Θn−1 r Θn−2) ∪Θn−1

Nn = ∆(Θn−1 r Θn−2) r Θn−1

∆(Θn−1) ∪Θn−1 ⊇ Rn ⊇ (∆(Θn−1) r ∆(Θn−2)) ∪Θn−1

∆(Θn−1) r Θn−1 ⊇ Nn ⊇ (∆(Θn−1) r ∆(Θn−2)) r Θn−1

Nous pouvons également écrire :

(ι ∪∆(Θn−1)) ∪Θn−1 ⊇ Rn ⊇ ((ι ∪∆(Θn−1)) r (ι ∪∆(Θn−2))) ∪Θn−1

(ι ∪∆(Θn−1)) r Θn−1 ⊇ Nn ⊇ ((ι ∪∆(Θn−1)) r (ι ∪∆(Θn−2))) r Θn−1

Ceci se réécrit en :

Θn ∪Θn−1 ⊇ Rn ⊇ (Θn r Θn−1) ∪Θn−1

Θn r Θn−1 ⊇ Nn ⊇ (Θn r Θn−1) r Θn−1
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donc :

Θn ⊇ Rn ⊇ Θn

Θn r Θn−1 ⊇ Nn ⊇ Θn r Θn−1

Donc vrai pour tout n.
Les suites Rn et Θn sont égales pour tout n > 0.

5.2.3 Correction de l’algorithme partitionné

5.2.3.1 Calcul de part (R, P, A)

Soient Rn, Pn et An les suites décrivant l’évolution de R, P et A dans les appels successifs
de la fonction part :

– si n = 1

R1 = ι

P1 = ι

A1 = ∅ (5.19)

– si n > 1
si Pn−1 6= ∅ ∧ Pn−1 ∩An−1 = ∅

Rn = Rn−1

Pn = Pn−1

An = A′ ⊃ An−1 (5.20)

– si n > 1
si Pn−1 = ∅ ∨ Pn−1 ∩An−1 6= ∅

Rn = ∆(Pn−1 ∩An−1) ∪Rn−1

Pn = (∆(Pn−1 ∩An−1) r Rn−1) ∪ (Pn−1 r An−1)
An = An−1 (5.21)

5.2.3.2 Convergence de part (R, P, A)

Par définition, l’algorithme termine lorsque P = ∅. Nous allons montrer que la la suite Pn

converge vers ∅.
Supposons qu’il existe un n > 1 tel que :

Rn+1 = Rn = Rn−1

An+1 = An = An−1

Comme An = An−1, nous pouvons déduire que Rn vérifie l’équation 5.21. Comme Rn = Rn−1

nous pouvons déduire que :

∆(Pn−1 ∩An−1) ⊆ Rn−1

Par simplification de l’équation 5.21, nous avons donc :

Pn = Pn−1 r An−1
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et donc :

Pn ∩An−1 = Pn ∩An = ∅

Comme An+1 = An nous avons :

Pn = ∅ ∨ Pn ∩An 6= ∅

Nous savons par ailleurs que Pn ∩An = ∅, nous avons donc :

Pn = ∅

Les suites Rn et An sont croissantes et majorées par BK , donc on démontrerait facilement qu’il
existe un entier n tel que Rn+1 = Rn = Rn−1 et que An+1 = An = An−1. Donc la suite Pn

converge vers ∅.

5.2.3.3 Rpart ⊇ Θn

∀n > 1, ∀x ∈ Pn−1 x ∈ Pn ∨ ∆(x) ∈ Rn. Nous voulons montrer que tout élément
appartenant à P ne peut sortir de P que lorsque son image est calculée. Si Pn vérifie l’équation
5.20, alors la propriété est évidente. Sinon, deux cas se présentent selon que x appartient ou
non à An−1 :

– si x ∈ An−1 alors :

∆(x) ∈ ∆(Pn−1 ∩An−1) ⊆ Rn

– si x 6∈ An−1 alors :

x ∈ Pn−1 r An−1 ⊆ Pn

∀n > 0 ∃m / ∆(Pn) ⊆ Rm. L’image de tout ensemble Pn est contenu dans Rpart .
Démontrons cette propriété par l’absurde et supposons que :

∃x ∈ Pn / ∀m ∆(x) 6∈ Rm

Nous déduisons de la propriété précédente que :

∃x ∈ Pn / ∀m > n x ∈ Pm

or cette propriété est fausse puisque nous avons démontré que Pn converge vers ∅.

∀n > 0, ∀x ∈ Rn x ∈ Pn ∨ ∆(x) ∈ Rn. Nous voulons montrer que pour tout élément x
de Rn, si l’image de x par ∆ n’est pas dans Rn, alors x appartient à Pn.
Cette propriété est vraie pour n = 1 :

P1 = R1 = ι

Si la propriété est vraie pour n− 1 alors elle est vraie pour n. Si Pn vérifie l’équation 5.20 alors
cette propriété est évidente. Si :

∀x ∈ Rn−1 x ∈ Pn−1 ∨∆(x) ∈ Rn−1

alors :
∀y ∈ Rn y ∈ Pn ∨∆(y) ∈ Rn

Si Pn vérifie l’équation 5.21 alors deux cas se présentent :
– si y ∈ Rn−1 alors la propriété est démontrée par hypothèse de récurrence.
– si y 6∈ Rn−1 alors y ∈ ∆(Pn−1 ∩An−1) r Rn−1 et donc y ∈ Pn.

La propriété est donc vraie pour tout n.
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∀x ∈ Rpart ∆(x) ∈ Rpart . Des deux propriétés précédentes, nous déduisons que l’image
de tout élément de Rpart est aussi contenue dans Rpart .

