MODEL-BASED DESIGN OF PROGRAM ORGANIZATION
UNITS USING SYNCHRONOUS LANGUAGES

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree
Doctor of Engineering (Dr.-Ing.)

to

Marcel Christian Werner

Date of Defense: July 4, 2025

Dean: Prof. Dr. Christoph Garth
Reviewer: Prof. Dr. Klaus Schneider
Reviewer: Prof. Dr. Reinhard von Hanxleden

DE-386

Abstract

Programmable Logic Controllers (PLCs) are typically applied in industrial en-
vironments with real-time requirements. In many cases, PLC development is
based on standards defined by the International Electrotechnical Commission
(IEC), in particular IEC 61131-3. This standard describes various languages
for developing Program Organization Units (POUs), including the textual lan-
guage Structured Text (ST) and graphical Function Block Diagrams (FBDs),
two languages that have become widely accepted and often used in real-world
applications. POUs are typically used over a long period of time and extended
incrementally. As a result, their structural complexity and the associated chal-
lenges such as maintainability and readability tend to increase. In addition,
safety-critical applications require formal verification, which can be achieved
by translating IEC 61131-3 POUs into formal models. This often results in
domain-specific models for verification purposes only. Furthermore, the transi-
tion to other development approaches, such as model-based design or changes
to hardware that is not IEC 61131-3 compliant, often requires that existing
IEC 61131-3 POUs be partially or completely designed from scratch.

In contrast, synchronous languages have proven to be efficient for the mod-
eling and formal verification of reactive real-time systems in both research
and industrial applications. Therefore, this thesis introduces several detailed
transformations to translate existing ST- and FBD-based POUs into seman-
tically equivalent synchronous models. These transformations allow POUs to
be reused in a model-based design approach that supports formal verifica-
tion. Furthermore, a formal methods-based optimization approach is intro-
duced, which significantly reduces (on average) the structural complexity of
real-world data-flow models such as FBDs. It is also shown how hierarchical
statecharts can be derived from ST- and FBD-based models to provide an al-
ternative graphical representation of the control flow. The correctness of these
approaches is analyzed both theoretically, based on the syntax and formal se-
mantics of the languages, and practically, based on appropriate IEC 61131-3
POUs, by integrating the transformation and optimization approaches into
PLCreX, an application developed as part of this research.

iii

Acknowledgement

I would like to thank all the people who have supported me in the challenge
of balancing research activities with personal commitments to family, friends,
teaching, and a full-time job. In particular, I would like to thank Prof. Dr.
Klaus Schneider, who supported me especially in hectic phases such as meeting
submission deadlines. I would also like to thank him for his valuable guidance
and constructive feedback on my research over the past four years. Further-
more, [would like to thank Prof. Dr. Reinhard von Hanxleden for serving
as my second assessor. I also want to thank Prof. Dr. Sebastian Michel for
chairing the doctoral committee and Prof. Dr. Christoph Grimm for being a
member of the doctoral committee. Additionally, I would like to acknowledge
Dr. Manuel Gesell for his valuable feedback during the final stages of my the-
sis. His willingness to review my thesis in his free time is exceptional, and I
am very grateful for his efforts. I would also like to thank Marita Stuppy and
Sabine Owens for their support in administrative topics. Finally, I would like
to express my deepest gratitude to my friends, and especially to my partner
and son, for their acceptance and support of my personal objectives, espe-
cially during the most challenging phases of this thesis. Their contributions,
whether large or small, have been invaluable and I am very grateful for their
support.

July 4, 2025, Marcel Christian Werner

Contents

1. Introduction
1.1. Contributions
1.2. Related Work
1.3. Outline e

2. Background
2.1. IEC 61131-3 Program Organization Units
2.2. The Averest-Framework
2.3. The KIELER-Framework
2.4. The PLCreX Project

3. Syntax and Formal Semantics
3.1. Preliminary Definitions
3.2. IEC 61131-3 FBDs and ST Models
3.3. Quartz Models
34. SCLModels
3.5. SCCharts e

4. Model Transformation of ST Models to Quartz Models
4.1. High-Level Design Flow — ST-to-Quartz
4.2. From ST Models to Quartz Models
4.3. Experimental Results,
4.4, SUMMATY . . o v oo e e e e

5. Model Transformation of ST Models to SCL Models
5.1. High-Level Design Flow — ST-to-SCL
5.2. From ST Models to SCL Models
5.3. Experimental Results
5.4, SUMMATY . . . v v vttt

6. Model Transformation of FBDs to Quartz Models
6.1. High-Level Design Flow — FBD-to-Quartz
6.2. From FBDs to Quartz Models
6.3. Experimental Results
6.4. Summary e

e IO NI

(=]

17
18
21
27
28
29

33
34
35
62
63

67
68
69
86
88

vil

Contents

Model Transformation of FBDs to Data-Flow Oriented SCCharts
7.1. High-Level Design Flow — FBD-to-SCChart
7.2. From FBDs to Data-Flow Oriented SCCharts.
7.3. Experimental Results
T4, SUMMATY . . . o vt et e e e e

Formal Methods-Based Optimization of Data-Flow Models

8.1. High-Level Design Flow — Optimization
8.2. Optimization of Data-Flow Models
8.3. Experimental Results
8.4, Summary

Control-Flow Oriented SCCharts of POU-Based Quartz Models

9.1. High-Level Design Flow — Quartz-to-SCChart
9.2. Pattern-based Quartz Code Refactoring
9.3. From Quartz Models to SCCharts.
9.4. SCChart Optimization
9.5. Experimental Results
9.6. Summary e

10. Conclusions

Bibliography

A.

Detailed Syntax and Semantics

A.1l. IEC 61131-3 FBDs and ST Models
A2 QuartzModels
A3. SCLModels
A.4. Data-Flow Oriented SCCharts
A.5. Control-Flow Oriented SCCharts

. ST Model Examples

Resulting ST-Based Quartz Models

. Resulting SCL Models

FBD Examples

Resulting FBD-Based Quartz Models

. Resulting Data-Flow Oriented SCCharts

. Resulting Control-Flow Oriented SCCharts

ST-to-Quartz: Appendix

ST-to-SCL: Appendix

105
106
107
128
130

133
134
135
148
150

153
154
156
160
183
185
187

191

195

207
208
217
229
237
239

249

259

275

287

311

329

355

365

367

viii

Contents

K. FBD-to-SCChart: Appendix 369
L. Formal Methods-Based Optimization: Optimization Results 371
M. Quartz-to-SCChart: Appendix 379

N. Curriculum Vitae 381

ix

List of Figures

1.1.
1.2.
1.3.
1.4.

2.1.
2.2.
2.3.
24.

4.1.
4.2.

4.3.
4.4.
4.5.

4.6.

5.1.
5.2.

5.3.
5.4.
9.9.

6.1.
6.2.
6.3.

6.4.
6.5.

Contribution: ST-to-Quartz /SCL transformation 3
Contribution: FBD-to-Quartz/SCChart transformation 3
Contribution: Data-Flow Optimization. 4
Contribution: Quartz-to-SCChart Transformation 4
FBD of a rising edge detector 11
Control-flow oriented SCChart of a rising edge detector 13
Data-flow oriented SCChart of a rising edge detector 14

High-level architecture and design principles of PLCreX [WS24b] 14

High-level design flow of the ST-to-Quartz transformation . .. 34
ST-to-Quartz translation strategies: high-level runtime behav-
ior of the resulting Quartz models. 36
Resulting Quartz model of example ST_ALARM (without memory) 38
Resulting Quartz model of example ST_ASS_DEL (with memory) 38
High-level runtime behavior of a model with memory that in-

vokes two models (Approach: ST-to-Quartz) 50
Test strategy to evaluate the ST-to-Quartz transformation . . . 62
High-level design flow of the ST-to-SCL transformation 68
ST-to-SCL translation strategies: high-level runtime behavior

of the resulting SCL models 70

Resulting SCL model of example ST_ALARM (without memory) . 72
Resulting SCL model of example ST_ASS_DEL (with memory) . 72
Test strategy to evaluate the ST-to-SCL transformation 87

High-level design flow of the FBD-to-Quartz transformation . . 92
FBD-to-Quartz translation strategies: high-level runtime be-
havior of the initial FBD (top) and resulting Quartz model

(bottom) 93
High-level runtime behavior of a model with memory that in-
vokes two models (Approach: FBD-to-Quartz) 96

Visualization of the processing sequence: get_expr (RSO.RESET1) 98
Test strategy to evaluate the FBD-to-Quartz transformation . . 100

xi

List of Figures

7.1
7.2.

7.3.
7.4.
7.5.

7.6.
7.7.
7.8.

8.1.

8.2.

8.3.
8.4.

8.5.

8.6.

8.7.

9.1.
9.2.

9.3.

9.4.
9.5.
9.6.
9.7.

9.8.
9.9.

9.10.
9.11.

9.12

9.13
9.14
9.15
9.16
9.17
9.18

High-level design flow of the FBD-to-SCChart transformation .
FBD-to-SCChart translation strategies: high-level runtime be-

havior of the initial FBD (top) and resulting SCChart (bottom)

Example SCChart illustrating a resulting model with reset . . .

Example SCChart illustrating the resulting model without reset

High-level runtime behavior of a model with memory invoking
two models (Approach: FBD-to-SCChart)
Graphical SCChart of the translated FBD_DEBOUNCE model . . .
Views during simulation of the FBD_SIMPLE _PRG2 example . . .
Test strategy to evaluate the FBD-to-SCChart transformation

High-level design flow of the optimization process with focus on
the models and system architecture
High-level design flow of the optimization process with focus on
the optimization strategy [WS23]
Low-level design flow of the optimization process [WS23]
Visualization of the submodel identification using a simple SC-
Chart example [WS23]
Simplification of mg of the FBD_POLL example (with and without
pattern-based formula refactoring)
Comparison of two different simplification scenarios related to
ms of the Cylinder _Control_System example
Experimental Results

High-level design flow of the Quartz-to-SCChart transformation

Quartz-to-SCChart translation strategies: high-level view of the
initial Quartz model and the resulting SCChart
Tllustration of the Quartz code pattern-based refactoring ap-
proach [WS22]
SCChart of the ST_.ALARM example
SCChart of Quartz sequence {S1; nothing; S52;} [WS22]. . .
SCChart of Quartz sequence {S1; await(a); S$2;} [WS22] . .
SCChart of Quartz sequence {S1; immediate await(a);
S2; 1 [WS22) . . o

SCChart of Quartz sequence {S1; await(true); S2;} [WS22]

SCChart of Quartz sequence {S1; pause; S2;} [WS22]
SCChart of Quartz sequence {S1; a=b; S2;} [WS22]
SCChart of Quartz sequence {S1; a=1; next(b)=a; pause;
a=2; S2;} [WS22]
.SCChart of Quartz sequence {S1; || S2; || S3; || Sn;}
[WS22]
. SCChart of Quartz sequence {while(a){S1;} S2;} [WS22] . .

106

108
110
110

122
124
125
128

134

135
136

139

144

146
151

154

156

159
161
167
168

168
169
169
171

172

173
176

. SCChart of Quartz sequence {do S1; while(a); S2;} [WS22] 176

. SCChart of Quartz sequence {loop S;} [WS22]
. SCChart of Quartz sequence {loop{pause;}} [WS22].
. SCChart of Quartz sequence {halt;} [WS22].

176

177

. SCChart of Quartz sequence {abort S1; when(a); S2;} [WS22]179

xii

List of Figures

9.19. SCChart of Quartz sequence
when(a); S2;} [WS22]

{immediate abort S1;

9.20. SCChart of Quartz sequence {S1; if(a) S2; S3;} [WS24a]
9.21. SCChart of Quartz sequence {S1; if(a) S2; else S3; S4;}

[WS22]
9.22. SCChart of Quartz sequence {S1; S2;

S3; Sn;} [WS22]

9.23. SCChart before hierarchy optimization (Pattern 2)
9.24. SCChart after hierarchy optimization (Pattern 2)

9.25. SCChart before state optimization . .
9.26. SCChart after state optimization . . .

9.27. Test strategy to evaluate the Quartz-to-SCChart transforma-
tion including optimization and Quartz code refactoring
9.28. From Quartz to control-flow oriented SCChart [WS22]

10.1. Contribution Summary

G.1. Visualized data-flow oriented SCChart:
G.2. Visualized data-flow oriented SCChart:
G.3. Visualized data-flow oriented SCChart:
G.4. Visualized data-flow oriented SCChart:
G.5. Visualized data-flow oriented SCChart:
G.6. Visualized data-flow oriented SCChart:
G.7. Visualized data-flow oriented SCChart:
G.8. Visualized data-flow oriented SCChart:
G.9. Visualized data-flow oriented SCChart:
G.10.Visualized data-flow oriented SCChart:
G.11.Visualized data-flow oriented SCChart:
G.12.Visualized data-flow oriented SCChart:
G.13.Visualized data-flow oriented SCChart:
G.14.Visualized data-flow oriented SCChart:
G.15.Visualized data-flow oriented SCChart:
G.16.Visualized data-flow oriented SCChart:
G.17.Visualized data-flow oriented SCChart:
G.18.Visualized data-flow oriented SCChart:
G.19.Visualized data-flow oriented SCChart:
G.20.Visualized data-flow oriented SCChart:
G.21.Visualized data-flow oriented SCChart:
G.22.Visualized data-flow oriented SCChart:
G.23.Visualized data-flow oriented SCChart:
G.24.Visualized data-flow oriented SCChart:
G.25.Visualized data-flow oriented SCChart:
(G.26.Visualized data-flow oriented SCChart:
G.27.Visualized data-flow oriented SCChart:
G.28.Visualized data-flow oriented SCChart:
G.29.Visualized data-flow oriented SCChart:

FBD_TWO_OF_THREE . . .
FBD_AIR_COND_CTRL . .
FBD_ALARM.
FBD_ANTIVALENCE . . .
FBD_OP_ARITH.
FBD_BENDING
FBD.OP.BOOL
FBD_CYLINDER
FBD_DEBOUNCE
FBDDICE
FBD_KV.DIAG
FBD_LEFTDET.
FBDPOLL
FBD_RES_CTRL1
FBD_RES_CTRL2
FBD_ROLL_DOWN
FBD_CABLE_WINCH . .
FBD_SEVEN_SEG
FBD_SHOP_WINDOW . .
FBD_SILO_VALVE
FBD_SIMPLE_FUN
FBD_SIMPLE_PRG1
FBD_SIMPLE_PRG2 . .
FBD_SMOKE_DET
FBD_SPORTS_HALL . .
FBD_THER_CODE
FBD_TOGGLE_SWITCH . .
FBD_VENT.CTRL
FBD_.WINDDIR.

H.1. Visualized control-flow oriented SCChart: ST_.ALARM

181

181
182
184
184
185
186

186
190

192

329
330
331
331
332
333
334
335
336
337
338
338
339
340
341
342

. 343

344

. 345

345
346

. .o347
. 347

348

. 349

350
351
352
353

355

xiii

List of Figures

H.2. Visualized control-flow oriented SCChart:
H.3. Visualized control-flow oriented SCChart:
H.4. Visualized control-flow oriented SCChart:
H.5. Visualized control-flow oriented SCChart:
H.6. Visualized control-flow oriented SCChart:
H.7. Visualized control-flow oriented SCChart:
H.8. Visualized control-flow oriented SCChart:
H.9. Visualized control-flow oriented SCChart:
H.10.Visualized control-flow oriented SCChart:
H.11.Visualized control-flow oriented SCChart:
H.12.Visualized control-flow oriented SCChart:
H.13.Visualized control-flow oriented SCChart:

ST_LOOP_FOOT 356
ST_LOOP_HEAD 357
ST OP_ARITH 358
STRS 358
ST_TWO_OF_THREE . . 359
FBD_OP_BOOL 359
FBD_DATATYPES . .. 360
FBD_KV.DIAG 361
FBD_LEFTDET 361
FBD_ROLL DOWN . .. 362
FBD_THER_CODE . .. 363

FBD_TOGGLE_SWITCH 363

xiv

List of Tables

3.1.

4.1.

5.1.

6.1.

7.1.

8.1.

8.2.

8.3.

8.4.

9.1.

Overview of software model syntax and semantics definitions

Set of ST models and test results to evaluate the applicability
of the introduced ST-to-Quartz transformation

Set of ST models and test results to evaluate the applicability
of the introduced ST-to-SCL transformation

Set of FBDs and test results to evaluate the applicability of the
introduced FBD-to-Quartz transformation.

