Université de Nice—Sophia Antipolis

Ecole Doctorale

UFR Sciences Sciences et Technologies de I'Information et de la Communication

These de Doctorat

Préparée pour obtenir le titre de

Docteur en Sciences de ’Université de Nice-Sophia Antipolis

Spécialité : Informatique

Préparée a I'Institut National de Recherche en Informatique
et en Automatique de Sophia Antipolis

par

Eric VECCHIE

Calcul des états atteignables
de programmes ESTEREL
partitionné selon la syntaxe

Directeur de thése : Robert DE SIMONE

Soutenue publiquement le 9 juillet 2004
a I’Ecole Supérieure en Sciences Informatiques

de Sophia Antipolis

devant le jury composé de :

MM. Jean-Paul RicAuLT Président
Jean-Michel COUVREUR Rapporteur
Nicolas HALBWACHS Rapporteur

Mme. Dominique BORRIONE Examinatrice

MM. Pascal RAYMOND Examinateur
Robert DE SIMONE Directeur de these

UNSA / ESSI

CNRS / ENS Cachan
CNRS / Vérimag
TIMA / UJF Grenoble
CNRS / Vérimag
INRIA Sophia Antipolis

ii

Table des matieres

1__Introduction| 3
1.1 Méthodes symboliques| 4
[1.2 Notre approche| 5
1.3 Unexemple] 5
1.4 Tdravauxreliés| e 6
[1.5__Présentation du document| 8

2__Contexte de Etude 9
RI_ESTEREL -+ « v v v v e e e e e e e e e e 9

[2.1.1 Aspects sémantiques| Lo 12
2.1.1.1 Réincarnation| o 13

2.1.1.2 Correction logique| 0. 13

2.1.13 Constructivitel o L 14

[2.1.2 Machinesde Mealy|, 14
[2.1.3 Circuits séquentiels|. Lo 15
[2.1.4 Compilation des programmes ESTEREL en circuitf 16
2.1.4.1 Interface des circuitsl. 17

2.1.4.2 FExécution des circuitsl 17

2.1.43 ‘ITraduction circuitf o o 17

[2.1.5 Interprétation des circuits en machines de Mealy| 18

2.2 La machine séquentielle | oo o 19
2.3 Calcul des états atteignables d’une machine séquentielle] 20
2.4 Calcul symbolique des états atteignables| 21
[2.4.1 Calcul d'image] 22
242 Cofacteurl 23

[2.5 Les Diagrammes de Décision Binaires| 24
25.1 Notionsdebasel. 24
2,52 Raffinements o 26
[2.5.3 Calculs symboliques et BDDs|o 0000000 28
[2.5.3.1 Formules propositionnelles] 28

[2.5.3.2 Opérations basiques| 28

2.5.3.3 Quantification|o oo 28

2534 Substitutionl 29

2535 Cofacteuret BDDso o000 30

iii

B Pré on Tniaitive

[3.1 Description générale de la méthode| L.
[3.2 Partitionnement des blocs séquentiels|.o 00000
13.2.1 L’opérateur de séquencement|
[3.2.1.1 Terminaison des blocs de programme|

13.2.1.2 Points faibles de I"algorithme Breadth First Search|.

8.2.1.3 Partitionnement|

[3.2.2 L’opérateur de choix| o
13.2.3 Le mécanisme de préemption ou d’exception|.
13.2.4 Découpage de programme séquentiel : un exemple|

B.3 Partitionnement des boucled
3.4 L’opérateur parallele et les signaux|{
[3.4.1 Un programme parallele au comportement séquentiell
13.4.2 Partitionnement des blocs paralleles|
[3.4.2.1 Partitionnement sur les couples émetteur/récepteur|

[3.4.2.2 Vraies et fausses synchronisations|

3.5 Exploration partitionnée des programmes ESTEREL|.
13.5.1 Ordonnancement statique des frontieres|
13.5.2 Ordonnancement du déblocage des frontieres|
13.5.3 Débordement des états atteignables|

4__Notations|

4.1 L’arbre de syntaxe abstraite|
4.2 Le graphe de controle]o o
[4.2.1 Construction du graphe] o oo oo
4.2.2 Exemple|.
|4.2.3 Graphe de controle et partitionnement|

4.3 Une relation d’ordre pour les frontieres du graphe|.

[6 Calcul des Etats Atteignables Partitionné|

(5.1

Algorithme partitionné|.

5.1.1 Initialisations dans le graphe de controle (calcul de areap)|
5.1.2 Elargissement des blocs actifs (calcul de area”)l.

[5.1.2.2 Sélection des frontieres compatibles|

5.2

Correction des algorithmes | oo

[.2.1 Rappels et hypotheses|
19.2.2 Correction de I"algorithme traditionnel]
[p.2.2.1 Calculde bfs (R, N)|.
[5.2.2.2 Convergence de bfs (R, N)| v v v v it
223 R, =0,
[5.2.3 Correction de 'algorithme partitionné|
[p.2.3.1 Calcul de part (R, P, A)|
[5.2.3.2 Convergence de part (R, P, A)|

v

31
33
36
36
36
37
38
38
39
39
40
42
42
44

47
48
48
49
50

51
o1
53
53
95
56
58
58
58

0.2.3.3 Rpert 20Op| - - o o o

5.3 Analyse des caractéristiques| Lo

5.3.1 Complexite . . .

6 Mise en (Fuvre

[6.1 Chaine de compilation des programmes ESTEREL|

6.2 Représentation des programmes EESTEREL|

|6.2.1 Construction de ’arbre syntaxique dans strlic|

16.2.2 Construction du graphe a partir du tormat intermédiairef.

6.3 Calcul partitionné de ’espace des états atteignables|

0.0.1 TiGeRet TiGeREnh|l

[7 Expérimentations|

[7.1 Analyse de programmes COriaces| o v v v v vt e e e

[(.1.1 globalopt| . ..

[8 Conclusion et Perspectives|

(Bibliographie|

75
75
7
7
78
79
79
79

81
82
82
83
83
83
84
85
85
86
87
88
88
88

91

93

vi

Remerciements

Je remercie le monde entier pour son soutien.

vii

viii

These

Chapitre 1

Introduction

La raison de vivre d’une porte automatique est de s’ouvrir a ’approche d’un passant. De

ce fait, on comprendra aisément le désarroi du chaland qui, probablement tres absorbé par la
relecture des dernieres corrections apportées a son manuscrit de these par son directeur qui
écrit aussi petit que mal, et si possible dans une langue que seuls les autres directeurs de these
comprennent, entre en relation plus qu’amicale avec quatre metres carrés de plexiglas en tentant
de franchir une porte caractérielle qui n’a pas souhaité s’ouvrir & son passage parce-que... parce-
que c’est son circuit de controle qui lui a pas dit. Ce sentiment hostile envers la technologie est
d’autant plus justifié si une porte d’ascenseur s’ouvre sur le vide, si 'airbag d’une voiture se
déclenche sans raison sur ’autoroute ou si le train d’un avion refuse de sortir de sa trappe au
moment de 'atterrissage.
Le premier point commun entre tous ces exemples est que ce sont tous des systemes ou le controle
(en opposition aux données) tient une place prépondérante. Le langage ESTEREL [I5] [12] a été
concu pour modéliser et programmer ce type d’application. Le second point commun est que
tous ces exemples sont des applications critiques qui peuvent mettre des vies en danger en
cas de dysfonctionnement. Le dysfonctionnement en question peut provenir soit d’une panne
de I'un des composants soit d’une erreur de conception. Le contenu de cette these se révélera
impuissant devant le premier cas. Dans le second cas, des méthodes automatiques permettent
de vérifier la correction d’une application vis a vis de criteres formels. Par exemple, un critere
de fonctionnement correct d’un avion pourrait étre de ne jamais rentrer le train d’atterrissage
lorsque l'avion est au sol. Dans certains cas, le processus de vérification consiste a calculer
I’espace des états atteignables du programme, c’est a dire toutes les configurations possibles du
programme et a vérifier que chacun de ces états est correct par rapport aux spécifications.

Cette these parle de calcul d’états atteignables. Ce calcul constitue un élément de base
dans la compilation de programmes ESTEREL. La vérification automatique, aussi appelée Model
Checking [25], est 'une des applications les plus intuitivement naturelle de ce calcul, mais en
réalité ce dernier est utilisé dans plusieurs étapes de la compilation comme 'optimisation des
programmes [71], la génération de séquences de test [6]. L’espace des états atteignables d’un
programme ESTEREL est toujours calculable en théorie car cet ensemble est fini. Cet ensemble
peut s’obtenir en énumérant un a un tous les états mais le nombre d’états peut étre prohibitive-
ment grand. A I’énumération nous préférerons des méthodes symboliques qui nous permettent
de représenter les ensembles d’états par des formules qui les caractérisent. En ESTEREL, I’état
du programme est représenté par un vecteur de variables booléennes qui indiquent la position
du flot de controle (comme dans un réseau de Pétri [67]). Ainsi, les ensembles d’états des pro-

3

4 CHAPITRE 1. INTRODUCTION

grammes peuvent étre représentés par des formules logiques sur ces variables. Comme nous
le verrons dans ce document, il existe des méthodes permettant de calculer symboliquement
I’espace des états atteignables avec des structures de données qui permettent de représenter
efficacement ces formules logiques; ces structures sont appelées des Diagrammes de Décision
Binaires ou BDD (Binary Decision Diagrams).

1.1 Meéthodes symboliques

Depuis les années 90, les BDDs ont été utilisés dans diverses méthodes de vérification pour
représenter implicitement des espaces d’états [24][23]. Ces méthodes partent d’une représentation
“circuit” des programmes. Les BDDs ont ainsi permis d’appliquer ces méthodes a la vérification
de larges applications synchrones réalistes. Le calcul de base de I'espace des états atteignables
d’un programme est un algorithme symbolique de point fixe utilisant des BDDs et permettant
de produire les états atteignables par un algorithme Breadth First Search : chaque étape de I’al-
gorithme permet de construire tous les successeurs des états atteints a ’étape précédente par
I’application d’une fonction de transition. Mais compter sur le seul pouvoir des BDDs ne suffit
pas toujours pour faire face a la complexité de la construction de cet espace. Plus précisément,
alors que le BDD représentant ’espace d’états atteignables final est souvent trés compact, la
fonction de transition et les calculs des états successeurs dans les étapes intermédiaires de
I’algorithme peuvent nécessiter 'utilisation de BDDs beaucoup plus larges. Des techniques in-
telligentes ont déja été proposées pour partitionner I’application de la fonction de transition et
permettent de résoudre ce probleme en partie [211, 22, [50].

Jusqu’a présent, ESTEREL utilisait ces techniques a travers une traduction en circuits. Cette
traduction aplatit la structure mais permet de représenter les programmes dans un format direc-
tement exploitable par les outils de calcul. Dans le contexte ’EESTEREL, nous proposons d’utiliser
la structure syntaxique naturelle des programmes afin d’appliquer la fonction de transition par
morceau. Intuitivement, si P et) sont deux blocs de programme composés en séquence P ; @,
il semble naturel de calculer d’abord tous les états atteignables dans P, et ensuite seulement de
calculer tous les états atteignables dans (). Un algorithme Breadth First Search aurait plutot
combiné des états de P avec le “début” de ceux de @ des lors que tous les comportements de
P ne sont pas de méme durée. Un tel découpage est intuitivement une bonne idée puisqu’il
découpe linéairement un probleme dont la complexité est fonction de P ; @ en deux problémes
dont les complexités sont respectivement fonction de P seulement et fonction de () seulement.
Alors que cette idée semble triviale, les difficultés réelles apparaissent en présence de pa-
rallélisme. Dans un programme parallele P || @, I'ensemble des états atteignables n’est pas
en général le simple produit cartésien des comportements de P et de Q) du fait des échanges de
signaux internes entre P et @) introduisant de la synchronisation entre les blocs. Ceci rend le
calcul des états atteignables difficile en méme temps qu’il justifie son utilité. Afin que notre ap-
proche retienne quelques avantages d’une approche symbolique, une attention toute particuliere
doit étre prise afin que notre partitionnement ne s’apparente pas a ’énumération de tous les
états possibles du programme; une idée typiquement mauvaise consisterait a partitionner un
programme de la forme P1 ;P2 | | Ql ;QQ suivant P1Q17 PlQQ, PQQl et PQQQ.

1.2. NOTRE APPROCHE)

1.2 Notre approche

En essence, notre algorithme partitionné procede de la maniere suivante : initialement, une

fonction de transition tres réduite est appliquée. Les parties de la fonction de transition qui
agissent sur les blocs de programme inactifs ne sont pas représentées. Au départ, nous “blo-
quons” explicitement les endroits du programme ol un signal externe ou interne est regu, faisant
progresser le controle dans des sous-blocs suivants. Ensuite, ces réceptions sont progressivement
“débloquées” dans un ordre adéquat de telle sorte que la fonction de transition ne fait que
croitre en explorant les sous-blocs de controle successifs. Parallelement a cela, comme les nou-
velles extensions de la fonction de transition ne sont appliquées qu’aux états les “plus récents”
dans de nouvelles parties du programme, les anciennes parties de la fonction de transition qui
ont déja servi sur les blocs “saturés” sont automatiquement simplifiées grace a quelques pro-
priétés de simplification des BDDs (proposées par la librairie TiGeR [31]). Ces simplifications
permettent de ne représenter que la partie utile de la fonction de transition en fonction de son
domaine d’application. Cette opération permet en pratique de simplifier radicalement le support
de la fonction de transition, c’est a dire I’ensemble des variables dont dépend effectivement la
fonction. Ces simplifications ont un effet bénéfique immédiat sur les calculs.
Les heuristiques permettant d’ordonner le “débloquage” des réceptions de signaux sont basées
sur une structure de graphe extraite de la syntaxe des programmes. De cette maniere, cet ordre
est conforme avec ’ordre naturel de propagation du controle qui peut exister dans le programme
source (en omettant les retours de boucle). Par exemple, quand la réception d’un signal S pro-
voque I’émission d’un signal T, si T est lui méme attendu par une instruction réceptrice alors il
est évidemment sensé de débloquer la réception de S avant celle de T.

1.3 Un exemple

La montre & quartz [10] est I'une des applications classiques d’ESTEREL. Cette application,
illustrée par la figure [1.1] consiste en plusieurs modules et une interface composée de quatre
boutons en entrée et d’'un écran LCD en sortie (avec également une sonnerie). Un des boutons
permet de faire basculer la montre d’'un mode a l’autre, les trois autres boutons permettent
de controler la montre en fonction du mode courant. Les modules de ce programme sont les
suivants :

— Un module ALARM calcule la date et I’heure en fonction d’un signal d’entrée régulier en-
voyé par le quartz. Lorsqu’un changement intervient, ce module retransmet 'information
au module d’affichage DISPLAY.

— Un module TIME_SET permet de régler la date et 'heure en utilisant les boutons de la
montre.

— Un module ALARM_SET permet de régler ’heure de ’alarme et d’activer ou de désactiver
cette alarme.

— Un module STOPWATCH permet d’utiliser la montre comme un chronometre. Le chro-
nometre peut continuer a tourner méme si il n’est pas affiché a I’écran.

— Un module DispLAY permet d’afficher les bonnes informations sur I’écran LCD et de
gérer la sonnerie de la montre en fonction du mode sélectionné.

— Un module BUTTON_DECODER permet de faire la liaison entre les boutons de la montre
et les signaux d’entrée spécifiques de chacun des sous-modules en fonction du mode
sélectionné. En particulier, le role du bouton situé en haut et a droite du schéma et
appelé “Mode_Select” sera de passer d’'un mode actif & un autre, c’est a dire d’alterner

6 CHAPITRE 1. INTRODUCTION

entre le mode du simple affichage, le mode de réglage de I’heure (TIME_SET), le mode de
réglage de 'alarme (ALARM_SET) et le mode chronometre (STOPWATCH).

ALARM / DISPLAY BUTTON_DECODER
= === - - ~
Mode Select 1 1
B = *jalarm set % display 1
1 mode mode 1
1 1
1 1
1 1
2 | Am |puaL| TMR | cHR [| [BUTTONS : :
I time_set stopwatch !
1 mode y_| | ©- mode !
DISPLAY o Ht____)

viy fff ‘i EEE Vv fff

STOPWATCH TIME_SET ALARM_SET
Fi1G. 1.1 — La montre a quartz.

Dans cette application, les modules TIME_SET, ALARM_SET et STOPWATCH sont lancés en pa-
rallele mais leurs comportements sont largement exclusifs en ce qui concerne leur réaction aux
événements d’entrée, c’est a dire aux boutons et en ce qui concerne 'affichage. En effet, les
boutons ne permettent de controler qu'un seul module a la fois et ’affichage varie selon le mode
sélectionné. L’analyse Breadth First Search basique d’un tel programme ne tire aucun avantage
du fait que tous ces sous-modules sont exclusifs et calcule 'espace des états atteignables sur le
programme tout entier.

L’analyse de ce programme pourrait étre divisée en quatre partie : La premiere permettant de
calculer les états atteignables pour le mode d’affichage de I'heure et les trois autres permettant
de calculer les états atteignables dans les modules TIME_SET puis ALARM_SET et enfin STOP-
WATCH. Ainsi, la recherche des états de chaque mode pourrait étre réalisée indépendamment
des trois autres modes. Le gain en espace d’une telle approche est évident puisque ’analyse du
programme original peut alors étre assimilée a ’analyse de quatre programmes, tous de taille
inférieur au programme original. Dans chacune de ces quatre phases, des fonctions de transitions
locales sont utilisées a la place d’une seule fonction de transition globale.

1.4 Travaux reliés

Utiliser la structure algorithmique des programmes ESTEREL afin de guider la construction
symbolique et exhaustive de I'espace d’états atteignables est une idée simple et claire qui n’a
jamais été expérimentée a notre connaissance. D’autres travaux en rapport avec les noétres uti-
lisent des techniques Depth First Search pour la recherche explicite d’états atteignables afin
d’identifier un squelette de configurations initiales “en avance”. Une fois ces configurations cal-
culées, des méthodes symboliques Breadth First Search sont appliquées [66] en utilisant une
relation de transition partitionnée. Le but de ces travaux est plus d’ordonnancer le processus de
génération des états atteignables que de minimiser la représentation de la relation de transition.
D’autres travaux présentés dans [2] exploitent la structure hiérarchique de programmes asyn-
chrones afin d’optimiser le calcul des états atteignables. Ces travaux reposent entre autre sur

1.4. TRAVAUX RELIES 7

I’hypothese d’un opérateur parallele asynchrone. Cette hypothese ne permet malheureusement
pas d’appliquer ces résultats au cas d’ESTEREL ou l’exécution de taches en parallele est syn-
chrone.

Certains travaux visent a optimiser le calcul des états atteignables afin de converger le plus
rapidement possible vers les états directement concernés par une propriété donnée [13], [79]. Le
but est de déterminer le plus rapidement possible si cette propriété n’est pas vérifiée par le
programme analysé.

Autour du vérificateur formel Mury [32][45], de nombreux travaux visant a améliorer le calcul des
états atteignables ont été menés. L’idée d’utiliser des dépendances fonctionnelles entre les va-
riables du programmes a été introduite dans [46] [47] et améliorée dans [48]. La méthode consiste
a définir la valeur de certaines variables en fonctions d’autres variables indépendantes. Des lors,
le calcul des états atteignables peut étre réalisé a partir des variables indépendantes seulement.
Dans [49], la méthode consiste a exploiter les symétries dans la description des programmes.
L’introduction d’un type particulier permet au programmeur de définir des équivalences entre
les états du programme. Par la suite, lors de ’analyse du programme, il suffit d’explorer un seul
état par classe d’équivalence. Cette méthode permet de réduire la taille des BDDs utilisés par
le vérificateur Murgp.

Certaines études visent & approcher le calcul des états atteignables. Dans [69] Ravi et So-
menzi calculent une sous-approximation de I’espace des états atteignables. La densité d’'un BDD
se mesure en divisant le nombre d’états encodés par le nombre de noeuds de ce BDD. A chaque
étape de calcul, lorsque les BDDs atteignent une taille trop importante, les branches les moins
denses sont supprimées. Ceci permet d’obtenir des BDDs plus petits en conservant un maxi-
mum d’états atteignables. D’autres travaux s’appuient sur une surapproximation du calcul des
états atteignables [37, B8, [63]. L’intérét de ces méthodes est de garantir certaines propriétés des
programmes. Si tous les états calculés vérifient ces propriétés alors tous les états atteignables
aussi. Dans le cas contraire, une analyse plus fine est nécessaire pour déterminer si les états qui
invalident ces propriétés sont réellement atteignables.

Le calcul des états atteignables a base de BDDs a également été adapté pour permettre
l’analyse de programmes C. Dans [33], Edwards et al. ont réalisé ’analyse de petits programmes
méme si le passage a 1'échelle demeure incertain. Dans [8, 0], Ball et Rajamani présentent
un vérificateur capable d’analyser des programmes C booléens. Alors que le calcul des états
atteignables s’effectue sur des programmes finis, ce vérificateur autorise des appels de fonction
récursifs et non bornés.

Les travaux les plus proches techniquement sont ceux de Yannis Bres. La these [17] présente
des méthodes d’abstraction permettant de simplifier le calcul des états atteignables. Plus pré-
cisément, ces techniques visent a remplacer certaines variables d’états par de simples variables
d’entrée ou bien a utiliser une logique de Scott trivaluée. Ceci permet de supprimer des blocs
entiers de programme lors de son analyse. Cette méthode conduit & une surapproximation de
I’espace des états atteignables, mais grace a cela, Yannis Bres a réussi a valider un certain
nombre de propriétés. Concrétement, ces travaux et les notres ont été intégrés au sein d’un
méme logiciel.

8 CHAPITRE 1. INTRODUCTION

1.5 Présentation du document

Cette these présente un algorithme de partitionnement permettant de calculer plus effica-
cement ’espace des états atteignables d’un programme ESTEREL. Cette efficacité se mesure en
espace plus qu’en temps. Ce document est organisé de la maniére suivante :

Dans le chapitre 2] nous présentons le langage ESTEREL ainsi que les méthodes symboliques a
base de BDDs que nous utilisons. Nous présentons également ’algorithme Breadth First Search
de base que nous souhaitons améliorer.

Le chapitre [3] motive et présente notre algorithme de maniére intuitive. Nous décrivons les
difficultés que peut représenter le parallélisme par rapport a notre approche et nous proposons
une solution a ces problemes.

Le chapitre [4] définit formellement les opérateurs utilisés dans notre algorithme de partition-
nement. La construction d’un graphe permettant de guider ce partitionnement est donnée.

Le chapitre [] présente formellement notre algorithme. Une démonstration de la validité de
cet algorithme est donnée.

Le chapitre [6] décrit les points clés de I'implémentation de notre méthode par rapport a
la chaine de compilation des programmes ESTEREL et par rapport aux outils d’analyse déja
existants.

Le chapitre [7] présente des résultats expérimentaux montrant 1'utilité de notre approche.

Le chapitre [8] conclut cette these et donne quelques perspectives.

Chapitre 2

Contexte de I’Etude

Ce chapitre présente le contexte de nos travaux. La section présente le langage ESTEREL
ainsi que ses modeles sémantiques. La section décrit plus particulierement le modele a partir
duquel est calculé I’espace des états atteignables des programmes ESTEREL (section . Enfin,
la section introduit les notions théoriques qui permettent de modéliser et de calculer cet
espace de maniere symbolique et la section présente une solution permettant d’implémenter
ce calcul a l'aide de BDDs.

2.1 ESTEREL

A Torigine, le langage ESTEREL [12] a été congu par deux chercheurs (Jean-Paul Marmorat
et Jean-Paul Rigault) dans le but de programmer le comportement d’une voiture automatique
pour un concours organisé par un journal d’électronique. Né d’un besoin anecdotique, ce langage
a su trouver sa place dans le monde des systéemes temps-réels en réalisant son dessein initial :
permettre 'expression d’algorithmes de contréle au moyen d’un langage clair et intuitif. Ainsi
le langage ESTEREL est-il particulierement adapté aux applications dans lesquelles le controle
tient une place prépondérante comme les systemes temps-réel, les systémes embarqués, les pro-
tocoles de communication ou les interfaces homme-machine. ESTEREL est un langage impératif,
déterministe, réactif [41] et synchrone [40] :

— Réactif : Par opposition a un programme transformationnel qui traite un ensemble de
données pour produire un résultat, un programme ESTEREL a pour vocation de réagir
continuellement a des événements provenant de son environnement. Un programme réactif
produit sans cesse de nouvelles sorties en réponse a des événements extérieurs. Ces pro-
grammes se composent souvent de sous-programmes s’exécutant en parallele et commu-
nicant entre eux.

— Synchrone : Par rapport aux programmes réactifs, I’hypothese synchrone stipule que
chaque réaction est synchrone avec I’événement qui I’a provoquée : la durée d’une réaction
est supposée nulle. De cette maniere, chaque événement divise naturellement le temps en
instants. En ESTEREL, les instants sont cadencés par les émissions d’un signal particulier
appelé “tick” et les autres événements sont supposés synchrones avec les émissions de ce
signal.

— Déterministe : Une méme séquence d’événements produit toujours la méme séquence
de réactions.

10 CHAPITRE 2. CONTEXTE DE L’ETUDE

N = Nl VeV
NP W R VR VA

(a) (b) (c)

F1a. 2.1 — Différents types de programmes : transformationnel (a), réactif (b), synchrone (c).

En réalité, la réaction de durée nulle n’est qu’une abstraction. Une hypothese équivalente mais
plus réaliste consiste a dire que le temps est divisé en une séquence d’instants logiques. Les
instants logiques sont vus comme des intervalles de temps communs a tous les composants et
sont deux & deux disjoints. A l'intérieur de ces instants, chaque réaction est non interruptible
et termine forcément avant le début de l'instant suivant.

L’hypothese synchrone permet de définir clairement les notions de simultanéité entre occurrences
d’événements ainsi que la notion d’absence d’un événement.

En plus des constructions classiques des langages impératifs (séquence, boucle, if-then-else),
le noyau du langage ESTEREL procure un opérateur de parallélisme ainsi qu’un mécanisme d’ex-
ception et de suspension. La communication entre les différentes parties actives du programme
est réalisée par la diffusion de signaux purs (un signal est soit présent soit absent). Cette com-
munication est instantanée, ce qui signifie qu’un signal est regu a l'instant précis ou il est émis.
Une réaction consiste en une propagation des entrées vers les sorties. Cette propagation passe
par l'utilisation de variables et de signaux locaux. A chaque instant, un signal peut étre émis,
donc présent ou bien ne plus étre émissible, donc absent. L’absence d’un signal est donc une
notion effective et non une notion implicite. Les instructions du langage noyau sont :

— nothing : l'instruction vide du langage.

— pause : cette instruction marque un délai, elle se met en attente de l'instant suivant.

— emit S : instruction de durée nulle qui provoque I’émission du signal S.

— present S then p else ¢ end : test de présence d’un signal.

— suspend p when S : suspend l’exécution du bloc p chaque fois que S est regu.

— p;q : opérateur de séquencement. L’exécution de ¢ suit immédiatement I'exécution de p.
La notion de séquence est orthogonale & la notion d’instant. Ainsi, la fin du bloc p et le
début du bloc ¢ peuvent s’exécuter au sein d’une unique réaction (de durée nulle d’apres
I’hypothese synchrone).

— loop p end : exécute le bloc p en boucle. p ne doit pas étre instantané.

— p || q:opérateur parallele. L’exécution termine lorsque p et ¢ ont tous les deux terminé.

— trap T in p end : exécute le bloc p jusqu’a la levée d’une exception T ou bien jusqu’a-ce
que p termine.

— exit T : leve 'exception T.

— signal S in p end : déclaration d’un signal local dans p.

A partir du langage noyau, d’autres instructions d’usage fréquent ont été introduites. Parmi
elles :

— halt : équivalent de loop pause end.

— await S : attend la réception du signal S.

— sustain S : émet S a chaque instant.

— every S do p end : démarre 'exécution de p a chaque réception du signal S.

2.1. ESTEREL 11

— abort p when S : préemption forte. Interrompt I’exécution de p des la réception de S.
— weak abort p when S : préemption faible. Deés la réception de S, exécute les derniéres
réactions instantanées du bloc p avant d’interrompre son exécution.
Par défaut, les instructions suspend, await, every et abort/weak abort ne réagissent a la
présence du signal S qu’a partir de I'instant suivant leur premiere activation. Le langage étendu
définit le mot-clé immediate qui, dans un exemple comme “abort p when immediate S”, per-
met de réagir a la présence de S des le premier instant.