Rpart ⊇ Θn. Nous montrons que les applications successives de la fonction de transition sont
contenues dans l’ensemble Rpart :

∀n ≥ 0 ∆n(ι) ⊆ Rpart

Nous savons que Rpart ⊇ ι et par la propriété précédente, nous savons également que si
∆n−1(ι) ⊆ Rpart alors ∆n(ι) ⊆ Rpart pour tout n > 0.
La décomposition de Θn donnée à la section 5.2.1 nous permet donc de dire que :

Rpart ⊇ Θn (5.22)

5.2.3.4 Rn ⊆ Θn

On démontrerait facilement que Rn ⊆ Θn et ainsi que Rpart ⊆ µ(Θ) : l’algorithme partitionné
ne génère spontanément aucun nouvel état et à chaque étape de l’algorithme, les nouveaux états
sont calculés à partir d’anciens états eux-mêmes inclus dans µ(Θ).

Pour conclure cette section, nous pouvons affirmer que notre algorithme partitionné est
correct et calcule bien le point fixe µ(Θ).

5.3 Analyse des caractéristiques

Nous terminons ce chapitre par une brève analyse des caractéristiques de notre algorithme
ce qui amène une réflexion sur la forme des programmes pour lesquels cet algorithme est parti-
culièrement adapté, compte tenu de sa complexité empirique. Nous terminons par des commen-
taires sur la possibilité d’adapter notre technique à un autre type de codage des programmes
que celui que nous utilisons (voir 2.1.4).

5.3.1 Complexité

Théoriquement, il est impossible de démontrer que notre algorithme est globalement meilleur
que l’algorithme Breadth First Search : dans le pire des cas, ces deux algorithmes sont expo-
nentiels en espace par rapport au nombre de registres, et la complexité en temps de notre
algorithme est possiblement beaucoup moins bonne puisqu’elle divise les étapes. Les qualités de
notre algorithme ne peuvent être mises en évidence qu’empiriquement (voir chapitre 7).

Soit p la “profondeur” du programme exploré, c’est à dire le nombre d’itérations nécessaires
pour calculer l’espace des états atteignables par l’algorithme Breadth First Search. Soit r le
nombre de registres de ce programme. Dans le pire des cas, l’algorithme partitionné effectue de
l’ordre de p× r itérations (la libération de chacun des r registres peut déclencher à chaque fois
p itérations).
Chaque ouverture de frontière nécessite l’appel à des fonctions de manipulation de graphe
(Closure, Surface). Dans le pire des cas, chacune de ces fonctions est polynomiale par rapport
au nombre de noeuds du graphe et en pratique très rapide et particulièrement par rapport aux
fonctions de manipulation des BDDs.
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Le partitionnement mobilise aussi des opérations d’intersection ou de soustraction avec l’en-
semble area représentant l’intérieur de notre frontière. L’ensemble area possède une représenta-
tion BDD très simple puisqu’il s’agit d’une conjonction de négation de registres. Le BDD de
area est donc linéaire par rapport au nombre de registres inactifs et peut se traduire en une
CBF de taille constante. En pratique, les opérations combinant un BDD U avec area produisent
des BDDs plus petits que U mais le temps de calcul qui dépend principalement de la taille de
U n’est en pratique pas négligeable. Notre méthode de partitionnement est donc assez coûteuse
en temps mais peu coûteuse en mémoire.

5.3.2 Performances

Les performances de notre algorithme dépendent du programme Esterel source. Etant
donné que notre technique de partitionnement repose sur la réception des signaux, le partition-
nement sera d’autant plus performant que le programme contiendra de nombreuses construc-
tions present ou abort et de taille suffisamment grande. A l’inverse, un programme conte-
nant de nombreuses boucles combinées en parallèle présentera plus de risque de donner des
résultats médiocres. Plus précisément, le problème apparait lorsqu’une instruction loop pro-
duit de nouveaux états à chaque tour de boucle et lorsque ces nouveaux ensembles d’états ont
une représentation BDD irrégulière.
Il est important de remarquer que notre partitionnement ne permet pas de simplifier l’expres-
sion des BDDs des registres situés juste derrière la frontière. En effet, la frontière nous permet
de restreindre le domaine de définition des fonctions booléennes mais en aucun cas leur image.
Seuls les registres situés à une profondeur supérieure ou égale à 2 au delà de la frontière voient
leur expression simplifiée.

5.3.3 Encodage des programmes

Nous pensons que notre technique de partitionnement est particulièrement adaptée au cas
du langage Esterel : il s’agit d’un langage impératif dans lequel les zones actives et inactives
du programme sont clairement définies par la valeur des registres. Le codage des programmes
sous forme de circuit qui produit un registre booléen par instruction pause est également très
adapté à notre problème. Cela nous permet de représenter simplement l’ensemble des blocs
actifs par une simple conjonction de registres.
On peut imaginer adapter notre technique pour le cas où le codage des pauses serait plus com-
pliqué comme par exemple un codage hiérarchique : dans un programme P ;Q où les exécutions
de P et de Q sont mutuellement exclusives, il est possible d’encoder les états de P et de Q
par un même vecteur de registre. La séquence serait alors encodée par un registre booléen
supplémentaire valant 0 lorsque P est actif et 1 lorsque Q est actif. Notre technique de parti-
tionnement pourrait être appliquée à de tels circuits mais le codage des blocs actifs, c’est à dire
de l’ansemble area perdrait en simplicité. Ceci permettrait d’adapter notre technique au calcul
de l’espace d’états de circuits optimisés [71].
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Chapitre 6