Set of FBDs and test results to evaluate the applicability of the
introduced FBD-to-SCChart transformation

Overview of supported operators across the ST, SCChart,
Quartz, NuSMV , and Z3Py models [WS23]
Data-flow model overview, including number of submodels,
number of operators (without instances), and average runtime
for determining all four optimized submodels with code gener-
ation for the selected strategy (based on related work without
pattern-based formula refactoring [WS23]).
Experimental results of the case study with values in percent
relative to the non-optimized model ranging from -75% (better)
t0 10.7% (worse) (based on experimental results of related work
without pattern-based formula refactoring [WS23])
Average number of edges, operators, and variable accesses after
optimization

Set of examples and test results to evaluate the applicability of
the introduced Quartz-to-SCChart transformation

20

XV

Listings

2.1. ST model of a rising edge detector 10
2.2. Quartz model of a rising edge detector 11
2.3. SCL model of a rising edge detector 12
B.1. ST Model: ST.TWOOF_THREE 249
B.2. ST Model: STLALARMottt 249
B.3. ST Model: ST.SCALE 249
B.4. ST Model: STLAVAL.PROC 249
B.5. ST Model: STOP_ARITH. 250
B.6. ST Model: STOPBOOL iiiiin.. 250
B.7. ST Model: ST.COMPENS 250
B.8. ST Model: ST.CONDttt et 251
B.9. ST Model: STDATATYPES i i 251
B.10.ST Model: ST DEBOUNCE, 252
B.11.ST Model: STLASSDEL o vttt it e e e 252
B.12.ST Model: STOP_INEQ it 252
B.13.ST Model: ST.LOOP_FOOT i ittt 252
B.14.ST Model: ST.LOOP_HEAD it 253
B.15.ST Model: STAASS_IMM1 ittt 253
B.16.ST Model: STAASS_ IMM2 o o i ittt e e e 253
B.17.ST Model: STLASS_IMM.OUT i i i i e 254
B.18.ST Model: STAASS_ IMM3ottt 254
B.19.ST Model: ST.LEFT1 254
B.20.ST Model: STOP.NUMRELoo.o... 254
B.21.ST Model: ST-TOF oo et e e e e 254
B.22.ST Model: ST.TON e e 255
B.23.ST Model: STRS e 256
B.24.ST Model: STRIGHT1 256
B.25.ST Model: STSR e 256
B.26.ST Model: ST.SIMPLEFUNo.o... 257
B.27.ST Model: ST.SIMPLEPRGL 257
B.28.ST Model: ST.-TANK.CTRL it 257
B.29.ST Model: ST.TRACK.CORR v iiiee .. 258
B.30.ST Model: ST_-TWO_PCTRL (USINT data type designed as UINT) . 258

xvii

Listings

C.1. Quartz Model:
C.2. Quartz Model:
C.3. Quartz Model:
C.4. Quartz Model:
C.5. Quartz Model:
C.6. Quartz Model:
C.7. Quartz Model:
C.8. Quartz Model:
C.9. Quartz Model:
C.10.Quartz Model:
C.11.Quartz Model:
C.12.Quartz Model:
C.13.Quartz Model:
C.14.Quartz Model:
C.15.Quartz Model:
C.16.Quartz Model:
C.17.Quartz Model:
C.18.Quartz Model:
C.19.Quartz Model:
C.20.Quartz Model:
C.21.Quartz Model:
C.22.Quartz Model:
C.23.Quartz Model:
C.24.Quartz Model:
C.25.Quartz Model:
C.26.Quartz Model:
C.27.Quartz Model:
C.28.Quartz Model:
C.29.Quartz Model:
C.30.Quartz Model:

ST TWOOF_THREE 259
STLALARM o o 259
STSCALE 259
ST_AVAL.PROC 260
STOPARITH 260
STOPBOOL 260
ST COMPENS, 261
ST.COND 262
ST DATATYPES 262
STDEBOUNCE 263
STAASSDEL 264
STOP_INEQ 264
ST_LOOP_FOOT 264
ST.LOOP.HEAD 265
STASS_IMM1 265
STLASS_IMM2 266
ST_ASS_IMM.OUT 267
STAASS. IMM3 267
ST.LEFT1 267
STOPNUMREL 267
ST.TOF oo e 268
STTON o e 268
STRS . . . 269
STRIGHT1 270
STSR . . . 270
ST SIMPLEFUN 270
ST SIMPLEPRG1 270
ST_TANK.CTRL 271
ST TRACKCORR 272

ST_TWO_PCTRL (USINT data type designed as UINT)272

D.1. SCL Model: ST.TWOOF_THREE 275
D.2. SCL Model: STAALARM i 275
D.3. SCL Model: ST.SCALE it 276
D.4. SCL Model: STOP_ARITHot 276
D.5. SCL Model: STOPBOOL v v v v et e e e e e 276
D.6. SCL Model: ST.COMPENS 277
D.7. SCL Model: ST.CONDttt 278
D.8. SCL Model: STDATATYPES 278
D.9. SCL Model: STAASSDEL. 279
D.10.SCL Model: STOP_.INEQ« v v v v vttt et 279
D.11.SCL Model: ST.LOOP_FOOTot i e oo 279
D.12.SCL Model: ST.LOOP HEAD« .ottt 280
D.13.SCL Model: STAASS_IMMLo v it it 280
D.14.SCL Model: STLAASS_.IMM2 o v ittt e e e 281
D.15.SCL Model: ST.AASS.IMM OUT ot v v et e e 281

xviil

Listings

D.16.SCL Model:
D.17.SCL Model:
D.18.SCL Model:
D.19.SCL Model:
D.20.SCL Model:
D.21.SCL Model:
D.22.SCL Model:
D.23.SCL Model:
D.24.SCL Model:
D.25.SCL Model:

STLEFT1 o o 282
ST.OPNUMREL. 282
ST_TOF 282
ST-TON o o 283
STRS 284
STRIGHT1 284
STSR 285
ST_.SIMPLE_FUN 285
ST_-TANK.CTRL 285

ST_TWO_PCTRL (USINT data type designed as UINT) 286

E.1. FBD: FBD_.TWOOF_THREE 287
E.2. FBD: FBDLATR CONDCTRL i i it 287
E.3. FBD: FBDLALARMo 288
E.4. FBD: FBD_ANTIVALENCE i 288
E.5. FBD: FBDOP_ARITH it 289
E.6. FBD: FBDBENDINGt i it it e e e e e 290
E.7. FBD: FBDOPBOOL o it e et e e e 291
E.8. FBD: FBD.CYLINDER it et 291
E.9. FBD: FBD.DATATYPES it 292
E.10.FBD: FBDDEBOUNCE ottt e e 293
E.11.FBD: FBDDICE o e e e e 293
EA2.FBD: FBDKVDIAG oo oottt et e e e 294
E.13.FBD: FBD_LEFTDET i i ittt e i e e 295
E.14.FBD: FBD POLL oot et e e e e e e 295
E.15.FBD: FBD.RES . CTRL1 it 296
E.16.FBD: FBD.RES.CTRL2 o i ittt i 297
E.17.FBD: FBD.ROLLDOWN oottt et 298
E. 18 FBD: FBD.CABLE WINCH 298
E.19.FBD: FBD_SEVEN.SEG v i vttt et 299
E.20.FBD: FBD_SHOP_WINDOW v v v ittt e et 300
E.21.FBD: FBD.SILOVALVE ittt e e e e 301
E22.FBD: FBD.SIMPLEFUN i 302
E.23.FBD: FBD_.SIMPLE PRG1 302
E.24.FBD: FBD.SIMPLE PRG2 303
E.25.FBD: FBD_SMOKEDET v 303
E.26.FBD: FBD_SPORTS_ HALL i it e i 304
E.27.FBD: FBD.THER CODE it 305
E.28. FBD: FBD_TOGGLE_SWITCH 306
E.29.FBD: FBD.VENT_CTRL it 307
E.30.FBD: FBD.WINDDIR ittt et 308
F.1. Quartz Model: FBD_.TWOOF_ THREE 311
F.2. Quartz Model: FBD_.ATIR.COND.CTRL 311
F.3. Quartz Model: FBD_ALARM 312
F.4. Quartz Model: FBD_ANTIVALENCE 312
F.5. Quartz Model: FBD.OP_ARITH 312

xXix

Listings

F.6. Quartz Model: FBD_BENDING 313
F.7. Quartz Model: FBD.OP.BOOL 314
F.8. Quartz Model: FBD_.CYLINDER 315
F.9. Quartz Model: FBD.DATATYPES 315
F.10.Quartz Model: FBD.DEBOUNCE 316
F.11.Quartz Model: FBDDICEo.... 317
F.12.Quartz Model: FBD.KV.DIAG 318
F.13.Quartz Model: FBD_.LEFTDET 318
F.14.Quartz Model: FBD_.POLL 318
F.15.Quartz Model: FBD.RES CTRL1 318
F.16.Quartz Model: FBD.RES_.CTRL2 319
F.17.Quartz Model: FBD_.ROLLDOWN 319
F.18.Quartz Model: FBD_CABLEWINCH 320
F.19.Quartz Model: FBD.SEVEN.SEG 320
F.20.Quartz Model: FBD_SHOP_WINDOW 321
F.21.Quartz Model: FBD_.SILOVALVE 322
F.22.Quartz Model: FBD_SIMPLE FUN 322
F.23.Quartz Model: FBD_SIMPLE PRGL 322
F.24.Quartz Model: FBD_.SIMPLEPRG2 323
F.25.Quartz Model: FBD.SMOKEDET 323
F.26.Quartz Model: FBD_.SPORTS HALL 324
F.27.Quartz Model: FBD_.THER_.CODE 325
F.28.Quartz Model: FBD_.TOGGLE_.SWITCH 325
F.29.Quartz Model: FBD.VENT CTRL\oonn ... 326
F.30.Quartz Model: FBD.WINDDIR 326
G.1. SCChart: FBD_.TWOOF_THREE 329
G.2. SCChart: FBD_.AIR.COND.CTRL v ... 329
G.3. SCChart: FBDLALARM e 330
G.4. SCChart: FBD_ANTIVALENCE 330
G.5. SCChart: FBD.OP_ARITH o i i it i e 331
G.6. SCChart: FBDBENDING v i ittt i 332
G.7. SCChart: FBD.OP.BOOL v it i it i e 333
G.8. SCChart: FBD_.CYLINDER o i it 334
G.9. SCChart: FBD.DATATYPES o i i it i 334
G.10.SCChart: FBD.DEBOUNCE o i v i it i 335
G.11.SCChart: FBD.DICE o i it 335
G.12.SCChart: FBD.KVDIAG o i ittt 337
G.13.SCChart: FBD.LEFTDET o i i it i i 337
G.14.SCChart: FBD.POLL« v ittt e 338
G.15.SCChart: FBD.LRES_.CTRL1 v i it i . 339
G.16.SCChart: FBD.LRES.CTRL2 v v i i it i e 339
G.17.SCChart: FBD.ROLLDOWN i it i i 340
G.18.SCChart: FBD_.CABLE.WINCH 341
G.19.SCChart: FBD_SEVEN.SEG o v i v ittt i 342
G.20.SCChart: FBD_SHOP_WINDOW o v v v v v i i 343

XX

Listings

G.21.SCChart: FBD_SILO_VALVE i i it 345
G.22.SCChart: FBD_SIMPLE FUN o v i i i it 345
G.23.SCChart: FBD_.SIMPLE PRG1 i v v i i 346
G.24.SCChart: FBD_SIMPLE PRG2 v v v i i i i i i 347
G.25.SCChart: FBD.SMOKEDET o v v it i i i 347
(G.26.SCChart: FBD_SPORTS_HALL v v it 348
G.27.SCChart: FBD_-THER.CODE o i i it i i i 349
G.28.SCChart: FBD_-TOGGLE_SWITCH 350
(.29.SCChart: FBD.VENT CTRL oottt et 351
(.30.5CChart: FBDWINDDIR oo oto e et 352
H.1. SCChart: STLALARM o i it e i s e 355
H.2. SCChart: ST_.LOOP_FOOT o v i i it 355
H.3. SCChart: ST.LOOP.HEAD o i it it i i s i 356
H.4. SCChart: ST.OP_ARITH o v v it ittt 357
H.5. SCChart: STLRS et e 357
H.6. SCChart: ST.-TWOOF_.THREE o v i vt 358
H.7. SCChart: FBD.OPBOOL v v v v vt e i e e 359
H.8. SCChart: FBD.DATATYPES o i i i it it 359
H.9. SCChart: FBD LKV DIAG o v i ittt i 360
H.10.SCChart: FBD.LEFTDET o v v e i e i it i 361
H.11.SCChart: FBD.ROLLDOWN i it i e 361
H.12.SCChart: FBD_.THER.CODE v v i i i it i it 362
H.13.SCChart: FBD_-TOGGLE_SWITCH« 362
K.1. MOVE_bool function derived from IEC 61131-3 [GDV14] 369
K.2. MOVE_float function derived from IEC 61131-3 [GDV14] 369
K.3. MOVE_int function derived from IEC 61131-3 [GDV14] 370

xxi

Chapter

Introduction

International standards, such as those set by the International Electrotechnical
Commission (IEC), in particular IEC 61131-3 [GDV14], describe the develop-
ment of software applications for industrial control systems with real-time
requirements, such as Programmable Logic Controllers (PLCs). IEC 61131-3
describes a set of languages for the development of PLC software applica-
tions, which are organized in so-called Program Organization Units (POUs).
In addition to common bitwise and arithmetic operators, in many cases POUs
contain predefined functions and function blocks from external libraries whose
internal behavior is unknown. In real-world applications, graphical Function
Block Diagrams (FBDs) and textual Structured Text (ST) models are widely
accepted and used languages for developing POUs. FBDs are characterized
by a graphical data flow notation, typically executed from left to right. They
often allow manual positioning and graphical linking of components such as
blocks and variables on a POU worksheet using visual edges. In contrast,
ST models allow the development of POUs in a textual, imperative language
derived from Pascal [Wir71]. Over the past two decades, in addition to these
traditional approaches, further methods have been explored with the goal of
streamlining the development of POUs through the use of modeling techniques
such as the Unified Modeling Language! (UML) [WV04]. This extended mod-
eling approach is reflected in modern PLC development environments, such as
provided by CODESYS [WV09]. Another trend in modern engineering tools
is code generation for POUs as part of a model-based design approach, such
as provided by Simulink [BAV0S].

The use of UML and integration with model-based design approaches pro-
vide advanced methods for simplifying the development process for new POUs.
However, rather than developing POUs from scratch, it is more common in
real-world applications to extend existing POUs with additional functionality
or logic during their lifecycle. These incremental extensions typically tend to
increase the structural complexity of the POUs. While text-based ST models
result in more lines of source code, graphical FBDs result in a greater number

"https://www.uml.org/

https://www.uml.org/

Chapter 1: Introduction

of graphical components. The readability of FBDs can be affected by this
increased complexity, as the number of components and connecting edges can
be perceived as chaotic, making it more difficult to understand. Another chal-
lenge is that formal verification techniques for POUs are essential, especially
in safety-critical applications. This requires the translation of existing POUs
into formal models, which is the bulk of research in the area of IEC 61131-3
applications. Since the goal is verification rather than functional reuse, in
most approaches the translations of existing POUs into formal models result
in domain-specific models. Overall, changes to industrial POUs can be very
time consuming and costly. These changes also require that the ITEC 61131-3
engineering approach be maintained. In real-world applications, this means
that a change in hardware that is not IEC 61131-3 compliant, or a change
in engineering approach, often results in scenarios where existing engineering
efforts cannot be reused (or only partially reused) and software applications
have to be developed from scratch.

In contrast, synchronous languages [BB91; Ben+03] have proven effective
for the design and formal verification of reactive real-time systems in research
and in isolated commercial model-based development environments, such as
SCADE [Le +11]. Two publicly available frameworks, which have estab-
lished a reputation in academia for model-based design and formal verifica-
tion are Averest? [SS06] and the KIELER? [Kas+24] project. Averest uses as
an input model the imperative synchronous language Quartz [SB16], which
is derived from Esterel [BG92]. KIELER uses several input models, includ-
ing the Sequentially Constructive Language (SCL) and the Sequentially Con-
structive Statecharts (SCCharts) [Han+14], where sequentially constructive
concurrency is a conservative extension of the classical Synchronous Model of
Computation (SMoC) [Han+13].

1.1. Contributions

Based on the challenges in real-world applications and the established reputa-
tion of synchronous languages, the following hypotheses H1, H2, and H3 are
formulated:

H1: ST-based and FBD-based POUs can be translated into synchronous
models without losing the original runtime behavior or level of abstrac-
tion (in terms of variables and structure). This translation enables reuse
in model-based design, supports formal verification, and allows intuitive
post-translation modification.

H2: The structural complexity of data-flow models in real-world applications
is often greater than the logic requires (in terms of variable accesses,
operators, and edges). This complexity can be reduced while preserving
the original functionality.

*http://www.averest.org/
*nttps://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

http://www.averest.org/
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

1.1. Contributions

H3: ST-based and FBD-based Quartz models can be synthesized into graph-
ical, control-flow oriented SCCharts. Specifically, applying a pattern-
based transformation process to FBD-based Quartz models yields hier-
archical, control-flow oriented SCCharts (if matching patterns are avail-
able), providing an alternative control-flow view for system analysis.

To answer these hypotheses, this thesis contributes to the field of reuse of ex-
isting IEC 61131-3 POUs in model-based design using synchronous languages
and their optimization within the synchronous paradigm. The contributions
can be divided into the following three categories derived from the hypotheses:

1. H1: Model-Based Design of Program Organization Units

The first contribution of this thesis focuses on a possible reuse of tex-
tual ST models 7, in model-based design using synchronous models by
introducing a detailed model transformation from w?, € QY to a cor-
responding Quartz model wy,, € 4, and SCL model wg € e, as
shown in Figure 1.1. The correctness of the transformations is proved
by theoretical reasoning, and the theoretical results are evaluated with
real-world and self-defined ST models.

Averest IEC 61131-3 KIELER

Dygrz < II wz Il Dl

Figure 1.1.: Contribution: ST-to-Quartz/SCL transformation

The second contribution focuses on a possible reuse of graphical FBDs
Q?b 4 in model-based design using synchronous models by introducing a
detailed model transformation from w?b i€ Q?b ; to a corresponding data-
flow oriented Quartz model wy, € £y, and data-flow oriented SCChart
Wsed € Qsed, as shown in Figure 1.2. The correctness of the transforma-
tions is proved by theoretical reasoning, and the theoretical results are
evaluated with real-world and self-defined FBDs.

Averest IEC 61131-3 KIELER

WDgrz i l w?bd l WDsed

Figure 1.2.: Contribution: FBD-to-Quartz/SCChart transformation

2. H2: Formal Methods-Based Optimization of Data-Flow Models

The third contribution focuses on a formal methods-based optimization
of data-flow models by introducing a configurable optimization process
of wy € Q4, as shown in Figure 1.3. The correctness of the optimization
process is proved by theoretical reasoning and ensured by integrated
equivalence checking. The optimization potential in real-world applica-
tions is evaluated by experimental results.

Chapter 1: Introduction

IEC 61131-3

@

4D

Averest PLCreX y) KIELER

T P
@, @ Wy,
~y ud ~—y s
)

Figure 1.3.: Contribution: Data-Flow Optimization

3. H3: Control-Flow Oriented SCCharts of Quartz Models

The fourth contribution focuses on the synthesis of Quartz models €.
into control-flow oriented SCCharts {2s.. by introducing a pattern-based
Quartz code refactoring intended for data-flow oriented Quartz models,
and a subsequent model transformation from wey,. € Q4,2 t0 Wsee € Qsee,
as shown in Figure 1.4. The correctness of the transformation is proved
by theoretical reasoning, and the theoretical results are evaluated with
real-world and self-defined Quartz models.

Averest KIELER

C Wqrz Dsce

Figure 1.4.: Contribution: Quartz-to-SCChart Transformation

These approaches have motivated the development of PLCreX?, a project for
simplification, transformation, analysis and validation of PLCs, which repre-
sents a further contribution of this thesis.

1.2. Related Work

There are various approaches to integrate model-based design concepts into
the TEC 61131 development process. For example, Thramboulidis and Frey
[TF11] explored the use of IEC 61499, UML®, and SysMLS to increase the
effectiveness of the IEC 61131 development processes. This extended mod-
eling approach is reflected in modern PLC development environments, such
as provided by CODESYS [WV09]. Furthermore, automatic translation of
UML models into IEC 61131-3 models has been proposed in [WV04] and the
translation of Matlab/Simulink /Stateflow models into IEC 61131-3 models in
[BAVO0S].