Un simple exemple. Le programme ESTEREL suivant modélise une porte automatique dont
le comportement consiste a s’ouvrir des qu’un utilisateur appuie sur un bouton. La porte reste
ouverte pendant un délai de trois secondes apres la derniere demande d’ouverture, puis se
referme. Le temps et le bouton d’ouverture sont les entrées du programme (portées par des
signaux purs, SECONDES et BOUTON). Comble de modernité, un systéeme de sécurité empéche la
fermeture de la porte quand une présence est détectée (signal PRESENCE). Le signal OUVERTURE
en sortie indique si la porte est ouverte :

module porte:
input BOUTON, SECONDES, PRESENCE;
output OUVERTURE;

every BOUTON do
trap FERMER in
await 3 SECONDES;
suspend exit FERMER when immediate PRESENCE
I
sustain OUVERTURE
end trap;
end every
end module

Les données en ESTEREL. Dans sa version complete, le langage permet aussi de manipuler
des données : booléens, entiers, flottants et chaines de caracteres. Nous avons présenté la partie
controle auparavant car elle constitue la partie novatrice du langage ESTEREL. Le traitement
des données est plus classique et souvent délégué a un langage héte plus généraliste comme C ou
JAVA. Par ailleurs, ESTEREL procure également un mécanisme capable de créer et de manipuler
ses propres structures de données par une interface avec le langage C. Ces données peuvent
étre manipulées par le biais de simples variables ou bien étre transmises par des signaux. Dans
ce second cas, un signal est caractérisé a la fois par son statut de présence ou d’absence et
par la valeur qu’il transporte, ces deux notions étant orthogonales. Par exemple, un signal de
type booléen peut étre a la fois présent et faux ou bien absent et vrai. La valeur portée par
un signal demeure inchangée tant que le signal n’est pas émis. La valeur d’un signal demeure
donc indéfinie ou bien initialisée a une valeur par défaut jusqu’a ce que le signal soit émis pour
la premiere fois. A la différence d’une variable, un signal ne peut pas prendre plusieurs valeurs
successives au cours d’'un méme instant.

Le langage propose évidemment quelques opérations de base : opérateurs logiques et arithmé-
tique, manipulation de chaines de caracteres, instruction de test sur les variables, etc... En

12 CHAPITRE 2. CONTEXTE DE L’ETUDE

ESTEREL, toutes ces opérations (ou blocs d’opérations) sont appelées des actions. Toute action
est supposée étre exécutée instantanément. Dans la version noyau du langage, chaque action
peut étre abstraite par un signal pur : une opération est abstraite par I’émission d’un signal de
sortie et le résultat d’un test sur une variable est abstrait par un test de présence d’un signal
d’entrée. Pour notre étude, nous nous limiterons a cette version noyau du langage ESTEREL.

Les langages de la famille d’ESTEREL. Alors que le langage ESTEREL est particulierement
adapté a la programmation du controle, il existe d’autres langages réactifs synchrones spécialisés
dans la programmation du flot de données. Ces langages incluent LUSTRE [39] et SIGNAL [53].
Dans ces langages, la valeur de chaque variable est recalculée a chaque instant en fonction de
la valeur des variables aux instants précédents. Le traitement des données est beaucoup plus
simple qu’en ESTEREL mais la programmation d’une simple séquence devient rapidement tres
complexe.

D’autres langages graphiques ont également été proposés. Le formalisme des SYNCCHARTS [4. [5]
possede la méme expressivité que le langage ESTEREL. Son formalisme graphique est inspiré
d’ARGOS [57], la version synchrone des STATECHARTS [42].

2.1.1 Aspects sémantiques

Le langage ESTEREL posseéde une sémantique opérationnelle structurelle [68] (SOS). Cette
sémantique se présente sous la forme de regles de réécriture de la forme de 'exemple suivant :

E0 Fl
—_ —

p z P q Z q
E'UF',l

La regle sémantique présentée ci-dessus est celle de la séquence p;q, pour le cas ol p termine
dans linstant. La totalité des regles de la sémantique opérationnelle est détaillée dans [IT].
Cette sémantique se décline en deux nuances : la sémantique comportementale logique et la
sémantique comportementale constructive qui est un raffinement de la sémantique logique. La
différence entre ces deux sémantiques réside dans les reégles qui régissent la présence ou ’absence
d’un signal. Dans la sémantique logique, le statut d’un signal est déterminé en supposant suc-
cessivement que le signal est présent, puis absent. Un programme est correct si une et une seule
de ces deux suppositions permet d’aboutir a une solution. La sémantique constructive interdit
de présumer le statut d’un signal. Un signal n’est présent que si il est forcément émis et il n’est
absent que si il ne peut pas étre émis.

Les sémantiques opérationnelles d’ESTEREL permettent une interprétation des programmes sous
forme de machine de Mealy a états finis. Autrement dit, tout programme ESTEREL correct peut
étre compilé sous la forme d’'un automate et exécuté symboliquement.

La possibilité de traduire les programmes ESTEREL sous forme de circuits logiques séquentiels
procure a ESTEREL une sémantique dénotationnelle. Le modele des circuits séquentiels possede
également une sémantique constructive équivalente a celle d’ESTEREL : la sémantique dénota-
tionnelle qui consiste a propager les constantes booléennes 0 et 1 dans la traduction circuit est
équivalente a la sémantique constructive qui consiste a propager 'information selon laquelle un
signal doit étre présent ou bien ne peut étre présent.

2.1. ESTEREL 13

2.1.1.1 Réincarnation

A cause des boucles instantanées, les signaux peuvent avoir plusieurs instances simultanées
appelées réincarnations.

loop
signal S in
present S then emit 01 else emit 02 end;
pause;
emit S
end signal
end loop

Au premier instant, S n’est pas émis. Au deuxieme instant, le corps de la boucle termine en
émettant S et se relance immédiatement. Un nouveau signal S distinct de 'ancien est déclaré.
Dans cette seconde incarnation, le signal S n’est pas émis. Dans cet exemple, le signal 02 est
émis a chaque instant.

En réalité, la réincarnation existe dans tous les langages de programmation. Dans les langages
séquentiels classiques (C, JAVA...) les réincarnations ne sont pas suscitées par les boucles mais
par les appels récursifs de fonctions. Le modele d’exécution de ces programmes étant dynamique,
le probleme de réincarnation est résolu de maniere transparente puisque chaque instance de
variable est allouée dans la pile d’exécution. Le modele d’exécution des programmes ESTEREL
est un modele statique dans lequel chaque instance de variable doit étre allouée de maniere
statique a chaque instant. Les restrictions imposées par le langage ESTEREL par rapport aux
langages plus généralistes permettent de garantir que le nombre de ces instances est fini.

2.1.1.2 Correction logique

Programmes non-réactifs. L’instantanéité des réactions et de la diffusion des signaux per-
met d’écrire des programmes syntaxiquement corrects mais insensés comme le programme sui-
vant :

present S then nothing else emit S end

Dans ce programme, le signal S ne peut étre présent car il n’est émis nulle part. Le signal ne
peut pas non plus étre absent car dans ce cas, il est immédiatement émis. Ce programme est
donc incorrect.

Programmes non-déterministes. KESTEREL est un langage déterministe par conséquent,
tout programme non déterministe est incorrect. Considérons a présent I’exemple suivant :

present S then emit S end

Ici, le fait que S soit présent ou absent n’entre pas en contradiction avec la sémantique du
langage. L’existence de ces deux interprétations rend ce programme non-déterministe. Ce pro-
gramme est donc également incorrect.

14 CHAPITRE 2. CONTEXTE DE L’ETUDE

2.1.1.3 Constructivité

Un programme est logiquement correct si il est a la fois réactif et déterministe. Toutefois,
ce critere n’est pas suffisant. Pour un langage impératif comme ESTEREL, ’évaluation d’un test
doit toujours précéder ’évaluation de ses branches. Considérons ’exemple suivant :

present S then emit S else emit S end

Dans ce programme, la seule solution consiste a considérer que le signal S est présent. Le
programme est donc logiquement correct, mais pour savoir si S est présent, la seule solution
consiste a évaluer le contenu des branches then et else avant de pouvoir évaluer le test. Ceci
rentre en contradiction avec la propagation naturelle du controle dans le programme.

L’idée de la sémantique constructive consiste a interdire tout résonnement spéculatif. Pour
déterminer le statut des signaux, on utilise une logique tri-valuée : présent, absent ou bien
inconnu. A chaque instant, le statut des signaux d’entrée est donné par I’environnement. Ini-
tialement, le statut des autres signaux est inconnu. Les seules déductions autorisées sont les
suivantes :

1. Un signal est présent si il est émis.
2. Un signal est absent si il ne peut étre émis par aucune instruction.
3. On ne peut exécuter les branches d’un test que si le statut du signal testé est connu.

On dit qu'un programme est constructif si le statut de chaque signal peut étre déterminé en
utilisant les regles précédentes. Les regles mathématiques précises de la sémantique constructive
du langage ESTEREL sont données dans [I1].

2.1.2 Machines de Mealy

Le comportement d’un programme ESTEREL peut étre modélisé par un automate détermi-
niste & états finis appelé machine de Mealy [59]. Cette représentation est issue de la sémantique
opérationnelle (SOS) du langage par exploration de tous les états de controle. Dans cette
représentation, chaque transition de 'automate porte une étiquette exprimant les entrées et
les sorties du programme : un signal d’entrés peut étre précédé par le symbole ’ 7’ indiquant
que le signal est présent ou bien par le symbole '#’ indiquant que le signal est absent. Un signal
de sortie précédé du symbole ’ !’ indique que le signal est émis. Par exemple, une transition
étiquetée par “?I1.#I2.!0” est empruntée si I1 est présent et si I2 est absent, quel que soit
le statut des autres signaux d’entrée. Cette transition provoque I’émission du signal 0.

La figure représente le programme de la porte automatique sous forme de machine de Mealy.
Dans le graphe, les noms des signaux sont représentés par leurs initiales.

Cette représentation sous forme de machine de Mealy rend explicite I’ensemble des états et
des transitions d’'un programme. Toutefois, I’automate peut avoir un nombre d’état exponentiel
par rapport a la taille du programme ESTEREL source. Il n’est donc pas souvent raisonnable de
représenter un programme réel par un tel automate ; ceci est vrai aussi bien pour la compilation
des programmes que pour leur vérification. Cette représentation n’en demeure pas moins un
excellent outils de référence pour définir nos techniques d’analyse de programme et donc un
modele sémantique sous-jacent.

2.1. ESTEREL 15

else !0

Fi1Gc. 2.2 — Machine de Mealy de la porte automatique.

2.1.3 Circuits séquentiels

Les machines a états finis de Mealy (Mealy FSM) peuvent aussi servir de modele opérationnel
aux circuits séquentiels. Un circuit séquentiel se présente sous forme d’un systeme d’équations
booléennes. Tout circuit séquentiel admet une traduction sous forme d’automate de Mealy.

Le langage ESTEREL bénéficie également d’une traduction sous forme de circuit. La traduction
des langages de la famille ’ESTEREL comme les automates hiérarchiques ou les SYNCCHARTS
[4] vers les circuits booléens de controle est comparable & la traduction d’un calcul de processus
vers un réseau de Pétri.

Les circuits séquentiels sont issus d’une interprétation dénotationnelle du langage. Cette traduc-
tion est compositionnelle et préserve la sémantique du langage. On parle ici de format circuit
par analogie aux circuits électroniques composés de portes logiques.

I ‘_\! 0, O = IVX
) R m» Oy - X

X Ry reg(O1)

#D ‘ {>OR O, Ry = 1eg(09)

2 \’_Z" X Ri N Ry

Fi1c. 2.3 — Clircuit séquentiel.

Parmi les portes logiques se distinguent les registres booléens qui constituent les délais
élémentaires du programme. Ils permettent de conserver des données de maniere persistante
et donc de mémoriser I’état du programme :

Y = reg(X)

signifie que la valeur Y du registre a 'instant n + 1 est égale a la valeur de X a linstant n. Le
reste des portes (A, V, =) constitue la partie combinatoire du systeme. Les signaux d’entrée et
de sortie du programmes sont représentés par de simples fils, porteurs d’une valeur booléenne :
1 lorsque le signal est présent et 0 lorsque le signal est absent.

Modele d’exécution des circuits séquentiels. Comme en ESTEREL, un circuit séquentiel
réagit a chaque instant. La notion d’instant est ici réalisée par 'utilisation des registres booléens.
Au premier instant, tous les registres sont positionnés &4 0. A chaque instant, le statut de chaque
signal de sortie est calculé en fonction des signaux d’entrée et de la valeur des registres. Ce
calcul est réalisé en suivant les regles de propagation du courant électrique. Ainsi, la valeur

16 CHAPITRE 2. CONTEXTE DE L’ETUDE

I — I;
— o 0 0 14|>o—o
A 12—} sz

(a) O =reg(l) (b) O=LAL () O=0LVI d O=-I

Fi1G. 2.4 — Portes logiques

d’une porte “et” peut étre déterminée des que 'une de ses branches porte la valeur 0 ou bien
des que toutes ses branches portent la valeur 1. Cette opération est réalisée instantanément par
la partie combinatoire du circuit. De la méme maniere, la prochaine valeur des registres est
calculée en fonction des valeurs courantes et des entrées.

Génération des circuits a partir des programmes ESTEREL. La sémantique construc-
tive ’ESTEREL permet de traduire récursivement chaque instruction du langage en un circuit
séquentiel. Cette traduction produit un registre booléen pour chaque instruction pause du lan-
gage source. En d’autres termes, le codage de ’état d’un bloc de programme repose sur un
ensemble précis de registres. Le reste de la traduction consiste a cabler les équations combina-
toires autour de ces registres.

Circuits cycliques. La traduction des programmes en circuits génere parfois des cycles dans
les équations combinatoires. Cela signifie que, au cours d’un méme instant, la valeur d’un fil x
dépend de la valeur d’un second fil y et que la valeur de y dépend de x. Comme dans la section
traitant des aspects sémantiques du langage, il se peut que le programme soit logiquement
incorrect ou bien que le cycle ne pose pas de probleme dans la résolution constructive de 1’état
du circuit. Il existe une théorie de la causalité constructive qui identifie des circuits cycliques
corrects. Pour ces derniers, il existe des algorithmes, parfois cotteux en expansion, permettant
de les transformer en circuits acycliques et sémantiquement équivalents [73]. Pour notre étude,
nous pourrons simplement faire I’hypothese que les circuits que nous manipulons sont acycliques.

2.1.4 Compilation des programmes ESTEREL en circuit

Cette section présente les principes de base de la traduction des programmes ESTEREL en
circuit. La traduction présentée ici est purement structurelle. En réalité, les phénomeénes de
réincarnation présentés a la section nécessitent la duplication de certaines parties du
circuit. Pour plus de détails, on pourra se référer a [I1]. Chaque instruction du langage produit
un circuit dont 'interface est représentée dans la figure [2.5

[1 [1
E F
Og| GO SEL |0
0| RES KO (B
| SUSP K1 |[g
| KILL K2 |B
A

FiGc. 2.5 — Interface circuit des instructions d’ESTEREL.

2.1. ESTEREL 17

2.1.4.1 Interface des circuits

Sur le schéma[2.5] les broches de gauche représentent les entrées de 'interface et les broches
de droite sont les sorties. La signification de chaque broche est la suivante :

L’entrée GO est utilisée pour lancer I'exécution d’une instruction. Une instruction s’exécute
des que GO vaut 1.

L’entrée RES est utilisée pour reprendre ’exécution d’une instruction apres son démarrage.
L’instruction continue son exécution apres une pause tant que ce fil est a 1. Cette broche
est plus particulierement utilisée par les instructions abort et suspend.

L’entrée SUSP est utilisée pour suspendre ’exécution d’une instruction. Lorsque ce fil est
a 1, tous les registres de I'instruction conservent leur valeur & moins que le signal d’arrét
KILL ne soit regu (voir ci-dessous).

L’entrée KILL permet de tuer I’exécution d’une instruction. Cette broche permet de mettre
la valeur de tous les registres de I'instruction a 0. Ce signal passe a 1 lorsqu’une exception
est lancée. Dans ce cas, le signal KILL est propagé par toutes les instructions vers les
instructions pause.

La sortie SEL permet d’indiquer que l'instruction est toujours active apres une pause et
doit étre relancée au moyen du signal RES. Ce signal vaut 1 dés qu'une pause de 'instruc-
tion est active. Ce signal est donc la disjonction de tous les registres de 'instruction.

Les sorties KO, K1, etc. correspondent aux codes de complétion (terminaison, pause, levée
d’exception, voir [11]). Si n représente le nombre d’instructions trap qui entourent l'ins-
truction, alors ces broches sont au nombre de n + 2. Lorsqu’une instruction est démarrée
ou bien relancée, la sortie correspondant au code de complétion de 'instruction est mise
a 1. Si 'instruction n’est pas exécutée, toutes ces sorties sont a 0.

Les broches E et E’ correspondent a l'interface des signaux de l'instruction. E et E’ ne
sont pas de simples broches. Ce sont en réalités des vecteurs de signaux contenant un fil
par signal. Les broches E et E’ correspondent respectivement aux signaux d’entrée et de
sortie.

2.1.4.2 Exécution des circuits

Le schéma d’exécution des circuits consiste tout d’abord a émettre le signal GO afin de
démarrer ’exécution. Ensuite, a chaque cycle d’horloge, le signal RES est émis. A chaque cycle,
le controle se propage par toutes les portes combinatoires du circuit. Les fils correspondants aux
codes de complétion sont calculés et les registres correspondants aux instructions pause actives
sont recalculés a chaque instant en fonction de leur valeur a 'instant précédent. Les signaux
sont regus et émis par les broches E et E’.

2.1.4.3 Traduction circuit

La traduction structurelle compléte des instructions ESTEREL est donné dans [11]. Cette
traduction produit exactement un registre booléen par instruction pause. La figure montre

18 CHAPITRE 2. CONTEXTE DE L’ETUDE

la traduction d’une instruction pause sous forme de circuit.

GO 1 {>‘ K1
RES o
SUSP L& KO
KILL ——
SEL

F1a. 2.6 — Circuit d’une instruction pause.
Les autres instructions du langage ne produisent que des portes combinatoires. La figure

illustre par exemple la traduction de l'instruction present s then p else ¢. Les broches de
Iinterface du present sont reliées aux broches de I'interface du bloc p par des portes logiques.

=

E

SEL
RES—/IUI“ T fl\— RES KO | i
SUSP | | | | SUSP K1 —-’I\—-’I*
KILL —pp———eo—p———]| KILL K2 —"—"—‘

KO

RES KO
SUSP K1
KILL K2

K2

E E)

()

Fia. 2.7 — Clircuit d’une instruction present.

Au niveau global, la traduction d’un programme ESTEREL produit un registre supplémen-
taire appelé registre de boot. Ce registre est relié a la broche GO et permet de lancer I'exécution
du programme au premier instant.

2.1.5 Interprétation des circuits en machines de Mealy

Les modeles de circuit et de Mealy FSM permettent de représenter les programmes ESTEREL
a des niveaux différents :
— La représentation circuit permet de conserver la causalité en rendant explicite les dépen-
dances entre les différentes instructions du programme. En revanche, ’espace des états
atteignables n’est pas calculé explicitement.

2.2. LA MACHINE SEQUENTIELLE 19

— La construction d’une Mealy FSM rend explicite 'espace des états atteignables mais la
causalité n’est pas préservée.
Partant de ce constat, nous introduisons la notion de machine séquentielle (également appelée
“automate symbolique”). Ce modele est utilisé par des outils de vérification comme SMV [58] ou
TiGeR [31]. Le modele de machine séquentielle apporte une vision opérationnelle & la sémantique
d’exécution des circuits; les fonctions de transition de 'automate décrit implicitement sont
représentées par des formules booléennes.

2.2 La machine séquentielle

Le calcul symbolique des états atteignables s’obtient traditionnellement sur le modele de la
machine séquentielle. A chaque réaction, ce modele consomme un ensemble de données I en
entrée et produit un ensemble de données O en sortie, calculé en fonction de I et de ’état R de
la machine. De maniere formelle, une machine séquentielle se définit par le triplet :

fsm = (4, T,AT)

ou ¢ désigne I’état initial, A désigne la fonction de transition et I' désigne la fonction de sortie
de la machine. T désigne ’ensemble des entrées valides de la machine. Il est possible d’abstraire
T en supposant que cet ensemble désigne 'univers des entrées tout entier. Ceci revient a ne
poser aucune restriction sur les entrées.

Les fonctions A et I' calculent respectivement le prochain état et les sorties de la machine en
fonction des entrées courantes et de ’état courant. Si nous notons I,,, O,, et R,, les entrées, les
sorties et 1’état de la machine & la n®™¢ réaction, alors :

O, = I'(Il,,R,) pourtout n>0 (2.1)
Ry =
Rn = A([n_l, Rn—l) si n>0 (2.2)

Dans la traduction des programmes ESTEREL sous forme de circuit, les entrées et les sorties
se composent d’un vecteur de signaux booléens. L’état du circuit est codé par un ensemble de
registres booléens. Soit B = {0, 1} I’ensemble des booléens. Nous avons alors T € B™, I € B™,
L€ BP, R e BP et O € BY ou m, p et g sont le nombre de signaux d’entrée, le nombre de
registres et le nombre de signaux de sortie. La fonction de transition globale A : B™ x B? — BP
et la fonction de sortie globale I' : B™ x BP — B9 sont naturellement modélisées par un systeme
d’équations booléennes, comme le montre la figure [2.8

A: (I,R) — R =A(,R) (2.3)

r: (I,R) — O =T(,R) (2.4)

En réalité, chaque registre et chaque signal de sortie possede sa propre fonction de transition
[26]. A et I' se décomposent ainsi en vecteurs de fonctions d; et «; qui ne dépendent chacune
que de certains registres et de certains signaux d’entrée :

0;: BM™xBPFPF — B

20 CHAPITRE 2. CONTEXTE DE L’ETUDE

@)

AAA
AAA

-
l/ \\ l i
/' N,

Fic. 2.8 — Machine séquentielle.

De méme :

vi: B™xBPF — B

Les vecteurs I; et R;, sous-vecteurs respectifs de I et R, constituent le support de ces fonctions.
m; et p; sont respectivement le nombre de signaux d’entrée et le nombre de registres de ce
support. Si R’ désigne le vecteur (r...r;,) et O" le vecteur (o] ...op) alors les applications
partitionnées des fonctions de transition et de sortie s’écrivent de la maniere suivante :

p
R =A(ILR) < N\rj=06(,R) (2.7)
=1
et
q
O'=T(I,R) < /o =R (2.8)
=1

2.3 Calcul des états atteignables d’une machine séquentielle

L’espace des états atteignables se calcule sur la représentation circuit du programme Es-
TEREL par un algorithme de recherche en largeur (ou Breadth First Search) qui traite donc
d’ensembles d’états. La fonction de transition est appliquée successivement a tous les ensembles
d’états atteignables a une certaine profondeur, en partant du singleton formé par 1’état initial
jusqu’a ce qu'un point fixe soit atteint quand plus aucun nouvel état n’est découvert. L’algo-
rithme de base est le suivant :

2.4. CALCUL SYMBOLIQUE DES ETATS ATTEIGNABLES 21

1 reachable «— ¢

2 new « ¢

3 tantque (new # @) faire

4 new < Imagen (T, new) \ reachable
5 reachable < reachable U new

6 fin tantque

Algorithme 2.1 — Algorithme Breadth First Search

A chaque itération, I’algorithme produit les successeurs de ’ensemble “new” des nouveaux états
découverts a l'itération précédente. Ce travail est réalisé par un calcul de I'image de I’ensemble
new par la fonction de transition A (ligne 4). Parmi tous les successeurs, seuls les nouveaux
états sont conservés (ligne 4). Au début de I’algorithme, new contient I’état initial ¢ du circuit
(ligne 2). Le point fixe est atteint lorsque I’ensemble des nouveaux états est vide (ligne 3).

Cet algorithme explore les états atteignables par couche successive comme l'illustre la figure

1
niveau 1
\ niveau 2

]/ niveau n

Fia. 2.9 — Algorithme de base du calcul des états atteignables.

Par construction, la couche numéro k contient ’ensemble des états accessibles des la E°™¢
réaction du circuit.

2.4 Calcul symbolique des états atteignables

L’implantation de ’algorithme de calcul des états atteignables requiert 'usage de structures
de données capable de modéliser des ensembles, des fonctions de transitions et permettant de
calculer I'image d’un ensemble par une fonction.

Représentation symbolique des ensembles. Le calcul symbolique des états atteignables
repose sur 'utilisation de fonctions booléennes :

f: BY - B

ol X est le vecteur de dimension K des parametres de f. De telles fonctions permettent de
représenter symboliquement des ensembles dans B : implicitement, f est la fonction ca-
ractéristique de 'ensemble Sy = {a: eBX) f (a;)} L’ensemble des états atteignables d’un cir-
cuit, autrement dit I’ensemble des valuations valides de ses registres est ainsi représenté.

22 CHAPITRE 2. CONTEXTE DE L’ETUDE

Les opérations propres aux ensembles comme 'union, l'intersection, la soustraction et le calcul
de 'ensemble complémentaire peuvent également étre définies a ’aide d’opérations booléennes.
Ainsi, si F' et GG représentent symboliquement des ensembles, alors :

FUG = MX — F(X)VG(X) (2.9)
FNG = MX — F(X)AG(X) (2.10)
FNG = AX - F(X)A-G(X) (2.11)

F = AX - -F(X) (2.12)

L’ensemble vide est représenté par la fonction fz = AX — 0 et son complémentaire, ’ensemble
BX est représenté par la fonction fgx = AX — 1.

2.4.1 Calcul d’image

Notons ® un ensemble d’états atteignables. Si R appartient a ’ensemble ® (c’est a dire
si ®(R) est vrai) et si R’ est I"image de R par la fonction de transition A pour une certaine
valuation valide des entrées (c’est & dire si Y([) est vrai et si 3I / R’ = A(I, R)), alors R’
appartient & I'image de ® par la fonction A. L’intégralité de I'image de ® par A est ’ensemble
U des états R tels que R’ est 'image d’une certaine valuation des entrées et d’un certain état
de ®. L’ensemble W s’écrit formellement de la maniére suivante :

U = AR — |3LLR/Y() A ®(R) A R/:A(I,R)} (2.13)

Pour que W soit réellement I’expression symbolique d’un ensemble d’états, la derniere opération
consiste a remplacer le nom des variables auxiliaires du vecteur R’ = (ry...7;,) par le nom des
variables de registre du vecteur R = (r1...7,) dans 'expression de V.

Quantification existentielle. La complexité du calcul symbolique de I'image réside dans
la résolution de 'opérateur existentiel. Si f[z — v] désigne I'expression booléenne obtenue en
remplagant x par v dans f alors, d’apres la décomposition de Shannon, nous avons :

W/ f = fle—0]V flz—1] (2.14)

On parle alors d’élimination existentielle car les variables quantifiées sont éliminées et rem-
placées par des constantes. La complexité de cette décomposition est d’ordre exponentielle par
rapport au nombre de variables quantifiées comme l’illustre I’exemple suivant :

Jx,y / f(z,y)
= y/ fO0,y) Vv f(1y)
— £(0,0) v £(0,1) v £(1,0) V f(1,1)

Quantification existentielle partitionnée. Dans la formule du calcul de I'image (équation
, nous pouvons remplacer ’application de la fonction de transition globale par 'application
partitionnées des fonctions suivant les registres [20, 21], 22| [35] (voir I’équation a la section
. Ce calcul devient alors :

AL,R/YT) A ®(R) A /p\rg = 6;(Ii, R;) (2.15)
=1

2.4. CALCUL SYMBOLIQUE DES ETATS ATTEIGNABLES 23

Chaque fonction de transition d; possede son propre support de variable. L’opérateur existentiel
n’est pas distributif par rapport a 'opérateur “A” ce qui nous interdit de simplifier I’équation
précédente par une formule de la forme A”_, 3I;, R; / v} = §;(1;, R;). En évitant de rentrer dans
les détails, la solution consiste a fractionner I'opération existentielle en cherchant les fonctions
ayant des supports communs. Par exemple, une formule comme :

Jz,y,2 [f(z) AN g(z,y) A h(z, 2)

peut se réécrire de la maniere suivante :

3z / f(x) A By / g(z,9)] A Bz / h(z, 2)]

Dans le calcul de I'image, chaque quantification est ainsi appliquée sur un nombre minimal
de fonctions de transitions. Par rapport a une élimination existentielle globale, cette technique
permet souvent en pratique de briser la complexité exponentielle originale.