Mise en Œuvre

Pour implémenter notre technique de partitionnement, nous devons prendre en compte
quelques contraintes techniques. Tout d’abord, le calcul des états atteignables est réalisé à
partir du format circuit des programmes qui permet aisément de reconstruire selon ses besoins
des fragments de la fonction de transition, basés sur les registres correspondants aux points
de contrôle actifs. Les fonctions de transition manipulées lors de ce calcul reposent donc sur
un ensemble fini de variables booléennes : l’ensemble des registres et l’ensemble des signaux
d’entrée du circuit.
D’un autre côté, notre technique de partitionnement utilise un graphe de flot de contrôle,
construit à partir d’un arbre syntaxique, pour piloter l’extraction des parties utiles des fonctions
de transition à chaque étape de l’algorithme. L’arbre syntaxique est censé représenter fidèlement
le programme Esterel source et chaque instruction pause qui le constitue est censée être
identifiée de manière unique par le nom du registre qu’elle génère. De cette association entre
les instructions pause du programme source et les noms des registres dans le format circuit
dépend notre partitionnement. La solution la plus simple consistant à réécrire intégralement un
compilateur Esterel afin de créer et conserver l’information nécessaire à chaque étape de la
compilation n’a pas été retenue.
Dans ce chapitre, nous présentons la manière dont a été implémentée notre technique de parti-
tionnement, de la construction de l’arbre syntaxique et du graphe de flot contrôle jusqu’à son
intégration dans un outil de vérification existant. Avant cela, nous faisons un bref rappel de la
châıne de compilation des programmes Esterel.

6.1 Châıne de compilation des programmes Esterel

La figure 6.1 illustre les étapes de la compilation d’un programme Esterel vers divers
format. La version du compilateur utilisée est la v5 9x. Les fichiers sources Esterel sont
d’abord compilés dans un format intermédiaire [36, 65] à l’aide de l’outil strlic. Le but du
format intermédiaire est à la fois de préparer la traduction des programmes vers le format
circuit en minimisant le nombre de primitives et en introduisant des continuations dans le flot de
contrôle. Ce format permet également de faciliter l’édition de liens entre les différents modules.
Le format intermédiaire encode donc chaque module Esterel sous forme de graphe contenant
plusieurs sortes de noeuds et d’arcs. La structure du programme original est en partie conservée.
Ce format contient également une table de signaux et une table de registres : strlic alloue
un registre booléen pour chaque instruction pause. L’édition de liens est réalisée par l’outil
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Fig. 6.1 – La châıne de compilation d’Esterel.
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iclc. Le format généré est identique au format intermédiaire à la différence que le programme
Esterel est constitué d’un module unique avec une unique table de registres. A partir de cette
étape, le programme peut être traduit en format circuit [11] par l’outil lcsc. La transformation
du format intermédiaire vers le format circuit présente l’avantage (pour nous) de conserver les
tables de variables et en particulier la table des registres c’est à dire la correspondance entre les
pauses et les registres.
Le format circuit peut se traduire en divers formats exécutables (sous forme d’automate ou bien
de programme C compilable). Il peut également être traduit en circuit BLIF [78], optimisé par
blifopt [34, 72, 71] et vérifié à l’aide de l’outil Xeve [14].
Un autre outil de vérification appelé evcl a été développé par Yannis Bres [17]. Cet outil
reconnâıt aussi bien le format BLIF que le format circuit sc propre à Esterel. Ces deux outils
utilisent la librairie TiGeR pour la manipulation des BDDs.

6.2 Représentation des programmes Esterel

La construction du graphe de flot de contrôle a été réalisée selon deux approches différentes.
La première consiste à construire l’arbre syntaxique des programmes lors de la transformation
du code source vers le format intermédiaire ic. La seconde approche consiste à construire
directement le graphe de contrôle à partir du format intermédiaire après l’édition de liens.
Chacune de ces approches présente ses avantages et ses inconvénients, comme nous allons le
voir dans la suite de cette section.

6.2.1 Construction de l’arbre syntaxique dans strlic

Construire l’arbre syntaxique lors de la transformation du programme Esterel vers le
format intermédiaire nous permet d’obtenir un arbre strictement fidèle au code source. Cette
traduction génère une variable de registre pour chaque instruction pause et nous permet de
construire un arbre dans lequel chaque instruction pause est associée au nom de son registre de
contrôle.
L’inconvénient de cette approche réside dans le fait que les programmes Esterel sont très sou-
vent constitués de plusieurs modules. Cette approche ne produit donc pas un arbre syntaxique
mais une forêt d’arbres syntaxiques que nous devons lier entre eux. La phase d’édition de lien
consiste à combiner l’ensemble des modules d’un programme Esterel au sein d’un module
unique. Cette phase s’accompagne également du renommage des variables en général et des
registres en particulier. Pour être viable, l’édition de lien dans les arbres syntaxiques doit être
réalisée de la même manière que dans les modules Esterel, avec les mêmes renommages afin
de conserver l’information nécessaire à l’identification des registres de contrôle.
Si le programme Esterel source ne contient qu’un seul module, alors la phase d’édition de liens
réalisée par l’outil iclc ne modifie pas la table des registres. Nous avons choisi de n’accepter
que les programmes Esterel ne contenant qu’un unique module.

Pour construire l’arbre syntaxique de programmes réels, nous avons donc besoin d’un outil
capable d’effectuer l’édition de lien des programmes Esterel au niveau du code source. Un tel
outil a été développé par Olivier Tardieu au cours de ses travaux sur le compilateur Esterel
[76]. Cet outil prototype n’accepte pas aujourd’hui l’intégralité de la syntaxe du langage. Par
conséquent, notre approche visant à construire notre graphe de flot de contrôle à partir du
langage source est encore aujourd’hui incomplète par manque pratique de réalisation logicielle.
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Instrumentation de strlic. Pour construire notre arbre syntaxique, nous avons modifié le
programme strlic afin qu’il construise l’arbre syntaxique en même temps que la traduction
vers le format intermédiaire. Le résultat est un arbre syntaxique représentant le programme
sous forme parenthésée conforme à celui présenté à la section 4.1.