In the context of model-based testing, an application of model-based design
[ZSM11], Résch et al. [Ros+15] stated that most of the transformations of ST-
based and FBD-based POUs to formal models are performed for verification

“https://github.com/marwern/PLCreX
Shttps://www.uml.org/
Shttps://sysml.org/

https://github.com/marwern/PLCreX
https://www.uml.org/
https://sysml.org/

1.2. Related Work

purposes. This focus of research continues to this day. Various methods have
been developed to enable the application of formal verification techniques such
as model checking [CGPO1] and theorem proving [Har08]. For example, the
translation of FBDs into the Prototype Verification System [ORS92] has been
addressed in [New+16] and [New+18]. Transformation rules for converting
IEC 61131-3 FBDs to UPPAAL models [BDL04] were introduced in [STF12].
The application of UPPAL for the verification of Continuous Function Charts
(CFCs), which can be interpreted as extended FBDs [Bial6], was introduced
in [WFV09]. A mutation-based test generation using UPPAAL was explored
in [Eno+16]. Furthermore, Pavlovic et al. [PE10] outlined a process for ver-
ifying FBDs using the NuSMV model checker [Cim+00]. The translation of
POUs to an intermediate model compatible with the nuXmwv model checker
[Cav+14] was introduced in [Fer+15]. A regression verification technique by
translating POUs into the SMV language was proposed in [Bec+15]. Barbosa
and Déharbe [BD12] have focused on the B Method [CMO03] and presented an
approach to automatically translate IEC 61131-3 POUs into B machines. Ad-
ditionally, a theorem-prover supported verification was suggested in [VK02].
The formalization of POUs has also been addressed using proof assistants.
For example, Blech and Biha [BB13] have formalized the semantics of the
IEC 61131-3 languages in the formal proof management system Cogq [Berl6].
Yanhong et al. [Hua+19] have defined the operational semantics of ST models
within the K framework”. Apart from this, Darvas et al. [DMB16] stated that
the ST language can efficiently and conveniently represent all PLC languages
for formal verification purposes. In summary, these approaches highlight the
importance of translating IEC 61131-3 POUs into formal models to apply
advanced verification techniques.

There are further approaches that have been developed to enhance the test-
ing and verification of IEC 61131-3 POUs. For example, Jee et al. [Jee+09]
have introduced a data-flow-based structural testing technique for FBDs.
Xiong et al. [Xio+20] have presented a specification-mining-based verification
method tailored for IEC 61131-3 POUs. Apart from this, several frameworks
and tools have been developed to enhance the automation, verification, and
analysis processes. For example, PLCAutoTester [Shi+24] represents an unit
test case generation framework for ST models utilizing dynamic symbolic
execution. Furthermore, PyLC [Ebr+23; Sal+23] represents a Python®-based
framework that transforms ST-based and FBD-based POUs into Python. It
simplifies test creation through integration with the Pynguin [LF22] test gen-
erator. PLCwerif [DBF15] represents a user-friendly tool for model checking
of ST models, and Arcade.PLC [BBK12] offering a comprehensive verification
platform that supports static analysis and various model checking techniques
across multiple industrial programming languages. Research initiatives
like PLCreX [WS24b] further contribute to the ecosystem by enabling the
simplification, transformation, analysis, and validation of IEC 61131-3 POUs,
promoting reuse in model-based design and formal verification. A further

"https://kframework.org/
Shttps://www.python.org/

https://kframework.org/
https://www.python.org/

Chapter 1: Introduction

tool for static code analysis was introduced in [Pra+17]. Furthermore, the
integration of modern concepts that utilize Large Language Models (LLMs)
for automated test case generation was investigated in [Koz+24| and has been
integrated, among others, into the Agents/PLC [Liu+424] framework. It com-
bines LLM-based agents with retrieval-augmented generation and advanced
prompt engineering to automate PLC code generation and verification.

In contrast to the verification within IEC 61131-3, the functional reuse
of TEC 61131-3 projects within IEC 61499 projects has been explored by
various transformation approaches [Sun+08; Wen+09b; Wen+09a; DV12].
Among others, specific methods for encapsulating IEC 61131-3 ST models into
IEC 61499 function blocks have been developed in [WZ12]. Semantic correct-
ness is addressed by implementing auxiliary transformations that resolve dif-
ferences between the two standards in [Wen+09a]. Furthermore, synchronous
semantics for IEC 61499 function blocks have been proposed by Yoong et
al. [Yoo+07] that allows the application of verification techniques developed
for synchronous models. Overall, these efforts demonstrate a number of ap-
proaches for reusing and transforming IEC 61131-3 models into IEC 61499
models. However, Thramboulidis and Frey [TF11] stated that ”IEC 61499
does not provide any valuable benefit in enhancing the IEC 61131 development
process.”. Furthermore, according to Thramboulidis [Thr13], 7 /...] 61499 can-
not be considered as the effective successor of 61131 not even provide, at least
with the current version, a reliable alternative for the development of indus-
trial automation systems. 7. Cruz Salazar and Rojas Alvarado [CR14] rec-
ommended in 2014 that IEC 61499 should be applied in practice to existing
processes to get accepted by the industry. In 2020, a literature review by Lyu
and Brennan in the context towards IEC 61499-based distributed intelligent
automation [LB21] concluded: " [...] the first and foremost challenge for IEC
61499 industrial adoption is the widely adopted IEC 61131-8 systems, wide
ranges of IEC 61131-3 software/hardware products, and proven IEC 61131-3
practices and guidelines. Research on system transformation or coexistence in
the future is suggested to focus not only on the system redesign methodologies
but also on the approaches to reuse or integrate existing proven practices and
guidelines.”. According to the research published so far with reference to in-
dustrial applications, projects based on IEC 61131-3 still dominate industrial
automation systems and will probably continue to motivate further research,
especially in the context of reusability.

In addition to that, formal verification of real-time and reactive systems has
significantly benefited from the adoption of synchronous programming lan-
guages [BB91]. Over the past decades, synchronous languages have evolved
into a preferred technology for modeling, specifying, validating, and imple-
menting real-time embedded applications [Ben+03]. Notable languages in
this domain include the imperative synchronous language Esterel [BG92] and
Quartz [SB16] that is derived from FEsterel. SIGNAL, another synchronous
language, emphasizes real-time system programming through a mathemati-
cal model of multiple-clocked data and event flows using an equational ap-
proach [Le +91]. Lustre [Hal+91] represents a data-flow oriented synchronous

1.3. Outline

language. In contrast, graphical representations such as Statecharts extend
traditional state machines with hierarchical, concurrent, and communicative
elements, offering a description language that supports modularity and com-
prehensibility for complex systems [Har87]. SyncCharts [And95] based on the
synchronous paradigm and are syntactically close to Statecharts have further
enhanced the usability and expressiveness of synchronous paradigms. Further-
more, SCCharts [Han+14] were designed for reactive systems and are based
on a Sequentially Constructive Model of Computation (SCMoC) [Han+13]. In
summary, synchronous languages are proven models for the formal verification
and of real-time and reactive systems. Most of these languages are integrated
into model-based design frameworks or engineering tools, such as Quartz in
Averest, Esterel and Lustre in SCADE, and SCCharts in KIELFER.

As a consequence, few works have investigated the translation of IEC 61131-
3 POUs into synchronous languages. For example, Jimenez-Fraustro and Rut-
ten [JRO1] have introduced a synchronous model for ST models and FBDs
based on SIGNAL. Werner and Schneider [WS20] have outlined the suitabil-
ity of synchronous languages like Quartz for modeling existing POUs com-
pared to traditional FBDs. A translation process of CFCs to Quartz modules
for reuse purposes was introduced in [WS21]. Additionally, a translation from
FBDs to SCCharts was introduced in [WS22], which enhances functional reuse
and provides an alternative model view through code refactoring within the
synchronous paradigm. Furthermore, the translation of ST models into syn-
chronous Quartz models and models that follow the SCMoC was introduced
in [WS24a].

Optimization of data-flow models, especially in terms of minimizing hard-
ware implementation, is a broad and well researched area [Gom+09]. Further-
more, code optimization is a crucial part of software development, and various
techniques have been introduced to improve the performance, resources, and
readability of source code, such as simplifying Boolean logic using Karnaugh
maps [Karb3]. One of the challenges in optimizing code for industrial data-
flow models such as IEC 61131-3 FBDs is the lack of information of blocks
provided by external libraries. For this reason, Werner and Schneider [WS23]
have introduced an optimization process considering potentially optimizable
submodels and non-modifiable components of a data-flow graph.

1.3. Outline

The thesis starts with an introduction to IEC 61131-3 POUs and model-based
design using the Averest and KIFLER frameworks in Chapter 2.

The formal syntax and semantics of the relevant software models are defined
in Chapter 3. For this purpose, the definitions from existing descriptions and
specifications of the different software models are summarized and extended by
further aspects. The goal is to provide a formal specification of the individual
language constructs, which will be referenced in the following chapters.

Hypothesis H1 will be a direct result of Chapter 4, 5, 6, and 7. Specifically,
Chapter 4 defines a detailed model transformation from w¥, to wy,, and Chap-

Chapter 1: Introduction

ter 5 defines a detailed model transformation from w?, to wsy. Both model
transformations are evaluated with appropriate ST model examples. Simi-
larly, Chapter 6 defines a detailed model transformation from w?b 4 b0 wgr» and
Chapter 7 defines a detailed model transformation from w}"b 4 10 wseqg. These
model transformations are also evaluated with appropriate examples.

The outcome of Chapter 8 will confirm hypothesis H2. This chapter intro-
duces a configurable formal methods-based optimization approach of data-flow
models using NuSMV, SMT Z3Py, and PLCreX, and analyzes the average
optimization potential of real-world applications.

Finally, Chapter 9 will cover hypothesis H3. With the goal of synthesizing
Quartz models wg, . into control-flow oriented SCCharts wgc., Chapter 9 intro-
duces a pattern-based Quartz code refactoring intended for data-flow oriented
Quartz models, followed by a detailed model transformation from wg,. to wsee.

In addition to the summaries in the different chapters, a short summary of
the main results is given in Chapter 10.

Chapter

Background

Contents

2.1. IEC 61131-3 Program Organization Units 9
2.1.1. Textual Structured Text Models 10
2.1.2. Graphical Function Block Diagrams 10
2.2. The Averest-Framework 11
2.2.1. Synchronous Quartz Models 11
2.3. The KIELER-Framework 12
2.3.1. Sequentially Constructive Language Models 12

2.3.2. Control-Flow Oriented Sequentially Constructive State-
charts 13
2.3.3. Data-Flow Oriented Sequentially Constructive Statecharts 13
2.4. The PLCreX Project 14

This chapter introduces the main software models and frameworks used in
the following chapters. The first section provides an overview of IEC 61131-3
POUs, including both textual ST models and graphical FBDs. The second sec-
tion presents a model-based design approach using the Averest framework and
the Quartz language. Then, a text-first design approach using the KIELER
framework together with SCL, data-flow oriented and control-flow oriented
SCCharts is presented. Finally, the chapter introduces the PLCreX project,
which is used to evaluate the theoretical concepts in the following chapters.

2.1. IEC 61131-3 Program Organization Units

This thesis focuses on time-triggered applications, which are widely used in
IEC 61131-based PLCs [Thr13] and described as reactive systems with cyclic
data processing behavior [Bec+15]. In this model of computation, in each
cycle a process image of the input variables is first created. Then, during the
POU scan, the new values for the output variables (as determined by the POU

Chapter 2: Background

logic) are written to a dedicated buffer. Finally, the output values stored in this
buffer are transferred by the system to the output variables [Lew98; VK02].
This work focuses on the modeling of POUs, thus neglecting the process images
of the physical IEC 61131-3 system, but taking into account how instances
process interfaces. POUs are organized in POUs and implemented in one
of the two textual or one of the three graphical languages described in the
IEC 61131-3 standard [GDV14], where this thesis focuses on textual ST models
and graphical FBDs.

2.1.1. Textual Structured Text Models

The imperative sequential language ST is derived from Pascal and comes with
constructs typical for the implementation of sequential algorithms [GDV14].
Unlike in Pascal, recursion is not allowed! in traditional ST-based POU vari-
ants Program, Function, and Function Block [Lew98; JT10]. A simple ST
example is shown in Listing 2.1 using a rising edge detector [GDV14]. Basi-

FUNCTION_BLOCK R_TRIG
VAR_INPUT CLK: BOOL; END_VAR
VAR_QUTPUT Q: BOOL; END_VAR
VAR M: BOOL; END_VAR

Q : CLK AND NOT M;
M : CLK;
END_FUNCTION_BLOCK

Listing 2.1: ST model of a rising edge detector

cally, statements in ST models are executed sequentially, depending on their
order within the POU. In contrast to the SMoC and SCMoC, every statement
basically consumes time greater than zero, which is a crucial aspect of the
transition from ST to synchronous models and will be addressed in more de-
tail in the following chapters. The formal syntax and semantics of the relevant
ST constructs in this thesis are specified in Section 3.2.

2.1.2. Graphical Function Block Diagrams

Graphical FBDs are implemented by dragging and dropping predefined
or user-defined functions, function blocks, constants, or variables onto a
workspace. The visual connection of these elements represents the flow of
data from left to right [Lew98; GDV14], where functions and function blocks
are executed according to their individual execution order identifiers. CFCs
provide a less structured approach with more flexible placement and connec-
tion of blocks and variables [Lew98], and are thus interpreted in research as
extended FBDs [Bial6]. Some PLC development environments imply the
flexibility of CFCs in IEC 61131-3 FBDs, such as Beremiz? and SafetyProg®.

'Recursion is possible in the context of object-oriented TEC 61131-3 features [GDV14].
*https://beremiz.org/
Shttps://www.phoenixcontact.com/de-de/produkte/software/sps—-programmierung

10

https://beremiz.org/
https://www.phoenixcontact.com/de-de/produkte/software/sps-programmierung

2.2. The Averest-Framework

For this reason, FBDs will be treated with the flexibility of CFCs in the
further course of this thesis, and CFCs will simply be referred to as FBDs.
A simple FBD example is shown in Figure 2.1 using the rising edge detector
[GDV14]. Similar to statements in ST models, functions, function blocks, and

CLK
L
- L 9 45

[m +— NOTM ®
CLK ‘—’T@b

Figure 2.1.: FBD of a rising edge detector

assignments in FBDs are executed sequentially according to their individual
execution order identifiers (such as the order labeled with red numbers in
the example). Consequently, the consumption of time greater than zero is
again a crucial aspect of the transition from FBDs to synchronous models
and will therefore be addressed in more detail in the following chapters. The
formal syntax and semantics of the relevant FBD constructs in this thesis are
specified in Section 3.2.

2.2. The Awverest-Framework

Awverest is a framework for model-based design of embedded systems that
includes a set of tools for simulation, synthesis, verification, synthesis, and
other purposes [SS06]. In particular, it includes a compiler that translates
models implemented in the imperative synchronous Quartz language into a
symbolically represented transition system in Awerest’s interchange format.
This enables the use of Quartz models in a model-based design approach and
formal verification. Therefore, the transformation of IEC 61131-3 POUs to
Quartz is a key objective of this thesis.

2.2.1. Synchronous Quartz Models

Quartz models are organized in modules and can include user-defined functions
via preprocessor directives and instantiate other Quartz modules [Sch09]. A
simple example is shown in Listing 2.2 using the rising edge detector [GDV14].

module R_TRIG(bool ?CLK, bool !Q){
bool M;

Q = CLK & !M;
next (M) = CLK;
pause;

}

Listing 2.2: Quartz model of a rising edge detector

11

Chapter 2: Background

Quartz follows the classical SMoC [Hal98; Ben+03; Sch09], i.e., a model is
partitioned into macro steps, which correspond to interactions between the
reactive system and its environment, and micro steps, which are executed
in zero time. The macro steps can be separated in Quartz with the special
statement pause [Sch09], which stops the control flow at this statement. The
control flow will resume at this point in the next macro step, assuming there
is no surrounding suspension or abortion. In each macro step, first all input
variables are read, then all output variables are computed with respect to
the internal state. At the end of each macro step, the internal state will be
updated. This is a crucial aspect of the transformations and will be addressed
in more detail in the following chapters. The formal syntax and semantics of
the relevant Quartz constructs in this thesis are specified in Section 3.3.

2.3. The KIELFER-Framework

The KIELER framework is a text-first approach for the automatic diagram-
ming of complex systems. It is designed to combine textual and diagrammatic
representations by automatically synthesizing text-based models into visual
diagrams [Kas+24]. KIELER supports multiple languages in model design
and can synthesize models written in different domain-specific languages. For
example, it includes SCCharts [Han+14] and the imperative SCL language
[Han+13]. In the further course of this thesis, SCCharts will be distinguished
between control-flow oriented and data-flow oriented [Gri4+20]. As a result,
another key objective of this thesis is to transform IEC 61131-3 POUs into
SCL models and SCCharts.

2.3.1. Sequentially Constructive Language Models

The SCL language was introduced to illustrate the SCMoC [Han+13] and
similar to Quartz, they are organized in modules. A simple example is shown
in Listing 2.3 using the rising edge detector [GDV14]. Unlike the traditional

module R_TRIG{
input bool CLK;
output bool Q;

bool M;
Q = CLK & !'M;
M = CLK;

¥
Listing 2.3: SCL model of a rising edge detector

SMoC, the SCMoC allows variables to be read and written in the same macro
step, as long as program sequentiality provides sufficient scheduling informa-
tion to prevent race conditions [Han+13]. As a result, this language style is
close to the style of traditional imperative languages such as ST, which is de-
rived from Pascal. SCL programs also work in macro steps, where in each step
first all inputs are read, and then all active (currently instantiated) threads are

12

2.3. The KIELER-Framework

executed until they either terminate or reach a pause statement, and at the
end output variables are written to the environment [Han+13]. The formal
syntax and semantics of the relevant SCL constructs in this thesis are specified
in Section 3.4.

2.3.2. Control-Flow Oriented Sequentially Constructive State-
charts

SCCharts were introduced in the context of safety-critical reactive systems
[Han+14] and are described in this thesis as control-flow oriented SCCharts
to distinguish them from data-flow oriented SCCharts [Gri+20]. A simple
example is shown in Figure 2.2 using the rising edge detector [GDV14] and
both representations, the textual SCChart on the left and the resulting graph
on the right. SCCharts are based on the SCMoC, which ensures deterministic

R_TRIG
scchart R_TRIG {

1

2 input bool CLK

3 output bool Q @
1

bool M
1
6 region: :/ Q=CLK & 'M;
7 initial state SO I' M=CLK
8 immediate do Q = CLK & ! !

M; M = CLK go to S1
9 final state S1
10 }

Figure 2.2.: Control-flow oriented SCChart of a rising edge detector

concurrency and that accesses to shared variables are sequenced to avoid con-
flicts despite concurrency [Han+14]. The formal syntax and semantics of the
relevant control-flow oriented SCChart constructs in this thesis are specified
in Section 3.5.

2.3.3. Data-Flow Oriented Sequentially Constructive State-
charts

Data-flow oriented SCCharts are an extension of the traditional control-flow
oriented SCCharts and were introduced as part of a transformation approach
from Lustre to SCCharts [Gri420]. A simple example is shown in Figure 2.3
using the rising edge detector [GDV14], forced sequential scheduling, and both
representations, the textual SCChart on the left and the resulting graph on
the right. The data-flow extension is based on the SCMoC, which supports
deterministic programming with sequential scheduling information [Gri+20].
Although this adaptation provides a framework where data-flow models can be
seamlessly combined with control flow structures, this thesis distinguishes be-
tween control-flow oriented SCCharts and data-flow oriented SCCharts. The
formal syntax and semantics of the relevant data-flow oriented SCChart con-
structs in this thesis are specified in Section 3.5.