L’ordre dans lequel est appliqué I'opérateur existentiel a une influence sur les performances
de ce partitionnement. Dans une formule comme :

3z,y,2 [f(z,y) AN g(z,2) Ah(y,2)

nous pouvons partitionner le calcul de trois manieres différentes selon que ’on souhaite quantifier
en priorité x, y ou z :

Ja,y [f(x,y) A [32) gz, 2) Ah(y, 2)]
3a,z [g(z,2) A [By / fz,y) Ah(y, 2)]
Jy,z / h(y, z) A [Hx / flx,y) Ag(z, z)]

Des travaux permettent d’améliorer le partitionnement proposé dans [21] afin de déterminer un
ordre intéressant. Dans [62], [60, 61], cet ordre est déterminé directement & partir des formules
booléennes. Dans [74], des informations de haut niveau permettent de guider et d’améliorer ce
calcul.

2.4.2 Cofacteur

Le calcul symbolique de 'image d’un ensemble par une fonction utilise largement des tech-
niques de simplification connues sous le nom de techniques de cofactoring [28, 291 30]. Contraire-
ment a d’autres méthodes de simplification, cette technique s’accompagne de perte (controlée)
d’information. Le principe est que si la valeur d’une fonction f n’est pertinente que sur un
domaine de définition restreint S, alors S peut étre utilisé pour simplifier I'expression de f
(éventuellement en changeant la valeur de f en dehors de). Nous notons f|g le cofacteur de
f par I’ensemble S :

F(X) siXeS

? siX ¢S (2.16)

f1s(X) =)\X—>{

La valeur de f|g en dehors de S n’est pas utilisée et peut valoir n’importe quoi. En pratique,
des techniques existent pour simplifier la taille de la représentation de la fonction f|g. La figure
2.10 illustre I'effet du cofacteur sur une fonction.

24 CHAPITRE 2. CONTEXTE DE L’ETUDE

Fi1G. 2.10 — Action du cofacteur sur la représentation d’une fonction.

Le cofacteur dans le calcul de I’image. Dans le calcul de I'image, un opérateur de cofacteur
approprié est systématiquement utilisé pour réduire les fonctions de transitions en utilisant
I’ensemble des nouveaux états comme domaine de définition. Le calcul de I'image de ’équation

[2.15] devient :
p
3LR/Y(I) A ®(R) A N\ 7i= 60l Ri) (2.17)
=1

En réalité, les fonctions de transition sont construites a la volée a partir de la machine a états
finis. De cette maniere, les fonctions de transition ne sont jamais completement représentées afin
de simplifier leur représentation. Plus précisément, soit r un registre, si la condition d’activation
de 7 ('ensemble des états pour lesquels r = 1) et le domaine de la fonction de transition sont
disjoints, alors la fonction de transition de r peut se réduire a une trés simple expression :
Ar — —r. Autrement dit, les fonctions de transition construites & partir de registres inactifs
sont tres simples.

2.5 Les Diagrammes de Décision Binaires

Afin d’implanter I'algorithme de calcul des états atteignables de la section il est né-
cessaire de représenter les fonctions booléennes f : BX — B par des structures de données
efficaces, incluant du partage d’information : les Diagrammes de Décision Binaires ou BDDs
[3]. Les BDDs ont été originellement introduits par Lee [54] et Akers [I]. La forme actuelle des
BDDs est due a Bryant [18] [19].

2.5.1 Notions de base

Arbres de décision. Un arbre de décision se compose de noeuds de la forme (v ? ¢, e) ot v est
une variable booléenne et t et e sont des arbres de décision. Les feuilles d’'un arbre de décision
sont des constantes booléennes (1 ou 0). Les arbres de décision sont utilisés pour représenter des
formules booléennes : tout noeud (v ?t,e) s’'interpréte comme un opérateur if-then-else, c’est a
dire “if v then t else ¢” formellement défini par la formule :

(v?tie) = (VAt)V(—vAe) (2.18)

Cette représentation est aussi appelée If-then-else Normal Form (INF). 11 est facilement démon-
trable que toute expression booléenne peut se traduire en expression INF. En effet, un arbre de
décision n’est intuitivement rien de plus que la traduction arborescente d’une table de vérité.

2.5. LES DIAGRAMMES DE DECISION BINAIRES 25

Conceptuellement, un Diagramme de Décision Binaire
)

Diagrammes de Décision Binaires.
est un arbre de décision dans lequel on aurait supprimé toute information redondante. Ainsi, un
i ienté . La

BDD n’est plus un arbre d’expression booléennes mais un graphe acyclique orienté (DAG)
figure2.11] présente un exemple de représentation INF et BDD de la méme expression booléenne

F
7/
/
1 ,/
Y
1
1
1]
] 1
)
]
|
\
| |
Savd Wy
0

Fia. 2.11 — Arbre de décision (a gauche) et Diagramme de Décision Binaire (a droite)
représentant la méme expression booléenne F'. Les lignes pleines correspondent aux instances

positives des variables, les lignes discontinues aux instances négatives

Dans un BDD, les variables sont strictement ordonnées de telle

Ordre des variables.
sorte que, en parcourant un BDD depuis sa racine
1. les variables sont toujours placées dans le méme ordre, quel que soit le chemin parcouru

2. chaque variable n’est rencontrée qu’une seule fois
Le choix de 'ordre des variables est treés important dans la construction d’'un BDD. Il peut

: ,)
faire la différence entre un BDD de taille polynomiale et un BDD de taille exponentielle. La
figure présente deux exemples d’ordre de variables pour représenter une méme fonction.
Trouver le meilleur ordre de variable est un probleme NP-complet [75]. Toutefois, il existe des

heuristiques qui permettent de trouver un ordre convenable [56] [77, [7]

= z). Le choiz de

Fi1c. 2.12 — Deux BDDs représentant l’expression booléenne (w = x) A (y
Uordre des variables a une influence directe sur la taille des BDD.

26 CHAPITRE 2. CONTEXTE DE L’ETUDE

Regles de réduction. Conceptuellement, un BDD se construit a partir d’un arbre de
décision en appliquant, autant que possible, les regles de réduction suivantes :

1. Unicité : Les noeuds identiques sont fusionnés. Deux noeuds distincts ne doivent pas étre
composés de la méme variable et des mémes sous-graphes :

si U= (w?te) et V=>7t7¢)
alors (v=V)A{t=t)A(e=¢) = U=V (2.19)

2. Non-redondance : Les noeuds dont les deux sous-graphes sont identiques sont sup-
primés. Pour tout noeud de BDD de la forme (v ?t¢,¢) on a :

t£e (2.20)

En pratique, les BDDs sont directement construits sous leur forme réduite sans générer 'arbre
de décision complet.

LN AN

—_— s
1 / “)
N N I
¥ \ /

Y 4
¢ o (O]

Fi1c. 2.13 — Regles de réduction des noeuds de BDDs.

Canonicité. Pour un ordre de variable donné, la représentation BDD des fonctions booléennes
est canonique [I8]. Les régles de réduction nous garantissent que deux expressions booléennes
équivalentes sont représentées par un graphe unique. Ainsi, la comparaison de deux expressions
booléennes est une opération en temps constant qui consiste a vérifier si les racines des graphes
sont égales. En particulier, pour vérifier si une expression est une tautologie, il suffit de vérifier
si son BDD se réduit a la constante 1.

2.5.2 Raffinements

Marquage des arcs. Une optimisation supplémentaire permet de représenter en méme temps
une expression et sa négation avec un unique BDD [55] [T6]. Pour cela, certains arcs sont marqués
d’une négation : si U est un noeud de BDD, alors nous notons = le marquage négatif de U.
Cette expression représente naturellement la négation de 'expression U. Dans ce formalisme, la
constante 0 n’est plus nécessaire car elle se traduit par — 1.

Afin de conserver une représentation canonique, il est nécessaire d’imposer une restriction pour
le marquage des arcs. Si (v7t,e) est un noeud de BDD non marqué alors il est interdit de
marquer le noeud t. Autrement dit, seuls (v 7t,e) et (v7t,—e) sont des noeuds marqués valides.
La figure présente les regles qui permettent de conserver des noeuds marqués sous forme
canonique.

Ce raffinement permet d’éliminer quelques noeuds supplémentaires dans les BDDs comme le
montre la figure représentant ’expression (w = z) A (y = z). Il permet en outre de
calculer la négation d’une expression en temps constant.

2.5. LES DIAGRAMMES DE DECISION BINAIRES 27

l l l !

=R RTR

6 o o é o

N
AR A
(a

) (b)
Fia. 2.14 - Marquage canonique des arcs (a). BDD de (w =x) A (y = z) (b).

Fonctions Booléennes Compactées. Le dernier raffinement concernant le codage des BDD
est apporté par lintroduction des Fonctions Booléennes Compactées ou CBF. Le principe
consiste a détecter dans un BDD toutes les équivalences et les non-équivalences entre les va-
riables. La CBF d’un BDD U se compose :

— d’un BDD V épuré de toute redondance, de taille inférieure a celle de U,

— d’un ensemble R = {x] ~ y;...x, ~ y,} de relations entre variables de la forme z; = y;

ou bien x; # y;.

Une CBF (V,{x1 ~ y1...2, ~ yn}) représente ainsi l'expression :

u = V/\(/n\l‘l'\‘yl> (2.21)

i=1

Sur un exemple précis, 'expression (w =) A(y = z) se traduit par la CBF : (1,{w = z,y = z}).
Lors d’un calcul entre deux CBFs, cette représentation permet de factoriser ’ensemble des
relations communes sans nécessairement reconstruire le BDD original. Cette factorisation n’est
pas possible pour n’importe quelle opération logique. Si * désigne 'un des opérateurs booléens
“W2EN ou “A=7 et st (Up, Ry) et (Uz, Re) sont deux CBFs tels que r = {z ~y} € Ry et
r € Ry, alors :

[Z/ﬁ VAN le} * [Z/{Q VAN :RQ] = rA ([Ul VAN le\T’} * [Z/{Q VAN :RQ\T]) (2.22)

Les opérateurs désignés par x permettent de calculer 'union, I'intersection et la soustraction de
deux ensembles comme nous ’avons vu a la section Les CBF's sont ainsi particulierement
adaptées a la représentation et a la manipulation des ensembles.

Travaux autour des BDDs. Des travaux un peu éloignés des notres utilisent des BDD par-
titionnés [51] pour calculer 'espace des états atteignables [50, 64]. L’idée consiste & partitionner
I’espace booléen afin de pouvoir utiliser un ordre des variables différent dans chaque partition.
D’autres travaux décrits dans [43], [52], [70] choisissent de modifier localement et dynamiquement
lordre des variables afin de réduire la taille des BDDs selon les besoins des calculs en évolution.

28 CHAPITRE 2. CONTEXTE DE L’ETUDE

2.5.3 Calculs symboliques et BDDs

Afin de construire les BDDs dans leur forme réduite, il est nécessaire de s’assurer que chaque
noeud U = (v ?t,e) est unique. Pour cela, nous supposons ’existence d’une table T qui a chaque
triplet (v ?t,e) associe un unique noeud U :

T: (v?t,e) — U

Nous supposons également que I'opération consistant a associer un triplet a un noeud est ef-
fectuée en temps constant. En pratique cette complexité peut étre obtenue en représentant T
par une table de hachage.

2.5.3.1 Formules propositionnelles

La décomposition de Shannon nous permet de transformer une expression booléenne f en
une représentation sous forme de BDD notée bdd(f). Si un ordre sur les variables vy, ... v, est
fixé alors la construction de bdd(f) s’effectue récursivement de la maniére suivante :

bdd(f) = (vi?bdd(f[vr—1]), bdd(f[v1—0]))

La complexité en temps de cette construction est mauvaise car le nombre d’appels récursifs est
exponentiel par rapport au nombre n de variables dans f et comme nous 'avons déja dit, le
BDD généré peut étre de taille exponentielle.

Il est malheureusement difficile de faire mieux car la construction d’'un BDD a partir d’une
expression booléenne est un probleme NP-complet. Rappelons que tester si une expression
booléenne est satisfiable est un probleme NP-complet. Dans un BDD, ce test est réalisé en temps
constant. Il est donc aussi difficile de trouver un algorithme polynomial capable de transformer
une expression booléenne en BDD que de démontrer que P est égal a NP.

2.5.3.2 Opérations basiques

La négation d’'un BDD peut se calculer en temps constant (voir section . Si x désigne
un opérateur booléen binaire quelconque, et sild = (v?t1,e1) et V = (v ?tg, e2) désignent deux
noeuds de BDD portant sur la méme variable v alors 'application de x a U et V s’effectue de
la maniere suivante :

UxV = (’U?tl *tg,el*eg)

On pourra facilement se convaincre de la véracité de cette formule en utilisant la décomposition
de Shannon sur U et V. Pour éviter I'explosion exponentielle du nombre d’appels récursifs, il
est possible d’utiliser une table permettant de mémoriser chaque résultat intermédiaire U4; x V;.
Nous supposons que l'acces a cette table en fonction de U; et V; peut étre réalisé en temps
constant. Si nous appelons m le nombre de noeuds de BDD de U/ et n le nombre de noeuds de
BDD de V alors la complexité en temps et en espace du calcul de U x V dans le pire des cas est
de 'ordre de m x n.

2.5.3.3 Quantification

Restriction. Les calculs de quantification d’un BDD utilisent un opérateur de restriction. La
restriction d’'un BDD consiste & remplacer une variable par une constante (0 ou bien 1) dans le

2.5. LES DIAGRAMMES DE DECISION BINAIRES 29

BDD d’origine. Cette opération est réalisée d’apres les relations suivantes :

(v?te)lv—1] = t
(v?t,e)lv—=0] = e
(W' 7t e)lv—b] = (V' ?tlv—b],elv—1])

Cette opération a un cout linéaire en temps et en espace par rapport au nombre de noeuds dans
le BDD original.

Quantification existentielle. La quantification existentielle est issue de la décomposition
de Shannon comme dans les expressions booléennes de la section [2.4.1] :

/U = Ulv—0]VU[v—1]

Nous ne dirons rien sur la quantification universelle qui se déduit facilement de la quantification
existentielle. Le cout théorique de cette quantification est égal au colt de deux restrictions
ajouté au cout de 'application de 'opérateur “A”, c’est a dire quadratique par rapport au
nombre de noeuds. En pratique, cette opération tend a diminuer le nombre de noeuds dans le
BDD quantifié car elle permet de supprimer des variables et donc de réduire le support du BDD.

Quantification dans le calcul de ’image. La complexité en espace du calcul de 'image par
les BDDs réside dans le fait que I'expression de I'image repose simultanément sur les variables
décrivant les anciennes et les nouvelles valeurs des registres. La relation de transition désigne
I'expression :

R = A(LR)

qui, dans l'expression du calcul de I'image, possede le plus grand support. Les techniques de
partitionnement du calcul de 'image présentées a la section et appliquées aux BDDs n’ont
pas pour but principal de simplifier le calcul de la quantification existentielle mais avant tout
d’éviter la représentation de la relation de transition compléte. En revanche, les moyens mis en
place sont les mémes que ceux décrits dans cette section.

2.5.3.4 Substitution

La substitution de la variable v par le BDD V dans le BDD U est 'opération consistant a
remplacer chaque occurrence libre de la variable v par 'expression décrite par V dans ’expression
de U. Cette opération est notée :

Uv—V]

Dans un BDD, autrement dit une expression INF ne contenant aucun quantificateur, toutes les
variables sont libres. Si I'expression V s’évalue a 1 alors U[v — V] se réduit en U[v — 1]. Sinon,
Pexpression se réduit en U[v — 0]. L’opération de substitution est donc une opération if-then-else
dans laquelle le test est conditionné par la valeur de I'expression V. La définition de 'opérateur
if-then-else est donnée a la section Ainsi, nous avons :

Uv—V] = (VAUv—1])V (=V AU[v—0)])

30 CHAPITRE 2. CONTEXTE DE L’ETUDE

Substitution dans le calcul de I’image. Le calcul de 'image nécessite un renommage des
variables afin d’exprimer ’ensemble des nouveaux états découverts a partir des variables de
registres (voir section [2.4.1)). L’opérateur de substitution permet de réaliser cette opération.

2.5.3.5 Cofacteur et BDDs

Les opérateurs de cofacteur peuvent s’appliquer aux BDDs. Le cofacteur d’'un BDD U par
un BDD V noté U |y permet de supprimer des noeuds dans I/ en restreignant le domaine de U/
a l’ensemble V (voir section . Un algorithme pour cet opérateur a été proposé par Olivier
Coudert et al. dans [27]. Cet algorithme permet de supprimer des noeuds dans trois cas. Si le
domaine est vide, c’est a dire représenté par le BDD 0, alors le résultat est un BDD constant
(0 ou bien 1, nous avons choisi 0) :

(’U?t,e)w =0

Les deux autres simplifications s’appliquent si les variables a la racine des BDDs sont identiques
et si I'une des deux branches de V est 0. Supposons par exemple que la branche “then” de V soit
0. Dans ce cas, la branche “then” de U peut étre remplacée par n’importe quel BDD. Le choix
le plus efficace consiste a lui attribuer le méme BDD que sa branche “else” et donc a supprimer
la racine de U (voir les régles de simplification des BDDs a la section . Ces simplifications
sont formellement données par les relations suivantes :

(v?te)jworo = tw
(U?tae)l(v?o,e/) = €l

Dans le cas général, 'opérateur de cofacteur s’applique comme n’importe quel opérateur booléen
binaire. Ainsi, siid = (v?t,e) et V = (v?t,¢’) désignent deux noeuds de BDD portant sur la
méme variable v alors :

ulv = (U ? tlt’v ele’)

Le cout théorique en temps de cet opérateur est proportionnel au produit du nombre de noeuds
dans U et dans V. Le BDD résultant de cette opération est souvent plus simple que . Dans le
pire des cas, I'algorithme proposé par Olivier Coudert peut toutefois produire un BDD plus large
que U. Des méthodes permettent d’améliorer cet opérateur et de garantir de ne pas augmenter
la taille de U [44].

Chapitre 3

Présentation Intuitive

L’économie de la consommation mémoire est un enjeu majeur dans I'implémentation des
calculs symboliques d’espaces d’états. La consommation mémoire est liée a la taille des BDDs
nécessaires aux calculs. Les ressources mémoire sollicitées par les BDDs dans ’algorithme de
base rendent I’analyse de certains programmes impossible (& cause du dépassement de la capacité
mémoire). Plus précisément, on constate en pratique que les plus gros besoins en mémoire sont
transitoires et induits par ’application de la fonction de transition sur un ensemble “provisoire”
d’états, lors du calcul de son image. En particulier, les itérations intermédiaires de I'algorithme
de base sur des représentations d’ensembles d’états “non saturés” produisent les plus gros BDDs
comme le montre la figure Ce phénomene peut s’expliquer par le fait que la représentation
symbolique d’'un ensemble vide est aussi simple que la représentation de ’ensemble de tous les
états. De ce fait, 'exploration des états atteignables tend en pratique & simplifier les BDDs dans
les dernieres étapes de calcul.

Taille des BDDs

Etapes de 'algorithme

Fic. 3.1 — Ewolution typique de la taille des BDDs dans l’algorithme Breadth First Search. La
ligne discontinue représente l’évolution de la taille du BDD des états atteints au cours du calcul.
La ligne pleine représente la taille des BDDs nécessaires au calcul de l'image. La consommation
tend a diminuer sur la fin des calculs car la représentation des états atteints tend a se régulariser
en se saturant.

Nos travaux visent & réduire ces besoins en mémoire. Notre stratégie a pour but de par-
titionner le domaine d’application de chaque fonction de transition et de saturer les BDDs
intermédiaires au plus tot afin de :

31

32 CHAPITRE 3. PRESENTATION INTUITIVE

— diminuer la taille des BDDs nécessaires au calcul de I'image,
— diminuer la taille des BDDs intermédiaires nécessaires a la représentation des états at-
teints.

Nous nous attendons a ce que cette stratégie nécessite un temps de calcul plus important que
par l'algorithme Breadth First Search car la fonction de transition est appliquée un plus grand
nombre de fois. Notre stratégie propose donc un compromis entre le temps et ’espace nécessaire
aux calculs. Toutefois, il est possible quun plus grand nombre d’opérations appliquées a des
structures plus petites soit plus rapide qu'un nombre réduit d’opérations appliquées a des objets
plus gros. L’évolution espérée de la taille des BDDs au cours des calculs est illustrée par la figure
3.2

Taille des BDDs

Etapes de l'algorithme

Fi1G. 3.2 — Ewolution attendue de la taille des BDDs dans l’algorithme partitionné. Les états
intermédiaires sont idéalement encodés par des BDDs dont la taille est inférieure a celle du
BDD final (ligne discontinue). La courbe représentant la taille attendue des BDDs nécessaires au
calcul de limage (ligne pleine) présente également moins de fluctuations que dans l’algorithme
Breadth First Search.

Pour y parvenir, nous partons de I'observation que toutes les instructions du programme
ne sont pas actives simultanément a chaque instant dans ’exécution d’un programme. Dans le
simple exemple suivant :

present S then P else () end

I’exécution de P ou @) est conditionnée par la présence d’un signal S. Les états correspondant
a lactivation du bloc P sont distincts des états correspondant a l'activation du bloc Q. Les
registres des deux blocs ne sont jamais actifs simultanément. Ainsi, le calcul des états attei-
gnables dans P ne nécessite pas l'intégralité de la fonction de transition. En particulier, le bloc
@ étant inactif, la représentation de ses comportements dans la fonction de transition n’est pas
nécessaire.

Plus généralement, la structure des programmes ESTEREL décrit souvent un enchainement de
blocs (ou de macros-états) dans lesquels seule une partie des registres (et donc des comporte-
ments) est active. Ces blocs sont naturellement décrits par la syntaxe des programmes.

Plutot qu’appliquer une fonction de transition globale avec une politique Breadth First Search,
nos travaux visent a appliquer successivement des parties de la fonction de transition. Le but est
de savoir combiner les applications de ces parties de fonction de transition afin d’étre équivalent

3.1. DESCRIPTION GENERALE DE LA METHODE 33

avec 'application de la fonction de transition globale. Pour cela, nous proposons de suivre au-
tant que possible la syntaxe et donc la logique de ’enchainement du contréle entre les états
décrits par cette syntaxe, comme dans une exécution symbolique. D’une maniere générale, nous
cherchons a saturer ’exploration de chaque bloc avant d’aller prospecter les comportements ac-
tivés par la terminaison de ce bloc. Lorsqu’aucun nouvel état ne peut étre découvert, le calcul se
poursuit avec une autre partie de la fonction qui concerne un autre macro-état du programme.
Ainsi, en explorant les états valides bloc apres bloc, nous espérons réduire les besoins en mémoire
du calcul de I'image.

Notre partitionnement du calcul des états atteignables consiste a construire ces parties de la

fonction de transition et a réorganiser les calculs d’image afin de prendre en compte séparément
plusieurs fonctions de transition disjointes contre une seule monolithique dans I’algorithme de
base. Pour cela, nous nous appuyons sur la structure des programmes source : nous voulons
construire progressivement l’espace des états accessibles en suivant la structure algorithmique
naturelle du programme.
Alors que le calcul des états atteignables s’effectue sur une représentation circuit, le partitionne-
ment que nous proposons puise son inspiration au niveau du code ESTEREL source. Nous verrons
dans un chapitre ultérieur comment nous effectuons la liaison entre ces deux représentations.
Pour le moment, nous admettrons que les raisonnements que nous faisons ici au niveau du code
source peuvent étre reportés au niveau circuit pour partitionner la description de la fonction de
transition, puis le calcul des états atteignables.

3.1 Description générale de la méthode

Notre méthode de partitionnement repose sur l'idée que le corps d’'un programme peut se
diviser suivant des blocs (ou macro-états) de granularité appropriée. Dans des composants dits
“séquentiels”, les blocs sont combinés en séquence, en boucle ou bien en alternative par le
biais d’une instruction if-then-else. La recherche partitionnée des états atteignables s’effectue a
I'intérieur de chacun de ces blocs individuellement. On ne passe d’un bloc & un autre qu'une fois
que l'algorithme s’est stabilisé pour le premier. L’exploration de chaque nouveau bloc démarre
a partir d’un nouvel ensemble d’états initiaux, états obtenus a partir de ’exploration des blocs
précédents : les états situés exactement sur une frontiere entre deux blocs sont en méme temps
les états finaux du premier bloc et les états initiaux du second (voir figure . En réalité,

Fi1ac. 3.3 — Frontiére entre deuz blocs P et Q). Les états finaux de P servent d’états initiaux a

Q.

les états situés sur une frontiere appartiennent clairement au second bloc mais les transitions
qui menent a eux proviennent du premier bloc. Pour interdire ’exploration de certains blocs,

34 CHAPITRE 3. PRESENTATION INTUITIVE

il suffit d’interdire I’activation des registres qui les constituent, ce qui simplifie drastiquement
I'expression BDD des fonctions de transition.

Cette méthode souleve un probleme en présence de parallélisme, dans le cas ou deux frontie-
res peuvent étre traversées de maniere concurrente dans des composants s’exécutant en paralléle.
Le cas est illustré par I’exemple suivant qui contient une frontiere entre P; et P, d’une part et
Q1 et Qo d’autre part :

Py P
'l
Q1; Q2
Prendre alors en compte toutes les combinaisons de blocs possibles, autrement dit le produit
cartésien, menerait a une explosion du nombre de cas possibles :ici [Py || Q1]1, [Py || Q2],

[P || Q1] oubien [P || Q2.

Schéma général. Nous choisissons donc de mettre en place la stratégie suivante : tout
d’abord, il est important de trouver un “bon” ordonnancement des frontieres afin de suivre
la progression naturelle de I'exploration des états. Ensuite, nous commencgons avec un nombre
minimal de blocs actifs et nous activons progressivement les blocs un a un, a chaque fois que
nous décidons d’ouvrir une nouvelle frontiere. Quand une frontiere a été ouverte, elle n’est plus
refermée. Ainsi, la fonction de transition initialement tres réduite, ne fait que croitre vers la
fonction de transition globale complete. Dans le méme temps, les parties déja atteintes par les
fonctions de transition antérieures n’auront plus a étre considérées. Les fonctions de transi-
tion étendues poursuivent I’exploration des états atteignables a partir des dernieres frontieres

LEBG

Fi1ac. 3.4 — Méthode de partitionnement selon quatre blocs de programme. Les frontiéres entre
les blocs (représentées par des lignes discontinues) sont ouvertes une da une et ne sont jamais
refermées.

ouvertes.

Nous choisissons de n’ouvrir une frontiere que lorsque I’exploration des blocs présentement
actifs ne permet plus de découvrir de nouveaux états. De cette maniere, les états atteints lors
des étapes précédentes du calcul le sont a partir d’une fonction de transition réduite. Dans le
méme temps, nous n’appliquons les fonctions de transition grandissantes qu’a ’ensemble des
états situés a 'extérieur des blocs précédents, car ce sont les seuls capables d’engendrer de
nouveaux états. La-dessus, 'utilisation d’opérateurs de cofacteur nous permet d’espérer alléger
la représentation de la fonction de transition en ne conservant que la description des nouveaux
comportements, c’est a dire les transitions portant sur des blocs nouvellement activés. L’action
combinée des frontieres et du cofacteur nous permet d’espérer réduire le calcul des états attei-
gnables en se focalisant a chaque fois sur un nombre de blocs actifs réduit. Cette progression
par “vague” est illustrée par la figure [3.4) et la figure montre un détail des comportements
a la frontiere.

3.1. DESCRIPTION GENERALE DE LA METHODE 35

¢ &6 eo o0 oo
' (‘jka @QO ¢ 0® @QO

Fi1G. 3.5 — Détail de notre méthode de partitionnement sur une frontiére entre deux blocs P et Q.
Au cours des trois premieres étapes, P est entiérement exploré. Les états qui “débordent” hors
de P ne sont pas utilisés dans le calcul de I’tmage. Dans les trois derniéres étapes, l’exploration
de P et de @ est effectuce a partir des €tats “en attente” obtenus précédemment. Comme P
a €été entierement exploré, cette seconde phase d’exploration ne concerne plus que les états de
Q. Dans cette figure, les ronds blancs désignent les états source et les ronds noirs désignent
les nouveaur états cible a une étape donnée. Les ronds gris sans cercle représentent les états
précédemment atteints et les ronds gris avec cercle représentent les états en attente.