6.2.2 Construction du graphe à partir du format intermédiaire

Après l’édition de lien, un programme Esterel est codé par un unique module au format
lc. A partir de cette étape, les noms des signaux et des registres demeurent inchangés jusqu’à
leur traduction dans le format circuit. La construction du graphe de flot de contrôle à partir du
format intermédiaire lié nous permet d’accepter n’importe quel programme Esterel compatible
avec la version v5 9x du compilateur, à l’exception des programmes cycliques.
En contrepartie de cet avantage, le format intermédiaire ne décrit pas complètement la structure
du programme Esterel original. Le format intermédiaire décrit un graphe de flot de contrôle
dans lequel le contrôle peut se propager de trois manières différentes :

– Dans les instructions comme la séquence, le test de présence ou l’opérateur parallèle,
le contrôle se propage par continuation. Le contrôle se propage séquentiellement d’une
instruction à une autre. Par exemple, dans une instruction present, le test de présence
d’un signal précède l’activation de l’une de ses deux branches.

– La deuxième catégorie est celle des exceptions dont nous avons choisi de ne pas parler
dans la construction du graphe. De notre point de vue, nous pouvons considérer que les
exceptions se comportent comme les instructions précédentes.

– Dans les instructions de suspension ou de préemption comme suspend ou abort (voir
section 2.1), le contrôle se propage par sélection. Le format intermédiaire décrit également
un arbre appelé arbre de sélection dont les noeuds sont des instructions du programme.
Dans l’arbre de sélection, le contrôle se propage instantanément des feuilles vers la racine
de l’arbre. Par exemple, une instruction abort est codée comme un noeud de l’arbre de
sélection dont les feuilles sont des instructions appartenant au corps du abort. L’instruc-
tion abort est active dès qu’une de ces instructions est active.

A partir d’une telle représentation des programmes, il est parfois difficile de construire notre
graphe de flot de contrôle tel que nous l’avons défini. Par exemple, la construction de notre
graphe autour des instructions present génère des frontières à la fin de chaque branche. Dans
le format intermédiaire, la fin de chaque branche n’est pas mentionnée explicitement. Pour
contourner cette difficulté, nous avons tout simplement considéré que chaque noeud ayant plu-
sieurs prédécesseurs était un noeud marquant la fin d’un test. Les relations d’ordre sur les
frontières (voir section 4.3) sont également plus difficiles à obtenir. L’ordre induit par la séquence
est donc préservé mais nous n’avons pas été en mesure d’implémenter complètement l’ordre per-
mettant d’ordonner les frontières à l’intérieur des instructions present.

Nous avons implémenté la construction du graphe à partir du format intermédiaire en res-
pectant autant que possible les définitions du chapitre 4. Les détails de cette construction ne
sont pas d’un grand intérêt et ne sont pas donnés dans ce document. Le graphe ainsi construit
respecte ces définitions pour toutes les instruction du langage excepté l’instruction present :
l’ordre que nous imposons ne permet pas d’ouvrir toutes les frontières dans une branche avant
les frontières dans la deuxième. Cette simplification est néanmoins assez satisfaisante pour nous
procurer de bons résultats expérimentaux.
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6.3 Calcul partitionné de l’espace des états atteignables

Nous avons utilisé la librairie TiGeR [31] pour la manipulation des BDDs. Notre calcul
partitionné des états atteignables a été intégré à l’outil evcl développé par Yannis Bres au
cours de sa thèse [17]. Cet outil repose sur une extension de la librairie TiGeR appelée TiGeREnh
également développée par Yannis Bres.

6.3.1 TiGeR et TiGeREnh

La librairie TiGeR implémente efficacement les BDDs et les CBFs décrits à la section 2.5.
Elle implémente toutes les fonctions de calcul symbolique décrites à la section 2.4. Elle possède
également la particularité de simplifier la représentation de la fonction de transition en fonction
du domaine auquel elle est appliquée. En réalité, les fonctions de transition de chaque registre
sont reconstruites à chaque étape de l’algorithme en fonction de ce domaine. Ceci permet de ne
jamais représenter la fonction de transition complète.
En plus des BDDs, la librairie TiGeR permet de construire des circuits séquentiels. Elle propose
également une routine monolithique permettant de calculer l’espace des états atteignables d’un
circuit par l’algorithme Breadth First Search présenté à la section 2.3.
La librairie TiGeREnh a été développée dans le but d’expérimenter les méthodes d’abstrac-
tion décrites dans [17]. Yannis Bres s’est également appliqué à rendre la routine de calcul des
états atteignables plus souple et beaucoup plus interactive que celle de TiGeR. Ceci nous a
permis d’intégrer très facilement notre technique de partitionnement au reste de la librairie.
Précisons également que l’approche par abstraction de Yannis Bres est orthogonale à la notre.
Par conséquent, il est possible d’utiliser notre technique de partitionnement dans le calcul des
états atteignables avec abstraction.
La librairie TiGeREnh permet de redéfinir un module dont le but à chaque étape est d’enregistrer
l’ensemble des nouveaux états atteints à l’étape courante et de retourner un ensemble d’états
utilisé comme domaine de définition pour le calcul d’image à l’étape suivante. Le module par
défaut se contente d’enregistrer les nouveaux états atteints et de renvoyer cet ensemble lors de
l’étape suivante. Nous avons donc redéfini ce module afin d’y intégrer notre méthode de parti-
tionnement. Ce module fonctionne avec un graphe de flot de contrôle et permet à chaque étape
de choisir un nouveau domaine pour la fonction de transition.