13

Chapter 2: Background

scchart R_TRIG{
input bool CLK
output bool Q
bool M

[N N I

6 dataflow:
Q = CLK & 'M;
8 M = CLK;

~

Figure 2.3.: Data-flow oriented SCChart of a rising edge detector

2.4. The PLCreX Project

PLCreX [WS24b] is a modular command line interface application tailored for
IEC 61131-3 ST models, FBDs, and beyond. The project was initially moti-
vated by research related to this thesis and is designed with a focus on issues
such as verification, reuse, and reliability, among others. The high-level archi-
tecture, design principles, and interfaces to external frameworks are shown in
Figure 2.4. PLCreX is being developed in Python and is intended to be used

e

_|PLCreX

€
x
a <
m
L - .
External Validation
(S C
FeD !
= XML-Validator .
.
1
-
Transformation
! scL po=ess P! (source-to-source \
.S
SCCharts = FBD-to-ST
"7)) m FBD-to-SCCharts (Data-Flow)
¢ [[S » ST-to-Quartz
= ST-to-SCL
m ST-to-SCCharts (Control-Flow)
r _______ ‘> " ...
1
1
1
| v
! Analysis
2 - -
5|3 Simplification Stp \ tegen \
5’ § 5] fodopt = ST-Parser = Test-Case-Generator]
= . n .
a g = FBD-Optimizer ieccheck | fhdia \
& u IEC-Checker || u I/O-Impact Analysis]

console Static Analysis
Results

console
Test Cases

console Validation
Results
.dot/.txt Abstract
Syntax Tree
.dot 1/0-Impact
Analysis

.qrz/.scl/
-sctx Synchronous
< Models
.- -1 | KIELER

! Averest

Figure 2.4.: High-level architecture and design principles of PLCreX [WS24b]

as an interface between traditional IEC 61131-3 POUs and the Averest and
KIELER frameworks, or as a stand-alone analysis tool for real-world POUs

14

2.4. The PLCreX Project

and their challenges. Although the detailed design flow depends on the indi-
vidual feature, the basic concept of PLCreX is to process the models internally
as an abstract syntax tree-like model, which is called PLCreX Intermediate
Model (PIM) [WS24b]. The core features can be divided into four categories.

1.

Simplification: This feature simplifies data-flow models following the
optimization process introduced in Chapter 8.

. Transformation: This category combines various model-to-model

transformations that can be linked together.

Analysis: This category combines solutions for real-world challenges.
As an example, it includes test case generation considering statement
coverage, decision coverage, modified condition/decision coverage, and
multiple condition coverage [Kel+01].

. Validation: This feature is intended to validate POUs that are pro-

cessed as PLCopen xml format [PLCO09].

15

Chapter

Syntax and Formal Semantics

Contents
3.1. Preliminary Definitions 18
3.2. IEC 61131-3 FBDs and ST Models 21
3.2.1. POU Variants and Declaration 21
3.2.2. POU Interfaces 21
3.2.3. Local Variablesin POUs 22
3.2.4. Elementary IEC 61131-3 Data Types and Fields. 22
3.2.5. Expressionsin POUs 23
3.2.6. POU Invocations in POUs 24
3.2.7. Assignments in POUs. 25
3.2.8. Conditions in ST Models 25
3.29. Loopsin ST Models. 26
3.2.10. Sequences in POUs 26
3.3. Quartz Models 27
3.4. SCLModels 28
3.5. SCCharts 29

This chapter introduces the syntax and formal semantics of the considered
software models. For this purpose, the definitions from existing descriptions
and specifications of the various software models are summarized and extended
with additional aspects. The goal is to provide a formal specification of the
individual language constructs that will be referenced in the following chapters.
The methodology is demonstrated in detail using IEC 61131-3 ST models and
FBDs as examples (with isolated list items moved to the appendix). For the
sake of readability, the other software models are summarized with references
to the definitions in the appendix.

To this end, the first section provides an overview of the notations and state-
ments. The second section defines the syntax and semantics of IEC 61131-3

17

Chapter 3: Syntax and Formal Semantics

ST models and FBDs. Then the syntax and semantics of Quartz are summa-
rized. The last two sections summarize the syntax and semantics of SCL and
SCCharts.

3.1. Preliminary Definitions

This section introduces the symbols and notations that will be used through-
out the following chapters. These notations are essential for a complete un-
derstanding of the content of the subsequent chapters. As a first notation, the
structural operational semantics (SOS) transition rules [Plo04] are defined as
follows:

e f: denotes an instantaneous flag, which represents a micro step or cur-
rent PLC cycle if true, macro step otherwise, but still the same PLC
cycle [WS24a]

e ¢: denotes the environment of a current PLC cycle or macro step in
synchronous models

e Y: denotes a set of statements to be executed
® (1 A+ A py: denotes assumptions
e [@]¢: denotes the evaluation of @ in environment &

e X': denotes the residual set of statements for the next micro step or
macro step (depending on f)

e D: denotes the set of actions that are executed in the current step

Equation 3.1 represents SOS transition rules with assumptions and Equa-
tion 3.2 SOS transition rules that are always true, i.e., 1 A -+ A @y, := true.

©1A AP

(€, %) —» (,D, f)

(3.1)

(€,5) —> (2, D, f) (3.2)

Furthermore, the type system of expressions is defined using the following
notation:

® T iy - Ty :ay: denotes the set of arguments
e 7: denotes an expression instance

e [3: denotes the resulting data type
Equation 3.3 represents the full notation for type system definitions.
T - Q1 = T - Op
T: B

The PLCopen related symbols [PLC09] are defined as follows and will be used
frequently in the following chapters:

(3.3)

18

3.1. Preliminary Definitions

e a,: denotes the name attribute (name)

e a;n: denotes the instance name attribute (instanceName)

e a;n: denotes the type name attribute (typeName)

e a.os: denotes the execution order identifier attribute (executionOrderId)
e a,: denotes the reference local identifier attribute (refLocalld)
e a;;: denotes the local identifier attribute (localId)

e asp: denotes the formal parameter attribute (formalParameter)
e ¢.: denotes an expression element (expression)

e cyinst: denotes a block instance identifier (block)

® ¢,7un: denotes a user-defined function block identifier (block)

e ¢,7un: denotes a function identifier (block)

e ¢4: denotes a derived identifier element (derived)

e ¢;: denotes an interface element (interface)

e e,7: denotes a return type element (returnType)

e e;ys: denotes a local variable element (LocalVars)

e ¢;vs: denotes an input variable element (inputVars)

e e,y denotes an output variable element (outputVars)

e ¢;ovs: denotes an inout variable element (inOutVariables)

e ¢;i: denotes an block input variable element (inVariable)

e e,: denotes an block output variable element (outVariable)

e ¢;,oy: denotes an block inout variable element (inOutVariable)

There are also generic notations used in the specifications and algorithms,
which are defined as follows:

e [3]: denotes an optional element @

rhs (@) denotes the right-hand side of @
lhs (@) denotes the left-hand side of @

n': denotes an integer expression

n": denotes a floating-point expression

A: denotes a bit vector expression

e \’: denotes a boolean expression

m, k,x,y,w: denotes a variable or compile-time constant expression

Z: denotes the set of input variables

e (0: denotes the set of output variables

19

Chapter 3: Syntax and Formal Semantics

Overall, Table 3.1 provides a comprehensive overview of the considered lan-
guage constructs and definitions of the various software models, where control-
flow oriented SCCharts denoted as SCChart. and data-flow oriented SCCharts
denoted as SCCharty. It is worth noting that the overview does not show all
supported instruction sets of the languages, but only those (and specific in-
struction set combinations) that are relevant for the approaches in this thesis.

Table 3.1.: Overview of software model syntax and semantics definitions

S| S
— =
N ® 3o}
= < | < . .
Construct A) = | O | O Description
= | A 5= 10O |0 | O
n |~ Q| n | wn | n
qle] © 1 1 - - - - POU variant
9 Ow 1 1 1 1 1 1 declaration
Aimports - - 1 - - 1 imports
JAYS 1 1 1 1 1 1 input variables
Nidel Aout 1 1 1 1 1 1 output vars.
Ninout 1 1 1 1 1 1 inout variables
A Alocal 1 1 1 1 1 1 local variables
vdel Ninst 1 1 - - 1 1 instance vars.
Apy 1 1 1 1 1 1 bit vector vars.
A Adgur 1 1 1 1 1 1 || duration vars.
A; 1 1 1 1 1 1 || integer vars.
A, 1 1 1 1 1 1 float variables
A* 1 1 1 1 1 1 || data type fields
Tarith 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 || arithmetic expr.
Tow 1-3 13|13] 1-3 | 1-3 | 1-3 || bitwise expr.

T Teomp 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 || comparison expr.

Teond 1-3 13| 1-3 | 1-3 | 1-3 | 1-3 || conditional expr.
Tmise 1-3 | 1-3 | 1-3 | 1-3 | 1-3 | 1-3 || misc. expr.
Yabort - - 2 - 2 - abortions
Yass 2 2 2 2 2 2 assignments
anait - - 2 - 2 - wait stats.
Yicone - - 2 - 2 2 parallel stats.
by Ycond 2 - 2 2 2 - conditions
Yhalt - 2 - 2 - halt stats.
Yiinw 2 2 2 - - 2 invocations
loop 2 - 2 2 2 - loops
Znothing - - 2 - 2 - nothing stats.
Yipause - - 2 2 2 - pause stats.
Yseq 2 2 2 2 2 2 sequences

Notes: syntax and semantics defined (1), syntax and SOS transition rules
defined (2), type system defined (3), no definitions (-)

20

3.2. IEC 61131-3 FBDs and ST Models

3.2. IEC 61131-3 FBDs and ST Models

This section provides an overview of the syntax and semantics of an FBD
wfbd € Q?bd and an ST model w?, € Q% where wi,, € {wfbd,wﬁ}. The def-
initions of syntax and semantics are based on IEC 61131-3 [GDV14] and a
transformation from ST to synchronous models [WS24a]. It is worth not-
ing that the definitions are limited to the constructs that are relevant in the

following chapters.

3.2.1. POU Variants and Declaration

There are different POU variants ¢, where this thesis considers the variants
program (p = prg), function block (¢ = fb), and function (p = fun), which are
defined as follows:

Definition 3.1 (Syntax of POU elements). The syntaz of wpy, is declared
as follows, assuming fized order of Niger(wWhou), Dvdet(Whou), and E(wpo) (see
Appendiz A.1.1 for the full list):

4oy | FUNCTION_BLOCK an (Wit

b o b b b

o Su(whou) = [Aiger(wit)] [Avaa(@il)] [S(wil)]
END_FUNCTION_BLOCK

Definition 3.2 (Semantics of POU elements). The semantics of wpo
are defined as follows (see Appendiz A.1.1 for the full list):

. ﬂéw(wggu)]]g d:ef{ defines a POU element w}fﬁ’u with 2(w£§u), started at

time t with initial conditions set by Aidd(w;fé’u) and Avdcl(wggu) when
invoked, terminating at time t + 0 and preserving internal state across
invocations by another POU element, i.e., w}fé’u has memory }

3.2.2. POU Interfaces

POUs may be equipped with interfaces A;qe(wpou), Where this thesis considers
input variables Ay, (wpoy), output variables Ay (wpoy), and inout variables
Ainout (Wpou), which are defined as follows:

Definition 3.3 (Syntax of POU interfaces). The syntaz of Ain(wpou),
Aout(Wion)s and Aipout(wiou) s defined as follows (see Appendiz A.1.2 for
the full list):

VAR_QOUTPUT
[+]

x1 oo [i=wi];
de
L4 Aout(w;)oou) :f n
+

T ¢ Oy Li=wn];
END_VAR

21

Chapter 3: Syntax and Formal Semantics

Definition 3.4 (Semantics of POU interfaces). The semantics of
Ain(Whou); Dout(Wiou), and Nipout(wpou) are defined as follows, noting that
field elements can only be used as input variables, output variables, and
inout variables of function elements, and as inout variables of function block
elements (see Appendix A.1.2 for the full list):

° [[Aout(wyfou)]]g d=ef{ defines a set of variables x1,...,x, with correspond-
ing data types [[ozgﬂ]]g, e [[oz,[;]]]g. These variables are assigned to op-
tional predefined default values [wi]e, ..., [wn]e at time t when wyy, is
1mvoked, and passed to invoking element with final computed values when
Wpou terminates at time t+0, i.e., all instructions of wye, have been pro-
cessed in the current PLC cycle. }

3.2.3. Local Variables in POUs

POUs may contain local variables Avdcl(wlfou), where variables are dis-
tinguished between standard variables Ajcq(wpon) and instance variables
Ainst(Wpou), which are defined as follows:

Definition 3.5 (Syntax of local variables in POUs). The syntax of
Aocat (Wpou) and Aipsi(wiou) s defined as follows (see Appendiz A.1.8 for
the full list):

VAR
21 ¢ ol =]
L4 Alocabl(wfou) d:ef
Ty a£L+][:=wn];
END_VAR

Definition 3.6 (Semantics of local variables in POUs). The semantics
of Njocat(Wpou) and Aipsi(wiou) are defined as follows (see Appendiz A.1.3 for
the full list):

o [Apocar(wipou)]e d:ef{ defines a set of variables x1,...,x, with correspond-
ing data types [[a][f]]]g, ce [[agf]]]g. Depending on the POU variant, the
variables keep their values from previous invocation or are assigned to
optional predefined default values [wi]e, ..., [wn]e at time t when whyy is
invoked. These variables can be modified and processed locally until wpy,
terminates at time t+0, i.e., all instructions of wpe, have been processed
in the current PLC cycle. }

3.2.4. Elementary IEC 61131-3 Data Types and Fields

IEC 61131-3 POUs are capable of processing a variety of elementary data types
A(wio,) and fields A* (wjoy), where this thesis considers bit vector data types
Apo (wiou), integer data types Ai(wpou), floating-point data types Ar(wpou),

22

3.2. IEC 61131-3 FBDs and ST Models

numeric data types A;(wpou) U A (Wpow), and duration data types Agur(wiou)-
Furthermore, it is assumed, that array indices start at index O by default.
A(wiou) and A" (wjpy,) are defined as follows, where the semantics are defined
as a tuple (KXMIN>, <MAX> <DEFAULT>):

Definition 3.7 (Syntax of elementary IEC 61131-3 data types and
fields). The syntaz of a(wpou) € Alwpou) and ot (wWhow) € A" (wiou) is defined
as follows (see Appendiz A.1.4 for the full list):

Syntaz of bit vector data types apy(wpou) € Apy(Whou):

o ol (wh,,) = & {BOOL} denotes boolean values

byte def

o " (wjou) = {BYTE} denotes single byte bit masks

def

o ad(w¥,,) = {WORD} denotes two byte bit masks

Definition 3.8 (Semantics of elementary IEC 61131-3 data types and
fields). In accordance with IEC 61131-3 and assuming the limitation of the
duration data type o'im¢(whyy,) to 32 Bit, the semantics of a(wiou) € A(wiou)
and ot (Whow) € A" (wpou) are defined as follows (see Appendiz A.1.4 for the
full list):

Semantics of bit vector data types apy(wpou) € Apy (Whou):

o [abool(win)]e d:ef({false true}, false)

byte pou)]]ﬁ <{Oohew7 ffher} OOhem)
def
(

oﬂa

o [aPord(win)]e = ({0000es, £££E ey }, 00005,)

3.2.5. Expressions in POUs

IEC 61131-3 POUs are capable of processing a wide range of expres-
sions T (wpou), where this thesis considers constants and general expres-
sions Tmisc(Wpou), comparison operators Teomp(wipou), arithmetic opera-
tors Tarith(wpou), bitwise operators Tpy(wpou), and conditional operators
Teond(Wion), which are defined as follows':

Definition 3.9 (Syntax of expressions in POUs). The syntar of

Tmisc(w;fou% %omp(w;fou); Erith(wgou); ﬁv(wgou% and %ond(w;fou) is defined
as follows (see Appendiz A.1.5 for the full list):

Syntaz of comparison operators Teomp(Whou) € Teomp(Wiou) -

€ =)] = st .
hd 7_comp((v‘)pou) = {7"1 772} Zf £ denotes equality
{EQ(Wl ’772)}3 ’Lng € {St7fbd}

'For ST models, it is possible to use the operators as equivalent function calls [GDV14].

23

Chapter 3: Syntax and Formal Semantics

denotes inequality

(w?)def {m <> mo}, ifp=st
Teomn(h00) =) (g ey)} i o (st fod)

Definition 3.10 (Type system of expressions in POUs). The type
system of T(wpou) is defined as follows (see Appendiz A.1.5 for the full list):

Type system of comparison operators Tosmp(wiou) € Teomp(Wpou), where 7 € {eq,
ne, gt, ge,lt,le}:
1:awpou) T2t a(Whou)

7—comp (Wpou) abgOl (wPOU)

Definition 3.11 (Semantics of expressions in POUs). The semantics of
T(wpou) € T (wyou) are defined as follows (see Appendiz A.1.5 for the full list):

Semantics of comparison operators Teomp(wyou) € Teomp(Wpou):

o [emp(whou)]e “ [m1le =[],
s [[comp(wZJOu)]]ﬁ [[71'1]]£ * [[71-2]]5

Definition 3.12 (SOS transition rules of expressions in POUs). The
SOS transition rules of T(wpou) € T (Wpou) are defined as follows:

o (&7 (wh)) —> (nothing, {[r(wEn)]e}, true)

3.2.6. POU Invocations in POUs
It is possible for POUs to invoke user-defined functions »/

i o (Wpou) and func-

tion blocks E{:v (wpou)- During the execution of these invoked models, the

execution of the invoking POU is paused and resumed when the instance ter-
minates. As mentioned in Section 3.2.1, only function blocks have memory.
However, both functions and function blocks terminate within the same PLC
cycle.

Definition 3.13 (Syntax of POU invocations in POUs). The syntax

of Umv(wpou) € Z{m(wpou) and amv(wpou) € E{gv(w‘fou) is defined as follows,

where elements of graphical FBDs can be derived from PLCopen export:
def
o oh i) @ (k] (W), O], (W) 3]

o ol (whod) @ (k@] (i) 51

Definition 3.14 (SOS transition rules of POU invocations in
POUS) The SOS transition rules of Jlfm(w;fou) € mv(wpou) and

mv (wpou) € E{:U(wpou) are defined as follows:

o (£, 0inw) L, (nothing, {[k]¢}, true)

24

3.2. IEC 61131-3 FBDs and ST Models

3.2.7. Assignments in POUs

POUs can be classified into two categories with regard to their assignments.
In this thesis, they are called (1) immediate assignments $"™ (w),,), where
the evaluation of the expressions is independent of the variable which shall be
assigned, and (2) delayed assignments Y2 (wf,,) if not. For this reason, a
sequential dependency between evaluation of the expressions and assignment

must be considered.