Support syntaxique. La division du programme en blocs ainsi que la définition de frontieres
pertinentes dépend fortement de la structure et donc de la syntaxe des programmes. Plus par-
ticulierement, cette division repose principalement sur la réception des signaux comme dans
I’'exemple :

abort P when S

Nous utilisons un graphe de flot de contréle pour nous aider dans cette tache. Le graphe est
construit directement au dessus de ’arbre syntaxique du programme de telle sorte que ’arbre
syntaxique et le graphe de contrdle partagent les mémes noeuds. Le graphe décrit tous les che-
mins possibles suivis par le contréole entre chacune des instructions du programme ESTEREL
et en particulier entre les registres qui dans le programme correspondent aux points d’arrét
possibles du controle entre les instants (et qui correspondent & l'opérateur pause dans le pro-
gramme source). La frontiére entre les blocs actifs et inactifs est alors décrite en sélectionnant
un sous-ensemble des arcs du graphe. Au cours des calculs, ce sous-ensemble est amené a varier
au fur et & mesure que des frontieres sont ouvertes, que des blocs sont activés et que la fonction
de transition est étendue, comme nous ’avons décrit précédemment. A partir du graphe courant
contenant des arcs ouverts et fermés, chaque macro-étape de I’algorithme itératif consiste a :
— calculer ’ensemble des registres inactifs afin de construire une description BDD de 'en-
semble des blocs considérés,
— sélectionner parmi les états dits “en attente” un nouvel ensemble d’états initiaux pour la
prochaine étape,
— achever 'exploration a l'intérieur des blocs actifs courants. Les états découverts a 'exté-
rieur des blocs actifs sont placés “en attente”,
— une fois 'exploration des blocs actifs courants terminée, d’autres frontieres sont ouvertes
et de nouveaux blocs sont activés.
L’algorithme se termine une fois que 'ensemble des états en attente est vide. Dans les sections
suivantes, nous décrivons les criteres du choix de nos frontieres en fonction de la syntaxe des

36 CHAPITRE 3. PRESENTATION INTUITIVE

programimes.

3.2 Partitionnement des blocs séquentiels

Dans cette section, nous nous intéressons au découpage des blocs séquentiels dont le traite-
ment est simple. Ce découpage peut s’opérer de maniere récursive. De plus, il existe de nom-
breuses similitudes dans le traitement des opérateurs de séquence, de choix et de préemption.
Le partitionnement que nous proposons permet de suivre fidelement la structure de controle
du programme source. Nous présentons ici le partitionnement de chacune des constructions
séquentielles.

3.2.1 L’opérateur de séquencement

Considérons un programme formé de deux blocs d’instructions composés en séquence :
P Q

Si 'ensemble des états atteignables est calculé par un algorithme de recherche Breadth First
Search et si la progression a chaque niveau de profondeur est réalisée par I’application d’une
fonction de transition globale, alors il se peut que des états de @ soient découverts avant d’avoir
épuisé la recherche des états dans P. Le probleme concerne plus particulierement la terminaison
de P.

3.2.1.1 Terminaison des blocs de programme

Il y a deux cas ou partitionner une séquence ne constitue qu’'une dépense d’énergie inutile.
Le premier est le cas évident ot P ou bien () ne contient aucune instruction pause. Le second
est en rapport avec la durée de P.

Blocs de durée fixe. Sile comportement de P est de longueur fixe, alors toutes les termi-
naisons possibles de P se produisent “a la méme date”. En d’autre terme, le calcul en largeur
des états de P ; (@ ne peut exhiber des états de () que lorsque tous les états de P sont explorés.
Par exemple, si P est de la forme :

present S then
pause;

else
pause;

end;

pauses

alors les deux exécutions possibles de P se déroulent toujours en deux instants. Dans ce cas,
I’algorithme Breadth First Search se comporte de la maniere suivante :
— La premiere itération permet de découvrir deux états de P, un état dans lequel seule
pause; est active et un état dans lequel seule pauses est active.
— La deuxieme itération permet de découvrir un état supplémentaire de P dans lequel seule
pauses est active.

3.2. PARTITIONNEMENT DES BLOCS SEQUENTIELS 37

— A partir de la troisieme itération, tous les états de P ont été explorés et ’algorithme passe
automatiquement a I'exploration de Q.

Pour le cas ou P est un bloc de durée fixe, il n’y a donc aucun intérét particulier a partitionner

explicitement la séquence P ; (@ suivant sa syntaxe (mais il n’y a également aucun inconvénient).

Blocs de durée variable. Si le comportement de P est de longueur variable, alors 1’algo-
rithme Breadth First Search peut commencer & explorer (sans que P soit “saturé”. On obtient
alors des représentations mélangeant “des bouts” de P avec “des bouts” de @ (voir figure .
Dans un exemple plus précis, si P est de la forme :

P P { P P P
Q Q Q Q Q

Fi1ac. 3.6 — Ezploration des états atteignables dans une séquence P ; Q). L’exploration de Q)
commence avant que celle de P soit achevée.

abort R when S

ou S est un signal externe, alors () est potentiellement actif des le deuxieme instant ; a la n-eme
itération, 'algorithme de calcul des états atteignables est capable de produire de nouveaux états
dans P de profondeur n et de nouveaux états dans @@ de profondeur n — 1.

3.2.1.2 Points faibles de I’algorithme Breadth First Search

L’algorithme de recherche en largeur présente les points faibles suivants :

— La représentation des états atteignables dans les calculs intermédiaires encode en méme
temps des états de P et de Q). Or, c’est précisément dans les étapes de calcul intermédiaires
que la représentation des états atteignables suscite les plus gros BDDs, plus que dans les
étapes initiales ou finales de 'algorithme. Ainsi, le fonctionnement de ’algorithme fait
que les gros BDDs nécessaires a la représentation de ’ensemble des états provisoirement
atteints de P sont automatiquement combinés avec les gros BDDs représentants les états
provisoirement atteints de). De plus, comme les BDDs représentant les états de P et
de @ reposent sur des supports disjoints, la combinaison de ces deux ensembles d’état ne
permet pas de bénéficier pleinement du partage de I'information propre aux BDDs; par
conséquent, le résultat d’une telle combinaison est souvent un tres gros BDD.

— La représentation de la fonction de transition combine les transitions de P et de Q. Ce

point est particulierement préjudiciable car, dans ’algorithme Breadth First Search, la
représentation de la fonction de transition constitue, avec le calcul de I'image qui en
découle, 'opération nécessitant les plus gros BDDs.
La syntaxe du programme nous indique que P et () s’exécutent en séquence. En d’autre
termes, cela signifie que lorsque le bloc P est actif, alors le bloc @ est inactif et récipro-
quement ; P et () sont mutuellement exclusifs. Or, cette propriété n’est pas exploitée dans
I’algorithme de recherche en largeur.

38 CHAPITRE 3. PRESENTATION INTUITIVE

3.2.1.3 Partitionnement

Partitionner séquentiellement la recherche des états atteignables en traitant intégralement
P, puis @ peut nous permettre d’alléger la représentation des ensembles d’états provisoires
mais aussi et surtout la représentation de la fonction de transition et le calcul de I'image en se
focalisant sur une partie du programme a chaque étape du calcul comme lillustre la figure

@I EE @ EHIH OEE E & @ [
i ‘t"l‘ | i‘t“l"t

A A A

01 01 01

Fia. 3.7 — Représentation de la fonction de transition de P ; @ dans l'algorithme Breadth
First Search (a gauche) et dans lalgorithme partitionné (a droite). P et QQ étant indépendants,
le partage de l'information dans les BDDs (représenté par les zone sombres) ne s’opére pas bien
entre P et Q). Le partitionnement permet de simplifier [’expression de la fonction de transition.

Dans cet exemple, le partitionnement que nous proposons consiste a découper le proces-
sus en deux phases. La premieére phase consiste a saturer I’exploration des états accessibles a
I'intérieur de P uniquement. Il s’agit de bloquer explicitement les transitions correspondant a la
terminaison normale du bloc P et interdire ainsi I'’exploration des états de (). De cette maniere,
seuls les ensembles d’états intermédiaires de P sont encodés et seule la partie de la fonction
de transition correspondant au bloc P est utilisée. De maniére analogue, la deuxiéme phase
paracheve le calcul par la saturation des états de (). Dans cette deuxieme phase, la fonction
de transition que nous utilisons encode les comportements de P et de @), mais comme tous les
états de P ont déja été découverts dans la premiere phase, 'opérateur de cofacteur permet de
ne conserver que les transitions issues du bloc Q.

3.2.2 L’opérateur de choix

Nous reconsidérons a présent I'exemple de I'introduction :
present S then P else () end

Ici, la situation est tres similaire a celle de I'opérateur de séquencement. Si nous supposons
qu’aucune des deux branches ne termine instantanément alors les états accessibles dans P et
() peuvent étre construits indépendamment alors que l'algorithme de recherche en largeur s’ac-
complit en parallele dans les deux blocs. Ici encore, nous proposons de partitionner la recherche
des états, d’abord dans P puis dans () afin de réduire la taille des BDDs nécessaires aux calculs.

Plus concretement, les calculs se déroulent comme pour la séquence. Dans un premier temps,
nous supposons que la fonction de transition a été appliquée de telle sorte que les états initiaux
de P et) ont été construits. Dans un second temps il s’agit de bloquer explicitement 1’ex-
ploration des états de Q). De cette maniere nous saturons P. Dans un troisiéeme temps, nous
utilisons l'opérateur de cofacteur sur la fonction de transition globale (qui encode la totalité

3.2. PARTITIONNEMENT DES BLOCS SEQUENTIELS 39

des comportements de P et @) de telle maniére que seules les transitions de @) sont réellement
encodées.

3.2.3 Le mécanisme de préemption ou d’exception

Notre calcul partitionné des états atteignables consiste a saturer l’exploration d’un bloc
avant d’aller prospecter les comportements activés par la terminaison de ce bloc. Considérons
I'exemple suivant :

abort P when S

dans lequel un programme P est exécuté jusqu’a réception d’un signal S. En plus des terminai-
sons normales liées a ’achévement du bloc P, 'opérateur de préemption permet d’ajouter des
moyens de terminaisons “prématurées”’. De ce point de vue, ce mécanisme est similaire a celui
des exceptions. Pour notre partitionnement du calcul des états atteignables, nous souhaitons
bloquer explicitement les transitions correspondant a toutes les terminaisons de P, aussi bien
les terminaisons normales que celles engendrées par 'instruction abort et ce tant que tous les
états de P ne sont pas explorés. Nous voulons donc considérer toutes les transitions sortant de
P comme des frontieres.

Le fait de bloquer explicitement toutes les terminaisons prématurées de P aura bien évidemment
pour effet de bloquer aussi toutes les émissions du signal S dans le reste du programme qui pour-
raient la causer car les émissions et les réceptions de S sont en relation directe dans la fonction
de transition globale : “si S n’est pas recu c’est qu’il n’a pas été émis”.

3.2.4 Découpage de programme séquentiel : un exemple

Considérons le programme séquentiel suivant :

abort P when S1;
present S2 then (); else ()2 end;
R

Ce programme est constitué de trois blocs en séquence P, @) et R. Le bloc @) se décline en
deux blocs @1 et Q2 articulés par 'opérateur de choix. L’exploration Breadth First Search de
ce programme est illustrée par la figure Le partitionnement de la séquence ne produit en

Fi1G. 3.8 — Ezxploration Breadth First Search d’un programme séquentiel.

40 CHAPITRE 3. PRESENTATION INTUITIVE

lui-méme aucune frontiere. L’instruction abort produit automatiquement des frontieres a la
sortie de P. Le partitionnement de I'instruction present produit des frontieres autour de cha-
cune des branches Q1 et Q2 (avant et aprés chaque branche). Certaines des frontieres produites
automatiquement sont donc redondantes (notamment a la sortie de P et a 'entrée de Q1 et QQ2)
mais cela ne pose pas de probleme particulier a notre algorithmique.

L’algorithme partitionné consiste a saturer successivement ’exploration des blocs P, Q1 (resp.
Q2), Q2 (resp. Q1) et R (voir figure . Précisons que le partitionnement des programmes

Fia. 3.9 — Ezxploration partitionnée d’un programme séquentiel.

séquentiels est completement récursif. Chacun des blocs P, Q1, Q2 et R peut ainsi étre par-
titionné récursivement. L’ordre de ’exploration des blocs est évident. Pour une séquence, il
s’agit de ’ordre des blocs dans la séquence et pour un if-then-else, 'ordre n’a pas d’importance.
Malheureusement, la prise en compte du parallélisme dans le partitionnement remet en cause
tous ces avantages.

3.3 Partitionnement des boucles

Dans un contexte purement séquentiel, sans parallélisme, ’exploration d’un programme de
la forme :

loop P end

se résume a ’exploration de P puisque la boucle meénera soit aux mémes états initiaux de P déja
explorés, soit vers des blocs de P completement inexplorés comme dans le programme suivant :

signal S in
loop
present S then [(); ; emit S] else P; end;
present S then ()3 else [P ; emit S] end
end
end

< < . ste A ex - :
Dans cet exemple, ’exploration du corps de la boucle consiste & explorer successivement P,
P, Q1 puis Q2 sans qu’aucune nouvelle frontiere ne soit ajoutée par I'instruction loop. D’autre
part, comme une boucle ne termine jamais spontanément, il est inutile de chercher a partitionner
de tels programmes, sauf a I'intérieur de P. Une boucle peut étre terminée par un mécanisme

3.3. PARTITIONNEMENT DES BOUCLES 41

de préemption ou d’exception. Dans ce cas, le partitionnement doit étre géré au niveau de l'ins-
truction abort (ou trap) et non pas au niveau de I'instruction loop.

Dans le contexte plus fréquent d’un programme parallele, le partitionnement des boucles
pose quelques difficultés. Le probleme vient du fait qu’il est tres difficile de savoir quels blocs
sont susceptibles d’étre actifs simultanément. A cause des synchronisations successives entre les
différents blocs, cette information est souvent impossible a obtenir statiquement (ceci explique
en grande partie pourquoi le calcul de l'espace des états atteignables peut étre aussi complexe).
Comme nous ’avons décrit en section [3.1] notre solution actuelle consiste uniquement a élargir
la fonction de transition en autorisant a chaque étape 'exploration de nouveaux blocs de pro-
gramme. Nous comptons sur 'opérateur de cofacteur pour éviter d’encoder le comportement
des blocs déja explorés dans la fonction de transition. Toutefois, cette méthode présente une
faiblesse. Si nous considérons 1’exemple suivant :

loop P end
I
Q

alors a chaque tour de boucle de P, le bloc () peut se retrouver dans un état différent. Plus
précisément, supposons que P soit de la forme :

P; P; emit S
et que @ soit de la forme :

Q1; await S; Qo

Le partitionnement de P et () produit deux frontieres. La premiere se situe entre P et P» et la
deuxieme entre (1 et Q2. Aprés avoir exploré P; et (1, nous supprimons la frontiere entre P; et
P5. Le calcul se poursuit par ’exploration de [P, ; emit S] et Q1. La branche P boucle et finit
par activer le bloc ()5. Dans 'exploration de P, il peut arriver que S soit émis alors que (01 n’est
pas terminé mais au bout du compte, tous les états initiaux de @2 finissent par étre atteints.
La seconde frontiere est alors ouverte. A partir du deuxieme tour de boucle, la frontiere entre
P et P, n’existe plus et la branche P n’est donc plus partitionnée. Ce phénomene est illustré
par la figure Ce phénomene est un cas bien particulier et nous pouvons espérer que, dans

'u‘ || 'n@

Fic. 3.10 — Application du partitionnement a une boucle dans un contexte paralléle. Au premier
tour de boucle, la frontiere de P est ouverte. Ensuite, la frontiére de QQ est ouverte. Au deuziéme
tour de boucle de P, la frontiére n’existe plus et P est exploré d’un seul coup.

le cas général, la plupart des états de P sont explorés lors du premier tour de boucle. Cette

42 CHAPITRE 3. PRESENTATION INTUITIVE

supposition pourrait alors nous affranchir du besoin de partitionner P a partir du deuxiéme tour
de boucle. Dans le futur, de plus amples études pourraient nous aider & corriger cette lacune,
par exemple en autorisant de refermer certaines frontieres apres ouverture afin que les frontieres
soient préservées a chaque tour de boucle.

3.4 L’opérateur parallele et les signaux

Le role de l'opérateur parallele d’ESTEREL est d’exécuter ses différentes branches de fagon
synchrone. Considérons un exemple de programme paralléle a deux branches séquentielles :

signal S1, ... Sn in
Pl @Q

end

Dans ce programme, les branches P et () sont supposées purement séquentielles. Supposons que
le partitionnement de ces branches décompose P en un ensemble de blocs { Py, ... P, } et @ en un
ensemble de blocs {Q1,...Qy}. L’absence d’information supplémentaire sur ce programme nous
laisse supposer que chaque bloc P; est susceptible de s’exécuter en méme temps que chaque bloc
Q;. Un partitionnement purement structurel de ce programme parallele consisterait naivement
a découper le calcul des états atteignables suivant le produit cartésien de {Py,...P,} et de
{Q1,...Qn}. Ainsi, chaque partie de la fonction de transition encoderait en méme temps les
comportements d’'un bloc P; et les comportements d'un bloc Q. Par cette technique, le nombre
de ces parties de fonction de transition serait de ’ordre de m x n.

Pour un programme ESTEREL quelconque contenant des instructions paralleles a divers niveaux
de profondeur dans le code, cette technique de partitionnement n’est pas satisfaisante : elle
engendre rapidement un tres grand nombre de morceaux de fonction de transition qu’il s’agit
de savoir ordonner et combiner. Nous cherchons ici a exhiber des solutions moins complexes
exploitant des relations d’exclusion mutuelle entre les blocs paralléles, comme nous ’avons fait
pour les opérateurs séquentiels.

L’opérateur parallele en lui-méme ne nous donne aucune information d’exclusion. Il est
toutefois rare de trouver des programmes ESTEREL dans lesquels de grands composants pa-
ralleles s’exécutent de maniere purement indépendante. Le programmeur ESTEREL est souvent
amené a faire dialoguer et a synchroniser a ’aide de signaux des taches lancées en parallele. De
maniere plus générale, en ESTEREL, tout le style de programmation vise & démarrer, tuer ou
bien cadencer des modules. Nous proposons donc d’utiliser les signaux comme autant d’éléments
synchronisants entre les différentes branches de 'opérateur.

3.4.1 Un programme paralléle au comportement séquentiel

Le partitionnement des programmes paralleles est fondé sur 'idée que 'utilisation de I'opé-
rateur “||” d’ESTEREL, combiné aux synchronisations et aux préemptions dies aux signaux
internes, peut autoriser certains composants a démarrer, suspendre ou stopper certains autres.
Considérons I’exemple suivant, une abstraction de la montre a quartz présentée en introduction :

3.4. L'OPERATEUR PARALLELE ET LES SIGNAUX 43

input BUTTON;
signal START_1, START_2, START_3 in

every START_1 every START_2 every START_3
abort abort abort
run TASK_1 [run TASK_2 Il run TASK_3
when START_2 when START_3 when START_1
end end end
'l
pause;
loop

emit START_1; await BUTTON;

emit START_2; await BUTTON,;

emit START_3; await BUTTON;
end loop

end signal

Dans cet exemple illustré par la figure quatre programmes apparaissent en parallele.
Trois d’entre eux possedent la méme structure, une tache principale (TASK_; 2 3) qui est démarrée
et stoppée en fonction de la réception de signaux START_j 5 3. Le quatrieme module séquentiel
que nous qualifierons de “principal” permet de piloter les trois autres en émettant des ordres
de lancement et d’interruption spécifiques a chacun des autres modules. Les taches TASK_1,
TASK_2 et TASK_3 s’exécutent de maniere séquentielle malgré la forme “parallele” apparente du
programme global. L’utilisation des signaux permet de faire transiter le programme d’un mode
a un autre, chaque mode n’activant que certains blocs du programme. Dans cet exemple simple,
les TASKs sont cycliquement exécutés en séquence, mais le scheduler pourrait étre un sélecteur

plus sophistiqué.
E TASK_1 R, . E A 2

w0
>
lE
H
%
>
lﬂ
N

o7
>
5

Fic. 3.11 — Programme paralléle au comportement séquentiel. Au centre, le module principal
permet de passer d’un mode actif a un autre par l’envoi de signauz.

Nous pouvons appliquer a cet exemple le méme type de partitionnement que celui décrit
pour l'opérateur de séquencement. Le module principal est toujours actif. Par conséquent, le

44 CHAPITRE 3. PRESENTATION INTUITIVE

comportement de ce bloc de programme sera encodé dans chacune des parties de la fonction de
transition. Parallelement a cela, nous proposons de partitionner les calculs en saturant succes-
sivement la recherche des états atteignables dans les modules TASK_1, TASK_2 puis TASK_3.
Dans un premier temps, nous saturons l’exploration de TASK_1 en bloquant explicitement les
transitions menant aux deux autres modules. En quelque sorte, cela revient a interdire ’émission
du signal START_2.

Dans un second temps, nous interdisons ’émission du signal START_3. A cette étape du calcul,
la fonction de transition que nous utilisons encode les comportements de TASK_1, TASK_2 et du
module principal. Tous les états de TASK_1 étant explorés, I'opérateur de cofacteur nous permet
de n’appliquer qu'un morceau de notre fonction de transition dépourvu des comportements de
TASK_1.

Dans un troisieme et dernier temps, ’autorisation du signal START_3, I'application de la tran-
sition globale et I'utilisation de 'opérateur de cofacteur permettent d’achever les calculs par
I’exploration du bloc TASK_3.

Dans cet exemple, nous voyons comment 1'utilisation de signaux peut induire un comporte-
ment séquentiel dans un programme écrit comme parallele. D’'une maniere plus générale, nous
pensons que 'analyse de 'utilisation des signaux nous permet de partitionner le calcul des états
atteignables dans les opérateurs paralleles, sans toutefois toujours tomber dans des situations
aussi favorables que celle présentée ici (pur séquencement).

3.4.2 Partitionnement des blocs paralleles

Pour partitionner les programmes paralléles nous considérons chaque programme ESTEREL

dans sa globalité. Afin d’introduire progressivement les difficultés, cette section présente une
collection de petits exemples. Chacun de ces exemples est un cas particulier permettant de
mettre I'accent sur une difficulté précise.
Etant donné un programme ESTEREL quelconque, nous nous focalisons sur les couples d’ins-
tructions formés d’une instruction émettrice et d’une instruction réceptrice d’un méme signal
local. Les instructions émettrices sont de la forme “emit S” ou bien “sustain S$”. Les instruc-
tions de la forme “present S ...”, “await S” ou bien “abort ... when S” sont qualifiées de
réceptrices. Pour simplifier I’exposition du probléme, nous supposerons que chaque signal local
n’est émis et recu qu’a un seul endroit dans tout le programme. De cette maniére, a chaque
signal local correspond une instruction émettrice et une instruction réceptrice placées dans deux
branches paralleles distinctes, comme dans ’exemple ci-dessous :

Py Q1
emit S; | await S
P, Q2

Pour cet exemple, nous supposons aussi que chaque émission du signal S est interceptée par
Iinstruction await. Ce programme est donc équivalent a :

LA Qs
[Pl Q2]

Le partitionnement des programmes paralleles est basé sur I'idée que l'utilisation de chaque
signal permet de diviser le programme en deux parties : la premiere partie concerne tous les

3.4. L'OPERATEUR PARALLELE ET LES SIGNAUX 45

comportements du programme avant I’émission du signal et la deuxiéme concerne les comporte-
ments du programme apres I’émission. Il s’agit ici de 'ordre des réactions et non pas de l'ordre
des instructions instantanées dans 'instant. Avant 1’émission de S, seuls les blocs P; et Q1 sont
actifs. Lorsque S est émis, seuls les blocs P> et Q9 sont actifs.

En partitionnant les programmes paralleles de cette maniére, le nombre de partitions ob-
tenues est linéaire par rapport au nombre de signaux locaux. L’exemple suivant présente un
parallele a trois branches synchronisées par deux signaux locaux :

Py; Q1

emit S1; [await Si;

Py Q2; Ry;
emit S2; | await S2;
Qs Ry

Ici encore, nous supposons que chaque signal émis est intercepté. L’utilisation des signaux S1 et
S2 permet de partitionner ce programme en trois parties. Dans la premiere partie, aucun signal
n’est émis. Ainsi, seuls les blocs P;, Q1 et Ry sont actifs. Dans un deuxieme temps, S1 est émis.
A la suite de cet événement, seuls les blocs Ps, Q2 et Ry sont actifs. Enfin, le signal S2 est émis
et seuls les blocs P», (3 et Ry sont actifs.

N AN N
w.o g S0 oy
s BEE B e

I W N
v v v

o O o O [

FiG. 3.12 — Méthode de partitionnement d’un bloc paralléle. Trois blocs en paralléle sont syn-
chronisés par deuz signaux. Notre technique vise a partitionner suivant les blocs en noir. Les
blocs en gris sont censés étre supprimées automatiquement par les méthodes de cofactoring.

Comme pour le partitionnement des programmes séquentiels, nous faisons grossir progressi-
vement la fonction de transition. Le partitionnement que nous proposons est illustré par la figure
La premiére étape consiste a saturer I'exploration du bloc [Py||Q1||R1] avec une fonction
de transition dans laquelle nous avons enlevé toutes les transitions consécutives a 1’émission
et a la réception de S1 et de S2. En pratique, cela revient a dire que nous construisons une
fonction de transition qui n’encode que les comportements de P, Q1 et Ry, soit les blocs situés
en amont de toute émission et de toute réception de S1 et S2. Dans la deuxieme étape, nous
rajoutons a la fonction de transition les transitions consécutives a I’émission et la réception de
S1 (nous rajoutons les comportements de P» et Q2 a la fonction de transition). L’application
de 'opérateur de cofacteur sur cette nouvelle partie de fonction de transition nous permet ainsi
de ne saturer que l'exploration du bloc [P3||Q2||R1]. Dans la derniére étape, nous rajoutons les
transitions consécutives a I’émission et la réception de S2. Nous recouvrons ainsi la fonction de
transition globale qui, apres utilisation de 'opérateur de cofacteur, nous permet d’achever les
calculs par I'exploration du seul bloc [P»||Q3|| Rz].

46 CHAPITRE 3. PRESENTATION INTUITIVE

3.4.2.1 Partitionnement sur les couples émetteur/récepteur

Pour partitionner les branches paralleles synchronisées par les signaux locaux, il n’est pas
nécessaire de partitionner en méme temps la branche contenant 'instruction émettrice et la
branche contenant I'instruction réceptrice.

Partitionnement suivant ’émission des signaux Partitionner ’exemple précédent sui-
vant ’émission des signaux consiste a découper le programme de la maniere suivante :

1. Dans la premiere étape, nous ne considérons que les blocs situés en amont de toute émission
de S1 et S2. Ainsi, la fonction de transition que nous utilisons encode a priori les com-
portements des blocs Pi, Q1, @2, R1 et Ry. Or, il est impossible d’exécuter le bloc Qo
sans exécuter le bloc P et il est impossible d’exécuter le bloc Ry sans exécuter le bloc (3.
Ainsi, les blocs Q3 et R sont automatiquement supprimés de la fonction de transition
par 'application de I'opérateur de cofacteur. La fonction de transition n’encode ainsi que
les blocs P, Q1 et R;.

2. Dans la seconde étape, nous débloquons 1’émission du signal S1. La fonction de transition
encode donc a priori les comportements des blocs P, P, Q1, (Q2, R1 et Ro. Pour les
mémes raisons que précédemment, le bloc Ry n’est pas réellement encodé. Comme nous
avons déja saturé I'exploration des états avant ’émission de S1, l'opérateur de cofacteur
permet de n’encoder que les blocs Ps, Q2 et R;.

3. Dans la troisieme étape, nous utilisons 'opérateur de cofacteur sur la fonction de transition
globale qui permet de n’encoder que les blocs P, Q3 et Rs.

Partitionnement suivant la réception des signaux De maniére similaire, partitionner les
programmes paralleles suivant la réception des signaux seulement permet d’obtenir finalement
le méme résultat. La seule différence se situe dans les blocs qui sont a priori encodés et qui sont
automatiquement supprimés par 'opérateur de cofacteur.

1. Dans la premiere étape, nous choisissons de saturer l'exploration des états atteignables
dans les seuls blocs Pi, P>, Q1 et R;. Comme toute émission de S1 est interceptée par
hypothese, il est impossible que le bloc Ps soit actif alors que Q9 est inactif. Ainsi, seuls
les blocs P;, Q1 et Ry sont encodés.

2. De la méme maniere, dans la seconde étape, des blocs P, Py, Q1, Q2, X3 et Ry a priori
encodés, seuls subsistent les blocs P», (02 et R;.