6.3.2 evcl

evcl est l’outil de vérification fondé sur la librairie TiGeREnh. Il constitue un outil très
souple permettant de calculer l’ensemble des états atteignables d’un circuit séquentiel. Il pro-
cure également une information très riche sur la quantité mémoire utilisée, la taille des BDDs
et les temps de calcul à chaque étape de l’algorithme. Nous avons intégré notre méthode de par-
titionnement à cet outil, ce qui nous a permis d’obtenir facilement les résultats expérimentaux
donnés au chapitre 7.
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Chapitre 7

Expérimentations

Nous avons testé notre méthode sur de nombreux exemples. La liste de ces exemples est
donnée dans les tableaux 7.1 et 7.2. Nous avons mentionné pour chaque programme le nombre
de registres et le nombre d’états lorsque ce dernier est connu. Les tests présentés dans ce chapitre
ont été réalisés sur un Bi-Pentium III cadencé à 550 Mhz avec 1 Giga octet de mémoire.

Programme registres # d’états
transcad 7 7
runner 9 7
jeu 10 7
tcp 18 28
tcpServer 20 21
abcd 21 32
gsm 25 18
rnis 33 1 213
pds 47 65
mmip 48 355

Programme registres # d’états
symbologie 50 62
wristwatch 53 41
mca200 64 1 921
xmem 66 395 403
aa 75 116
tcint 82 286
seqLec 82 90 114
control 87 137
main 104 10 241
atds 124 151

Fig. 7.1 – Tableaux récapitulatifs des petits programmes Esterel. La deuxième colonne indique
le nombre de registres et la dernière colonne indique le nombre d’états du programme.

Malheureusement, bon nombre de ces exemples sont de petits programmes (figure 7.1). Ces
exemples nous ont permis de vérifier expérimentalement que notre implémentation permettait
de calculer le même espace d’états que la méthode de base, mais les résultats sur ces exemples
ne sont pas significatifs car les phénomènes d’explosion intermédiaire y sont très limités, et
gommés par le petit nombre d’itérations pour atteindre le point fixe des états atteignables. Le
calcul partitionné des états atteignables des petits programmes ne permet donc pas de réduire
la consommation mémoire, déjà très basse dans l’algorithme de base.

Notre méthode a été conçue pour traiter les exemples plus gros comme ceux présentés dans
le tableau 7.2. Ces exemples seront détaillés dans les prochaines sections.

Pour ces expériences, nous avons limité la mémoire utilisée par la librairie de BDDs TiGeR à
900Mo afin de n’utiliser que la mémoire vive de la machine. Cette condition est nécessaire afin
de garantir que les temps d’exécution sont corrects et non ralentis par une utilisation excessive
de la mémoire swap. Pour chacun des programmes, nous avons appliqué l’algorithme de base

81
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Programme registres # d’états
chorusBin 92 136 329 824
mmid 111 10 308 357
steam 128 41 774 141 026
sequenceur 154 122 597
sat 192 35 740 420 392 968
cdtmica 208 23 384 736 769
site 308 > 2 380 837 289
trainsTrappes 538 > 1
globalopt 598 > 705 085 932 547
fuel 686 > 8 749
cabine 919 > 719 031 955

Fig. 7.2 – Tableau récapitulatif des gros programmes Esterel.

et notre algorithme partitionné. Dans les résultats expérimentaux que nous présentons nous
indiquons :

– le nombre d’itérations réalisées avec succès,
– le nombre d’états découverts,
– le nombre d’états complètement analysés c’est à dire le nombre d’états dont l’image a été

calculée,
– la mémoire nécessaire aux calculs,
– le temps total utilisé pour les calculs d’image,
– le temps de calcul total.

7.1 Analyse de programmes coriaces

Les résultats présentés dans cette section concernent les programmes pour lesquels aucun des
deux algorithmes n’est parvenu à calculer complètement l’espace des états atteignables. Pour le
programme fuel, chacun des deux algorithmes échoue dès la seconde itération en ne produisant
que 8 749 états. Pour le programme trainsTrappes, les 900Mo de mémoire sont consommés
avant même d’achever la première itération. A part l’état initial, aucun des deux algorithmes
n’a été capable de produire le moindre état.

Pour les programmes globalopt, site et cabine notre algorithme partitionné a pu produire
un nombre plus important d’états que l’algorithme de base comme le montrent les tableaux 7.3,
7.4 et 7.5. Toutefois, comme les deux algorithmes ne produisent pas les états dans le même ordre,
nous ne sommes pas en mesure de garantir que l’ensemble des états découverts par l’algorithme
de base est inclus dans l’ensemble des états découverts par l’algorithme partitionné.

7.1.1 globalopt

L’analyse du programme globalopt produit les résultats donnés dans le tableau 7.3. Nous
pouvons remarquer que l’algorithme partitionné permet de découvrir 2 fois plus d’états attei-
gnables et permet de calculer l’image de 10 fois plus d’états que l’algorithme de base.
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Algorithme défaut partitionné
Nombre d’itérations 3 80

Nombre d’états découverts 342 858 276 099 705 085 932 547
Nombre d’états analysés 583 065 603 5 542 740 483

Mémoire nécessaire > 900Mo > 900Mo
Durée totale des calculs d’image 17m06s 3h57m04s

Temps d’exécution 34m40s 26h45m32s

Fig. 7.3 – globalopt (598 registres)

7.1.2 site

Le tableau 7.4 présente les résultats de l’analyse du programme site. Pour cet exemple,
l’algorithme partitionné permet de découvrir 10 fois plus d’états atteignables et permet de
calculer l’image 400 fois plus d’états que l’algorithme de base.