Definition 3.15 (Syntax of assignments in POUs). The syntax of
gimm (e) e Simm(yr) and 09 (wh,) € B9 (wih,) is defined as follows,

where assignments in graphical FBDs can be derived from PLCopen export:

oimm (w8, Y w =1)
ggé(“’pou) def{ z = 7(1); }

Definition 3.16 (SOS transition rules of assignments in POUs). The
SOS transition rules of o™ (wiy,) € TV (wi,,) and o (wihy,) € 24 (wh,)

are defined as follows:

o (& oimm) N (nothing, {x = [7]¢}, true)

’ass

o (&, 00 L, (nothing, {x = [T(x)]¢}, true)

’ass

3.2.8. Conditions in ST Models

ST models are capable of processing different variants of condition statements,
where this thesis considers if-then conditions Eé(m J(w%) and if-then-else con-
ditions X¢ (w¥).

Definition 3.17 (Syntax of conditions in ST models). The syntax of

ot (wh)eXt (wf) and o'tf (wh) € B (w?) is defined as follows (see

Appendiz A.1.6 for the full list):

e oyt [TF N0l (w5)) THEN S1(015,(w5)
T cond ¥ ELSE ¥5(0c (w?)) END_IF

Definition 3.18 (SOS transition rules of conditions in ST
models). The SOS transition rules of o ,(w%) € % (w%) and
olte (wf) e XMe (w¥) are defined as follows (see Appendiz A 1.6 for

O cond

the full list):

SOS transition rules of o't¢ (w%) € B¢ (w%):

25

Chapter 3: Syntax and Formal Semantics

[[)\b]]g =true A (£, 21) N (nothing, D1, true)
. (€ IF A\’ THEN ¥,
| ELSE X, END_IF

}) LN (nothing, D1, true)

[[)‘b]]g = false A (§,X2) LN (nothing, Do, true)
i (€ IF * THEN ¥,
| ELSE X, END_IF

}) LN (nothing, Da, true)

3.2.9. Loops in ST Models

ST models are capable of processing different variants of loop statements,
where this thesis considers bounded foot-controlled loops X7 (%) and

loop
bounded head-controlled loops Efge(%d(wz).

Definition 3.19 (Syntax of loops in ST models). The syntaz of

Ul];‘;‘;f(w;’;) € E{;‘Z(wﬁ) and oﬁ)i‘;d(wﬁ) € Zﬁfo‘;d(wﬁ) is defined as follows (see

Appendiz A.1.7 for the full list):

loop

Y (ofead(w¥)) END_WHILE

o0op
loop

WHILE M\°(oleed(w,¥)) DO
° O.lhead(wcspt) dszf{ (U (wst))

Definition 3.20 (SOS transition rules of loops in ST models). The
SOS transition rules of al{)‘;‘;(wz) € E{OZf(wz) and afof;c;d(wﬁ) € Eff;‘;d(wﬁ)

are defined as follows (see Appendiz A.1.7 for the full list):

1z head (, @ head(, \#\.
SOS transition rules of ojp (W) € Xpns M (wg):

[[)\b]]g =true A (£, %) LN (nothing, D, true)
WHILE A’ DO T
<£a { -

> END_WHILE)

. WHILE)\’ DO
(nothing, {D,{ D END WHILE }},true)

[[)\b}]5 = false

. WHILE \° DO T .
<£’{ >} END_WHILE }> — (nothing, {},true)

3.2.10. Sequences in POUs

A set of the aforementioned statements is called a sequence Yeq(wpou). By
default, the statements are executed sequentially, and the sequence terminates
when the last statement is terminated. This is true for both ST models and
FBDs.

Definition 3.21 (Syntax of sequences in POUS). The syntaz of a sequence
Yseq(Wpou) is defined as follows, where sequences in graphical FBDs can be
derived from PLCopen export:

26

3.3. Quartz Models

o1 (Wpou) s
o Sglfn) T
Un(w;fau);
Definition 3.22 (SOS transition rules of sequences in POUs). The

SOS transition rules of a sequence Xseq(wpou) are defined as follows, where &'
represents the updated environment:

(&, 01) N (nothing, D1, true) A (&', 02) N (nothing, Do, true)
(€. (015023 }) —> {nothing, {D1; Do}, truc)

3.3. Quartz Models

The following summary of syntax and semantics of a Quartz model wy;. € Qg
is based on [Sch09; SB16; WS24a| and it is worth noting that the definitions
are limited to the constructs that are relevant in the following chapters.

There is one variant of Quartz model elements called module (see Ap-
pendix A.2.1), which can be imported and instantiated by other Quartz mod-
ules. The imported Quartz models are grouped as a set Ajpmports(wWqrz) (see
Appendix A.2.2).

Furthermore, Quartz models may be equipped with interfaces Ajqq(wqrz)-
More specifically, these are input variables A;,(wqr.), output variables
Aout(wgrz), and inout variables Ajpoyt(wqrz). There are two categories of
storage classes: (1) event variables are reset to their default values when
they are not assigned in the current macro step, and (2) memorized variables
retain the values of the previous macro step, unless assigned to new values
in the current macro step (see Appendix A.2.3) [Sch09]. Quartz models may
also contain local variables Aygei(wqrz) (see Appendix A.2.4).

Quartz models are capable of processing a variety of elementary data types
A(wgrz) and fields A*(wgr»), where this thesis considers the variants intro-
duced in Section 3.2.4 (see Appendix A.2.5).

In addition, Quartz models are capable of processing a wide range of ex-
pressions 7T (wqrz), where this thesis considers the variants introduced in Sec-
tion 3.2.5 (see Appendix A.2.6).

Quartz comes with different variants of abort statements Xgport (wgr-), where
this thesis considers regular abort statements X729 (wqrz) and immediate abort
statements X" (wqr) (see Appendix A.2.7). In general, these statements are
used to evaluate a condition in each step, which controls the execution of inner
statements.

Moreover, Quartz models can be classified into two principal categories with
regard to their assignments Xqqs(wgrz), where this thesis considers the vari-
ants introduced in Section 3.2.7. Consequently, it is necessary to consider
the sequential dependency between evaluation and assignment. Due to the
SMoC, an assignment to the left-hand side using delayed assignments is only
permitted in the subsequent macro step (see Appendix A.2.8).

27

Chapter 3: Syntax and Formal Semantics

There are statements in Quartz models where sequential execution stops un-
til a Boolean condition becomes true. These statements are await statements
Lawait(Wqrz), where this thesis Considers reqular await statements Ezzgait(wqm)
and immediate await statements X", (wqr2) (see Appendix A.2.9).

In addition to Quartz sequences, there are statements for parallel execu-
tion, where this thesis considers synchronous concurrency Eeone(wgrs) (see
Appendix A.2.10). It is worth noting that as long as the statements do not
terminate, they execute their macro steps synchronously in lockstep, i.e., state-
ments may interact during concurrent execution.

Quartz models are capable of processing different variants of conditions
Ycond(wqrz), where this thesis considers the variants introduced in Section 3.2.8
(see Appendix A.2.11).

There are a statements in Quartz models to stop the sequential execution,
which are called halt statements ¥p,q:(wqr2) (see Appendix A.2.12).

It is possible in Quartz models to invoke other Quartz models through the
use of statements Xy, (wgr») (see Appendix A.2.13). It is worth noting that
there is a significant dependency on whether the invoked instances are executed
sequentially or in parallel, because due to the SMoC, statements may interact
during concurrent execution.

Quartz models are capable of processing different variants of loops
Yioop(wiy), where this thesis considers the variants introduced in Section 3.2.9
(see Appendix A.2.14). It is worth noting that body statement must not be
instantaneous.

There are nothing statements in Quartz models Xy othing(wqrz) (see Ap-
pendix A.2.15) that are introduced at this point for isolated transformations
in the following chapters.

The consumption of time within Quartz models can be explicitly pro-
grammed with statements called pause X,qusc(wqr>) (see Appendix A.2.16).
In general, the execution of a pause statement consumes one logical unit of
time and separates two macro steps.

Finally, a set of Quartz statements is called a sequence Xeq(wqrz) (see
Appendix A.2.17). It is worth noting that the statements are executed in a
sequential manner considering the SMoC, where the sequence terminates upon
the termination of the final statement, i.e., the sequence is instantaneous if all
statements are instantaneous.

3.4. SCL Models

The following summary of syntax and semantics of an SCL model wge € Qg
is based on [Han+13; Han+14; WS24a] and manual studies of the latest stan-
dalone version of the KIELER project. It is worth noting that the definitions
are limited to the constructs that are relevant in the following chapters.

Like in Quartz models, there is one variant of SCL model elements called
module (see Appendix A.3.1). These models are not intended to be imported
and instantiated by other SCL models due to their minimal instruction set,
but can be synthesized into SCCharts by KIELER and then reused [WS24a].

28

3.5. SCCharts

SCL models can also be equipped with interfaces A;qe(wser). Possible inter-
faces are input variables A, (wse), output variables Ayt (wser), and inout vari-
ables Ajpout(wser). There are also different kinds of storage classes [Han+13,;
Sch+18], where this thesis focuses on variables that retain the values of the
previous macro step unless they are assigned new values in the current macro
step (as memorized variables in Quartz) to ensure consistency between the dif-
ferent models, although this requires an additional reset if they are intended to
behave like event variables in Quartz (see Appendix A.3.2). However, Chap-
ter 9 considers signals [Sch+18] to mimic event-driven execution without the
need to reset interfaces, as this approach is restricted to control-flow oriented
SCCharts (see Appendix A.3.2).

Additionally, SCL models may contain local variables A, ge(wser) (see Ap-
pendix A.3.3).

Furthermore, SCL models are also capable of processing a variety of ele-
mentary data types A(wsy) and fields A*(wse), where this thesis considers
the variants introduced in Section 3.2.4 (see Appendix A.3.4).

Moreover, SCL models are capable of processing a wide range of expressions
T (wser), where this thesis considers the variants introduced in Section 3.2.5
(see Appendix A.3.5).

Like Quartz models, SCL models can be classified into two principal cate-
gories with regard to their assignments ¥q4s(wse), where this thesis considers
the variants introduced in Section 3.2.7. Due to the SCMoC, in both variants
left-hand side is updated instantaneous, because sequential order is considered
by default (see Appendix A.3.6).

SCL models are capable of processing different variants of conditions
Yeond(wser), where this thesis considers the variants introduced in Sec-
tion 3.2.8 (see Appendix A.3.7).

Additionally, SCL models are capable of processing different variants of
loops Ejoop(wser), where this thesis considers the variants introduced in Sec-
tion 3.2.9. Due to the limited instruction set of SCL models, loop constructs
are defined using a combination of a goto statement and a condition (see Ap-
pendix A.3.8) [WS24a]. It is worth noting that body statements of loops in
SCL models are assumed not to be instantaneous by default.

A set of SCL statements is called a sequence Xgeq(wse) (see Ap-
pendix A.3.10). It is worth noting that the statements in the SCMoC are
executed in a sequential manner.

3.5. SCCharts

The following summary of syntax and semantics of a control-flow oriented
SCCharts wgee € Qe and a data-flow oriented SCCharts wg.q € Q5.4 is based on
[Han+14; Gri+20; WS23], syntax specifications on the KIELER homepage?,
and manual studies of the latest standalone version of the KIELER project.
It is worth noting that the definitions are limited to the constructs that are

*https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Syntax

29

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Syntax

Chapter 3: Syntax and Formal Semantics

relevant in the following chapters.

This thesis distinguishes between both variants Q.. (see Appendix A.5.1)
and Qg.q (see Appendix A.4.1) and considers that data-flow oriented SCCha-
rts are able to import data-flow and control-flow oriented SCCharts. The
SCCharts imported by a data-flow oriented SCChart are grouped as a set
Aimports(wWsea) (see Appendix A.2.2).

Local variables of both control-flow oriented and data-flow oriented SC-
Charts are defined equivalent to those of SCL models (see Section 3.4), with
those of data-flow oriented SCCharts are extended by instances of imported
SCCharts (see Appendix A.4.2).

Defined interfaces, elementary data types and fields, and assignments al-
most equivalent to those of SCL models (see Section 3.4). The difference is
that how these constructs are placed within the models. In particular, unlike
in SCL models, declarations in SCCharts don’t end with a semicolon. Fur-
thermore, synthesizing data-flow oriented SCCharts to control-flow oriented
SCCharts using KIELER shows that placing a semicolon at the end of assign-
ments enforces sequential execution of synchronous concurrent threads, which
is assumed in the further course of this thesis. This replaces the seq state-
ment introduced in related work using data-flow oriented SCCharts [WS23].
Additionally, assignments in control-flow oriented SCCharts are indicated by
the prefix do.

Similar to await statements in Quartz, there are await transitions in
control-flow oriented SCCharts Yguait(wsee), considering regular await
transitions)% . (wsee) and immediate await transitions E%th(wscc) (See
Appendix A.2.9).

Fach assignment of a data-flow oriented SCCharts is basically executed in
a separate thread concurrently to the others [Gri+20; WS22]. Although se-
quential dependency is enforced as mentioned earlier, this will be interpreted
as synchronous concurrency Yeonc(wsed) (see Appendix A.4.4) in the further
course of this thesis. In contrast, regions in control-flow oriented SCCharts
are also being executed concurrently and are interpreted as synchronous con-
currency Yeone(wsee) (see Appendix A.5.4). As in Quartz, it is worth noting
that they execute their macro steps synchronously in lockstep, i.e., statements
can interact during concurrent execution.

Moreover, states in control-flow oriented SCCharts can be aborted and
called in this context abort transitions Xgport(wseer), where this thesis consid-
ers reqular abortions X9 (wsee) and immediate abortions LU (wsee) (see
Appendix A.5.2).

Control-flow oriented SCCharts are able to express different variants of con-
ditions YXcond(wsee) (see Appendix A.5.5) and loop variants 3jpep(wsee) (see
Appendix A.5.7) by reconstructing the control flow using states and transi-
tions [SLH16], where this thesis considers the condition variants introduced in
Section 3.2.8 and loop variants introduced in Section 3.2.9.

Furthermore, there are final states in control-flow oriented models that stop
the sequential execution, which are called halt statements Y (wsee) in this
thesis (see Appendix A.5.6).

30

3.5. SCCharts

This thesis focuses on data-flow oriented SCCharts that are able to invoke
data-flow and control-flow oriented SCCharts. This is possible through the
use of ¥, (wseq) statements (see Appendix A.4.5).

Additionally, in control-flow oriented SCCharts, there are transitions that
don’t perform any action and consume no time when switching between states.
These transitions are called immediate transitions Emthmg(wscc) in this the-
sis (see Appendix A.5.8) to simplify readability and comparability with the
constructs in the other models.

The consumption of time, as in SCL and Quartz models, can be explicitly
programmed in control-flow oriented SCCharts by a transition between two
states that consumes one unit of time. These constructs are called pause
transitions Epquse(wsee) in this thesis (see Appendix A.5.9).

Finally, a set of data-flow oriented SCChart statements is called a sequence
Yseq(wsed), where each statement ends with a semicolon as explained in the
context of assignments (see Appendix A.3.10). In contrast, in control-flow
oriented SCCharts, a set of states represents a sequence Xgeq(wsec) (see
Appendix A.3.10). By enforcing a sequential execution of synchronous
threads in data-flow oriented SCCharts and a sequential order of states in
control-flow oriented SCCharts, both sequences are executed in a sequential
manner.

The syntax and semantics defined (or referenced) in this chapter are used
in the following chapters to present various approaches to transforming and
optimizing the software models under consideration. In particular, they are
often used to prove correctness.

31

Chapter

Model Transformation of ST Models
to Quartz Models

Contents
4.1. High-Level Design Flow — ST-to-Quartz 34
4.2. From ST Models to Quartz Models 35
4.2.1. Model Declaration 36
4.2.2. Interfaces 39
4.2.3. Variables 42
4.2.4. Data Typesand Fields 46
4.2.5. POUImports. o oo 47
4.2.6. Expressions 48
4.2.7. POU Invocations 49
4.2.8. Assignments 53
4.2.9. Conditions 56
4.2.10. Loops . . . oo 57
4.2.11. Sequenceso 60
4.3. Experimental Results 62
4.4, SUMMATY . . . o vt o e e e e e 63

As a first approach to reusing existing POUs in model-based design is the
transformation of ST models into Quartz models, where the goal is to create
a robust set of translation functions that ensure semantic preservation during
the transition. In addition to the approaches presented in [WS21; WS22;
WS24a; WS24b], it considers the following additional issues:

e Model Declaration: Mimicking the termination behavior of the initial
model, i.e., distinguishing between models with and without memory

o Interfaces and Variables: Additional interfaces for event-driven ex-
ecution control and an external controlled time (provided as an un-
bounded integer)

33

Chapter 4: Model Transformation of ST Models to Quartz Models

e Data Types and Fields: Additional IEC 61131-3 data types

e POU invocations: Instantiation and invocation of user-defined models,
taking into account their individual termination behavior

The correctness of the translation functions is proved by theoretical reason-
ing, which includes a detailed analysis of the resulting syntax and semantics
compared to the syntax rules and semantics specified in Chapter 3. In addi-
tion, the theoretical results are evaluated with real-world and self-defined ST
models.

This chapter is structured as follows: Section 4.1 introduces the high-level
design flow and translation strategy. Section 4.2 defines the translation func-
tions and theoretical analysis. Section 4.3 presents an evaluation of the theo-
retical results, and Section 4.4 summarizes the transformation.

4.1. High-Level Design Flow — ST-to-Quartz

The high-level design flow for transforming an ST model w?, € Q% of the
variant function block (¢ = fb), function (¢ = fun), or program (¢ = prg) to a
Quartz model wg, € {24, is shown in Figure 4.1.