3. Dans la troisieme étape, comme toujours, seuls les comportements des blocs P, Q3 et Ro
sont encodés.

De cette maniere, nous partitionnons les branches paralléles suivant un point unique du pro-
gramme. Le fait de partitionner seulement sur I'instruction émettrice ou l'instruction réceptrice
nous permet de prendre en compte plus facilement les synchronisations mettant en jeu plus de
deux instructions dans un programme. Par exemple, dans le cas ou un seul signal (que nous
supposons toujours intercepté) permet de synchroniser un programme en deux points, comme
c’est le cas dans :

3.4. L'OPERATEUR PARALLELE ET LES SIGNAUX 47

Loop Qs
P await S;
emit S [Q2
Py await S;

end loop Qs;

Ici, le signal S émis en un seul point dans la premiere branche est re¢u en deux point dans la
deuxieme branche. Nous proposons de partitionner le calcul des états atteignables suivant les
instructions réceptrices. Dans la deuxieme branche, cela se traduit par saturer ()1 seulement,
puis saturer)2 seulement et enfin saturer Q)3 seulement. Ceci nous permet de partitionner les
calculs sans avoir besoin de savoir partitionner la premiere branche en fonction de la deuxieme.

De maniere générale, nous choisissons de partitionner les branches paralleles suivant les ins-
tructions réceptrices, comme dans ’exemple précédent. Nous considérons toutes les instructions
réceptrices y compris les réceptions de signaux externes.

3.4.2.2 Vraies et fausses synchronisations

Dans un programme ESTEREL réel, un signal émis n’est pas forcément intercepté. Avant de
chercher & savoir si un signal interne est toujours recu par une quelconque analyse du programme,
nous constatons qu’il n’est pas obligatoirement nécessaire de savoir répondre a cette question
pour appliquer notre technique de partitionnement. Dans I’exemple suivant, supposons que le
signal S est potentiellement émis trop tot, avant que le controle ne passe dans l'instruction
await :

Py Q1
emit S; [await S
Py Q2

Nous partitionnons suivant l’instruction réceptrice. Dans un premier temps, le calcul des états
atteignables s’effectue dans les blocs Pi, P» et 01, avant réception de S. Comme le signal S peut
étre émis sans étre intercepté, nous ne savons pas dire si le bloc P» sera ou non encodé dans la
fonction de transition apres usage de 'opérateur de cofacteur. Néanmoins, cette étape permet de
saturer I'exploration des états dans lesquels le bloc 1 est actif. Dans un deuxiéme temps, nous
explorons les états atteignables apres réception de S. A cette étape des calculs, nous sommes
certains que S a été émis. Nous savons alors que l'opérateur de cofacteur permettra de ne pas
encoder le bloc P; dans la fonction de transition. Le calcul des états atteignables s’effectue donc
uniquement dans les blocs P> et Q2. Si le signal S n’est jamais regu, cette deuxieme étape ne
produit aucun nouvel état.

Il peut arriver aussi qu’un signal soit émis trop tard, comme dans I’exemple suivant ou le bloc
()1 peut terminer avant le bloc P; :

P abort ()
emit S; [when immediate S;
Py Q2

Encore une fois, nous partitionnons suivant I’émission réceptrice. Dans la premiere étape du
calcul, 'exploration des états atteignables s’effectue a priori dans les blocs Py, P et (1. Ici,

48 CHAPITRE 3. PRESENTATION INTUITIVE

nous savons qu’il est impossible d’émettre S sans activer le bloc Q2. Autrement dit, cela signifie
que le bloc Py est forcément inactif. Dans cette premiere étape, seuls les blocs P; et ()1 seront
encodés dans la fonction de transition. Nous saturons ainsi I’exploration des états dans lesquels
le bloc @1 est actif. Dans la deuxieme étape, I'opérateur de cofacteur permet de ne pas encoder
le bloc (01 dans la fonction de transition. Dans cet exemple, le fait que le bloc Q)9 soit actif ne
signifie pas que le signal S ait été émis. La fonction de transition est donc susceptible d’encoder
le bloc P; en plus des blocs P et (2.

Pour partitionner un programme parallele suivant un couple d’instructions formé d’une ins-
truction émettrice et d’une instruction réceptrice d’un méme signal, il n’est donc pas nécessaire
de savoir si toute émission du signal est interceptée. Si le programme est congu de telle sorte
que toute émission du signal S est recue, alors le partitionnement que nous proposons permet
de suivre fidelement le comportement du programme a l'exécution. Dans le cas contraire, le
partitionnement peut paraitre plus artificiel, car partitionner selon ()1 et Q3 n’entrainera pas
de conséquence précise sur la branche P. Dans tous les cas, il est bénéfique de partitionner
de cette maniere. Dans le meilleur des cas, le calcul des états atteignables concernera tout
d’abord P; et Q1 et ensuite, Py et (Jo. Dans le pire des cas, cela concernera P;, P et Q1 et
ensuite P> et Q2. Nous proposons donc de partitionner le calcul des états atteignables suivant
toutes les réceptions de signaux internes sans discrimination. Comme pour le partitionnement
des programmes séquentiels, cela revient donc a placer des frontieres autour des branches des
instructions present et sur toutes les terminaisons des instructions abort ou trap.

3.5 Exploration partitionnée des programmes ESTEREL

Le calcul partitionné des états atteignables suivant les blocs de programme s’appuie sur
un graphe de flot de controle dans lequel les frontieres entre les blocs sont représentées par
un sous-ensemble des transitions du graphe. Les frontiéres qui sont ouvertes progressivement
permettent de guider 'exploration des états atteignables afin de suivre autant que possible la
structure du programme source.

Les frontieres du graphe sont construites a partir du programme ESTEREL source en suivant
la syntaxe du programme. Chaque frontiere correspond a une réception de signal. Ainsi, les
frontieres sont générées par les instructions de choix (present) ainsi que par les instructions de
préemption ou d’exception (abort ou trap) bien qu’en réalité, seules les frontieres situées entre
les instructions pause nous permettent de partitionner le programme.

Au début de ce chapitre, nous avions évoqué le besoin de savoir ouvrir les frontieres dans le
“bon” ordre en demeurant évasif sur la question. La syntaxe du programme peut nous aider
a définir un ordre a priori idéal qui suit strictement la syntaxe du programme. Toutefois, le
parallélisme des programmes, les boucles et les diverses synchronisations réalisées par les envois
de signaux impliquent que cet ordre défini statiquement ne peut étre que partiel. L’ordre total
de I'algorithme sera donc défini en grande partie de maniere dynamique, au vu des résultats en
évolution.

3.5.1 Ordonnancement statique des frontiéres

Dans un programme de la forme :

abort P when S

3.5. EXPLORATION PARTITIONNEE DES PROGRAMMES ESTEREL 49

nous souhaitons saturer P avant d’explorer les états accessibles apres la réception de S. Pour
cela, nous introduisons une relation d’ordre statique et partielle sur les frontieres. Ici, toutes
les frontieres construites dans le bloc P doivent étre antérieures aux frontieres relatives a la
réception de S. Cette relation d’ordre est utilisée pour ordonner les frontieres a priori, avant de
décider pour chacune d’elle si elle doit ou non étre ouverte. De la méme maniere, nous définissons
un ordre partiel pour toutes les constructions du langage. Ainsi, dans :

P ;Q

toutes les frontieres dans P sont antérieures aux frontieres dans (). Cet ordonnancement se
définit a partir du programme ESTEREL source. Notre but étant l’exploration exhaustive des
états d’un programme, cet ordre est quasiment ’ordre d’apparition des instructions dans le texte
du programme, excepté pour les instructions paralleles et present. Pour ces deux constructions
en effet, nous ne souhaitons pas imposer d’ordre a priori entre les différentes branches.

On aurait tout aussi bien pu imaginer un ordre dont le but serait de converger le plus rapidement
possible vers une zone particuliere du programme. Si le but du calcul des états atteignables était
de confirmer ou d’infirmer une propriété particuliére, comme par exemple I’émission d’un signal
particulier, alors nous aurions tout intérét a ouvrir en priorité les frontieres menant le plus
rapidement a la partie du programme directement concernée.

L’ordre que nous avons choisi est donc celui qui privilégie une exploration exhaustive des états.
Il est formellement défini & la section [4.3]

3.5.2 Ordonnancement du déblocage des frontieres

Contrairement au partitionnement des opérateurs séquentiels qui permet d’ouvrir les fron-
tieres en suivant fidelement la syntaxe du programme, 'ordre de l'ouverture des frontieres
dans le partitionnement des programmes paralleles peut s’avérer complexe ou arbitraire. Le
probleme provient des synchronisations. La difficulté consiste & débloquer les frontiéres dans un
ordre intéressant. En particulier, nous cherchons a ne pas débloquer des frontieres trop tot. Il
n’est pas forcément facile de définir cet ordre statiquement méme si des indications partielles
importantes sont souvent déductibles. Dans ’exemple ci-dessous, les émissions et les réceptions
des signaux S1 et S2 sont croisées.

loop loop
Pi; emit S2;
emit S1; await S1;
P [Q
await S2; end loop
Py

end loop

Ici, la premiere émission de S2 n’est pas interceptée. Le signal S2 n’est requ qu’a partir du
deuxiéme tour de boucle. Si nous débloquons S2 avant S1, alors nous libérons prématurément
I'acces au bloc Ps et de ce fait, le partitionnement suivant la réception du signal S2 ne s’effectue
pas. Pour partitionner correctement le calcul des états atteignables de ce programme il faut
donc débloquer la réception du signal S1 avant la réception du signal S2.

Plutdét que de chercher un critére permettant d’ordonner statiquement le déblocage des frontie-
res, nous choisissons de résoudre le probleme de maniere dynamique, c’est a dire en s’appuyant

50 CHAPITRE 3. PRESENTATION INTUITIVE

sur le calcul partitionné des états atteignables. La solution consiste a débloquer uniquement
les frontieres qui permettent de faire progresser les calculs. Ces frontieres sont de fait assez
facilement identifiables car nous aurons stocké les états en attente dans notre algorithme (voir
figure ou . Dans I'exemple précédent, le fait de débloquer la réception de S2 avant
la réception de S1 ne permet pas de faire progresser les calculs. Pour débloquer les bonnes
frontieres, nous nous appuyons sur ’ensemble des états situés a la frontiere entre les blocs actifs
et les blocs inactifs. Il s’agit en réalité d’états accessibles depuis un bloc actif en une réaction
instantanée, mais qui “débordent” dans un bloc inactif.

3.5.3 Débordement des états atteignables

L’état d’'un programme ESTEREL est caractérisé par ’état de tous les registres booléens
qui le constituent. Plus particulierement, ’ensemble des registres actifs permet de déterminer
I’ensemble des blocs actifs du programme. Lorsque ’algorithme partitionné produit des états
qui débordent a I'extérieur d’une frontiere, nous savons déterminer précisément ’ensemble des
blocs activés par ce débordement. A partir de cette information et & I'aide du graphe de flot de
controle il est alors facile de déterminer les frontieres qui ont été franchies. Cette technique est
illustrée par la figure [3.13

Fi1c. 3.13 — Débordement des états atteignables. Les frontiéres Fy1, Fa et F3 sont situées autour
des blocs actifs courants. La frontiere Fo n’a pas €té franchie et doit demeurer fermée. La
découverte des états S1 et Ss en dehors des blocs actifs indique que les frontieres Fy et F3
peuvent étre ouvertes.

Ainsi, le débordement des états permet de guider ’algorithme partitionné et de n’ouvrir que
les frontieres qui permettent de faire progresser ’exploration des états atteignables. De cette
maniere, nous évitons d’ouvrir des frontieres prématurément.

Chapitre 4

Notations

Ce chapitre a pour but de formaliser la mise en oeuvre algorithmique des notions décrites
au chapitre précédent. Dans la section nous introduisons une notation permettant de
représenter les programmes ESTEREL sous forme d’arbre syntaxique. A partir de cet arbre,
la section décrit la construction d’un graphe de flot de controle contenant des frontieres.
Enfin, la section définit une relation d’ordre entre les frontieres de ce graphe.

4.1 L’arbre de syntaxe abstraite

Pour notre étude, nous nous restreindrons a un sous-ensemble du langage ESTEREL dans
lequel nous n’avons conservé qu’un noyau caractéristique des instructions du langage original.
Les variables et la gestion des données ont été supprimées par abstraction comme il est d’usage
pour les techniques liées au model-checking vu comme exploration des états de controle. Un
programme complet est composé d’une en-téte de déclarations définissant I’ensemble des signaux
d’entrée et de sortie, suivie d’un corps dont la syntaxe est définie par la grammaire suivante :

P nothing

| pause

| P; P

| loop P end

PP

| emit S

| signal S in P end

| present S then P else P end
| abort P when S

Les autres instructions du langage n’introduisent pas de difficultés particulieres et ne sont
pas nécessaires a la compréhension de notre méthode de partitionnement. Par exemple, dans
le contexte de nos travaux, l'instruction trap peut étre traitée de la méme maniere que
Iinstruction abort. Ces instructions ne font par conséquent pas partie du langage noyau pu-
ESTEREL. En revanche, ces instructions ont été prises en compte pour l'implémentation de
notre logiciel présenté au chapitre [6]

Avant de commencer la description du graphe de flot de contréle que nous allons utiliser, nous
supposerons que nous possédons une représentation du programme ESTEREL sous forme d’arbre
syntaxique. Chaque noeud de I'arbre est typé en fonction de I'instruction qu’il représente mais

o1

52 CHAPITRE 4. NOTATIONS

nous nous intéressons en fait aux occurrences des instructions dans le programme source. Ainsi,
dans l'arbre syntaxique, chaque instance d’instruction sera identifiée de maniére unique par un
label unique. Au besoin, ces derniers seront explicitement mentionnés en position d’exposant
de l'instance d’instruction considérée. Le noeud d’une instruction de type instruction portant
le label L s’écrit alors de la maniere suivante :

(instructionL argument; ... argument,)

Les pauses. Le calcul des états atteignables s’obtient a partir d’une représentation des pro-
grammes ESTEREL sous forme de circuit alors que le partitionnement que nous proposons s’ap-
puie sur la syntaxe du langage source. Il est donc nécessaire de savoir relier un programme
source a sa représentation sous forme de circuit. Dans la traduction d’ESTEREL en circuits que
nous utilisons, chaque instruction pause produit exactement un registre booléen. Dans le format
circuit, un registre est identifié de maniére unique par son nom. Ce nom apparait explicitement
dans chaque instruction pause de ’arbre syntaxique ce qui nous procure l’association nécessaire
entre le code source et le format circuit. Ainsi, une instruction pause est représentée par un
noeud de la forme :

(pause” register_id)

ol register_id représente le nom du registre généré par la traduction de l'instruction pause.
Dans un arbre syntaxique, chaque pause possede évidemment un register_id distinct.

Les instructions atomiques. Dans ’arbre syntaxique, les instructions nothing et emit sont
naturellement représentées par des feuilles de la forme :

(nothing’)

(emit” signal_id)

ou signal_id représente le nom du signal dans la traduction en circuit. Le nom des signaux et
le nom des registres constituent les seuls liens entre ’arbre syntaxique et la traduction sous
forme de circuit mais contrairement aux registres, le nom des signaux n’est pas utilisé par notre
technique de partitionnement.

Les constructions hiérarchiques. Une déclaration de signal local est représentée par un
noeud de la forme :

(signal® signal_id instruction! endL/)

ol instruction est un sous-arbre représentant le corps de linstruction signal. La fin de la
portée est marquée par le délimiteur end. Par la suite, nous verrons que ce type de délimiteur
est utilisé dans la construction du graphe de flot de controle.

De la méme maniere, une boucle est représentée par un noeud de la forme :

(loop” instruction’ end™")
Une séquence est un noeud de la forme :

. . . . /
(seq” instruction!t instruction'? end®")

4.2. LE GRAPHE DE CONTROLE 53

Deux blocs s’exécutant en paralleles se notent :
. . . . /
(par’” instruction' instruction'? end®")

Les deux instructions permettant de réagir a la présence d’un signal sont present et abort.
Elles sont représentées par des noeuds de la forme :

. /
(present” signal_id instruction'®en instruction'<sc end™")

(abort” signal_id instruction! endLl)

4.2 Le graphe de controle

Notre graphe de flot de contrdle est un graphe orienté construit au dessus de l'arbre syn-
taxique des programmes ESTEREL. Etant donné un arbre T, le graphe de flot de controle est
défini de la maniére suivante :

G(T) = (I, O, N, E,F

dans lequel :
— N représente ’ensemble des noeuds du graphe. Ces noeuds sont communs avec ceux de
I’arbre syntaxique et sont par conséquent typés.
— I, sous-ensemble de N, représente I’ensemble des noeuds initiaux du graphe.
— O qui est aussi un sous-ensemble de N, représente ’ensemble des noeuds finaux du graphe.
Les arcs du graphe se divisent en deux catégories :
— E désigne ’ensemble des arcs “normaux”.
— F désigne I'ensemble des arcs considérés comme frontieres dans le graphe. Par construction,
I’ensemble E N F est vide.
Ainsi, les arcs correspondant aux transitions des instructions present ou abort sont placés
dans F. Ces arcs sont naturellement appelés “frontieres”. Les autres arcs sont placés dans E.
Dans E et F, les arcs orientés représentent le chemin du controle entre les instances d’instructions
et sont de la forme :
instruction™t — instruction?

En réalité, la description du graphe utilise les labels qui permettent d’identifier les noeuds de
maniere plus légere. L’arc précédent est donc noté :

l1—19
Le noeud source d’un arc x est noté Src(x). Le noeud de destination est noté Dest(x) :
Src(u—v) = u (4.1)

Dest(u—v) = v (4.2)

4.2.1 Construction du graphe

Construire le graphe de flot de controle consiste a construire les arcs entre les noeuds de
I’arbre syntaxique. Ce travail s’effectue de manieére structurelle a partir de I’arbre syntaxique et
en s’appuyant sur I’ensemble des noeuds initiaux et finaux du graphe. L’opérateur traditionnel

54 CHAPITRE 4. NOTATIONS

“x” permet de joindre chaque élément d’un ensemble U = {uy,...u,,} a chaque élément d’un
ensemble V = {vy,...v,} :

uxv = |JUJ {wvs} (4.3)

i=1j=1

Les instructions atomiques produisent des graphes formés d’un unique noeud et ne conte-
nant aucun arc :

G(pausel r) = ({L}, {L},{L}, o, o) (4.4)
G(nothing”) (L}, (L}, {L}, @, 9) (4.5)
Glemit" s) = ({L}, {L},{L}, o, 9)

La déclaration de signaux locaux. Dans le graphe, nous pouvons abstraire le début et la
fin des déclarations de signaux. En effet, notre technique de partitionnement ne repose pas sur
une analyse fine des émissions et des réceptions des signaux : seules les instructions réceptrices
génerent des frontiéres. Le graphe d’une déclaration de signal local est donc identique au graphe
de son corps P :

G(signal” s P end”) = G(P) (4.7)

La séquence binaire. Dans une séquence binaire, les noeuds finaux du premier graphe sont
reliés aux noeuds initiaux du second graphe :

si G(P) = (I, O;, N;, E;, F;) pour i€][l,2]
alors G(seq” P, P, end”) = (I, 02, N, E', F)
oi N = N; U Ny
E = E; UE U (07 x1y)
F = F1 U F (48)

Les boucles. Une boucle ne termine jamais. L’ensemble des noeuds finaux du graphe est donc
vide. Les noeuds finaux du graphe du corps de la boucle sont reliés aux noeuds initiaux :

si G(P) = (I,0,N,E,F
alors G(loop” PendL,) = (I, @, N, E, F)
on FE EU (0OxI) (4.9)

L’opérateur paralléle binaire. Les deux branches d’un paralléle sont démarrées au méme
instant. Par conséquent, le point de départ d’un parallele est un unique noeud relié aux noeuds

4.2. LE GRAPHE DE CONTROLE 95

initiaux de chacune de ses branches :

si G(P) = (I, O;, N;, E;, F;) pour i€][l,2]
alors G(par® P, P, end”) = ({L}y , 0, N, F,F)
o O = 07 U Oy
N = N; UNy U {L}
E = E UE
U {L} x(L; U ly)
F = HUF (4.10)

Test de présence d’un signal. Dans une instruction present, nous souhaitons placer nos
frontieres afin d’explorer P;, puis P, puis tous les blocs qui sont exécutés apres cette instruction
dans le programme. Par conséquent, les frontieres sont placées avant et apres la branche “then”
et la branche “else” :

si G(P) = (L, O;, N;, E;, F;) pour i€]l,2]
alors G(present” s Py Pyend”) = ({L} , {L'} ., N, E,F)
o N = N;yuUNy;uU{LL}
E = E UE
F'= FFUFR
U {L} x(I; U L)
U (01 U Og) x{L'} (4.11)

La préemption. Une instruction abort est susceptible de se terminer apres chaque instruc-
tion pause qui la constitue. De telles transitions sont des frontiéres qui nous aideront a par-
titionner le calcul des états atteignables et sont donc placées dans I’ensemble F. Pour réaliser
notre partitionnement, il est nécessaire que le corps de l'instruction abort soit parfaitement
isolé par des frontieres. Ainsi, les terminaisons naturelles du corps du abort sont également
considérées comme des frontieres :

si G(P) = (
alors G(abortL s P endLl) = (I , {L’} , N E, F’)
ou N =

F/

Il
o ™ Z

x {L'}

{l / (pause! r) € N} x {L'} (4.12)

C C

4.2.2 Exemple

Nous présentons ici un exemple de programme ESTEREL avec sa représentation sous forme
de graphe de flot de controle correspondante (figure [4.1)).

56 CHAPITRE 4. NOTATIONS

abort
loop pause; end
I
pause;; pauses
when S;
present T then
pause,;
[pause; || pauseg]
else
pause;; pauseg
end;
pauseg

La construction des frontieres permet de diviser le programme en quatre blocs. Le premier
constitue le corps de l'instruction abort, le second et le troisieme correspondent & la branche
“then” et a la branche “else” du present et le dernier bloc est constitué de la derniere pause
située apres l'instruction present.

5
> Fy Fa1 MA -k
o o E e
L 7/ ax \ [L —
[&2
. I =
12— 3 ——— 7 » 8 !
A A = A AF-———-- Fss
2.2 :

Fi1c. 4.1 — Ezemple de graphe de flot de controle de programme ESTEREL. Les frontiéres Fy,
Fo 1 et Foo représentées par les lignes discontinues ont été produites par les instructions abort
et present.

4.2.3 Graphe de controle et partitionnement

Dans notre graphe de flot de controle, les arcs de type “frontiere” permettent de diviser le

programme en deux parties : a Uintérieur de la frontiere se trouve I’ensemble des blocs actifs
que nous souhaitons explorer. A l'extérieur de la frontiere se trouve I’ensemble des blocs que
nous ne souhaitons pas explorer et qui doivent demeurer inactifs.
La traduction des programmes ESTEREL en circuit produit un registre de controle pour chaque
instruction pause. Cette traduction nous permet de caractériser tres précisément I’ensemble des
états du programme situés a Uintérieur de la frontiere. Si P désigne les blocs de programme
situés a l'intérieur de la frontiere et si () désigne les blocs de programme situés a ’extérieur de
la frontiere, alors les états situés a 'intérieur de la frontiere sont les états dans lesquels aucun
registre de) n’est actif. L’intérieur de la frontiere n’est donc pas décrit a partir de I’ensemble
des registres potentiellement actifs mais a partir des registres que nous forcons a étre inactifs.

Codage des blocs actifs. Etant donné un ensemble de variables de BDD R = {ry,...7,},
nous introduisons 'opérateur NOr(R) défini de la maniere suivante :

NOr(R) = AX ——-riA... A=y (4.13)

4.2. LE GRAPHE DE CONTROLE o7

Siry,...r, sont des variables représentant les registres booléens Ry, ... R, alors NOr(R) repré-
sente 'ensemble des états dans lesquels tous les registres R; sont inactifs pour tout i € [1..n].

Nous remarquons que 'ensemble Or(R) = NOr(R) défini par :
Or(R) = AMX —=riV...Vr, (4.14)

représente ’ensemble des états dans lesquels au moins un registre R; est actif pour i € [1..n].
L’ensemble des variables de registres inactifs est déterminé a partir du graphe de flot de controle,
plus particulierement en considérant les noeuds de type pause. Etant donné un ensemble X
de noeuds du graphe, nous introduisons l'opérateur Register(X) qui retourne I’ensemble des
variables de registres contenues dans les instructions de X :

Register(X) = {r /(pauser) e X} (4.15)

Cet opérateur nous permet d’établir le lien entre le graphe de flot de controle et les calculs
symboliques & base de BDDs.

Opérations de base dans le graphe de flot de contrdle. Soit (N, E) un graphe “tradi-
tionnel” ou N représente I’ensemble des noeuds du graphe et E représente ’ensemble des arcs
du graphe. Nous notons Succ(n,g)(X) I'ensemble des noeuds successeurs de X, c’est a dire les
destinations des arcs de E dont 'origine appartient a X :

Sucengy(X) = {jeEN/ieX A i—jek} (4.16)

Nous introduisons également l'opérateur Transn g)(X) qui retourne I'ensemble des arcs du
graphe dont 'origine appartient a I’ensemble de noeuds X :

Transing)(X) = {i—j€eEB/ieX} (4.17)

Calcul des blocs actifs. L’ensemble des registres situés a l'intérieur de la frontiere se calcule
a I’aide du graphe de flot de controle par fermeture transitive en excluant I’ensemble des arcs
de type frontiere. L’opérateur Closure(n g (Y) permet de calculer 'ensemble des noeuds attei-
gnables & partir d’'un ensemble de noeuds initiaux Y en passant par les arcs de ’ensemble E. N
représente 1’ensemble des noeuds du graphe. La fermeture transitive de Y se calcule par point
fixe de la maniere suivante :

Closureney (Y) = pw(AX — YU Sucen) (X)) (4.18)

ou u(f) désigne opérateur calculant le plus petit point fixe de f.

Calcul de la surface. La fonction suivante calcule la “surface” d’un bloc de programme.
A partir d'un ensemble de noeuds Y C N correspondant a un ensemble d’instructions de type
pause, la surface Surfacen) (Y) de Y est I'ensemble des noeuds du graphe qui peuvent étre
atteints dans le méme instant que I'une des instructions contenue dans Y. La surface se calcule
selon le méme principe que la fermeture transitive, en calculant les successeurs de Y qui ne sont
pas de type pause. Si P représente ’ensemble de tous les noeuds de type pause contenus dans
N :

P = {ieN/i=(pauser)} (4.19)

58 CHAPITRE 4. NOTATIONS

alors Surfacen gy (Y) est définie de la maniere suivante :
Surfacen gy (Y) = p(AX — YU (Sucene)(X) N P)) (4.20)

La définition de cette fonction demeure correcte méme si tous les éléments de Y ne sont pas de
type pause.

4.3 Une relation d’ordre pour les frontieres du graphe

Cette section a pour but de formaliser les idées présentées a la section Il s’agit de
donner un ordre statique, a priori idéal pour une exploration exhaustive des états atteignables,
et partiel sur 'ensemble des frontieres du graphe.

4.3.1 Notations

Nous cherchons ici a définir formellement une relation d’ordre stricte notée “<” entre les
frontieres du graphe. Cette relation nous permet de définir un ordre pour l'ouverture des
frontieres. Ainsi, si x et y désignent deux frontieres, alors le prédicat : «la frontiere x doit
étre ouverte avant la frontiere y» s’écrit :

X<y

Cette relation d’ordre se construit avec ’'aide de 'arbre syntaxique et complete I'information
donnée par le graphe de flot de controle. L’arbre syntaxique ne permet pas de définir directement
une relation entre les frontieres puisque ’arbre ne se compose que d’instructions, autrement dit
de noeuds. Ainsi, si u et v sont deux instructions, alors nous cherchons avant tout & définir un
prédicat : «l’acces a 'instruction u doit étre ouvert avant ’acces a I'instruction v». Le prédicat
s’écrit de la méme maniere que précédemment :

u=<v

Des lors, dire que l'acces a l'instruction u doit étre ouvert avant l'acces a l'instruction v est
équivalent a dire que tout arc-frontiere menant a u doit étre ouvert avant tout arc-frontiere
menant a v, quelle que soit 'origine des arcs. Ceci s’écrit :

u<v <= (x—u) < (y—v) ¥x,Vy (4.21)

De cette maniere, décrire une relation entre les noeuds de ’arbre est strictement équivalent a
décrire implicitement une relation entre les frontieres du graphe. Par commodité, nous définis-
sons également l'opérateur “<” qui permet de définir des relations d’ordre a partir d’ensembles
de noeuds. Ainsi, si U et V sont deux ensembles de noeuds, alors 'opérateur “<” est défini de
la maniere suivante :

U<V <= u<v VvuelweV (4.22)

4.3.2 Définition structurelle

La séquence. Comme il est écrit dans la section dans un programme séquentiel de la
forme P ; @, toutes les frontieres de P doivent étre ouvertes avant n’importe quelle frontiere

de Q.