Algorithme défaut partitionné
Nombre d’itérations 3 91

Nombre d’états découverts 232 705 179 2 380 837 289
Nombre d’états analysés 1 049 601 452 110 875

Mémoire nécessaire > 900Mo > 900Mo
Durée totale des calculs d’image 20m 9h21m12s

Temps d’exécution 22m51s 9h58m45s

Fig. 7.4 – site (308 registres)

7.1.3 cabine

Le tableau 7.5 présente les résultats de l’analyse du programme cabine. Dans cet exemple,
l’algorithme partitionné permet d’aller beaucoup plus loin que l’algorithme de base en explorant
50 000 fois plus d’états. L’image de 900 000 fois plus d’états a également pu être calculée.

Algorithme défaut partitionné
Nombre d’itérations 3 147

Nombre d’états découverts 13 321 719 031 955
Nombre d’états analysés 534 484 744 348

Mémoire nécessaire > 900Mo > 900Mo
Durée totale des calculs d’image 12m58s 3h38m50s

Temps d’exécution 14m22s 18h54m29s

Fig. 7.5 – cabine (919 registres)

7.2 Réduction de la consommation mémoire

Les résultats présentés dans cette section concernent les gros programmes qui peuvent être
complètement explorés par l’algorithme de base et par l’algorithme partitionné. Ces expériences
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sont particulièrement intéressantes car les données obtenues permettent de comparer complè-
tement les deux approches. Les résultats expérimentaux montrent que le calcul partitionné des
états atteignables des programmes sequenceur et mmid utilise moins de mémoire que l’algo-
rithme de base.

7.2.1 sequenceur

Le tableau 7.6 présente les résultats de l’analyse du programme sequenceur. Nous pouvons
constater que l’exploration exhaustive partitionnée de ce programme utilise 60% de mémoire de
moins que l’algorithme de base. En contrepartie, la durée du calcul a été multipliée par près de
2,5. Nous pouvons remarquer que le temps passé à calculer l’image de la fonction de transition
est plus court dans l’algorithme partitionné que dans l’algorithme de base.

Algorithme défaut partitionné
Nombre d’itérations 18 145

Nombre d’états découverts 122 597 122 597
Nombre d’états analysés tous tous

Mémoire nécessaire 40 359Ko 17 022Ko

Durée totale des calculs d’image 1m44s 51, 12s

Temps d’exécution 3m47, 22s 8m56, 59s

Fig. 7.6 – sequenceur (154 registres)

Les graphes de la figure 7.7 représentent l’évolution de la taille des BDDs au cours des
calculs. Nos expériences ne permettent pas de représenter l’évolution de la taille des BDDs
utilisés pour les calculs d’image car cette information est volatile et donc difficile à obtenir.
Toutefois, cette information peut être estimée indirectement d’après la courbe du pic de la
consommation mémoire donnée par le graphe 7.8.
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Fig. 7.7 – Graphes représentant la taille des BDDs en fonction du nombre des états atteints
dans le programme sequenceur. Les rectangles correspondent à l’algorithme de base et les traits
pleins épais correspondent à l’algorithme partitionné. Le graphe (a) représente l’évolution de la
taille du BDD des états atteignables. Le graphe (b) représente l’évolution de la taille du BDD
des états en attente (les nouveaux états pour l’algorithme de base).

Nous pouvons remarquer que l’algorithme partitionné permet de réduire la taille des BDDs
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dans les étapes intermédiaires. La forme de la courbe 7.7(a) est conforme à la courbe 3.2 de la
page 32.
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Fig. 7.8 – Evolution du pic de la consommation mémoire en fonction des états atteints lors de
l’analyse du programme sequenceur. Les rectangles correspondent à l’algorithme de base et les
traits pleins épais correspondent à l’algorithme partitionné.

7.2.2 mmid

Le tableau 7.9 présente les résultats de l’analyse du programme mmid. L’analyse de ce pro-
gramme par l’algorithme partitionné nécessite environ 5 fois moins de mémoire que l’algorithme
de base. Dans cet exemple, les temps de calcul ont également été raccourcis puisque l’algorithme
partitionné est environ 2 fois plus rapide.

Algorithme défaut partitionné
Nombre d’itérations 13 113

Nombre d’états découverts 10 308 357 10 308 357
Nombre d’états analysés tous tous

Mémoire nécessaire 205 214Ko 42 368Ko

Durée totale des calculs d’image 42m52s 8m25s

Temps d’exécution 45m59s 19m38

Fig. 7.9 – mmid (111 registres)

Les graphes de la figure 7.10 représentent l’évolution de la taille des BDDs au cours des
calculs. La figure 7.11 représente l’évolution du pic de consommation mémoire au cours des
calculs.

Comme pour le programme sequenceur, l’algorithme partitionné permet de réduire la taille
des BDDs dans les étapes intermédiaires.

7.3 Exploration exhaustive

Les exemples présentés dans cette section ne peuvent pas être entièrement explorés par
l’algorithme de base avec moins 900Mo de mémoire. Notre algorithme partitionné a permis
d’explorer entièrement ces programmes.
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Fig. 7.10 – Graphes représentant la taille des BDDs en fonction du nombre des états atteints
dans le programme mmid. Les rectangles correspondent à l’algorithme de base et les traits pleins
épais correspondent à l’algorithme partitionné. Le graphe (a) représente l’évolution de la taille
du BDD des états atteignables. Le graphe (b) représente l’évolution de la taille du BDD des
états en attente (les nouveaux états pour l’algorithme de base).
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Fig. 7.11 – Evolution du pic de la consommation mémoire en fonction des états atteints lors de
l’analyse du programme mmid. Les rectangles correspondent à l’algorithme de base et les traits
pleins épais correspondent à l’algorithme partitionné.