IEC 61131-3 Averest
4
@ Tstb—»qrz (COS,)
Wy > Wygrz

Figure 4.1.: High-level design flow of the ST-to-Quartz transformation

The ST-to-Quartz transformation Tstsqrz (w?) includes the following transfor-
mation steps:

1.t sthrZ((S (w?)): Model declaration (see Section 4.2.1)
2. tﬁ’jijrz(wst): Interfaces (see Section 4.2.2)

3.t stf;“z (w?): Variables (see Section 4.2.3)

4. SthT,Z(a 1(w%)): Data types and fields (see Section 4.2.4)
5. tﬁfqp;’;“ (w%): POU imports (see Section 4.2.5)

6. tZyqr:(T(w?)): Expressions (see Section 4.2.6)

7. tiﬁgm(o¥ (w%)): POU invocations (see Section 4.2.7)
8. tst“;j]m(oV (w%)): Assignments (see Section 4.2.8)

9. tiﬁzﬁz(afond(wi)): Conditions (see Section 4.2.9)
10. Etlﬁf;m(aloop(wz)): Loops (see Section 4.2.10)
11. tiﬁ‘flm(ﬁseq(wqrzr)): Sequences (see Section 4.2.11)

34

4.2. From ST Models to Quartz Models

Translation Strategy:

This chapter introduces two translation strategies illustrated in Figure 4.2:
The ST model is either transformed into a Quartz model that (1) terminates
after a finite number of macro steps n > 0 to mimic a POU without mem-
ory, or (2) runs in an infinite loop to mimic a POU with memory, where an
iteration contains a finite number of macro steps n > 1!. Figure 4.2a shows
the high-level runtime behavior of the resulting Quartz model that follows
the first translation strategy, where the set of input variables IN is read when
the Quartz model is invoked in macro step S;. In the following macro steps
during execution, the interfaces are synchronized, where only CLK may be up-
dated externally and is read. Neither input variables IN are allowed to be
updated nor output variables OUT are allowed to be processed externally until
the Quartz model is terminated. In the final macro step Sy,, OUT is returned
to the invoking model for external processing. In contrast, Figure 4.2b shows
the high-level runtime behavior of the resulting Quartz model that follows the
second translation strategy, where the model is initialized in the first macro
step Sp and then waits until an iteration is triggered externally via the event
input variable EI. When an iteration is triggered in macro step S;, the set
of input variables IN and an external clock variable CLK are read and can
be processed. In the following macro steps during execution, the interfaces
are synchronized, where only CLK may be updated externally. Neither input
variables IN are allowed to be updated nor output variables OUT are allowed
to be processed externally until the iteration reaches the macro step Sy,. In
this macro step, OUT and EO are returned to the invoking model for external
processing. The subsequent final macro step is used to switch to the next
iteration (triggered in the next PLC cycle).

Challenges:

From this, the following challenges for translating ST models to Quartz models
can be derived:

Cyclic execution of Quartz models (with and without memory)
Event-driven execution of synchronous parallel threads
Sequential execution of synchronous parallel threads

Dynamic system time

AR I

Translation of ST language constructs

4.2. From ST Models to Quartz Models

This section defines the individual translation functions for translating an ST
model w?, € %, to a Quartz model wy,.» € Qg and analyzes the theoretical
correctness.

'n > 1, because the pause statement between two iterations is considered in this context

35

Chapter 4: Model Transformation of ST Models to Quartz Models

entry

a
Hl
o

4

CLK,
» — —
3 o ge} y)
(%2} - 7]
@ @
() ()
Vo
Statements

entry
pause

a
1

A4
immediate
await(El)

CLK;
CLK;

J
Init
CLK;
[%)
H* *I
Wait

CLK
Vo
Statements

N
©
QD
c
[
o

——

CLKny,

exit
ouUT emit(EO

ouT

(b) Model of a POU with memory

.
CLKm
|<H
3
\

(a) Model of a POU without memory

Figure 4.2.: ST-to-Quartz translation strategies: high-level runtime behavior of
the resulting Quartz models

4.2.1. Model Declaration

This step covers the translation function for translating an ST model dec-
laration &, (wy) to a Quartz model declaration d,,(wg 7). According to the
introduced translation strategies, the resulting Quartz model of an ST model,
variant ¢ € {fb,prg}, is executed in an infinite loop, reflecting the memory
behavior of the original ST model. For this, in each PLC cycle, the Quartz
model waits until a loop iteration is triggered by an event-driven input, where
the termination of the iteration is returned by an event-driven output. In con-
trast, the resulting Quartz model of an ST model, variant ¢ = fun, is invoked
and executed sequentially without a surrounding loop, mimicking an ST-based
POU without memory.

Definition 4.1 (Model Declaration — ST-to-Quartz). Let
Q7 = {wh | ¢ € {fb, fun,prg}} be the set of possible ST model ele-
ments. 0y(w¥) is translated to 6,(wgry) using the translation function

tngqTZ(éw(wﬁ)), which is described by Algorithm 1.

Correctness

To check the correctness of Definition 4.1, the following lemma is used.

36

4.2. From ST Models to Quartz Models

Algorithm 1 Translate model declaration — ST-to-Quartz
Input: &, (w?)

Output: y,(wgrs)

Translation Function tg;’qu(%(w;’;)):

switch ¢ do
case fun do
"L_'r)nporte (
st qrz
module a, (wst) (tstﬂfllm (wiIN{
50.1 (wqrzl) - stgd;i"z (wst)
st»—>q7"z (wst)
}
end
case fbvprg do
Aimports
tb—>qrz (
module an(w (st) (tst?—d»;lrz (w;ﬁt)) {
stuwdgg“z (wst)
loop{
Ouw(wgrar) < immediate await (EI);
st»qrz (wst)
emit (EQ); pause;
}
}
end
end

Lemma 4.1. Let w% be translated to wg. and ¢ € {fb, fun,prg}.
Then, tithm(éw(w:})) translates 8,(w%) to 6,(wersr) as specified in Def-
inition 4.1. 0y(wgrzr) conforms to the syntax rules of dy(wqrz) and pre-

serves the semantics of 8,(wg,) regarding its termination behavior.

Proof The validity of Lemma 4.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of d,,(wq,.) with the
syntax rules of d,(wgr.) as specified in Section 3.3. While the equivalence
for ¢ = fun is given by the specification, the correctness for ¢ € {fb,prg}

follows from the syntactical correct sequence of aloop(wqm/), ol (Warz')s

assm(wqm 1), and Opause(wqgrzr). Second, there are two cases to distinguish
in order to check semantic correctness:

e Case 1 (¢ = fun): 0u(wgrs) does not have a surrounding sequence
of an additional loop with event-driven constructs. Thus, [0 (wgrz)]e
preserves [d,(w?)]¢ regarding its termination behavior (see Section 3.2
and 3.3).

37

Chapter 4: Model Transformation of ST Models to Quartz Models

e Case 2 (¢ € {fb,prg}): Given the SOS transition rules of Uli:o];(wqm),

amg’;t(wqm), and opguse(Wgrz), dw(wqrz) results in an infinite loop whose
iteration is executed immediately when the event EI becomes true and
triggers E0 at the end of an iteration. Iterations are separated by
Opause(Wgr=). Consequently, [d,(wgr>)]e preserves [0, (w?)]e regarding

its termination behavior (see Section 3.2 and 3.3).

Illustrative Example for Lemma 4.1

Usage examples are shown below using snippets of the resulting Quartz mod-
els? in combination with a visualization of the high-level runtime behav-
ior. The resulting Quartz model of example ST_ALARM in Figure 4.3 repre-
sents a model without memory, and the resulting Quartz model of example
ST_ASS DEL in Figure 4.4 represents a model that preserves the state of the
last macro step of the current PLC cycle for the next iteration (i.e., for the
next PLC cycle).

XSENSOR_L,
XSENSOR_M,
1 module ST_ALARM(XxSENSOR R %)
2 bool ?xSENSOR_L, ...){ = g
3 CLK; £
4 ST_ALARM = ... ; 5
. 3 ST_ALARM &

Figure 4.3.: Resulting Quartz model of example ST_ALARM (without memory)

I module ST_ASS_DEL(
2 event bool 7EI,
event bool 'E0){

int x0; ...
6 pause;

Wait

1
CLK;

immediate
7 await(El)] }
8 loop{ {
9 immediate await (EI); _
. noxt (y0) = yO + 0; U next(YO)—y0+x0H
11 pause;
12 emit (E0); pause;

13 }

Statements

-
CLKi+1

Figure 4.4.: Resulting Quartz model of example ST_ASS_DEL (with memory)

2Both Quartz models are included in Appendix C.2 and C.11.

38

4.2. From ST Models to Quartz Models

4.2.2. Interfaces

This step covers the translation function for translating ST model in-
terfaces Ajg(wy) to Quartz model interfaces Ajg(wgrsr), where
Az'dt:l(<")fit) =Ain (W;ﬁ) U Agut (w;pt) U Ainout (Wﬁf)

Definition 4.2 (Interfaces — ST-to-Quartz). Let Qf = {w7, | ¢ € {fb,
fun,prg}} be the set of possible ST model elements. A;ge(wqrer) is derived
from w?, and extended by event-driven variables and by an optional system

time, using the translation function tﬁfﬁ;ﬁ,z (w?), which is described by Algo-
rithm 2.

Correctness

To check the correctness of Definition 4.2, the following lemmas are used.

Lemma 4.2. Let w?, be translated to wyr.r, ¢ € {fb, fun,prg}, and
Wqrz always be invoked with connected Ny (wqrz). Then, for each interface
e; € Ei(wy), tﬁﬂf]lrz(wz) extends Ay (Wgrzr), Dout(Wyrar), 07 Ninout (Werz') s
and adds possible assignments to defaults to Xseq(wgra) as specified in
Definition 4.2. Ain(Wgrer), Dout(Werzr), and Aipout(wgror) conform to
the syntaz rules of Nip(wWgrz), Aout(Werz), and Aipout(werz) Tegarding the
storage class, data type, and name. Ygeq(wgrzr) conforms to the syntax
rules of Ygeq(wqrz). With and without assignments to defaults, Ai,(werz'),
Aout(Wgrzr), and Njpout(Wgrr) in combination with Yseq(wqr.r) preserves
the semantics of Ain(w?%), Aot (W), and Nipou(w?,) regarding informa-
tion flow, modifiability, and initialization.

Proof The validity of Lemma 4.2 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of A, (wgrs),
Aout(Warz')s Ainout (Wgrz), and Lgeq(wqrzr) with the syntax rules of Ay, (wgrz),
Aout (Wgrz)s Ainout(Wgrz), and Xgeq(wqr.) as specified in Section 3.3 using in-
duction on the number of added interfaces & (w?,):

1. Base Case: When &;(wf,) = @, there are no input variables, output vari-
ables with possible initialization, and inout variables, and thus no state-
ments to add, which trivially conforms to the syntax rules of Ay, (wgrz),
Aout(Warz)s Dinout (Warz), Ziea™ (Wgrz), and Epause (wqrz), since these sets
remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables with possible initialization, and inout variables.

3. Inductive Step: Adding an element to input variables, output
variables with initialization, and inout variables results in an additional

element in Ain(wqrz’)7 Aout(wqrz’)7 Ainout(wqrz’)7 Eggsm(wqrz’), and

39

Chapter 4: Model Transformation of ST Models to Quartz Models

Algorithm 2 Translate interfaces — ST-to-Quartz

Input: w?,
011tp11t3 Azn (wqrz’)7 Aout(quz’), Ainout (wqrz’)a Eseq (wqrz’)

: : Aidel AW
Translation Function ¢,/%7 (wg;):

if o € {fb,prg} then
Ajn(wgrzr) < add event bool 7EI;
> add Boolean event input variable

Aout(wgrzr) < add event bool !EQ;

> add Boolean event output variable
end
f w? contains time-based logic then
Ajp(wgrzr) < add nat ?CLK;

o

> add memorized input variable
end
f o= fun e+ 3, where e,r € ng(W£)7gr£(w§) c &(wy) then
Aout(('dqrz’) < add t?thTZ(Oé(GTT)) !an(wst)§

> add memorized output variable

i o

end
forall ¢; € &;(w?) do
if e; = ejvs, where ejys € Eivs(wh), Eivs(wh) c Ei(w,) then
Ain(wqrer) < 2dd 12y (a(21)) Pan(cr):
> add memorized input variable
end
if e; = evs, where egy s € goVs(w§)7goVs(w§) c Sz(wft) then
Aput(wgrzr) < add t?t»qrz(a(ei)) tan(e;);
> add memorized output variable
Yseq(Were) < add an(e;) = 5 (m);
> add assignment to default value (if specified)

end
if e; = ejovs, where e;ovs € Eiovs(wh), Eiovs(wy) € Ei(wy,) then
Ainout(wqrz’) < add t?thrz(a(ei)) an(ei);

> add memorized inout variable

end

end

f Yseq(wgrzr) # @ then
Yseq(wgrzr) < add pause;

[t

> add pause if at least one variable is initialized
end

Ypause(Wgrzr). Their syntax still conforms to the syntax rules of
AOut(qu‘Z)a Ainout(wqrz)7 EZT;”(wqrz), and Epause(wqrz)'

Second, the semantic correctness is checked by comparing [Aj,(wgrz)]e,

[Aout(wgrz)]e, and [Ainout(wgrz)]e in combination with the SOS transition
rules of XU (wy,) and Epause(wgrz) (see Section 3.3) with [Az,(wf)]e,
[Aout(wi)]e, and [Ajmout(wh)]e (see Section 3.2).

4.2. From ST Models to Quartz Models

Illustrative Example for Lemma 4.2
As an example, below are some derived interfaces of the ST_SIMPLE_PRG1
model?:

real ?PRG_C // added to Ajn(wgr,r)
real !'PRG_OUT2 // added to Aout(wgryr)

Lemma 4.3. Let w?, be translated to wgr» and ¢ € {fb,prg}. Then,
tftﬁf;w(wﬁ) adds the additional event input EI to Ajn(werxr) and the
additional event output EO to Agyi(werzr) as specified in Definition 4.2.
Ain(Wgrzr) and Agyi(wgrzr) conform to the syntax rules of Ay, (wgr.) and

Aout (quz)-

Proof The validity of Lemma 4.3 is proved by comparing the resulting syn-
tax of Ay, (wgrzr) and Agyi(wgrer) with the syntax rules of Ajy,(wgr.) and
Aout(wqr>) as specified in Section 3.3.

Illustrative Example for Lemma 4.3

As an example, below are the derived interfaces of the ST_SIMPLE_PRG1 model*:

event bool ?EI // added to Ajn(wgr,r)
event bool !EO // added to Aout(wqm/)

Lemma 4.4. Let w?, be translated to wyr., ¢ € {fb, fun,prg}, and
wi, contains time-based logic, where time is a readable variable and is
synchronized externally. Then, tﬁﬁ;’m (w?%) adds an additional memorized
input to Ajp(werer) as specified in Definition 4.2. N (wqrzr) conforms to

the syntax rules of Ay (wWgrz).

Proof The validity of Lemma 4.4 is proved by comparing the resulting syntax
of A (wgrer) with the syntax rules of Ay, (wqr») as specified in Section 3.3.

Illustrative Example for Lemma 4.4

As an example, below is the derived input of the ST_SIMPLE_PRG1 model®:

nat ?CLK // added to Aup(wgrsr)

3Both models, ST and Quartz, are included in Appendix B.27 and C.27.
4Both models, ST and Quartz, are included in Appendix B.27 and C.27.
®Both models, ST and Quartz, are included in Appendix B.27 and C.27.

41

Chapter 4: Model Transformation of ST Models to Quartz Models

Lemma 4.5. Let wftun be translated to wgry and wftun has a specified
return type, which is processed by wgtu ". Then, tﬁ"jgm(wft) adds an ad-
ditional memorized output for the specified return type to Agy(wgrsr) as

specified in Definition 4.2. Agu(wgrr) conforms to the syntax rules of
Aout(‘/J(]?“z)'

Proof The validity of Lemma 4.5 is proved by comparing the resulting syntax
of Agut(wgrzr) with the syntax rules of Agyi(wgr.) as specified in Section 3.3.

Illustrative Example for Lemma 4.5
As an example, below is the derived output of the ST_SIMPLE_FUN function in
ST_SIMPLE PRG1 model®:

real !ST_SIMPLE_FUN // added to Aout(Wersr)

4.2.3. Variables

This step covers the translation function for translating local ST model
variables A4 (wi) to local Quartz model variables Ayge(wgrzr), where

AUdcl (W;Dt) = Alocal (W;pt) .

Definition 4.3 (Variables — ST-to-Quartz). Let Q% = {w?, | p € {fb, fun,
prg}} be the set of possible ST model elements. Ayqe(wqrer) is derived from
w;i and extended by event-driven interfaces of instances as well as additional

instance output variables using the translation function tiﬁ;;z(wﬁ), which is
described by Algorithm 3.

Correctness

To check the correctness of Definition 4.3, the following lemmas are used.

Lemma 4.6. Let w?, be translated to wy,, and ¢ € { fb, fun,prg}. Then,
for each local variable ey s € E;(w?,) that is not derived from standard func-
tion blocks eq(eyys) = @), tﬁﬁgiz(wﬁ) adds a local variable to Ajpeqi(wgrzr)
and a possible initialization to Yseq(wqers) as specified in Definition 4.3.
Ajocal(Wgrzr) conforms to the syntaz rules of Ajpeqi(wqrz) regarding the
storage class, data type, and name, and Xseq(wqrz) conforms to the syntax
rules of Ygeq(werz). With and without initialization, Ajoeqr(wWgrr) in com-
bination with Xseq(wers) preserves the semantics of Njoeai(w?) regarding
modifiability and initialization.

5Both models, ST and Quartz, are included in Appendix B.27 and C.27.

42

4.2. From ST Models to Quartz Models

Algorithm 3 Translate variables — ST-to-Quartz

Input: w?,
OUtPUt: Alocal (wqrz’)7 Eseq (wqrz’)

Translation Function tﬁ”,_)dglm (wh):
forall eyinst € Eyinst (w?,) do
Ajocal(Wgrzr) < add event bool ay(a;n(€yinst))-EI;
> add Boolean event input variable
Ajocal(Wgrzr) < add event bool ay(a;n(eyinst))-EOD;
> add Boolean event output vartable
forall e,y s € Evs(epinst) do
Alocal(wqrz’) < add t?tn—»qrz(a(eoVs)) an(aiN(ebi”St))—an(eoVs);
> add memorized variable for output variable

end
nd
orall e ;.. (derived from w¥,) do
Alocat (wgrz) < add t?t»qrz(erT(ebfun’)) an(ebfun’)fli,(ebfun’)?
> add memorized variable for return type of €, unr, where i’
represents the index of occurrence
forall e,y s € Egvs(eprun’) do
Alocal(‘*‘-)q?"z’) < add
t?t»—»qrz(a(eoVS)) an(ebfun’)*an(eoVS)fli,(eb.fun’)3
> add memorized variable for output variable

= 0

end
nd
orall ey, € &(wy,) do
if ed(elVS) = @ then
AlocoLl(Wqu’) < add t?t»—»qrz(a(ele)) an(ervs);
> add memorized variable
Z:seq((")qrz’) < add an(elVS) = t;—;n»isqcrz(ﬂ)a

> add assignment to default value (if specified)

= 0

end

end

f Yseq(wgrr) # @ then

Yseq(wgrzr) < add pause (and remove pause added for initialized in-
terfaces);

e

> add pause if at least one variable is initialized
end

Proof The validity of Lemma 4.6 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Ajpeqr(wgr.r) and
Yseq(wqrzr) with the syntax rules of Ajpeqi(wgrz) and Xgeq(wqr2) as specified
in Section 3.3 using induction on the number of added variables & (w?):

1. Base Case: When &;(w?) = @, there are no local variables and thus
no statements to add, which trivially conforms to the syntax rules of
Aocal(Wgrz), Yoea™ (wWgrz), and Xpause(wgrz), since these sets remain un-

43

w N

Chapter 4: Model Transformation of ST Models to Quartz Models

changed and are optional.

. Induction Hypothesis: The lemma holds for any set of local variables

with possible initialization.