4.3. UNE RELATION D’ORDRE POUR LES FRONTIERES DU GRAPHE 59

Si nous notons G(P;) = (I; , O;, N;, E;, F;) pour i € [1,2], alors un noeud de séquence dans
I’arbre syntaxique de la forme :
(seq” Pi P, end"™)

induit les relations d’ordre suivantes :

N; < Ny (4.23)

La préemption. De la méme maniere, dans une instruction abort, toutes les frontieres situées
a lintérieur du bloc doivent étre ouvertes avant n’importe quelle frontiere menant a la fin du
bloc.

Si nous notons G(P) = (I, O, N, E, F) alors un noeud de I'arbre de la forme :

(abort” s P end™)
induit les relations d’ordre suivantes :

N < {L'} (4.24)

L’opérateur parallele. L’opérateur parallele n’induit aucune relation d’ordre. Il se peut en
revanche que le point d’entrée de I'instruction parallele soit aussi le noeud de destination d’une
frontiere.
Par conséquent, si nous notons G(P;) = (I; , O; , N;, E;, F;) pour 7 € [1,2], alors un noeud
parallele de la forme :

(par’ P, P, end")

induit les relations d’ordre suivantes :

{L} < Nj U Njy (4.25)

L’opérateur de choix. L’instruction present n’induit aucune relation d’ordre entre ses deux
branches. Pour les mémes raisons que précédemment, le point d’entrée et le point de sortie
doivent étre pris en compte par notre relation d’ordre.
Par conséquent, si nous notons G(P;) = (I; , O; , N;, E;, F;) pour 7 € [1,2], alors un noeud
present de la forme :

(present” s P; P, end™)

induit les relations d’ordre suivantes :

{L} < N7 U Ny
N; UNy < {L'} (4.26)
En réalité, les relations d’ordre induites par ’opérateur de choix sont plus compliquées qu’il n’y
parait. En effet, elles n’interdisent pas d’alterner 'ouverture de frontieres dans P; et dans Ps.

Ainsi, dans un programme de la forme :

present S then P else () end

60 CHAPITRE 4. NOTATIONS

rien ne permet d’espérer que le bloc P (resp.) sera intégralement exploré avant le bloc @ (resp.
P). Pour corriger cela, nous pouvons tout simplement choisir d’ouvrir toutes les frontieres de la
branche then avant toutes les frontieres de la branche else :

N; < No (4.27)

Ce choix est purement arbitraire car nous aurions tres bien pu choisir I'ordre inverse mais il
permet d’établir un ordre.

Chapitre 5

Calcul des Etats Atteignables
Partitionné

Nous présentons ici notre algorithme partitionné du calcul des états atteignables introduit
au chapitre [3| et basé sur le graphe de flot de contréle des programmes ESTEREL défini au
chapitre 4] Notre technique repose sur certaines propriétés des diagrammes de décision binaires
(voir chapitre , déja existantes dans l'algorithme originel. Dans la section nous présentons
notre algorithme partitionné et nous démontrons sa correction dans la section Enfin, nous
terminons ce chapitre par une analyse de quelques propriétés de notre approche a la section [5.3

5.1 Algorithme partitionné

L’algorithme présenté dans cette section permet de calculer ’espace des états atteignables
d’une machine séquentielle fsm = (¢, T, A,T"). Notre algorithme partitionné est guidé par le
graphe de flot de controle dans lequel les arcs de type “frontiére” sont progressivement débloqués.
Dans un premier temps, nous choisissons de présenter une version simplifiée de 'algorithme
partitionné dans laquelle toutes les opérations s’appuyant le graphe de flot de controle ont été
abstraites. L’algorithme complet est donné a la page Ce premier algorithme ne décrit pas la
fagon dont le graphe est utilisé.

Dans I’algorithme suivant, toutes les variables sont des BDDs ou bien des structures équi-
valentes comme les CBF's (voir section . Le BDD pending contient les états atteignables
dont I'image par la fonction de transition n’a pas encore été calculée. Le BDD area représente
I’ensemble de tous les états (atteignables ou non) situés a 'intérieur de la frontiere définie par
le graphe. Ainsi, a chaque itération de 'algorithme, le calcul de I'image est réalisé uniquement
a partir des états de pending qui sont situés a l'intérieur de area (ligne 10). A la fin de chaque
itération, les nouveaux états découverts sont placés dans I’ensemble pending (ligne 12).

61

62 CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNE
1 reachable < ¢
2 pending « ¢
3 —— Calcul de areaq voir algorithme
4 area < areag
5 tantque (pending # @) faire
6 si ((pending Narea) = &) alors
7 —— Calcul de area’ tel que area’ D area voir algorithme
8 area <« area’
9 fin si
10 domain « pending N area
11 new < Imagenx (Y, domain) \ reachable
12 pending < (pending \ area) U new

13 reachable « reachable U new
14 fin tantque

Algorithme 5.1 — Algorithme partitionné

La valeur initiale areag de l’ensemble area (ligne 4) est calculée a partir du graphe de flot de
controle comme nous le verrons par la suite. Nous pouvons remarquer que si areag désigne
I’ensemble BX alors cet algorithme est identique & 1’algorithme présenté a la section
Tant que des nouveaux états sont découverts a 'intérieur de I’ensemble area, aucune frontiere
n’a besoin d’étre ouverte (ligne 6). Dans le cas contraire, certaines frontieres du graphe sont
ouvertes. Un nouvel ensemble area’ contenant strictement I’ancien ensemble area est alors calculé
a partir du graphe (ligne 8).

5.1.1 Initialisations dans le graphe de contrdle (calcul de areag)

Nous supposons que ’arbre syntaxique du programme est donné dans T. La phase d’initia-
lisation consiste & construire le graphe de flot de controle afin d’obtenir un ensemble d’arcs-
frontiere fermés initial. A partir de ces conditions initiales, I’ensemble areag est initialisé.

(1,0, N, E, F)— G(T)
R — Register(N)

inner « Closuren gy (1)
RT «— Register(inner)
areag «— NOr(R~ RT)

Tt s W N =

Algorithme 5.2 — Calcul de areag

La premiere étape consiste a construire le graphe (ligne 1). A partir du graphe, nous construi-
sons l’ensemble inner contenant l’ensemble des noeuds situés a l'intérieur de la frontiere. Cet
ensemble est construit par fermeture transitive en partant des noeuds initiaux I et en passant
par les arcs de E (ligne 3). L’ensemble R contient la totalité des registres du graphe (ligne 2).
Seuls les registres situés & l'intérieur de la frontiere peuvent étre actifs. L’ensemble BT des re-
gistres actifs est construit a partir de ’ensemble inner a la ligne 4. Finalement, areag est défini
comme l’ensemble des états tels qu’aucun registre exceptés ceux de BT n’est actif (ligne 5).

5.1. ALGORITHME PARTITIONNE 63

5.1.2 Elargissement des blocs actifs (calcul de area’)

Lorsque ’ensemble area des blocs actifs a besoin d’étre élargi, nous voulons ouvrir les “bon-
nes” frontieres. Nous ne voulons ouvrir que les frontieres qui nous permettent d’inclure des états
en attente de 'ensemble pending a l'intérieur de I’ensemble area des blocs actifs. Les frontieres
permettant de faire progresser 'algorithme ne peuvent se trouver qu’a la surface des blocs ac-
tifs, c’est a dire parmi les arcs de I’ensemble F dont l'origine appartient a ’ensemble surface
des noeuds situés a la surface de inner. Par ailleurs, il peut étre nécessaire d’ouvrir plus d’une
frontiere avant que area ne soit suffisamment élargi pour inclure des états en attente. Le cas
typique est celui de deux branches paralleles qui attendent la réception d’un méme signal :

P, ; await S ; P
Il
Q1 ; await S ; Qo

Si nous supposons que S est toujours recu dans chacune des branches de ce programme, alors les
deux frontieres générées par les deux instructions await S doivent étre ouverte en méme temps.
De ce fait, tant qu’aucun état en attente ne se situe a 'intérieur de I’ensemble area, une nouvelle
frontiere est analysée afin de décider si elle doit étre ouverte ou pas. Dans cet algorithmne, la
fonction Sort<(E) permet de trier topologiquement un ensemble d’arcs E suivant la relation
“<7

1 surface < Surfacen gur) (inner)

2 frontier « Sort(Trans,r(surface))
3 11

4 tantque ((pending Narea) = @) faire

5 f «— frontier[i]

6 —— Vérifier si f doit étre ouverte (variable open?) voir algorithme
7 si (open?) alors

8 —— Ouvrir f voir algorithme [5.6
9 fin si

10 t—1+1

11 fin tantque

Algorithme 5.3 — Calcul de area’

L’ensemble de noeuds surface représente la surface des blocs situés a I'intérieur de la frontiere
(ensemble inner a la ligne 1). Les arcs-frontiére dont ’origine appartient a surface sont les seuls
que nous pouvons ouvrir. Ces arcs-frontiere sont triés d’apres la relation d’ordre “<” décrite
a la section et placés dans l'ensemble frontier (ligne 2). Chaque arc-frontiere est ensuite
analysé un & un dans l'ordre jusqu’a ce que l’ensemble area soit suffisamment élargi (lignes 4 a
11). Cet ordonnancement nous permet d’analyser et d’ouvrir chaque frontiere dans l'ordre que
nous jugeons a priori le meilleur.

5.1.2.1 Franchissement des frontiéres

Pour déterminer si un arc-frontiere doit étre ouvert, nous nous focalisons sur les nouveaux
registres actifs de I’ensemble pending. Les états situés dans ’ensemble pending sont des états

64 CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNE

atteignables qui activent des registres situés a ’extérieur de la frontiere. Si 'ouverture d’un
arc-frontiere permet d’inclure un de ces registres a I'intérieur de la frontiere, alors ’arc-frontiere
doit étre ouvert :

inner"™ « Closure(n g) (Dest(f))

R Register (inner™™) \ R+

si (R = @) alors open? «— true

si (pending N Or(R"") # &) alors open? «— true
sinon open? «— false

fin si

S U W N =

Algorithme 5.4 — Test de franchissement d’une frontiere

Dans un premier temps, nous calculons I’ensemble inner™™ des noeuds atteignables par ’ou-
verture de 1’ arc-frontiere courant f. Cet ensemble se calcule par fermeture transitive depuis le
noeud destination de f en passant par les arcs de E (ligne 1). En réalité, nous ne nous intéressons
qu’aux nouveaux registres découverts dans inner™®”. Ces nouveaux registres sont placés dans
Pensemble ™" (ligne 2). Trois cas peuvent alors se présenter :

1. Si larc-frontiere f ne débouche sur aucun nouveau registre, alors il peut étre ouvert mais
ceci n’aura aucune influence sur I’élargissement de l’ensemble area (ligne 3).

2. Si l'ensemble R™" des nouveaux registres n’est pas vide, nous vérifions si ’ensemble
pending contient des états ayant activé un ou plusieurs registres de ’ensemble SR"¢?. Dans
ce cas, I'arc-frontiere f peut étre ouvert, ce qui permettra d’élargir I'ensemble area (ligne
4).

3. Si nous ne sommes dans aucun des cas précédents, cela signifie que I'arc-frontiere courant
débouche sur des registres non activés et qui doivent par conséquent demeurer inactifs
(ligne 5). f ne doit pas étre ouvert.

5.1.2.2 Sélection des frontieéres compatibles

L’algorithme précédent est susceptible d’ouvrir des arcs-frontiere qui ne sont pas “compati-
bles” entre eux.

Un exemple. Supposons que r1, 75 et 3 sont trois registres inactifs dont I’acces est maintenu
fermé par trois arcs-frontiere distincts. L’ensemble pending contient deux états : le premier dans
lequel seuls 71 et r3 sont actifs et le second dans lequel seuls 75 et r3 sont actifs. Nous ouvrons
une premiere frontiere qui nous permet d’activer r1. A cette étape de l'algorithme, rien ne nous
interdit alors d’activer ro avant r3 alors que nous préférerions activer seulement rs.

La solution consiste & effectuer une copie de ’ensemble pending appelée pending’ avant de
commencer a analyser et & ouvrir nos arcs-frontiere (ligne 2). Chaque fois qu'un arc est ouvert,
nous réduisons 1’ensemble pending’ afin de ne conserver que les états “compatibles” c’est a dire
les états dont les registres actifs font aussi partie de I'ensemble R™*" des registres que nous
sommes sur le point d’activer (ligne 6) :

5.2. CORRECTION DES ALGORITHMES 65

pending’ < pending
tantque ((pending Narea) = @) faire

si (pending’ N Or(R"™¥) # &) alors
pending’ « pending’ N Or(R"v)
open? «— true

0 O O s W N

Algorithme 5.5 — Test de franchissement d’une frontiere “compatible”

Dans notre exemple précédent, une fois que r1 a été activé, il est impossible d’activer ro avant
r3 par cette technique.

5.1.2.3 Ouverture d’une frontiére

A partir du moment ol nous avons décidé I'ouverture d’un arc-frontiere, nous devons sim-
plement effectuer quelques mises a jour :

E— BEU{f}

F— F~ {f}

inner « inner U inner™"
RT «— RTUR™®

area — NOr(R ~ R")

T s W N =

Algorithme 5.6 — Ouverture d’une frontiere

Tout d’abord, 'arc f est déplacé de ’ensemble des frontieres F vers 1’ensemble des noeuds
normaux E (lignes 1 et 2). L’intérieur de la frontiere est élargi en conséquence (ligne 3) et les
nouveaux registres actifs de R"*" sont ajoutés a I'ensemble des registres actifs de R (ligne 4).
Enfin, 'ensemble area est élargi (ligne 5).

5.2 Correction des algorithmes

Nous définissons formellement ’ensemble des états atteignables d’une machine séquentielle
fsm = (¢, T, A, T) comme le plus petit point fixe d’une fonction © définie de la maniere suivante :

O(X) = LUA(X) (5.1)

Ce point fixe est forcément défini puisque © est une fonction croissante et que nous travaillons
dans I’ensemble fini BX. Dans cette section, nous choisissons de ne pas tenir compte de ’en-
semble des entrées valides T de la machine séquentielle qui ne pose aucun probléme particulier
sinon rendre la lecture plus difficile.

Si nous appelons Ry 'ensemble des états atteignables calculé par 'algorithme traditionnel et
Ry,qrt Vensemble des états atteignables calculé par notre algorithme partitionné, alors le but de
cette section est de montrer que :

Ry = () (5.2)
et Rport = p(0O)

CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNE

1 reachable «— ¢

2 pending «— ¢

3 (I,0,N,E,F)«G(T

4 R «— Register(N)

5 inner « Closuren) (1)

6 R «— Register(inner)

7 area « NOr(R < R")

8 tantque (pending # @) faire

9 surface < Surfacen gur) (inner)

10 frontier < Sort(Trans) (surface))
11 1+ 1

12 pending’ « pending

13 tantque ((pending Narea) = @) faire
14 f « frontier[i]

15 inner™ « Closure g (Dest(f))
16 R« Register(inmner™®) \ RT
17 si (R = &) alors

18 E — EU{f}

19 F— F~ A{f}

20 inner < inner Uinner"®"

21 sinon si (pending’ N Or(R™¥) # &) alors
22 pending’ < pending’ N Or(R"™)
23 E — BEU{f}

24 F — F~{f}

25 inner « inner Uinner™"

26 RT — RT UR"Y

27 area — NOr(R . R")

28 fin si

29 1—1+1

30 fin tantque

31 domain « pending N area

32 new < Imagen (T, domain) \ reachable
33 pending < (pending \ area) U new

34 reachable «+ reachable U new
35 fin tantque

Fi1G. 5.1 — Algorithme partitionné complet

5.2. CORRECTION DES ALGORITHMES 67

Afin de démontrer la correction de notre algorithme, nous traduisons les algorithmes [2.1] et
précédents sous forme de fonctions mathématiques récursives.

5.2.1 Rappels et hypotheses

Propriétés du point fixe. Le théoreme de Tarski nous permet d’expliciter la valeur de notre
point fixe ;(0) :

©(©) = lim O"(2) (5.4)

n—oo

Comme nous travaillons dans I’ensemble fini BX il existe un entier m tel que :
w(®) = 0™(2) (5.5)
Calcul de ®™(@). Par commodité, nous définissons la suite ©,, de la maniere suivante :
0, = 0"(@) Yn>0 (5.6)

Nous cherchons a traduire 'expression de ©,, sous la forme d’une équation récursive. Nous
voulons montrer que :

O, = 6, 1UA" () VYn>0 (5.7)
Vrai pour n=1:

01 = (UA(D)
= (Ug
= 0O UAO(L)

Si vrai pour n — 1 alors vrai pour n :

0, = O(0,-1) par définition
= 0 (@n_g U A"_Z(L)) par hypothese de récurrence
= tUA (0,2 UA"2(1)) par définition de ©
= (LUA(O, 2)UA" (1) dapres[5.§
= O(0,_2) UA™ (1) par définition de ©
0,1 UA" ()

Vrai pour tout n > 0.

Propriétés de la fonction de transition. La fonction de transition A est une fonction
croissante. Ainsi :

A(FUG) = A(F)UA(G) (5.8)
Il est également facilement démontrable que :

A(FNG) O A(F)NAG) (5.9)

68 CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNE

Algorithme Breadth First Search. L’algorithme traditionnel se traduit par la définition
d’une fonction bfs (R, N) ou la variable R représente I'ensemble des états atteints et N repré-
sente I'ensemble des nouveaux états. Le calcul de la fonction se décompose en deux cas selon
que ’ensemble des nouveaux états est vide ou non. Ainsi, 'algorithme page [21] se traduit de
la maniere suivante :

R si N=go
s (R, N) = {bfs (R, N’) sinon (5.10)
avec R = (A(N)UR)

N = (A(N)\R)

Cette fonction nous permet de définir Rz, mathématiquement, en calculant 'ensemble des états
atteignables a partir de 1’état initial ¢ :

Ry = bfs (e, t) (5.11)

Algorithme partitionné Notre algorithme partitionné (algorithme page se traduit
par la définition d’une fonction part (R, P, A) ou R représente 'ensemble des états atteints, P
représente ’ensemble des états en attente et A représente 'intérieur de notre frontiere. L’en-
semble A’ désigne ici un ensemble quelconque contenant A.

R si P=9o
part (R, P, A) = < part(R, P, A DA) si P#@ e PNA=0O (5.12)
part (R', P', A) sinon

avec R = (A(PNA)UR)
P = (A(PNA)NR)U (PN A

Fondamentalement, I’algorithme partitionné se décompose en trois cas. Si I’ensemble des états
en attente est vide alors la fonction retourne R. Si I’ensemble des états en attente situés a
I'intérieur de notre frontiere est vide (P N A = &), alors nous faisons croitre A en A’. Sinon,
nous calculons I'image des états en attente situés a 'intérieur de la frontiere.

Cette fonction permet de définir Ry, de la maniere suivante, a partir de I’état initial ¢ et d'un
ensemble A initial que nous pouvons supposer vide dans le pire des cas :

Ryt = part (e, ¢, @) (5.13)
Nous pouvons par ailleurs remarquer que :

part (¢, ¢, IBK) = bfs(s,) (5.14)

5.2.2 Correction de P’algorithme traditionnel
5.2.2.1 Calcul de bfs (R, N)

Soient R, et N, les suites décrivant I’évolution de R et N dans les appels successifs de la
fonction bfs :

5.2. CORRECTION DES ALGORITHMES 69

-si n=1

Ny = (5.15)

Rn = A(]\77'L—1)U~Rn—1
Ny = A(Nnp_1)~ Ro_y (5.16)

5.2.2.2 Convergence de bfs (R, N)

Par définition de O, p(©) # ©¢. u(0O) converge vers 0, dés que O,, = 0,,1;. L’algorithme
traditionnel converge vers Ry = Ry lorsque N,, = &, c’est a dire lorsque A(Np—1) € Ry—1,
c’est a dire lorsque R,, = R,_1. Les suites R,, et ©,, convergent donc vers un méme point fixe

1(©).

52.23 R,=0,

Nous allons montrer que pour tout n > 0 nous avons :

R, = 0, (5.17)
N, = 0,0, (5.18)
Vrai pour n =1:
R1 = ¢
N1 = ¢
= 601\O

Si vrai pour n — 1 alors vrai pour n :

R, = A(("')n—l N @n—Q) U©,_1
Ny A<(")n—1 N @n—2) N O,

A(@n—l) U @n—l :_> Rn :_) (A(@n—1> N A(@n—Q)) U @n—l
A(@n—l) N Oy > N, 2 (A(@n—l) N A(@n—Q)) N Oyt
Nous pouvons également écrire :
(LUA(Op-1))UBp—1 2 R, 2 LUA(Op—1)) N (LUA(B,-2))) UB,_1
(LUABn 1) ~On1 2 No 2 ((LUA®O 1))~ (LUA®On 2)))~On_1
Ceci se réécrit en :
0,U0B,1 > R, 2 (®n N @nfl) UOBOn_1
O, N Oyt > N, 2 (@n N enfl) N Ot

70 CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNE

donc :

On
O, N\ 60,1

Ry,
Ny,

I U

2
2 O, N 60,1

Donc vrai pour tout n.

Les suites R, et ©,, sont égales pour tout n > 0.

5.2.3 Correction de l’algorithme partitionné
5.2.3.1 Calcul de part (R, P, A)

Soient R, P, et A, les suites décrivant I’évolution de R, P et A dans les appels successifs
de la fonction part :

-si n=1
R1 = ¢
P1 = 1
-si n>1

si P,1#9 AN P, 1NA,1=0

Rn = Rn—l
P, = P,
Ay = A'DAp (5.20)

—-si n>1
si P,1=@ V P,1NA,1#0

R, = A(]anl n Anfl) UR, 1
P, = (A(Pnfl N Anfl) N Rnfl) U (Pnfl N Anfl)
Ap = Apa (5.21)

5.2.3.2 Convergence de part (R, P, A)

Par définition, I'algorithme termine lorsque P = &. Nous allons montrer que la la suite P,
converge vers .
Supposons qu’il existe un n > 1 tel que :

Rn+1 = Rn = Rn—l
An+1 = An = An—l

Comme A, = A,,_1, nous pouvons déduire que R,, vérifie ’équation Comme R, = R,_1
nous pouvons déduire que :

A(Pn—l N An—l) g Rn—l
Par simplification de 1’équation nous avons donc :

P, = Po_1~NA4, 1

5.2. CORRECTION DES ALGORITHMES 71

et donc :
P.NA,1 = P,NA, = O
Comme A, ;1 = A, nous avons :
P,=@ V P,NA,#0
Nous savons par ailleurs que P, N A, = &, nous avons donc :
P, = o
Les suites R, et A,, sont croissantes et majorées par BX, donc on démontrerait facilement qu’il

existe un entier n tel que R,+1 = R, = Rp—1 et que A,+1 = A, = A,—1. Donc la suite P,
converge vers .

5.2.3.3 Rpari D On

Vn > 1,V € P,_1 « € P,V A(x) € R,. Nous voulons montrer que tout élément
appartenant a P ne peut sortir de P que lorsque son image est calculée. Si P,, vérifie I’équation
[5.20] alors la propriété est évidente. Sinon, deux cas se présentent selon que x appartient ou
nona A,_1:
— six € A,_1 alors :
A(x) € A(Pp—1NAp_1) CR,
—six & A,_1 alors :

reP, 1NA,1CPH,

vn > 0 Im / A(P,) C R,. L’image de tout ensemble P, est contenu dans Rpg..
Démontrons cette propriété par ’absurde et supposons que :

Jre P, /Vm A(z)¢& Ry,
Nous déduisons de la propriété précédente que :
JreP,/Vm>n z€P,

or cette propriété est fausse puisque nous avons démontré que P, converge vers &.

vYn > 0,Vxr € R, z=¢€ P,V A(x) € R,. Nous voulons montrer que pour tout élément x
de R,, si I'image de x par A n’est pas dans R,,, alors x appartient & P,.
Cette propriété est vraie pour n =1 :

P1 = R1 =1
Si la propriété est vraie pour n — 1 alors elle est vraie pour n. Si P, vérifie '’équation [5.20] alors
cette propriété est évidente. Si :
Vre R, 1 x€P,_1V A(I’) eER, 1
alors :
Yye R, ye P, VA €R,

Si P, vérifie I'équation alors deux cas se présentent :
— sl y € R,—1 alors la propriété est démontrée par hypothese de récurrence.
—siyeg R,—1 alorsy € A(Pp—1NA,—1) ~ R,_1 et donc y € P,.

La propriété est donc vraie pour tout n.

72 CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNE

Ve € Rpart A(x) € Rpgrt. Des deux propriétés précédentes, nous déduisons que I'image
de tout élément de Ry, est aussi contenue dans Rpq.

Rpert 2 ©5,. Nous montrons que les applications successives de la fonction de transition sont
contenues dans I'ensemble R,q :

Vn>0 A"1) C Rpont

Nous savons que R,q¢ 2 ¢ et par la propriété précédente, nous savons également que si
A1) C Rpart alors A™(1) C Rpgpe pour tout n > 0.
La décomposition de ©,, donnée a la section nous permet donc de dire que :

Rpart 2 Oy (5.22)

5.2.34 R, C O,

On démontrerait facilement que R,, C O,, et ainsi que Rpqr C p(©) : algorithme partitionné
ne génere spontanément aucun nouvel état et a chaque étape de 'algorithme, les nouveaux états
sont calculés a partir d’anciens états eux-mémes inclus dans p(©).

Pour conclure cette section, nous pouvons affirmer que notre algorithme partitionné est
correct et calcule bien le point fixe p(0).

5.3 Analyse des caractéristiques

Nous terminons ce chapitre par une breve analyse des caractéristiques de notre algorithme
ce qui amene une réflexion sur la forme des programmes pour lesquels cet algorithme est parti-
culierement adapté, compte tenu de sa complexité empirique. Nous terminons par des commen-
taires sur la possibilité d’adapter notre technique a un autre type de codage des programmes
que celui que nous utilisons (voir .

5.3.1 Complexité

Théoriquement, il est impossible de démontrer que notre algorithme est globalement meilleur
que lalgorithme Breadth First Search : dans le pire des cas, ces deux algorithmes sont expo-
nentiels en espace par rapport au nombre de registres, et la complexité en temps de notre
algorithme est possiblement beaucoup moins bonne puisqu’elle divise les étapes. Les qualités de
notre algorithme ne peuvent étre mises en évidence qu’empiriquement (voir chapitre [7)).

Soit p la “profondeur” du programme exploré, c’est a dire le nombre d’itérations nécessaires

pour calculer I'espace des états atteignables par 'algorithme Breadth First Search. Soit r le
nombre de registres de ce programme. Dans le pire des cas, 1'algorithme partitionné effectue de
Pordre de p x r itérations (la libération de chacun des r registres peut déclencher a chaque fois
p itérations).
Chaque ouverture de frontiere nécessite ’appel a des fonctions de manipulation de graphe
(Closure, Surface). Dans le pire des cas, chacune de ces fonctions est polynomiale par rapport
au nombre de noeuds du graphe et en pratique tres rapide et particulierement par rapport aux
fonctions de manipulation des BDDs.

5.3. ANALYSE DES CARACTERISTIQUES 73

Le partitionnement mobilise aussi des opérations d’intersection ou de soustraction avec l’en-
semble area représentant 'intérieur de notre frontiere. L’ensemble area posseéde une représenta-
tion BDD tres simple puisqu’il s’agit d’'une conjonction de négation de registres. Le BDD de
area est donc linéaire par rapport au nombre de registres inactifs et peut se traduire en une
CBF de taille constante. En pratique, les opérations combinant un BDD U avec area produisent
des BDDs plus petits que U mais le temps de calcul qui dépend principalement de la taille de
U n’est en pratique pas négligeable. Notre méthode de partitionnement est donc assez cotiteuse
en temps mais peu couteuse en mémoire.