7.3.1 chorusBin

Le tableau 7.12 présente les résultats de l’analyse du programme chorusBin. L’algorithme
de base n’est capable de produire que 12% de l’espace des états atteignables total. Dans cet
exemple, l’analyse complète du programme est très coûteuse en temps puisque les calculs ont
duré 238 heures. Nous ne pouvons pas savoir quelle aurait été la durée des calculs de l’algorithme
de base si la mémoire avait été suffisante. Toutefois, nous pouvons remarquer que l’algorithme
partitionné passe 99% de son temps dans les calculs d’image. Nous avons donc de bonnes raisons
de croire que la durée des calculs provient de la nature du programme chorusBin et non pas
des calculs supplémentaires nécessaires au partitionnement.
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Algorithme défaut partitionné
Nombre d’itérations 6 79

Nombre d’états découverts 16 928 480 136 329 824
Nombre d’états analysés 441 417 tous

Mémoire nécessaire > 900Mo 851 369Ko
Durée totale des calculs d’image 5h27m44s 237h01m40s

Temps d’exécution 5h39m35s 238h10m45s

Fig. 7.12 – chorusBin (92 registres)

7.3.2 cdtmica

Le tableau 7.13 présente les résultats de l’analyse du programme cdtmica. L’algorithme de
base ne permet de produire que 54% de l’espace des états atteignables total. Dans cet exemple,
le temps de calcul de l’algorithme partitionné semble raisonnable : l’algorithme partitionné met
2 fois plus de temps à converger que l’algorithme de base à échouer. D’autre part, la courbe
7.14 représentant le nombre d’états atteints au cours du temps semble indiquer que l’algorithme
partitionné est un peu plus rapide que l’algorithme de base.

Algorithme défaut partitionné
Nombre d’itérations 10 185

Nombre d’états découverts 12 538 388 785 23 384 736 769
Nombre d’états analysés 10 651 674 353 tous

Mémoire nécessaire > 900Mo 748 971Ko
Durée totale des calculs d’image 15h17m50s 35h38m10s

Temps d’exécution 15h24m46s 36h31m23s

Fig. 7.13 – cdtmica (208 registres)
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Fig. 7.14 – Nombre d’états découverts au cours du temps lors de l’analyse du programme
cdtmica. Le temps en abscisse est exprimé en secondes. Les rectangles correspondent à l’algo-
rithme de base et les traits pleins épais correspondent à l’algorithme partitionné.
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7.3.3 steam

Le tableau 7.15 présente les résultats de l’analyse du programme steam. L’algorithme de
base ne permet de produire que 9% de l’espace des états atteignables total. Ici encore, le temps
de calcul de l’algorithme partitionné semble raisonnable (25 heures) par rapport au temps de
calcul inachevé de l’algorithme de base.

Algorithme défaut partitionné
Nombre d’itérations 3 101

Nombre d’états découverts 3 865 747 524 41 774 141 026
Nombre d’états analysés 396 566 399 tous

Mémoire nécessaire > 900Mo 762 153Ko
Durée totale des calculs d’image 47m29s 24h09m21s

Temps d’exécution 48m36s 25h30m21s

Fig. 7.15 – steam (128 registres)

7.3.4 sat

Pour finir, le tableau 7.16 présente les résultats de l’analyse du programme sat. L’algorithme
de base ne permet de produire que 0,12% de l’espace des états atteignables total. Dans cet
exemple, nous pouvons constater que la consommation mémoire est exceptionnellement basse
avec au plus 76Mo. Les temps de calculs sont également remarquables puisque l’algorithme
partitionné s’achève avec succès au bout de 3 heures alors que l’algorithme de base échoue au
bout de plus de 6 heures.

Algorithme défaut partitionné
Nombre d’itérations 17 339

Nombre d’états découverts 43 487 202 056 35 740 420 392 968
Nombre d’états analysés 17 566 150 006 tous

Mémoire nécessaire > 900Mo 77 797Ko

Durée totale des calculs d’image 6h28m29s 2h14m40s

Temps d’exécution 6h42m50s 3h00m56s

Fig. 7.16 – sat (192 registres)

7.4 Conclusion des résultats

Les résultats expérimentaux tendent à montrer que notre algorithme partitionné permet de
réduire la taille des BDDs utilisés lors des calculs. Dans chacun des cas présentés ici, notre
méthode a permis d’obtenir soit des résultats plus complets en terme de nombre d’états atteints
soit les mêmes résultats avec une consommation mémoire diminuée. L’objectif de notre approche
a donc été atteint.
En ce qui concerne les temps de calculs, les résultats sont moins évidents. Sur les 11 gros
exemples présentés dans ce chapitre, seuls 3 exemples permettent de comparer les deux ap-
proches : sequenceur, mmid et sat. Dans le premier exemple (le plus petit des trois), l’algo-
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rithme partitionné est nettement plus lent. Dans les deux derniers, l’algorithme partitionné
est nettement plus rapide. Dans tous les cas, la durée des calculs d’image a été réduite. Le
phénomène peut s’expliquer par le fait que le calcul de l’image prend de plus en plus d’impor-
tance sur les gros exemples, autrement dit, le calcul de l’image dans l’algorithme de base est
comparativement très rapide dans sequenceur (46% du temps total) et très lent dans mmid
(93% du temps) et sat (96% du temps). Ces maigres indices tendent à laisser penser que notre
méthode de partitionnement permettrait également de réduire les temps de calcul dans l’explo-
ration des programmes les plus gros où globalement, le temps perdu à partitionner est rattrapé
par des calculs d’image plus rapides. D’autres expériences sont nécessaires afin de clarifier ce
point.
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Chapitre 8

Conclusion et Perspectives

Nous avons présenté une méthode de partitionnement du calcul des états atteignables guidé
par la syntaxe des programmes. Ce partitionnement purement automatique est basé sur l’infor-
mation donnée par les signaux. Nous avons démontré formellement la correction de notre algo-
rithme. Si la complexité théorique de notre algorithme est moins bonne que l’algorithme de base,
les résultats expérimentaux sont très encourageants et montrent l’utilité de notre approche. Nous
pensons que cette méthode mérite d’être expérimentée sur un plus grand nombre d’exemples tirés
d’applications réelles afin d’être complètement validé. Nous souhaiterions également confronter
notre méthode avec d’autres méthodes concurrentes comme par exemple [66].
Notre méthode est compatible avec les travaux réalisés par Yannis Bres sur la vérification de
programmes par des techniques d’abstraction. Ces deux travaux ont d’ailleurs donné naissance
à des prototypes intégrés au sein d’un même logiciel. Il serait intéressant d’expérimenter les
apports de notre partitionnement sur ces techniques. Ces expériences n’ont pu être menées par
manque de temps ; alors que notre méthode de partitionnement est complètement automatique,
les techniques d’abstraction nécessitent une bonne connaissance des applications traitées.