. Inductive Step: Adding an element to local variables with initial-

ization results in an additional element in Ajpeq(Wer2r), S0 (wgrar),
and Ypquse(wgrzr). Their syntax still conforms to the syntax rules of

Alocal(wqrz)7 Eflgzsm (wqrz)a and Epause (wqrz)-

Second, the semantic correctness is checked by comparing [Ajcar(wgrz)]e (in
combination with the SOS transition rules of X" (wgr.) and Xpause(werz))
with [Ajpear(w)]e (see Section 3.2 and 3.3).

Illustrative Example for Lemma 4.6

As an example, below is the derived local variable of the ST_SIMPLE_PRG1

model”:
int PRG_COUNT; // added to Ajpeai(Wgryr)
PRG_COUNT = 4; // added to Yseq(wWgryr)
pause; // added to Eseq(wqrz’)

Lemma 4.7. Let w?, be translated to wg. and ¢ € {fb,prg}. Then,
for each instance eyinst € Eyinst (W), ¢S vdel (W) adds the additional event
variables for event-driven execution control to Ajpeqi(wers) as specified in
Definition 4.3. Ajpeai(wqrzr) conforms to the syntax rules of Ajoear(wWqrz)
regarding the storage class, data type, and name that is consistently derived
from the instance name.

st—qrz

Proof The validity of Lemma 4.7 is checked by comparing the resulting syntax
of Ajocal(Wqrr) with the syntax rules of Ajgeqr(wgrz) as specified in Section 3.3
using induction on the number of instances Eyinst (w):

1. Base Case: When &yinst(w?) = @, there are no local variables to add,

which trivially conforms to the syntax rules of Ajycqi(wgrz), since this
set remains unchanged and is optional.

. Induction Hypothesis: The lemma holds for any set of instances

gbinst (w;pt) .

. Inductive Step: Adding an instance to Eyinst (w¥) results in an addi-

tional element in Ajgeqr(wgrzr). Its syntax still conforms to the syntax
rules of Ajgeqr(wWyrz)-

"Both models, ST and Quartz, are included in Appendix B.27 and C.27.

44

4.2. From ST Models to Quartz Models

Illustrative Example for Lemma 4.7
As an example, below are the derived local variables of the ST_SIMPLE_PRG1
model®:

event bool DEBOUNCE_O1_EI; // added to Ajpeai(Warsr)
event bool DEBOUNCE_O1_EO; // added to Alocal(wqrz')

Lemma 4.8. Let w¥, be translated to wg and ¢ € {fb, fun,prg}.
Then, for each output e,y s(epinst) € Eovs(epinst) of each instance eyinst €
Epinst (wh), tﬁfgﬁnz(wi) adds a local variable to Ajpeqr(wgr2r) as specified in
Definition 4.83. Ajpcai(wqrzr) conforms to the syntax rules of Ajocar(wWqrz)
regarding the storage class, data type, and name that is consistently derived

from the instance name.

Proof The validity of Lemma 4.8 is checked by comparing the resulting syntax
of Ajocal(Wqrr) with the syntax rules of Ajgeqr(wgrz) as specified in Section 3.3
using induction on the number of instances Eyinst (w?,) with output variables
50\/5 (ebinst) :

1. Base Case: When &yinst(w?) = @ and &y s(eyinst) = @, there are no
local variables to add, which trivially conforms to the syntax rules of
Ajpcal(wgr2), since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances with
any set of output variables.

3. Inductive Step: Adding an instance to Eyinst (w?,) with an output vari-
able to &,y s(epyinst) results in an additional element in Ajyeqi(wgrzr). Its
syntax still conforms to the syntax rules of Ajgeqr(wWgrz)-

Illustrative Example for Lemma 4.8
As an example, below are the derived local variables of the ST_SIMPLE_PRG1
model”:

bool DEBOUNCE_01_0UT; // added to Ajocar(wersr)
nat DEBOUNCE_O1_ET_OFF; // added to Appeql(Wgrer)

Lemma 4.9. Let w?, be translated to wy,» and ¢ € { fb, fun,prg}. Then,
for the return type e,r(eprun) and each output eovs(eyrun') € Eovs(€prunt)
of each user-defined function eypun' € Erunt (wz), tﬁﬁf;jnz (wft) adds an addi-
tional variable to Ajoeqr(wqr2r) as specified in Definition 4.3. Ajocar(wWqrz)

conforms to the syntax rules of Ajocqi(wqrz) Tegarding the storage class,

8Both models, ST and Quartz, are included in Appendix B.27 and C.27.
“Both models, ST and Quartz, are included in Appendix B.27 and C.27.

45

Chapter 4: Model Transformation of ST Models to Quartz Models

data type, and name that is consistently derived from the instance name
and index of occurrence.

Proof The validity of Lemma 4.9 is checked by comparing the resulting syntax
of Ajocal(Wqrr) with the syntax rules of Ajgeqr(wgrz) as specified in Section 3.3
using induction on the number of user-defined functions & fun’ (w;’;) with return
type and output variables &,y s(€,sun’):

1. Base Case: When & . (w?h) = @ and Eyvs(eyrun) = @, there are no
local variables to add, which trivially conforms to the syntax rules of
Ajpeal(Wgrz), since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of user-defined
functions with any set of output variables.

3. Inductive Step: Adding a user-defined function with return type to
Eyrun' (W) and an output variable to Eovg(€yrun’) results in two addi-
tional elements in Ajyeqr(wqrzr) (one for the return type and one for the
output). Its syntax still conforms to the syntax rules of Ajpeqi(wgrz)-

Illustrative Example for Lemma 4.9

As an example, below are the derived local variables of the ST_ASS_IMM3
model'?:

int {32768} ST_ASS_IMM_OUT_y_11; // added to Appear(Wory)
bool ST_ASS_IMM_O0UT_11; // added to Ajgear(Wory)

4.2.4. Data Types and Fields

This step covers the translation function for translating ST data types and
fields Al)(w?) to Quartz data types and fields A (wgy.r).

Definition 4.4 (Data types and fields — ST-to-Quartz). Let a(w?) be
a considered ST data type and o (w¥,) be an ST data type field. ST data types
and fields A1(wW%) are translated to Quartz data types and fields A (wgp.r)
using the translation function tgwm(a“](w;‘;)), which is described by Algo-

rithm 37 in Appendiz 1.0.111.

Correctness

To check the correctness of Definition 4.4, the following lemma is used.

9Both models, ST and Quartz, are included in Appendix B.18 and C.18.
"This algorithm describes an intuitive mapping, which is moved to the appendix for the
sake of readability, but is not necessary for understanding the following lemma.

46

4.2. From ST Models to Quartz Models

Lemma 4.10. Let w?, be translated to wgry, ¢ € {fb, fun,prg},
and bit vector, integer, floating point, and duration be the consid-
ered data type categories A[+](w£) as specified in Section 3.2. Then,
t?thTZ(a[Jr](wz)) translates al*1(w%) to al*N(wyr) as specified in Def-
inition 4.4. ol N wgr) conforms to the syntax rules of al*(wy,) and
preserves the semantics of a[+](w§) regarding boundaries, precision, res-
olution, and defaults (if applicable).

Proof The validity of Lemma 4.10 is checked as follows: First, the syn-
tactic correctness is proved by comparing all resulting data types and fields
al*] (wgrzr) with syntax rules alt] (wgrz) as specified in Section 3.3. Second, the
semantic correctness is checked by comparing [al*)(wg,.)]e with [al*](w?)]e
(see Section 3.2 and 3.3), taking into account that the resolution of the dura-
tion data type is restricted to milliseconds.

Illustrative Example for Lemma 4.10

Usage examples are given by illustrative examples of previous lemmas, such
as Lemma 4.9.

4.2.5. POU Imports

This step covers the translation function for translating instantiated and in-
voked POU imports in ST models to Quartz model imports Ajpports(Werz')-

Definition 4.5 (POU imports — ST-to-Quartz). Let Q7F, = {w?, | ¢ € {fb,
fun,prg}} be the set of possible ST model elements. Instantiated and invoked
POUs in ST models are derived from external blocks ey s € E(we), eq(erys) + @
and user-defined blocks €, sunr € F'(w?,). These blocks are translated to Quartz

Aimports (%2),

model imports Ajmports(Wqrzr) using the translation function Cstrgra ot

which is described by Algorithm 4.

Algorithm 4 Translate POU imports — ST-to-Quartz
Input: w?,

OUtPUt: Aimports (wqrz’) A
Translation Function ¢,/777" (w):
forall ey € E(w?),eq(erys) + @ do

‘ Aimports(wqrz’) « add import (eq(ervs))-*;
end
forall e, € F'(w,) (derived from w?,) do

| Aimports(Werzr) < add import a,(eprun’)) . *;
end

47

Chapter 4: Model Transformation of ST Models to Quartz Models

Correctness

To check the correctness of Definition 4.5, the following lemma is used.

Lemma 4.11. Let the IEC 61131-3 standard function blocks (RS, SR,
TOF, TON) [GDV1}] be available as semantically and syntactically correct
Quartz models. Then, for each instance eyys € E(wy),eq(ervs) + @ and

imports

user-defined function eysun € F'(wh), tylle? "™ (wg) adds the correspond-
ing import to Nimports(wWerz) (if not already imported) as specified in Defi-
nition 4.5. Dimports(Wqrzr) conforms to the syntaz rules of Aimports(Werz)-

Proof The validity of Lemma 4.11 is checked by comparing the resulting
syntax of Ajmports(wgrzr) with the syntax rules of Ajpports(werz) as spec-
ified in Section 3.3 using induction on the number of instances &(wf,) =
{ews | ea(ewvs) # @} and user-defined functions F’(w,):

1. Base Case: When &(w},) = @ and F'(wY,) = &, there are no modules to
import, which trivially conforms to the syntax rules of Ajyports(wWorz),
since this set is optional.

2. Induction Hypothesis: The lemma holds for any set of instances and
any set of user-defined functions.

3. Inductive Step: Adding an instance and user-defined function to
E(w¥) and F'(wf) results in two additional elements in Ajyports(wgrz)
(one for the instance and one for the user-defined function). Its syntax
still conforms to the syntax rules of Ajpports(Wqrz)-

Illustrative Example for Lemma 4.11

As an example, below are the derived imports of the ST_.SIMPLE_PRG1 model'?:

import ST_DEBOUNCE.x*; // added to Aimports(Worar)
import ST_SIMPLE_FUN.x* // added to Aimports(Wars)

4.2.6. Expressions

This step covers the translation function for translating expressions in ST
models 7 (w?,) to expressions in Quartz models T (wgrs).

Definition 4.6 (Expressions — ST-to-Quartz). Let Q7, = {w?, | v € {f),
fun,prg}} be the set of possible ST model elements. An expression in ST mod-
els T(wy) € T (w¥) is translated to an expression in Quartz models T(wgr») €
T (wqrzr) using the translation function 3, .. (T(ws,)), which is described by
Algorithm 38 in Appendiz 1.0.23.

12Both models, ST and Quartz, are included in Appendix B.27 and C.27.
3 This algorithm describes an intuitive mapping, which is moved to the appendix for the
sake of readability, but is not necessary for understanding the following lemma.

48

4.2. From ST Models to Quartz Models

Correctness

To check the correctness of Definition 4.6, the following lemma is used.

Lemma 4.12. Let w!, be translated to wgr, ¢ € {fb, fun,prg}, and
miscellaneous, compare operators, arithmetic operators, conditional oper-
ator, and boolean operators be the considered expression categories T (wi)
as specified in Section 3.2. Then, for each T(w}) € T(wh), theqr.(T(w5))
translates T(w?,) to T(wgrsr) as specified in Definition 4.6. T(wgrzr) con-
forms to the syntaz rules of T(wqr») and preserves the semantics of T(w?,)
regarding the type system and SOS transition rules.

Proof The validity of Lemma 4.12 is proved as follows: First, the syntactic
correctness is checked by comparing all resulting expressions 7(wg,./) with syn-
tax rules 7(wgr-) as specified in Section 3.3. Second, the semantic correctness
is checked by comparing [7(wgr»)]e with [7(wZ)]e, their type system, and SOS
transition rules as specified in Section 3.2 and 3.3. As a result, each considered
ST expression can be mapped to a corresponding Quartz expression.

Illustrative Example for Lemma 4.12

As an example, below are two derived expressions of the ST_SIMPLE_FUN

model4:
(COUNT+1) // result of tT,., .. (COUNT+1)
((A1%B1)/C1) // result of th, .. ((A1xB1)/C1)

4.2.7. POU Invocations

This step covers the translation function for translating POU invocations in ST
models XY (w%) to Quartz model invocations in Quartz models $? (wgr.r).
The high-level runtime behavior of an ST model with memory translated to
a Quartz model mimicking memory behavior is illustrated in Figure 4.5. Fig-
ure 4.5a shows the runtime behavior of an example ST model that is triggered
in each PLC cycle (red) and invokes a POU with memory and a POU without
memory depending on their execution order (blue). In contrast, Figure 4.5b
shows the runtime behavior of the resulting Quartz model, whose model with
memory is triggered by an additional event-driven variable (red) and the model
without memory without an additional event-driven variable, depending on its
execution order (blue).

Definition 4.7 (POU Invocations — ST-to-Quartz). Let Qf = {w?, | p €
{fb, fun,prg}} be the set of possible ST model elements and POU invocations
in ST models Liny(w;) are given as complete formal function call [GDV1/]. A

Both models, ST and Quartz, are included in Appendix B.26 and C.26.

49

Chapter 4: Model Transformation of ST Models to Quartz Models

Wst,1 (a)pou,Z > Wpou,3) Wgrz,1 (a)qrz,Z » Wgrz,3)
Wgt.1 @ pou,2 @ pou,3 WOgrz,1 Wgrz,2 WDgrz,3

PLC
Cycle l? to b
]

(e, t
— Quartz,

-)
[amay

g exit
i osn
.................... Teo
(a) Initial ST model (b) Resulting Quartz model

Figure 4.5.: High-level runtime behavior of a model with memory that invokes two
models (Approach: ST-to-Quartz)

POU invocation o¥, (w%) € 9 (w%) is translated to a Quartz model invoca-

tion ¥ (Werzr) € XY (Werar) using the translation function t tﬁgm(amv(wst)),

which is described by Algorithm 5.

Correctness

To check the correctness of Definition 4.7, the following lemmas are used.

Lemma 4.13. Let w?, be translated to wqrzr and ¢ € {fb,prg}. Then,

for an invoked instance U”w(wst) tstﬁgm(amv(wst)) adds an event-driven
control sequence t0 Yseq(wqrzr) as specified in Definition 4.7. Furthermore,

Z'an y ;
tsthTZ(e (wst)) adds a synchronous concurrent thread to invoke instance

with related arguments including event-driven interfaces and synchronized
clock (if specified) as specified in Deﬁnition 4.7 Bgeq(wgrr) conforms

to the syntax rules of Lseq(wgrz) and of (wqrz) to the syntaz rules of

muv

(wqm) The combmatzon of Lseq(wqrz) and of?

inw(Warz) preserves the

’ln'U
SOS transition rules of am (w?) regarding termination behavior.

Proof The validity of Lemma 4.13 is proved by comparing the resulting syn-

tax of Ageq(wqrer) with the syntax rules of Ageq(wgrz), and Uzm(wqm /) with

50

4.2. From ST Models to Quartz Models

Algorithm 5 Invoke POU — ST-to-Quartz

Input: o7 (w%) p

Output: Ty (wgrar), amfv(wqm), amv(wqm 5

Translation Function tst’fjém(v (W)
switch ¥ do

case fbdo

Yseq(wgrzr) < add {

emit (aiy (01, (w5))) ED:
immediate awalt((aZN(Umv(wft))),EO);

> add event-driven control sequence
mv(quZ) (_l I (alN(aznv(wst)))
(atN(Uznv (wst))) ((aZN(O—zn'U (wst))) EI (alN(U’LnU(wst))) EO

[CLX,] Z, O;
> add thread with event-driven interfaces and system time (if
specified)
end
case f’ do
mv(wqrz 1) < (atN(Um»U(;pt)))([CLK:] Z, 0);
> add invocation with clock (if specified)
end

forallieZ,7 = Slvs(alN(omv(wst))) U &OVs(azN(Umv(W;@))) do

(ns tsthrz(Z)
> add translated input or inout argument

end
forall o e O,0 = SoVs(azN(Umv(wft))) do

0 < O(aZN(mv(wst))))’

> add translated output argument

end

end

the syntax rules of amv(wqm) as specified in Section 3.3 using induction on
the number of input variables including inout variables Slvs(al N(Umv (wi)))u

Eiovs(ain(a? ,(w%))) and output variables v (ain (o, (wh))) of an in-
voked instance Uﬁv(wft) with system time:

1. Base Case: When o/’ (W) + @, Szvs(aZN(amv(w“;))) = g,

muv
ZOVS(aZN(Uznv(wst))) = @ and EOVS(alN(O-znv(wst))) :. @, there
are no existing interfaces to add, but added sequence o™ (wWgrs),

anmt(wqm 1), and of (wqm) Wthh conforms to the syntax rules of

mv
ass (qu) anazt(quZ) and Uznv (quz)
2. Induction Hypothesis: The lemma holds for any set of input variables
including inout variables and any set of output variables of an invoked
instance.

3. Inductive Step: Adding an input, inout variable, and out-
put variable to giVs(aiN(o-?nv(wﬁ)))7 giOVs(aiN(znv(st))) and

o1

Chapter 4: Model Transformation of ST Models to Quartz Models

ovs(azzv(ffmv (w?))) results in three additional interfaces and sequence

O (gt)y O (Warer), and va(wqm 1), which still conforms to the

syntax rules of o2 (wy,..), oM (W,,), and Umv(wqrz)

Second, the semantic correctness is checked by comparing the SOS transition

o (wWerz), a%’ﬁt(wqm) and a”?v(wqm) with the SOS

rules of the sequence olm

transition rules of va(w 7). Triggering EI and waiting for EO mimics a block
invocation in ST models.

Illustrative Example for Lemma 4.13

As an example, below is a derived event-driven sequence and model invocation
including arguments in the ST_SIMPLE_PRG1 model'®:

loop{ ...
emit (DEBOUNCE_O1_EI); // event input
immediate await (DEBOUNCE_O1_EQ0); // ewvent output
R

|| DEBOUNCE_O01:DEBOUNCE (// add. thread
DEBOUNCE_O1_EI, // event input
DEBOUNCE_O1_EO, // event output
CLK, // clock
PRG_IN, 2000, // in(out) arg.
DEBOUNCE_01_0UT, // output arg.
DEBOUNCE_O1_ET_OFF) ; // output arg.

Lemma 4.14. Let w!, be translated to wyr, ¢ € {fb, fun,prg}, and
user-defined function calls are designed as complete formal function call.