5.3.2 Performances

Les performances de notre algorithme dépendent du programme ESTEREL source. Etant

donné que notre technique de partitionnement repose sur la réception des signaux, le partition-
nement sera d’autant plus performant que le programme contiendra de nombreuses construc-
tions present ou abort et de taille suffisamment grande. A l'inverse, un programme conte-
nant de nombreuses boucles combinées en parallele présentera plus de risque de donner des
résultats médiocres. Plus précisément, le probleme apparait lorsqu’une instruction loop pro-
duit de nouveaux états a chaque tour de boucle et lorsque ces nouveaux ensembles d’états ont
une représentation BDD irréguliere.
Il est important de remarquer que notre partitionnement ne permet pas de simplifier I’expres-
sion des BDDs des registres situés juste derriere la frontiere. En effet, la frontiere nous permet
de restreindre le domaine de définition des fonctions booléennes mais en aucun cas leur image.
Seuls les registres situés a une profondeur supérieure ou égale a 2 au dela de la frontiere voient
leur expression simplifiée.

5.3.3 Encodage des programmes

Nous pensons que notre technique de partitionnement est particulierement adaptée au cas

du langage ESTEREL : il s’agit d’un langage impératif dans lequel les zones actives et inactives
du programme sont clairement définies par la valeur des registres. Le codage des programmes
sous forme de circuit qui produit un registre booléen par instruction pause est également tres
adapté a notre probleme. Cela nous permet de représenter simplement ’ensemble des blocs
actifs par une simple conjonction de registres.
On peut imaginer adapter notre technique pour le cas ou le codage des pauses serait plus com-
pliqué comme par exemple un codage hiérarchique : dans un programme P ;) ou les exécutions
de P et de @ sont mutuellement exclusives, il est possible d’encoder les états de P et de Q)
par un méme vecteur de registre. La séquence serait alors encodée par un registre booléen
supplémentaire valant 0 lorsque P est actif et 1 lorsque @ est actif. Notre technique de parti-
tionnement pourrait étre appliquée a de tels circuits mais le codage des blocs actifs, c’est a dire
de I’ansemble area perdrait en simplicité. Ceci permettrait d’adapter notre technique au calcul
de lespace d’états de circuits optimisés [71].

74

CHAPITRE 5. CALCUL DES ETATS ATTEIGNABLES PARTITIONNE

Chapitre 6

Mise en (Euvre

Pour implémenter notre technique de partitionnement, nous devons prendre en compte
quelques contraintes techniques. Tout d’abord, le calcul des états atteignables est réalisé a
partir du format circuit des programmes qui permet aisément de reconstruire selon ses besoins
des fragments de la fonction de transition, basés sur les registres correspondants aux points
de controle actifs. Les fonctions de transition manipulées lors de ce calcul reposent donc sur
un ensemble fini de variables booléennes : I’ensemble des registres et I’ensemble des signaux
d’entrée du circuit.

D’un autre cOté, notre technique de partitionnement utilise un graphe de flot de controéle,
construit a partir d'un arbre syntaxique, pour piloter ’extraction des parties utiles des fonctions
de transition a chaque étape de 'algorithme. L’arbre syntaxique est censé représenter fidelement
le programme ESTEREL source et chaque instruction pause qui le constitue est censée étre
identifiée de maniere unique par le nom du registre qu’elle génere. De cette association entre
les instructions pause du programme source et les noms des registres dans le format circuit
dépend notre partitionnement. La solution la plus simple consistant a réécrire intégralement un
compilateur ESTEREL afin de créer et conserver I'information nécessaire a chaque étape de la
compilation n’a pas été retenue.

Dans ce chapitre, nous présentons la maniere dont a été implémentée notre technique de parti-
tionnement, de la construction de 'arbre syntaxique et du graphe de flot controle jusqu’a son
intégration dans un outil de vérification existant. Avant cela, nous faisons un bref rappel de la
chaine de compilation des programmes ESTEREL.

6.1 Chaine de compilation des programmes ESTEREL

La figure illustre les étapes de la compilation d’'un programme ESTEREL vers divers
format. La version du compilateur utilisée est la v5_9x. Les fichiers sources ESTEREL sont
d’abord compilés dans un format intermédiaire [36] 65] & I’aide de l'outil strlic. Le but du
format intermédiaire est a la fois de préparer la traduction des programmes vers le format
circuit en minimisant le nombre de primitives et en introduisant des continuations dans le flot de
controle. Ce format permet également de faciliter ’édition de liens entre les différents modules.
Le format intermédiaire encode donc chaque module ESTEREL sous forme de graphe contenant
plusieurs sortes de noeuds et d’arcs. La structure du programme original est en partie conservée.
Ce format contient également une table de signaux et une table de registres : strlic alloue
un registre booléen pour chaque instruction pause. L’édition de liens est réalisée par l'outil

75

76 CHAPITRE 6. MISE EN (EUVRE

/S()LH((’\

= 5 . e

strlic strlic strlic
a C()de:_\\ Y v v
\termédiaire, | 1C .1c .1c

iclc

”CME i;C

(G

<Tri eur de circuits >
__acycliques -
| sesse | | sccausal |

— \ / 7/ bé(:y(:/iscur\\“
<C ircuit ma \.de circuits /

| sscc | | sscoc sscbllf | | blifssc |
(Circuit

L/_J LﬁC_J ;bhfopt \BLIF/

e /Aumman\ Ty NGy N
\ngmmme C/ \\pr/,cm)/ |
|

4 /\//(/?/}"l_'fl'(,'cll‘l';;%\
N\ _formelle

Fic. 6.1 — La chaine de compilation d’ESTEREL.

6.2. REPRESENTATION DES PROGRAMMES ESTEREL 7

iclc. Le format généré est identique au format intermédiaire a la différence que le programme
ESTEREL est constitué d’'un module unique avec une unique table de registres. A partir de cette
étape, le programme peut étre traduit en format circuit [I1] par 'outil lcsc. La transformation
du format intermédiaire vers le format circuit présente I’avantage (pour nous) de conserver les
tables de variables et en particulier la table des registres c’est a dire la correspondance entre les
pauses et les registres.

Le format circuit peut se traduire en divers formats exécutables (sous forme d’automate ou bien
de programme C compilable). Il peut également étre traduit en circuit BLIF [7§], optimisé par
blifopt [34] [72] [71] et vérifié a I’aide de 1'outil Xeve [14].

Un autre outil de vérification appelé evcl a été développé par Yannis Bres [I7]. Cet outil
reconnait aussi bien le format BLIF que le format circuit sc propre & ESTEREL. Ces deux outils
utilisent la librairie TiGeR pour la manipulation des BDDs.

6.2 Représentation des programmes ESTEREL

La construction du graphe de flot de controle a été réalisée selon deux approches différentes.
La premiere consiste a construire ’arbre syntaxique des programmes lors de la transformation
du code source vers le format intermédiaire ic. La seconde approche consiste a construire
directement le graphe de controle a partir du format intermédiaire apres I’édition de liens.
Chacune de ces approches présente ses avantages et ses inconvénients, comme nous allons le
voir dans la suite de cette section.

6.2.1 Construction de ’arbre syntaxique dans strlic

Construire l'arbre syntaxique lors de la transformation du programme ESTEREL vers le
format intermédiaire nous permet d’obtenir un arbre strictement fidele au code source. Cette
traduction génere une variable de registre pour chaque instruction pause et nous permet de
construire un arbre dans lequel chaque instruction pause est associée au nom de son registre de
controle.

L’inconvénient de cette approche réside dans le fait que les programmes ESTEREL sont tres sou-
vent constitués de plusieurs modules. Cette approche ne produit donc pas un arbre syntaxique
mais une forét d’arbres syntaxiques que nous devons lier entre eux. La phase d’édition de lien
consiste a combiner I'ensemble des modules d’un programme ESTEREL au sein d’'un module
unique. Cette phase s’accompagne également du renommage des variables en général et des
registres en particulier. Pour étre viable, I’édition de lien dans les arbres syntaxiques doit étre
réalisée de la méme maniere que dans les modules ESTEREL, avec les mémes renommages afin
de conserver I'information nécessaire a l'identification des registres de controle.

Si le programme ESTEREL source ne contient qu’un seul module, alors la phase d’édition de liens
réalisée par 'outil iclc ne modifie pas la table des registres. Nous avons choisi de n’accepter
que les programmes ESTEREL ne contenant qu’un unique module.

Pour construire 'arbre syntaxique de programmes réels, nous avons donc besoin d’un outil
capable d’effectuer ’édition de lien des programmes ESTEREL au niveau du code source. Un tel
outil a été développé par Olivier Tardieu au cours de ses travaux sur le compilateur ESTEREL
[76]. Cet outil prototype n’accepte pas aujourd’hui 'intégralité de la syntaxe du langage. Par
conséquent, notre approche visant a construire notre graphe de flot de contréle a partir du
langage source est encore aujourd’hui incompléete par manque pratique de réalisation logicielle.

78 CHAPITRE 6. MISE EN (EUVRE

Instrumentation de strlic. Pour construire notre arbre syntaxique, nous avons modifié le
programme strlic afin qu’il construise 'arbre syntaxique en méme temps que la traduction
vers le format intermédiaire. Le résultat est un arbre syntaxique représentant le programme
sous forme parenthésée conforme a celui présenté a la section

6.2.2 Construction du graphe a partir du format intermédiaire

Apres I’édition de lien, un programme ESTEREL est codé par un unique module au format
lc. A partir de cette étape, les noms des signaux et des registres demeurent inchangés jusqu’a
leur traduction dans le format circuit. La construction du graphe de flot de controle a partir du
format intermédiaire lié nous permet d’accepter n’importe quel programme ESTEREL compatible
avec la version v5_9x du compilateur, a I’exception des programmes cycliques.

En contrepartie de cet avantage, le format intermédiaire ne décrit pas complétement la structure
du programme ESTEREL original. Le format intermédiaire décrit un graphe de flot de controle
dans lequel le controle peut se propager de trois manieres différentes :

— Dans les instructions comme la séquence, le test de présence ou l'opérateur parallele,
le controle se propage par continuation. Le controle se propage séquentiellement d’une
instruction a une autre. Par exemple, dans une instruction present, le test de présence
d’un signal précede 'activation de I'une de ses deux branches.

— La deuxieme catégorie est celle des exceptions dont nous avons choisi de ne pas parler
dans la construction du graphe. De notre point de vue, nous pouvons considérer que les
exceptions se comportent comme les instructions précédentes.

— Dans les instructions de suspension ou de préemption comme suspend ou abort (voir
section , le controle se propage par sélection. Le format intermédiaire décrit également
un arbre appelé arbre de sélection dont les noeuds sont des instructions du programme.
Dans I'arbre de sélection, le controle se propage instantanément des feuilles vers la racine
de I'arbre. Par exemple, une instruction abort est codée comme un noeud de I'arbre de
sélection dont les feuilles sont des instructions appartenant au corps du abort. L’instruc-
tion abort est active deés qu’une de ces instructions est active.

A partir d’une telle représentation des programmes, il est parfois difficile de construire notre
graphe de flot de controle tel que nous ’avons défini. Par exemple, la construction de notre
graphe autour des instructions present génere des frontieres a la fin de chaque branche. Dans
le format intermédiaire, la fin de chaque branche n’est pas mentionnée explicitement. Pour
contourner cette difficulté, nous avons tout simplement considéré que chaque noeud ayant plu-
sieurs prédécesseurs était un noeud marquant la fin d’un test. Les relations d’ordre sur les
frontieres (voir section sont également plus difficiles & obtenir. L’ordre induit par la séquence
est donc préservé mais nous n’avons pas été en mesure d’implémenter compléetement 1’ordre per-
mettant d’ordonner les frontieres a l'intérieur des instructions present.

Nous avons implémenté la construction du graphe a partir du format intermédiaire en res-
pectant autant que possible les définitions du chapitre |4, Les détails de cette construction ne
sont pas d’un grand intérét et ne sont pas donnés dans ce document. Le graphe ainsi construit
respecte ces définitions pour toutes les instruction du langage excepté l'instruction present :
P’ordre que nous imposons ne permet pas d’ouvrir toutes les frontieres dans une branche avant
les frontieres dans la deuxieme. Cette simplification est néanmoins assez satisfaisante pour nous
procurer de bons résultats expérimentaux.

6.3. CALCUL PARTITIONNE DE L’ESPACE DES ETATS ATTEIGNABLES 79

6.3 Calcul partitionné de ’espace des états atteignables

Nous avons utilisé la librairie TiGeR [31] pour la manipulation des BDDs. Notre calcul
partitionné des états atteignables a été intégré a l'outil evcl développé par Yannis Bres au
cours de sa these [17]. Cet outil repose sur une extension de la librairie TiGeR appelée TiGeREnh
également développée par Yannis Bres.

6.3.1 TiGeR et TiGeREnh

La librairie TiGeR implémente efficacement les BDDs et les CBF's décrits a la section
Elle implémente toutes les fonctions de calcul symbolique décrites a la section Elle possede
également la particularité de simplifier la représentation de la fonction de transition en fonction
du domaine auquel elle est appliquée. En réalité, les fonctions de transition de chaque registre
sont reconstruites a chaque étape de I'algorithme en fonction de ce domaine. Ceci permet de ne
jamais représenter la fonction de transition complete.

En plus des BDDs, la librairie TiGeR permet de construire des circuits séquentiels. Elle propose
également une routine monolithique permettant de calculer ’espace des états atteignables d’un
circuit par l'algorithme Breadth First Search présenté a la section

La librairie TiGeREnh a été développée dans le but d’expérimenter les méthodes d’abstrac-
tion décrites dans [17]. Yannis Bres s’est également appliqué a rendre la routine de calcul des
états atteignables plus souple et beaucoup plus interactive que celle de TiGeR. Ceci nous a
permis d’intégrer tres facilement notre technique de partitionnement au reste de la librairie.
Précisons également que 'approche par abstraction de Yannis Bres est orthogonale a la notre.
Par conséquent, il est possible d’utiliser notre technique de partitionnement dans le calcul des
états atteignables avec abstraction.

La librairie TiGeREnh permet de redéfinir un module dont le but a chaque étape est d’enregistrer
I’ensemble des nouveaux états atteints a ’étape courante et de retourner un ensemble d’états
utilisé comme domaine de définition pour le calcul d’image a ’étape suivante. Le module par
défaut se contente d’enregistrer les nouveaux états atteints et de renvoyer cet ensemble lors de
I’étape suivante. Nous avons donc redéfini ce module afin d’y intégrer notre méthode de parti-
tionnement. Ce module fonctionne avec un graphe de flot de controle et permet a chaque étape
de choisir un nouveau domaine pour la fonction de transition.

6.3.2 evcl

evcl est loutil de vérification fondé sur la librairie TiGeREnh. Il constitue un outil tres
souple permettant de calculer I’ensemble des états atteignables d’un circuit séquentiel. Il pro-
cure également une information tres riche sur la quantité mémoire utilisée, la taille des BDDs
et les temps de calcul & chaque étape de ’algorithme. Nous avons intégré notre méthode de par-
titionnement a cet outil, ce qui nous a permis d’obtenir facilement les résultats expérimentaux
donnés au chapitre

80

CHAPITRE 6. MISE EN (EUVRE

Chapitre 7

Expérimentations

Nous avons testé notre méthode sur de nombreux exemples. La liste de ces exemples est
donnée dans les tableaux et Nous avons mentionné pour chaque programme le nombre
de registres et le nombre d’états lorsque ce dernier est connu. Les tests présentés dans ce chapitre
ont été réalisés sur un Bi-Pentium III cadencé a 550 Mhz avec 1 Giga octet de mémoire.

Programme H registres ‘ # d’états ‘ ’ Programme H registres ‘ # d’états
transcad 7 7 symbologie 50 62
runner 9 7 wristwatch 93 41
jeu 10 7 mca200 64 1921
tcp 18 28 Xmem 66 395 403
tcpServer 20 21 aa 75 116
abcd 21 32 tcint 82 286
gsm 25 18 seqlec 82 90 114
rnis 33 1213 control 87 137
pds 47 65 main 104 10 241
mmip 48 355 atds 124 151

Fi1G. 7.1 — Tableaux récapitulatifs des petits programmes ESTEREL. La deuziéme colonne indique
le nombre de registres et la derniére colonne indique le nombre d’états du programme.

Malheureusement, bon nombre de ces exemples sont de petits programmes (figure . Ces
exemples nous ont permis de vérifier expérimentalement que notre implémentation permettait
de calculer le méme espace d’états que la méthode de base, mais les résultats sur ces exemples
ne sont pas significatifs car les phénomenes d’explosion intermédiaire y sont tres limités, et
gommés par le petit nombre d’itérations pour atteindre le point fixe des états atteignables. Le
calcul partitionné des états atteignables des petits programmes ne permet donc pas de réduire
la consommation mémoire, déja tres basse dans l'algorithme de base.

Notre méthode a été congue pour traiter les exemples plus gros comme ceux présentés dans
le tableau Ces exemples seront détaillés dans les prochaines sections.

Pour ces expériences, nous avons limité la mémoire utilisée par la librairie de BDDs TiGeR a
900Mo afin de n’utiliser que la mémoire vive de la machine. Cette condition est nécessaire afin
de garantir que les temps d’exécution sont corrects et non ralentis par une utilisation excessive
de la mémoire swap. Pour chacun des programmes, nous avons appliqué l'algorithme de base

81

82 CHAPITRE 7. EXPERIMENTATIONS

Programme H registres ‘ # d’états
chorusBin 92 136 329 824
mmid 111 10 308 357
steam 128 41774 141 026
sequenceur 154 122 597

sat 192 35 740 420 392 968
cdtmica 208 23 384 736 769
site 308 > 2 380 837 289
trainsTrappes 538 >1
globalopt 598 > 705085 932 547
fuel 686 > 8749
cabine 919 > 719 031 955

Fiac. 7.2 — Tableau récapitulatif des gros programmes ESTEREL.

et notre algorithme partitionné. Dans les résultats expérimentaux que nous présentons nous
indiquons :

le nombre d’itérations réalisées avec succes,

— le nombre d’états découverts,

— le nombre d’états complétement analysés c’est a dire le nombre d’états dont 'image a été
calculée,

— la mémoire nécessaire aux calculs,

le temps total utilisé pour les calculs d’image,

— le temps de calcul total.

7.1 Analyse de programmes coriaces

Les résultats présentés dans cette section concernent les programmes pour lesquels aucun des
deux algorithmes n’est parvenu a calculer completement I'espace des états atteignables. Pour le
programme fuel, chacun des deux algorithmes échoue des la seconde itération en ne produisant
que 8 749 états. Pour le programme trainsTrappes, les 900Mo de mémoire sont consommés
avant méme d’achever la premiere itération. A part I’état initial, aucun des deux algorithmes
n’a été capable de produire le moindre état.

Pour les programmes globalopt, site et cabine notre algorithme partitionné a pu produire
un nombre plus important d’états que 'algorithme de base comme le montrent les tableaux
[7.4et Toutefois, comme les deux algorithmes ne produisent pas les états dans le méme ordre,
nous ne sommes pas en mesure de garantir que ’ensemble des états découverts par ’algorithme
de base est inclus dans I’ensemble des états découverts par ’algorithme partitionné.

7.1.1 globalopt

L’analyse du programme globalopt produit les résultats donnés dans le tableau Nous
pouvons remarquer que ’algorithme partitionné permet de découvrir 2 fois plus d’états attei-
gnables et permet de calculer 'image de 10 fois plus d’états que ’algorithme de base.

7.2. REDUCTION DE LA CONSOMMATION MEMOIRE 83

’ Algorithme H défaut ‘ partitionné
Nombre d’itérations 3 80
Nombre d’états découverts || 342 858 276 099 | 705 085 932 547
Nombre d’états analysés 583 065 603 5 542 740 483
Mémoire nécessaire > 900Mo > 900Mo
Durée totale des calculs d’image 17m06s 3h57m04s
Temps d’exécution 34mA40s 26h45m32s

Fi1Gc. 7.3 — globalopt (598 registres)

7.1.2 site

Le tableau présente les résultats de ’analyse du programme site. Pour cet exemple,
I’algorithme partitionné permet de découvrir 10 fois plus d’états atteignables et permet de
calculer I'image 400 fois plus d’états que l'algorithme de base.

’ Algorithme H défaut ‘ partitionné

Nombre d’itérations 3 91
Nombre d’états découverts || 232705179 | 2 380 837 289
Nombre d’états analysés 1049 601 452110 875

Mémoire nécessaire > 900Mo > 900Mo
Durée totale des calculs d’image 20m 9h21m12s
Temps d’exécution 22mbls 9h58m4bs

F1G. 7.4 — site (308 registres)

7.1.3 cabine

Le tableau présente les résultats de 'analyse du programme cabine. Dans cet exemple,
I’algorithme partitionné permet d’aller beaucoup plus loin que I'algorithme de base en explorant
50 000 fois plus d’états. L’image de 900 000 fois plus d’états a également pu étre calculée.

’ Algorithme H défaut partitionné
Nombre d’itérations 3 147
Nombre d’états découverts 13 321 719 031 955
Nombre d’états analysés 534 484 744 348

Mémoire nécessaire || > 900Mo > 900Mo
Durée totale des calculs d’image || 12m58s 3h38mb50s
Temps d’exécution || 14m22s 18h54m29s

Fic. 7.5 — cabine (919 registres)

7.2 Réduction de la consommation mémoire

Les résultats présentés dans cette section concernent les gros programmes qui peuvent étre
completement explorés par ’algorithme de base et par 'algorithme partitionné. Ces expériences

84 CHAPITRE 7. EXPERIMENTATIONS

sont particulierement intéressantes car les données obtenues permettent de comparer comple-
tement les deux approches. Les résultats expérimentaux montrent que le calcul partitionné des
états atteignables des programmes sequenceur et mmid utilise moins de mémoire que 'algo-
rithme de base.

7.2.1 sequenceur

Le tableau présente les résultats de 'analyse du programme sequenceur. Nous pouvons
constater que I'exploration exhaustive partitionnée de ce programme utilise 60% de mémoire de
moins que 'algorithme de base. En contrepartie, la durée du calcul a été multipliée par pres de
2,5. Nous pouvons remarquer que le temps passé a calculer 'image de la fonction de transition
est plus court dans I'algorithme partitionné que dans l’algorithme de base.

] Algorithme H défaut ‘ partitionné ‘
Nombre d’itérations 18 145
Nombre d’états découverts 122 597 122 597
Nombre d’états analysés tous tous
Mémoire nécessaire || 40359Ko0 | 17 022Ko
Durée totale des calculs d’image 1mdds 51,12s
Temps d’exécution || 3m47,22s | 8mb6,59s

F1G. 7.6 — sequenceur (154 registres)

Les graphes de la figure représentent 1’évolution de la taille des BDDs au cours des
calculs. Nos expériences ne permettent pas de représenter I’évolution de la taille des BDDs
utilisés pour les calculs d’image car cette information est volatile et donc difficile a obtenir.
Toutefois, cette information peut étre estimée indirectement d’apres la courbe du pic de la
consommation mémoire donnée par le graphe [7.8

25000 18000
3 C o 16000 — -
=] =
g 20000 [~ - 7 2
5 S 14000 - B
o M s
£ : g
z I £ 12000 - B
& 15000 - B ©
8 £ 10000 _
a a
a 2 8000 -
@ 10000 - B %
P Z 6000 - -
= —r s
% 5000 _ % 4000 - Fl""‘_\- B
3 8
2 = 2000 '—|! i
! ! ! ! ! ! 0 ! ! ! ! ! !
0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000

états atteints # états atteints
(a) (b)

Fic. 7.7 — Graphes représentant la taille des BDDs en fonction du nombre des états atteints
dans le programme sequenceur. Les rectangles correspondent a l’algorithme de base et les traits
pleins épais correspondent a l'algorithme partitionné. Le graphe (a) représente ’évolution de la
taille du BDD des états atteignables. Le graphe (b) représente l’évolution de la taille du BDD
des états en attente (les nouveaux états pour l'algorithme de base).

Nous pouvons remarquer que 1’algorithme partitionné permet de réduire la taille des BDDs

7.3. EXPLORATION EXHAUSTIVE 85

dans les étapes intermédiaires. La forme de la courbe [7.7(a)| est conforme & la courbe de la
page 32

45000

40000 — —

35000 [~ —

30000 [~ —

25000 — *

20000 [~ —

15000 — —

pic de consommation mémoire (en Ko)

10000 el —

| | | | | |
5000
0 20000 40000 60000 80000 100000 120000 140000

états atteints

Fiac. 7.8 — FEvolution du pic de la consommation mémoire en fonction des états atteints lors de
Uanalyse du programme sequenceur. Les rectangles correspondent a l’algorithme de base et les
traits pleins €pais correspondent a [’algorithme partitionné.

7.2.2 mmid

Le tableau présente les résultats de I'analyse du programme mmid. L’analyse de ce pro-
gramme par I’algorithme partitionné nécessite environ 5 fois moins de mémoire que ’algorithme
de base. Dans cet exemple, les temps de calcul ont également été raccourcis puisque l'algorithme
partitionné est environ 2 fois plus rapide.

Algorithme H défaut ‘ partitionné
Nombre d’itérations 13 113
Nombre d’états découverts || 10 308 357 | 10 308 357
Nombre d’états analysés tous tous
Mémoire nécessaire || 205214Ko | 42 368 Ko
Durée totale des calculs d’image 42mb2s 8m25s
Temps d’exécution 45mb9s 19m38

Fic. 7.9 — mmid (111 registres)

Les graphes de la figure [7.10] représentent 1’évolution de la taille des BDDs au cours des
calculs. La figure représente 1’évolution du pic de consommation mémoire au cours des
calculs.

Comme pour le programme sequenceur, ’algorithme partitionné permet de réduire la taille
des BDDs dans les étapes intermédiaires.

7.3 Exploration exhaustive

Les exemples présentés dans cette section ne peuvent pas étre entierement explorés par
I’algorithme de base avec moins 900Mo de mémoire. Notre algorithme partitionné a permis
d’explorer entierement ces programimes.

86 CHAPITRE 7. EXPERIMENTATIONS

30000 35000

30000 [~ -

25000 [~ -

25000 [~ -
20000 [~ -

15000 |~ rrl- mm tlL |

10000 [~

20000 [~ -

15000 |- |_II_I_ -
10000 |- -
5000 N 5000 -

noeuds dans le BDD des états atteignables
noeuds dans le BDD des états en attente

| | | | | | | | | |
0 0
0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 0 2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07
états atteints # états atteints
(a) (b)

Fi1c. 7.10 — Graphes représentant la taille des BDDs en fonction du nombre des états atteints
dans le programme mmid. Les rectangles correspondent a l’algorithme de base et les traits pleins
épais correspondent a l’algorithme partitionné. Le graphe (a) représente l’évolution de la taille
du BDD des états atteignables. Le graphe (b) représente l’évolution de la taille du BDD des
états en attente (les nouveauz états pour l’algorithme de base).

220000

200000 [~ 7

180000 [~ B

160000 [~ B
140000 [~ —
120000 [~ B

100000 [~ B
80000 [~ B
60000 — B

pic de consommation mémoire (en Ko)

40000 —] *
F
20000 [B

| | | | |
0
0 2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07

états atteints

Fi1Gc. 7.11 — FEwvolution du pic de la consommation mémoire en fonction des états atteints lors de
Uanalyse du programme mmid. Les rectangles correspondent a [’algorithme de base et les traits
pleins épais correspondent a ’algorithme partitionné.

7.3.1 chorusBin

Le tableau présente les résultats de analyse du programme chorusBin. L’algorithme
de base n’est capable de produire que 12% de 'espace des états atteignables total. Dans cet
exemple, ’analyse complete du programme est tres cotliteuse en temps puisque les calculs ont
duré 238 heures. Nous ne pouvons pas savoir quelle aurait été la durée des calculs de I'algorithme
de base si la mémoire avait été suffisante. Toutefois, nous pouvons remarquer que ’algorithme
partitionné passe 99% de son temps dans les calculs d’image. Nous avons donc de bonnes raisons
de croire que la durée des calculs provient de la nature du programme chorusBin et non pas
des calculs supplémentaires nécessaires au partitionnement.

7.3. EXPLORATION EXHAUSTIVE 87

] Algorithme H défaut ‘ partitionné
Nombre d’itérations 6 79
Nombre d’états découverts || 16 928 480 | 136 329 824
Nombre d’états analysés 441 417 tous

Mémoire nécessaire || > 900Mo 851 369 Ko
Durée totale des calculs d’image || 5h27md4s | 237h01m40s
Temps d’exécution || 5h39m3bs | 238h10m4bs

F1G. 7.12 — chorusBin (92 registres)

7.3.2 cdtmica

Le tableau [7.13| présente les résultats de ’analyse du programme cdtmica. L’algorithme de
base ne permet de produire que 54% de I'espace des états atteignables total. Dans cet exemple,
le temps de calcul de ’algorithme partitionné semble raisonnable : 'algorithme partitionné met
2 fois plus de temps a converger que l’algorithme de base & échouer. D’autre part, la courbe
représentant le nombre d’états atteints au cours du temps semble indiquer que I’algorithme
partitionné est un peu plus rapide que ’algorithme de base.