Notre approche présente une faiblesse concernant les boucles dans un contexte parallèle. Le
problème vient du fait que notre méthode consiste à ouvrir des frontières sans les refermer.
Pour nous, “refermer une frontière” signifie interdire l’activation de certains registres. De ce
fait, nous ne faisons que grossir de domaine d’application de la fonction de transition. Souvent,
tous les états sont atteignables à la première itération et le fait de refermer les frontières devient
inutile. Pour les autres cas, nous pouvons penser que la synchronisation entre les boucles en
parallèle fait que nous devrions pouvoir refermer les frontières sous certaines conditions. Dans
le futur, nous souhaiterions combler cette lacune. Il s’agirait alors de savoir refermer certaines
frontières de manière intelligente. A l’heure actuelle, nous ne savons pas précisément quelles
sont ces frontières ni comment, ni à quel moment, ces frontières doivent être refermées dans
l’algorithme. De plus, le fait de refermer des frontières nécessite de redéfinir dynamiquement
l’ordre de (ré)ouverture a priori des frontières donné par la relation ≺ (voir les sections 3.5.1 et
4.3).

Dans sa forme actuelle, notre algorithme de partitionnement calcule un seul ensemble conte-
nant tous les états atteignables. Nous souhaiterions améliorer ce calcul afin qu’il produise la
trace des états atteignables, c’est à dire une liste d’ensembles où chaque cellule contiendrait les
états atteignables à une profondeur donnée. Ceci pourrait aussi nous permettre de partitionner
un peu plus les calculs suivant chaque élément de la liste.
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A la section 2.5.1, nous avons vu que l’ordre des variables de BDD avait une influence sur la
complexité des BDDs. Dans nos expériences, cet ordre est choisi par la librairie TiGeR en fonction
de la forme globale du circuit analysé. Dans le futur, nous souhaiterions également trouver, si
il existe, un ordre sur les variables de BDDs adapté à notre partitionnement. L’intérêt serait
alors de tirer profit du fait que chaque étape de l’algorithme permet de n’appliquer la relation
de transition que “localement”.
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Résumé

Le calcul symbolique des états atteignables d’un programme constitue un élément de base
dans la compilation des programmes réactifs synchrones. Nous proposons d’améliorer la com-
plexité parfois prohibitive de ce calcul en exploitant la structure des programmes. L’idée de base
parait extrêmement simple : pour le cas P ;Q où deux blocs de programme sont combinés en
séquence, nous cherchons à construire entièrement les états atteignables de P et de ne s’occuper
de Q que lorsque P est complètement exploré. L’intérêt est de n’utiliser à chaque étape que
la partie pertinente de la fonction de transition. Si les comportements de P étaient de durée
variable, le calcul symbolique Breadth First Search aurait combiné l’exploration de P et de
Q dans un même mouvement. De ceci aurait résulté une irrégularité dans les représentations
intermédiaires des états atteints, ce qui constitue l’une des plus grandes causes de la complexité
du model checking utilisant des techniques symboliques.

Les difficultés de notre approche apparaissent en présence de parallélisme et d’échange de
signaux locaux où les blocs de programme peuvent se synchroniser de multiples façons en rai-
son du comportement dynamique du programme. Considérer toutes ces possibilités mènerait
à une forte complexité. Le but ici est de trouver un compromis satisfaisant entre l’approche
globale Breadth First Search et l’approche compositionnelle partitionnée. Concrètement, nous
nous appuyons sur des caractéristiques intéressantes de notre librairie de BDD pour développer
une approche efficace. Nous employons des heuristiques permettant de partitionner notre pro-
gramme et d’ordonnancer la construction des états atteignables afin de calculer exactement les
mêmes résultats que par la méthode de base mais en appliquant des fonctions de transition plus
localisées. Les premiers résultats expérimentaux montrent la pertinence de notre approche.

Abstract

We consider the issue of exploiting the structural form of Esterel programs to partition
the algorithmic RSS (reachable state space) fix-point construction used in model-checking tech-
niques. The basic idea sounds utterly simple, as seen on the case of sequential composition :
in P ;Q, first compute entirely the states reached in P , and then only carry on to Q, each
time using only the relevant transition relation part. Here a brute-force symbolic breadth-first
search would have mixed the exploration of P and Q instead, in case P had different behaviors
of various lengths, and that would result in irregular BBD representation of temporary state
spaces, a major cause of complexity in symbolic model-checking.

Difficulties appear in our decomposition approach when scheduling the different transition
parts in presence of parallelism and local signal exchanges. Program blocks (or ”Macro-states”)
put in parallel can be synchronized in various ways, due to dynamic behaviors, and conside-
ring all possibilities may lead to an excessive division complexity. The goal is here to find a
satisfactory trade-off between compositional and global approaches. Concretely we use some of
the features of the BDD library, and heuristic orderings between internal signals, to have the
transition relation progress through the program behaviors to get the same effect as a global
RSS computation, but with much more localized transition applications. We provide concrete
benchmarks showing the usefulness of the approach.
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