’ Algorithme H défaut partitionné
Nombre d’itérations 10 185
Nombre d’états découverts || 12538 388 785 | 23 384 736 769
Nombre d’états analysés || 10 651 674 353 tous
Mémoire nécessaire > 900Mo 748 971 Ko
Durée totale des calculs d’image 15R17m50s 35h38m10s
Temps d’exécution 15h24m46s 36h31m?23s

F1G. 7.13 — cdtmica (208 registres)

2.5e+10

2e+10 — _

1.5e+10 — -

états atteints

le+10 — -

5e+09 1

| | | | | |
0

0 20000 40000 60000 80000 100000 120000 140000
temps de calcul

Fia. 7.14 — Nombre d’états découverts au cours du temps lors de analyse du programme
cdtmica. Le temps en abscisse est exprimé en secondes. Les rectangles correspondent a ’algo-
rithme de base et les traits pleins épais correspondent a l’algorithme partitionné.

88 CHAPITRE 7. EXPERIMENTATIONS

7.3.3 steam

Le tableau présente les résultats de ’analyse du programme steam. L’algorithme de
base ne permet de produire que 9% de I’espace des états atteignables total. Ici encore, le temps
de calcul de l'algorithme partitionné semble raisonnable (25 heures) par rapport au temps de
calcul inachevé de I'algorithme de base.

Algorithme H défaut ‘ partitionné
Nombre d’itérations 3 101
Nombre d’états découverts || 3 865 747524 | 41 774 141 026
Nombre d’états analysés || 396 566 399 tous
Mémoire nécessaire > 900 Mo 762 153Ko
Durée totale des calculs d’image 47m29s 24h09m21s
Temps d’exécution 48m36s 25h30m21s

Fia. 7.15 — steam (128 registres)

7.3.4 sat

Pour finir, le tableau [7.16] présente les résultats de ’analyse du programme sat. L’algorithme
de base ne permet de produire que 0,12% de 'espace des états atteignables total. Dans cet
exemple, nous pouvons constater que la consommation mémoire est exceptionnellement basse
avec au plus 76Mo. Les temps de calculs sont également remarquables puisque 'algorithme
partitionné s’acheve avec succes au bout de 3 heures alors que ’algorithme de base échoue au
bout de plus de 6 heures.

’ Algorithme H défaut partitionné
Nombre d’itérations 17 339
Nombre d’états découverts || 43 487 202 056 | 35 740 420 392 968
Nombre d’états analysés || 17 566 150 006 tous
Mémoire nécessaire > 900 Mo 77T 797Ko
Durée totale des calculs d’image 6h28m29s 2h14m40s
Temps d’exécution 6h42mb50s 3h00m56s

F1G. 7.16 — sat (192 registres)

7.4 Conclusion des résultats

Les résultats expérimentaux tendent a montrer que notre algorithme partitionné permet de
réduire la taille des BDDs utilisés lors des calculs. Dans chacun des cas présentés ici, notre
méthode a permis d’obtenir soit des résultats plus complets en terme de nombre d’états atteints
soit les mémes résultats avec une consommation mémoire diminuée. L’objectif de notre approche
a donc été atteint.

En ce qui concerne les temps de calculs, les résultats sont moins évidents. Sur les 11 gros
exemples présentés dans ce chapitre, seuls 3 exemples permettent de comparer les deux ap-
proches : sequenceur, mmid et sat. Dans le premier exemple (le plus petit des trois), I’algo-

7.4. CONCLUSION DES RESULTATS 89

rithme partitionné est nettement plus lent. Dans les deux derniers, ’algorithme partitionné
est nettement plus rapide. Dans tous les cas, la durée des calculs d’image a été réduite. Le
phénomene peut s’expliquer par le fait que le calcul de I'image prend de plus en plus d’impor-
tance sur les gros exemples, autrement dit, le calcul de 'image dans l'algorithme de base est
comparativement treés rapide dans sequenceur (46% du temps total) et tres lent dans mmid
(93% du temps) et sat (96% du temps). Ces maigres indices tendent a laisser penser que notre
méthode de partitionnement permettrait également de réduire les temps de calcul dans ’explo-
ration des programmes les plus gros ou globalement, le temps perdu a partitionner est rattrapé
par des calculs d’image plus rapides. D’autres expériences sont nécessaires afin de clarifier ce
point.

90

CHAPITRE 7. EXPERIMENTATIONS

Chapitre 8

Conclusion et Perspectives

Nous avons présenté une méthode de partitionnement du calcul des états atteignables guidé

par la syntaxe des programmes. Ce partitionnement purement automatique est basé sur I'infor-
mation donnée par les signaux. Nous avons démontré formellement la correction de notre algo-
rithme. Si la complexité théorique de notre algorithme est moins bonne que ’algorithme de base,
les résultats expérimentaux sont trés encourageants et montrent I’utilité de notre approche. Nous
pensons que cette méthode mérite d’étre expérimentée sur un plus grand nombre d’exemples tirés
d’applications réelles afin d’étre completement validé. Nous souhaiterions également confronter
notre méthode avec d’autres méthodes concurrentes comme par exemple [66].
Notre méthode est compatible avec les travaux réalisés par Yannis Bres sur la vérification de
programmes par des techniques d’abstraction. Ces deux travaux ont d’ailleurs donné naissance
a des prototypes intégrés au sein d’'un méme logiciel. Il serait intéressant d’expérimenter les
apports de notre partitionnement sur ces techniques. Ces expériences n’ont pu étre menées par
manque de temps ; alors que notre méthode de partitionnement est completement automatique,
les techniques d’abstraction nécessitent une bonne connaissance des applications traitées.

Notre approche présente une faiblesse concernant les boucles dans un contexte parallele. Le
probleme vient du fait que notre méthode consiste & ouvrir des frontieres sans les refermer.
Pour nous, “refermer une frontiere” signifie interdire I'activation de certains registres. De ce
fait, nous ne faisons que grossir de domaine d’application de la fonction de transition. Souvent,
tous les états sont atteignables a la premiere itération et le fait de refermer les frontieres devient
inutile. Pour les autres cas, nous pouvons penser que la synchronisation entre les boucles en
parallele fait que nous devrions pouvoir refermer les frontiéres sous certaines conditions. Dans
le futur, nous souhaiterions combler cette lacune. Il s’agirait alors de savoir refermer certaines
frontieres de maniere intelligente. A I’heure actuelle, nous ne savons pas précisément quelles
sont ces frontieres ni comment, ni & quel moment, ces frontieres doivent étre refermées dans
I'algorithme. De plus, le fait de refermer des frontieres nécessite de redéfinir dynamiquement
lordre de (ré)ouverture a priori des frontieres donné par la relation < (voir les sections et

13).

Dans sa forme actuelle, notre algorithme de partitionnement calcule un seul ensemble conte-
nant tous les états atteignables. Nous souhaiterions améliorer ce calcul afin qu’il produise la
trace des états atteignables, c’est a dire une liste d’ensembles ol chaque cellule contiendrait les
états atteignables a une profondeur donnée. Ceci pourrait aussi nous permettre de partitionner
un peu plus les calculs suivant chaque élément de la liste.

91

92 CHAPITRE 8. CONCLUSION ET PERSPECTIVES

A la section [2.5.1] nous avons vu que 'ordre des variables de BDD avait une influence sur la
complexité des BDDs. Dans nos expériences, cet ordre est choisi par la librairie TiGeR en fonction
de la forme globale du circuit analysé. Dans le futur, nous souhaiterions également trouver, si
il existe, un ordre sur les variables de BDDs adapté a notre partitionnement. L’intérét serait
alors de tirer profit du fait que chaque étape de ’algorithme permet de n’appliquer la relation
de transition que “localement”.

Bibliographie

[1]
[2]

[3]

S. B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27(6), June
1978.

Rajeev Alur, Radu Grosu, and M. McDougall. Efficient reachability analysis of hierarchical
reactive machines. In Computer Aided Verification, 2000.

Henrik Reif Andersen. An Introduction to Binary Decision Diagrams, Octo-
ber 1997. Lecture notes for 49285 Advanced Algorithms E97. Available from :
http ://www.it.dtu.dk/~hra.

Charles André. SyncCharts : A visual representation of reactive behaviors. RR 95-52, 13S,
Sophia-Antipolis, France, 1996.

Charles André, Hedi Boufaled, and Sylvan Dissoubray. SyncCharts : un modele graphique
synchrone pour systemes réactifs complexes. In Real-Time and Embedded Systems, RTS 98,
pages 175-194. Teknea, January 1998.

L. Arditi, A. Bouali, H. Boufaied, G. Clavé, M. Hadj-Chaib, and R. de Simone. Using
Esterel and formal methods to increase the confidence in the functional validation of a
commercial dsp, 1999.

Adnan Aziz, Serdar Tasiran, and Robert K. Brayton. BDD Variable Ordering for Inter-
acting Finite State Machines. In Proceedings of the 31st Design Automation Conference,
DAC"94, pages 283-288. ACM Press, June 1994.

T. Ball and S. Rajamani. Checking temporal properties of software with boolean programs.
In Proceedings of the Workshop on Advances in Verification, July 2000.

Thomas Ball and Sriram K. Rajamani. Bebop : A symbolic model checker for boolean
programs. In SPIN, pages 113-130, 2000.

G. Berry. Programming a digital watch in Esterel v3. Technical Report RR-1032, Inria,
Institut National de Recherche en Informatique et en Automatique, May 1989.

Gérard Berry. The constructive semantics of pure Esterel. Draft book available at
http ://www-sop.inria.fr/esterel.org/, July 1999.

Gérard Berry. The FEsterel v5 Language Primer. CMA, Ecole des Mines and INRIA and
Esterel Technologies, July 2000. Available at http ://www-sop.inria.fr/esterel.org/.

Roderick Bloem, Kavita Ravi, and Fabio Somenzi. Symbolic guided search for CTL model
checking. In Design Automation Conference, pages 29-34, 2000.

A. Bouali. Xeve, an Esterel verification environment. In Proc. 10th International Computer
Aided Verification Conference, LNCS, pages 500-504, UBC, Vancouver, Canada, June 1998.

F. Boussinot and R. de Simone. The Esterel language. Another Look at Real Time Pro-
gramming, Proceedings of the IEEE, 79 :1293-1304, 1991.

93

94

[16]

[27]

BIBLIOGRAPHY

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD Package.
In 27th ACM/IEEE Design Automation Conference, pages 40-45, Orlando, Florida, June
1990. ACM/IEEE, IEEE Computer Society Press.

Yannis Bres. FExploration implicite et explicite de l’espace d’états atteignables de circuits
logiques Esterel. PhD thesis, Ecole des Mines de Paris, December 2002.

Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. [IEEFE
Transactions on Computers, C-35(8) :677-691, August 1986.

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3) :293-318, September 1992.

J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in symbolic
model checking. In ACM-SIGDA ; IEEE, editor, Proceedings of the 28th ACM/IEEE Design
Automation Conference, pages 403—407, San Francisco, CA, June 1991. ACM Press.

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P.B. Denyer, editors, International Conference on
Very Large Scale Integration, pages 49-58, Edinburgh, Scotland, August 1991. IFIP Tran-
sactions, North-Holland.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Clircuits and Systems, 13(4) :401-424, April 1994.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification
Using Symbolic Model Checking. In Proceedings of the 27th ACM/IEEE Design Automa-
tion Conference, pages 46-51, Los Alamitos, CA, June 1990. ACM/IEEE, IEEE Society
Press.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking : 10?0 states and beyond. In Proceedings, Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 428-439, Philadelphia, Pennsylvania, 4-7 June 1990.
IEEE Computer Society Press.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2) :244-263, April 1986.

0. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using boolean
functional vectors. In L.J.M. Claesen, editor, Proceedings of the IFIP International Work-
shop Applied Formal Methods for Correct VLSI Design, pages 111-128, Leuven, Belgium,
November 1989. North-Holland.

0. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines
using symbolic execution. In Proceedings of the International Workshop on Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Computer
Science, pages 365-373, Grenoble, France, June 1989. Springer-Verlag.

O. Coudert and J. C. Madre. A unified framework for the formal verification of sequential
circuits. In Satoshi Sangiovanni-Vincentelli, Alberto ; Goto, editor, Proceedings of the IEEE
International Conference on Computer-Aided Design, pages 126-129, Santa Clara, CA,
November 1990. IEEE Computer Society Press.

O. Coudert and J. C. Madre. Symbolic computation of the valid states of a sequential

machine : algorithms and discussion. In ACM Workshop on Formal Methods in VLSI
Design, 1991. Miami.

BIBLIOGRAPHY 95

[30]

[31]

32]

[33]

Olivier Coudert. SIAM : Une Boite a Qutils Pour la Preuve Formelle de Systémes
Séquentiels. PhD thesis, Ecole Nationale Supérieure des Télécommunications, Octobre
1991.

Olivier Coudert, Jean-Christophe Madre, and Hervé Touati. TIGER Version 1.0 User
Guide. Digital Paris Research Lab, December 1993.

David L. Dill. The Mury Verification System. In Proceedings of the 8th International
Conference on Computer Aided Verification, CAV’96, volume 1102 of Lecture Notes in
Computer Science, pages 390-393. Springer Verlag, July 1996.

Stephen A. Edwards, Tony Ma, and Robert Damiano. Using a hardware model checker to
verify software. In Proceedings of the 4th International Conference on ASIC (ASICON)
(2001). TEEE Press, 2001.

Xavier Fornari. Optimisation du contréle et implantation en circuits de programmes Esterel.
PhD thesis, Ecole des Mines de Paris, CMA, Sophia Antipolis, France, March 1995.

D. Geist and 1. Beer. Efficient model checking by automated ordering of transition relation
partitions. In Proc. 6th International Computer Aided Verification Conference, volume
818, pages 299-310, 1994.

Georges Gonthier. Sémantique et modéles d’exécution des langages réactifs synchrones :
application & Fsterel. PhD thesis, Université d’Orsay, Paris, France, March 1988.

Shankar G. Govindaraju and David L. Dill. Verification by approximate forward and
backward reachability. In International Conference on Computer Aided Design (ICCAD-
98), pages 366-370, N. Y., November 8-12 1998. ACM Press.

Shankar G. Govindaraju, David L. Dill, Alan J. Hu, and Mark A. Horowitz. Approximate
reachability with BDDs using overlapping projections. In Proceedings of the 1998 Confe-
rence on Design Automation (DAC-98), pages 451-456, Los Alamitos, CA, June 15-19
1998. ACM/IEEE.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-
ming language lustre. In Proceedings of the IEEE, volume 79(9), pages 1305-1320, 1991.

Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1993.

D. Harel and A. Pnueli. On the development of reactive systems. Logics and models of
concurrent systems, pages 477-498, 1985.

David Harel. Statecharts : A visual formalism for complex systems. Science of Computer
Programming, 8, 1987.

Hiroyuki Higuchi and Fabio Somenzi. Lazy group sifting for efficient symbolic state traversal
of FSMs. In International Conference on Computer-Aided Design (ICCAD ’99), pages 45—
49, Washington - Brussels - Tokyo, November 1999. IEEE.

Youpyo Hong, Peter A. Beerel, Jerry R. Burch, and Kenneth L. McMillan. Safe BDD mi-
nimization using don’t cares. In Proceedings of the 34th Conference on Design Automation
(DAC-97), pages 208-213, NY, June 9-13 1997. ACM Press.

A.J.Hu, D. L. Dill, A. J. Drexler, and C. H. Yang. Higher-level specification and verification
with BDDs. In Proc. 4th International Computer Aided Verification Conference, pages 82—
95, 1992.

Alan J. Hu and David L. Dill. Efficient verification with BDDs using implicitly conjoined
invariants. In Computer Aided Verification, pages 3—14, 1993.

96
[47]

[48]

[49]
[50]

[51]

[52]

[53]
[54]

[55]

[56]

BIBLIOGRAPHY

Alan J. Hu and David L. Dill. Reducing BDD size by exploiting functional dependencies.
In Design Automation Conference, pages 266-271, 1993.

Alan J. Hu, Gary York, and David L. Dill. New techniques for efficient verification with im-
plicitly conjoined BDDs. In Michael Lorenzetti, editor, Proceedings of the 31st Conference
on Design Automation, pages 276282, New York, NY, USA, June 1994. ACM Press.

C. Norris Ip and David L. Dill. Better verification through symmetry. Formal Methods in
System Design : An International Journal, 9(1/2) :41-75, August 1996.

S. Iyer, D. Sahoo, Ch. Stangier, A. Narayan, and J. Jain. Improved symbolic verification
using partitioned techniques. pages 410-424. LNCS 2860, 2003.

J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Functional partitioning for verification
and related problems. In Advanced Research in VLSI and Parallel Systems : Proceedings
of the 1992 Brown/MIT Conference, pages 210-226, 1992.

Gila Kamhi and Limor Fix. Adaptive Variable Reordering for Symbolic Model Checking. In
Proceedings of the International Conference on Computer-Aided Design, ICCAD’98. ACM
Press, November 1998.

P. Le Guernic, T. Gauthier, M. Le Borgne, and C. Le Maire. Programming real-time
applications with signal. In Proceedings of the IEEE, volume 79(9), pages 1321-1336, 1991.

C. Y. Lee. Representation of switching functions by binary decision programs. Bell Systems
Technical Journal, 38 :985-999, 1959.

J. C. Madre and J. P. Billon. Proving circuit correctness by formally comparing their
expected and extracted behavior. In 25th Design Automation Conference, Anaheim, June
1988.

Sharad Malik, Albert Wang, Robert Brayton, and Alberto Sangiovanni-Vincentelli. Logic
Verification Using Binary Decision Diagrams in a Logic Synthesis Environment. In Procee-
dings of the International Conference on Computer Aided Design, ICCAD’88, November
1988.

Florence Maraninchi. The Argos Language : Graphical Representation of Automata and
Description of Reactive Systems. In Proceedings of the IEEE Workshop on Visual Lan-
guages, October 1991.

K. L. McMillan. The SMV system, symbolic model checking - an approach. Technical
Report CMU-CS-92-131, Carnegie Mellon University, 1992.

George H. Mealy. A method for synthesizing sequential circuits. Bell System Technical
Journal, 34(5) :1045-1079, 1955.

Christoph Meinel and Christian Stangier. Speeding Up Image Computation by Using RTL
Information. In Formal Methods in Computer-Aided Design, FMCAD’00, volume 1954 of
Lecture Notes in Computer Science, pages 443-454. Springer, November 2000.

Christoph Meinel and Christian Stangier. A New Partitioning Scheme for Improvement of
Image Computation. In Proceedings of Asia South Pacific Design Automation Conference
(ASPDAC’01), pages 97-102. ACM Press, January 2001.

In-Ho Moon, Gary D. Hachtel, and Fabio Somenzi. Border-Block Triangular Form and
Conjunction Schedule in Image Computation. In Proceedings of the 3rd International
Conference on Formal Methods in Computer-Aided Design, FMCAD’00, volume 1954 of
Lecture Notes in Computer Science, pages 79-90. Springer, November 2000.

BIBLIOGRAPHY 97

[63]

[72]

[73]

[74]

[76]

In-Ho Moon, James Kakula, Tom Shiple, and Fabio Somenzi. Least fixpoint approximations
for reachability analysis. In Proceedings of the 1999 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD-99), pages 41-44, San Jose, CA, November 7-11 1999.
ACM/IEEE.

A. Narayan, A. J. Isles, J. Jain, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Rea-
chability analysis using partitioned-ROBDDs. In IEEE/ACM International Conference on
Computer Aided Design ; Digest of Technical Papers (ICCAD ’97), pages 388-393, Wa-
shington - Brussels - Tokyo, November 1997. IEEE Computer Society Press.

Jean-Pierre Paris. Exécution de taches asynchrones depuis Esterel. PhD thesis, Université
de Nice, France, July 1992.

E. Pastor and M.A. Pefia. Combining Simulation and Guided Traversal for the Verification
of Concurrent Systems. In Proceedings of DATE’03. IEEE publisher, 2003.

C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fiir instrumentelle
Mathematik, Darmstadt, West Germany, 1962.

G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark, September
1981.

K. Ravi and F. Somenzi. High-density reachability analysis. In International Conference on
Computer Aided Design (ICCAD 95), pages 154-158, Los Alamitos, Ca., USA, November
1995. IEEE Computer Society Press.

Richard Rudell. Dynamic Variable Ordering For Binary Decision Diagrams. In Proceedings
of the International Conference on Computer-Aided Design, ICCAD’93. IEEE Computer
Society Press, November 1993.

E. M. Sentovich, H. Toma, and G. Berry. Latch optimization in circuits generated from
high-level descriptions. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 428-435, Washington, November 10-14 1996. IEEE Com-
puter Society Press.

Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Rajeev Murgai,
Alexander Saldanha, Hamid Savoj, Paul R. Stephan, and Robert K. Brayton et al. SIS, A
System for Sequential Circuit Synthesis. Technical report, Dept. of Electrical Engineering
and Computer Science, University of California, Berkeley, May 1992.

Thomas Shiple, Gérard Berry, and Hervé Touati. Constructive analysis of cyclic circuits.
In Proccedings of International Design and Testing Conference IDTC’96, Paris, France,
1996.

Christian Stangier, Ulrich Holtmann, and Christoph Meinel. Optimizing Partitioning of
Transition Relations by Using High-Level Information. In Proceedings of the International
Workshop on Logic Synthesis, IWLS 2000, May 2000.

Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The Complexity of the Optimal
Variable Ordering Problems of Shared Binary Decision Diagrams. In Proceedings of the
4th International Symposium on Algorithms and Computation, ISAAC’93, volume 762 of
Lecture Notes in Computer Science. Springer, December 1993.

Olivier Tardieu. Goto and Concurrency : Introducing Safe Jumps in Esterel, March 2004.
Synchronous Languages, Applications, and Programming.

98 BIBLIOGRAPHY

[77] Herve J. Touati, Hamid Savoj, Bill Lin, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. Implicit State Enumeration of Finite State Machines using BDD’s. In Pro-
ceedings of the International Conference on Computer-Aided Design, ICCAD’90. IEEE
Computer Society Press, November 1990.

[78] University of California at Berkeley. Berkeley Logic Interchange Format, December 1998.
Available at http ://www.bdd-portal.org/docu/blif/.

[79] C. Han Yang and David L. Dill. Validation with guided search of the state space. In
Proceedings of the 1998 Conference on Design Automation (DAC-98), pages 599604, Los
Alamitos, CA, June 15-19 1998. ACM/IEEE.

Résumé

Le calcul symbolique des états atteignables d’un programme constitue un élément de base
dans la compilation des programmes réactifs synchrones. Nous proposons d’améliorer la com-
plexité parfois prohibitive de ce calcul en exploitant la structure des programmes. L’idée de base
parait extrémement simple : pour le cas P ;) ou deux blocs de programme sont combinés en
séquence, nous cherchons a construire entierement les états atteignables de P et de ne s’occuper
de @ que lorsque P est completement exploré. L'intérét est de n’utiliser a chaque étape que
la partie pertinente de la fonction de transition. Si les comportements de P étaient de durée
variable, le calcul symbolique Breadth First Search aurait combiné ’exploration de P et de
() dans un méme mouvement. De ceci aurait résulté une irrégularité dans les représentations
intermédiaires des états atteints, ce qui constitue 'une des plus grandes causes de la complexité
du model checking utilisant des techniques symboliques.

Les difficultés de notre approche apparaissent en présence de parallélisme et d’échange de
signaux locaux ou les blocs de programme peuvent se synchroniser de multiples facons en rai-
son du comportement dynamique du programme. Considérer toutes ces possibilités menerait
a une forte complexité. Le but ici est de trouver un compromis satisfaisant entre 'approche
globale Breadth First Search et 'approche compositionnelle partitionnée. Concrétement, nous
nous appuyons sur des caractéristiques intéressantes de notre librairie de BDD pour développer
une approche efficace. Nous employons des heuristiques permettant de partitionner notre pro-
gramme et d’ordonnancer la construction des états atteignables afin de calculer exactement les
mémes résultats que par la méthode de base mais en appliquant des fonctions de transition plus
localisées. Les premiers résultats expérimentaux montrent la pertinence de notre approche.

Abstract

We consider the issue of exploiting the structural form of ESTEREL programs to partition
the algorithmic RSS (reachable state space) fix-point construction used in model-checking tech-
niques. The basic idea sounds utterly simple, as seen on the case of sequential composition :
in P;@, first compute entirely the states reached in P, and then only carry on to @, each
time using only the relevant transition relation part. Here a brute-force symbolic breadth-first
search would have mixed the exploration of P and () instead, in case P had different behaviors
of various lengths, and that would result in irregular BBD representation of temporary state
spaces, a major cause of complexity in symbolic model-checking.

Difficulties appear in our decomposition approach when scheduling the different transition
parts in presence of parallelism and local signal exchanges. Program blocks (or ”Macro-states”)
put in parallel can be synchronized in various ways, due to dynamic behaviors, and conside-
ring all possibilities may lead to an excessive division complexity. The goal is here to find a
satisfactory trade-off between compositional and global approaches. Concretely we use some of
the features of the BDD library, and heuristic orderings between internal signals, to have the
transition relation progress through the program behaviors to get the same effect as a global
RSS computation, but with much more localized transition applications. We provide concrete
benchmarks showing the usefulness of the approach.

	Introduction
	Méthodes symboliques
	Notre approche
	Un exemple
	Travaux reliés
	Présentation du document

	Contexte de l'Etude
	Esterel
	Aspects sémantiques
	Réincarnation
	Correction logique
	Constructivité

	Machines de Mealy
	Circuits séquentiels
	Compilation des programmes Esterel en circuit
	Interface des circuits
	Exécution des circuits
	Traduction circuit

	Interprétation des circuits en machines de Mealy

	La machine séquentielle
	Calcul des états atteignables d'une machine séquentielle
	Calcul symbolique des états atteignables
	Calcul d'image
	Cofacteur

	Les Diagrammes de Décision Binaires
	Notions de base
	Raffinements
	Calculs symboliques et BDDs
	Formules propositionnelles
	Opérations basiques
	Quantification
	Substitution
	Cofacteur et BDDs

	Présentation Intuitive
	Description générale de la méthode
	Partitionnement des blocs séquentiels
	L'opérateur de séquencement
	Terminaison des blocs de programme
	Points faibles de l'algorithme Breadth First Search
	Partitionnement

	L'opérateur de choix
	Le mécanisme de préemption ou d'exception
	Découpage de programme séquentiel : un exemple

	Partitionnement des boucles
	L'opérateur parallèle et les signaux
	Un programme parallèle au comportement séquentiel
	Partitionnement des blocs parallèles
	Partitionnement sur les couples émetteur/récepteur
	Vraies et fausses synchronisations

	Exploration partitionnée des programmes Esterel
	Ordonnancement statique des frontières
	Ordonnancement du déblocage des frontières
	Débordement des états atteignables

	Notations
	L'arbre de syntaxe abstraite
	Le graphe de contrôle
	Construction du graphe
	Exemple
	Graphe de contrôle et partitionnement

	Une relation d'ordre pour les frontières du graphe
	Notations
	Définition structurelle

	Calcul des Etats Atteignables Partitionné
	Algorithme partitionné
	Initialisations dans le graphe de contrôle (calcul de area0)
	Elargissement des blocs actifs (calcul de area')
	Franchissement des frontières
	Sélection des frontières compatibles
	Ouverture d'une frontière

	Correction des algorithmes
	Rappels et hypothèses
	Correction de l'algorithme traditionnel
	Calcul de bfs(R, N)
	Convergence de bfs(R, N)
	Rn = n

	Correction de l'algorithme partitionné
	Calcul de part(R, P, A)
	Convergence de part(R, P, A)
	Rpartn
	Rn n

	Analyse des caractéristiques
	Complexité
	Performances
	Encodage des programmes

	Mise en Œuvre
	Chaîne de compilation des programmes Esterel
	Représentation des programmes Esterel
	Construction de l'arbre syntaxique dans strlic
	Construction du graphe à partir du format intermédiaire

	Calcul partitionné de l'espace des états atteignables
	TiGeR et TiGeREnh
	evcl

	Expérimentations
	Analyse de programmes coriaces
	globalopt
	site
	cabine

	Réduction de la consommation mémoire
	sequenceur
	mmid

	Exploration exhaustive
	chorusBin
	cdtmica
	steam
	sat

	Conclusion des résultats

	Conclusion et Perspectives
	Bibliographie