Then, tstﬁzrz(a%v() tmnslates a user-defined function call amv(wst)

to a Quartz model invocation of (wqrz) with related arguments mcludmg

mv

synchronized clock (if specified) as specified in Definition 4.7. Umv(wq,n,z ")

conforms to the syntax rules ofa (wgrz) and preserves the SOS transition

mu

rules Ofa (w%) regarding termination behavior.

mu

Proof The Vahd1ty of Lemma 4.14 is checked by comparing the resulting
syntax of amv(wqrz /) with the syntax rules of amv(wqrz) as specified in Sec-
tion 3.3 using induction on the number of input variables including inout
variables Eyvs(ain (o, (w5))) U Eiovs(ain(al,,(wh))) and output variables

Eovs(ain (0, (w%))) of an invoked user-defined function a{év(wi) with sys-
tem time:

1. Base Case: When szm(w;’;) £ &, ngs(azN(Umv(wft))) = g,
ZOVS(alN(Uznv(wst))) = @ and gOVS(alN(o-znv(wst))) = @&, there
are no existing interfaces to add, which conforms to the syntax rules of
va(“@rz)

5Both models, ST and Quartz, are included in Appendix B.27 and C.27.

52

[

oo W

4.2. From ST Models to Quartz Models

2. Induction Hypothesis: The lemma holds for any set of input variables
including inout variables and any set of output variables of an invoked
user-defined function.

3. Inductive Step: Adding an input, inout Variable and out-

put variable to &y, (aiN(Tinv (wst))) &iovs (aiN(Oinv (Wt))) and
Eovs(ain (09, (w?))) results in three additional interfaces, which still

conforms to the syntax rules sz?;l} (wgrz)-

Second, the semantlc correctness is checked by comparlng the SOS transi-
tion rules of a »(Wqrz) with the SOS transition rules of amv (w?). An inline
invocation mimics a block invocation in ST models, which can contain multiple

macro steps.

Illustrative Example for Lemma 4.14

As an example, below is a derived model invocation including arguments in
the ST_SIMPLE PRG1 model’S:

loop{ ...
ST_SIMPLE_FUN (// invocation
(PRG_A + 2.0), // in(out) arg.
PRG_B, PRG_C, PRG_COUNT, // in(out) arg.
ST_SIMPLE_FUN_11); // output arg.
o I

4.2.8. Assignments

This step covers the translation function for translating assignments in ST
models XU, (w%) to assignments in Quartz models $7, (wgr.r).

Definition 4.8 (Translation of assignments — ST-to-Quartz).
Let QY = {wst | ¢ € {fb, fun,prg}} be the set of possible ST model el-
ements and YU, (w%) be the set of assigned wvariables. An immediate

assignment ol (w?h) € NIMM(WE) (i.e., Ths(ci™(wf)) does not depend

. ass ass ass
on lhs(o.(zlrggm del del

(wh)) and a delayed assignment o4 (wh) € Lo (w¥) (i.e.,
rhs(0d(w%)) does depend on lhs(c@(w%)) in ST models is translated

to a sequence Ygeq(wqrz) in Quartz models using the translation function
thiass (02,4(w%)), which is described by Algorithm 6.

st—>qrz

Correctness

To check the correctness of Definition 4.8, the following lemmas are used.

Lemma 4.15. Let w!, be translated to wgr, ¢ € {fb, fun,prg}, and

zmm imm ¥
¥ = imm. Then, tst"j;m(i (wi) translates ol (w) to a sequence

Yseq(Wqrz') of Opause(Wqr2r) and Ué@’gm(wqm 1) as specified in Definition 4.8,

Both models, ST and Quartz, are included in Appendix B.27 and C.27.

93

Chapter 4: Model Transformation of ST Models to Quartz Models

Algorithm 6 Translate assignment — ST-to-Quartz

Input: agss(wft)
Output: Xgeq(wgrar)
Translation Function -2 (ofss(w;’;)):

st—>qrz
switch 9 do
case imm do
pause; (if Ihs(oi™™(w?,)) was updated
Yseq(wgrzr) < add or read earlier in the current macro step)
(o (W) =ty (rhs(al (w5));
end
case del do
next (Ihs(cd (w%))) =
ZS@](WQTZ') < add ;twqrz(rhs(o-gi (w;pt)))a
pause;
end
end

considering the last update and read of lhs(c™(w%)). Lseq(wgrsr) con-
forms to the syntaz rules of Yseq(wqrz), preserves the SOS transition rules
of gimm (w?), and respects the single assignment per macro step constraint
i Quartz.

Proof The validity of Lemma 4.15 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Yseq(wqr.r) with
the syntax rules of Xs.q(wqrz) as specified in Section 3.3, where there are two
cases to distinguish:

e Case 1 (lhs(c!™™(w¥)) was updated or read earlier in the cur-

rent macro step): Ygeq(werz') = {Tpause (wqmr);'aflzqtsm(wqmr)}, which
conforms to the syntax rules of opguse(wWqrz) and e (Wgrz)-

e Case 2 (lhs(ci"™(w?)) was neither updated nor read earlier

ass)
in the current macro step)): Yyeq(wgro) = {ohi™ (wWgrer)}, which

conforms to the syntax rules of 7™ (w,,.,).

Second, the semantic correctness is checked by comparing the SOS transition
rules of opguse(wqrz) in combination with aé’?sm(wqrz) (or ag’;gm(wqrz) only,
respectively) with the SOS transition rules of ¢/™™(w?). The semantics are
preserved, considering that a PLC cycle can contain several macro steps (see
Section 3.2 and 3.3). The single assignment per macro step is respected by

considering the last update and read of lhs(c™™(w¥)).

54

4.2. From ST Models to Quartz Models

Illustrative Example for Lemma 4.15

As an example, the immediately assigned variables of the ST_ASS_IMM1 model
and ST_ASS_IMM2 model are translated as follows'”:

yi=x;
= ¥Y=Xx; /7 assm(wm"z’) added to Zseq(wa'r‘z)
yO0:=x0; yl:=x1
= y0=x0; /) oW (W,) added to Lseq(Wyrgr)
= yl=x1; /7 oM (weryr) added to Xseq(wgrer)

y0:=x0; yl:=x1; y0:=x2;

= y0=x0; // oM (W,) added to Lseq(Wyryr)
= yl=x1; /) T (Weryr) added to Tseq(Wgpyr
= pause; // Opause(Waryr) added to seq(wWgry
= y0=x2; /) T (Wepyr) added to Beeq(Warsr)
y2:=x0; y2:=x1;
= y2=x0; /7 G (Woryr) added to Tgeq(Woryr)
= pause; // O'pause(wqrz/) added to Yseq(Wqryr
= y2=X1; // assm(wGTz) added to Zseq(warz’)
yO0:=x0; x0:=y0+x1;
= y0=x0; // e (Woryr) added to Xgeq(Woryr)
= pause; // Opause(Woryr) added to Xseq(wgryr
= x0=y0+x1; /) o (Weryr) added to Yseq(Wgrsr)

Lemma 4.16. Let w?, be translated to wgr, ¢ € {fb, fun,prg}, and

¥ = del. Then, tst‘fj]rz(ol (wh)) translates 09 (w%) to a sequence

Yseq(wgrar) of aass(wqrz) and opause(wqrz) as specified in Definition 4.8.
Yseq(wgrzr) conforms to the syntaz rules of Yseq(wqrz), preserves the SOS
transition rules of offfjé(wft), and respects the single assignment per macro
step constraint in Quartz.

Proof The validity of Lemma 4.16 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Yseq(wqr.r) with
the syntax rules of ¥4, (wqr2) as specified in Section 3.3, where X Seq(wqm 1) =
{Uass(wqrz)i Opause(Wqr2r) }, which conforms to the syntax rules of Jass(wqrz)
and opguse(wgrz). Second, the semantic correctness is checked by comparing
the SOS transition rules of g% (wgrz) In combination with opgyse(wWqrz) with

ass
the SOS transition rules of 09 (w%) (see Section 3.2 and 3.3). The semantics

ass
are preserved, considering that a PLC cycle can contain several macro steps.
The single assignment per macro step is implicitly respected by using the

delayed assignment operator of Quartz followed by a pause statement.

Illustrative Example for Lemma 4.16

As an example, the delayed assigned variable of the ST_ASS_DEL model is trans-
lated as follows'®:

1"Both models, ST and Quartz, are included in Appendix B.15, B.16, C.15, and C.16.
¥Both models, ST and Quartz, are included in Appendix B.11 and C.11.

95

w W

Chapter 4: Model Transformation of ST Models to Quartz Models

yoO := y0O + x0;
= next(y0) = yO + x0; /7 0% (Wary) added to Zseq(wWorsr)
= pause; // Upause(wqrzz) added to Eseq(wqrzz)

4.2.9. Conditions

This step covers the translation function for translating conditions in ST mod-
els 20 (w%) to conditions in Quartz models XY (wgrar).

Definition 4.9 (Translation of conditions — ST-to-Quartz). Let
Q7 ={w? | p € {fb, fun,prg}} be the set of possible ST model elements. A
condition in ST models oeond(wh) € Beonda(w) is translated to a condition
in Quartz models ocond(Wgrz) € Leond(wWgrz) using the translation function
¢Econd (0% (w%)), which is described by Algorithm 7.

st—>qrz

Algorithm 7 Translate condition — ST-to-Quartz

Input: Ufo%d(w;’;)

OUtPUt Ucond(wqrz)

Translation Function tstf_‘izﬁz(ofond(w;@)):
switch ¥ do

case it do

) if (tst»—>qrz()‘b(acond(wst)))){
Jéfmd(wqrzl) < st»—»qrz (21 (Ucond(<p))
}
end
case ¥ = ite do
if (tstwqrz ()‘b (Uzﬁz(z (wst)))) {
y sthrz(El(O-égj@d(5))
oo (werzr) <1 telse{ '
tib—»qrz (22 (Uéfﬁnd (w;f)))

}

end
end

Correctness

To check the correctness of Definition 4.9, the following lemma is used.

Lemma 4.17. Let w?, be translated to wgr, and ¢ € {fb, fun,prg}.
Then, tst‘f,ziz(oV (W) translates 0¥ (w%) to 0¥ (wgro) as specified

in Definition 4.9. 0° (wgrsr) conforms to the syntaz rules of 0¥ (werz)
and preserves the SOS transition rules of Jcond(wst)'

o6

[

16

4.2. From ST Models to Quartz Models

Proof The validity of Lemma 4.17 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of afond(wqrzr) with
the syntax rules of afond(ww) as specified in Section 3.3. Second, the seman-
tic correctness is checked by comparing the SOS transition rules of afon J(Warz)
in Section 3.3 with the SOS transition rules of ¢” . (w¥) in Section 3.2, con-

sidering that statements are assumed to terminate within the same PLC cycle.

Illustrative Example for Lemma 4.17

As an example, the conditions of the ST_COND model are translated as follows!:

IF x1 THEN // initial condition
x2 := TRUE;

END_IF;
= if(x1){ // resulting condition

= X2 = true;

IF x1 THEN // initial condition
x0 := TRUE;

ELSE
x0 := FALSE;

=f‘if(x1){ // resulting condition
x0 = true;

}elseq
x0 false;

}

4.2.10. Loops

This step covers the translation function for translating loops in ST models

Zf;op(w;’;) to loops in Quartz models Zfoop(wq,,zf),

Definition 4.10 (Translation of loops — ST-to-Quartz). Let Q7, =
{w¥ | ¢ € {fb, fun,prg}} be the set of possible ST model elements. A loop

i ST models U;’;Op(wft) € Xioop(wiy) is translated to a loop in Quartz models

aﬁ)op(wqm/) € Yioop(wqrzr) using the translation function til:f;m(ag’;op(wi)),
which is described by Algorithm 8.

Correctness

To check the correctness of Definition 4.10, the following lemmas are used.

Lemma 4.18. Let wi, be translated to wgr. and ¢ € {fb, fun,prg}.

Zloop head(, ¢ head (, ,# head :
Then, t %0 (Orooy (W5)) translates oo " (wg;) to ojpg (wWgrsr) as specified
head

in Definition 4.10. al}loe()‘;d(wqrzr) conforms to the syntaz rules of), (wgrz)

and preserves the SOS transition rules of Jfoeo‘;d(wi).

9Both models, ST and Quartz, are included in Appendix B.8 and C.8.

57

Chapter 4: Model Transformation of ST Models to Quartz Models

Algorithm 8 Translate loop — ST-to-Quartz

9
Input: aloop(w;’;)
Output: ag)op(wqu)
b
Translation Function tstl,i";m(aﬁmp(wz)):
switch ¢ do

case head do
while (7., (A (o (w5))){

loop
> head
O.head(w ,) - tsb—»qr‘z(z(alo%(;) (wft))
loop \ATZ [pause;]

D> pause is the last statement of an iteration that can be contained

in 135 s (S(of04(w5))

end
case foot do
do{
) foot
O_foot(w) < tstHQrz(E(o-loooj) (Wsﬁ))
toop X% [pause;]
pohile (Ut g (X" (0 (W5)))))

D> pause is the last statement of an iteration that can be contained
. » foot, @
mn /,&'fH(//‘,:’(Z(U (“u,<[,>>

loop

end

end

Proof The validity of Lemma 4.18 is proved as follows: First, the syntac-

tic correctness is checked by comparing the resulting syntax of al'ffo?gd(wq,nz/)

(including optional opguse(wqrzr)) with the syntax rules of alffo‘;d(wqrz) and

Opause(Wqr>) as specified in Section 3.3. Second, the semantic correctness is

checked by comparing the SOS transition rules of Jhe“d(wq,,z) and optional

loop
Opause(Wqrz) in Section 3.3 with the SOS transition rules of Jﬁfo‘;d(w;’;) in Sec-

tion 3.2, noting that opguse(wqrz) is not always necessary (like for delayed
assignments).

Illustrative Example for Lemma 4.18

As an example, the head-controlled loop of the ST_LOOP_HEAD model is trans-

lated as follows20:

i := i0; // initial loop
WHILE i <= i1 DO
y = i;
i =i + x2;
END_WHILE;
y := x1;
= i = 1i0; // resulting loop

20Both models, ST and Quartz, are included in Appendix B.14 and C.14.

o8

4.2. From ST Models to Quartz Models

= while(i <= i1){

= y = i;

= next (i) = i + x2;
= pause;

= }

=y = x1;

Lemma 4.19. Let w? be translated to wyr, and ¢ € {fb, fun,prg}.

Sloop foot, foot, foot .
Then, 3.0 (T100 (wi)) translates Tloop (wiy) to Tloop (wgrz) as specified
foot

in Definition 4.10. Ul{i;f(wqmr) conforms to the syntax rules of o}, (wqr-)

and preserves the SOS transition rules of al{)‘g(wﬁ).

Proof The validity of Lemma 4.19 is proved as follows: First, the syntac-

tic correctness is proved by comparing the resulting syntax of UZJ; (Zg(wqrz’)

(including optional opguse(wqrer)) with the syntax rules of O'lj; ‘Z;f

Opause(Wqrz) as specified in Section 3.3. Second, the semantic correctness is

(wgrz) and

checked by comparing the SOS transition rules of alfo ZKZ(UJW) and optional

foot
loop

tion 3.2, noting that opguse(wqr2) is not always necessary, such as for delayed
assignments.

Opause (Wqrz) In Section 3.3 with the SOS transition rules of o] *”'(w?) in Sec-

Illustrative Example for Lemma 4.19

As an example, the foot-controlled loop of the ST_LOOP_FOOT model is trans-
lated as follows?!:

i := i0; // initial loop
REPEAT
y := x0;
i =i + x2;
UNTIL i>il
END_REPEAT;
y := x1;
= i = i0; // resulting loop
= do{
= y = x0;
= next (i) = i + x2;
= pause;
= }while (! (i > i1));
=y = x1;

21Both models, ST and Quartz, are included in Appendix B.13 and C.13.

99

Chapter 4: Model Transformation of ST Models to Quartz Models

4.2.11. Sequences

This step covers the translation function for translating sequences in ST mod-
els Ygeq(wiy) to sequences in Quartz models Ygeq(wgrzr).

Definition 4.11 (Translation of sequences — ST-to-Quartz). Let Q7, =
{w? | p e {fb, fun,prg}} be the set of possible ST model elements. There are
the following variants of ST statements:

e POU invocations: iny(wh) € Biny(w)
o Assignments: ojis"(wh) € DU (WE), odes(wh) € Taes (wF)

iy ¢ t
o Conditions: agjﬁg(7)€ Z?ggg(WZ), af;sd(wst) € Efgsd(2)

t t
o Loops: olctd(wf) € Siead(w), of % (wh) € B (w5)

According to the Definition 4.7, 4.8, 4.9, and 4.10, these ST statements are
translated to the following variants of Quartz statements:

o Pause: Upause(wqrz’) € E;wCLuse(‘JL)qr,z’)

o Model invocations: ipy(Wgrzr) € Liny(Wgrzr)

o Assignments: Uassm(quZ’) Earggn(wqm’); Uggé(‘*’q%’) Egsls(wqm’)
o Conditions: o528 (wyrsr) € P (), 1% (grer) € 21921 (10402

¢ ¢
e Loops: Ulo%(;d(wqrz 1) € Eﬁ%‘;‘i(wqm), JlO‘Z; (wgrz') € E{O‘;(; (wgrz)

o Sequences: Yseq(wgrz')
A set of the resulting Quartz statements represents a sequence, de-

noted as Ygeq(wgrsr), which was introduced and appended in isolated
transformation steps, such as for delayed assignments Xgeq(Wqrar)

{Jgeeé(wqu);Upause(wqmr)} in Definition 4.8. The translation function
.,) .
tst‘H‘fﬁz(Eseq(wqml)) inserts 0j(wgrz') € Ygeq(Wgrer) to werer, following the

process described by Algorithm 9.

Algorithm 9 Add sequence — ST-to-Quartz
Input: Xsq(wgrs)

Output: wgy,./

Translation Function ¢ (Eseq(wgre)):

st—>qrz
forall 0, € ¥, (wqr>) do
Wyrz! < adg o, to the position w.r.t. its execution order and dependent
constructs;

end

Correctness

To check the correctness of Definition 4.11, the following lemma is used.

60

6

9
10
11
12

14

4.2. From ST Models to Quartz Models

Lemma 4.20. Let w?, be translated to wgry, ¢ € {fb, fun,prg},
Yseq(Wgrzr) # @, and Ygeq(wgrar) be syntactically correct. Then,

tsti""qm(Zseq(wqmr)) inserts each translated statement o; € Zseq(wqm/) to
wqrzr- The resulting Quartz model wq,.r conforms to the syntax rules of
Wqrz, preserves the SOS transition rules of w¥, (in particular with regard to
the execution order of the statements), and respects the single assignment

per macro step constraint in Quartz.

Proof The validity of Lemma 4.20 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ¥seq(wqr.r) with
the syntax rules of ¥, (wqr>) as specified in Section 3.3 using induction on
the number of statements to be added Mgeq(wgr2r):

1. Base Case: When Y,¢4(wqr»') = @, there are no statements to be added,
which conforms to the syntax rules of d,,(wgrz)-

2. Induction Hypothesis: The lemma holds for any set of statements to
be added YXyeq(wgrzr)-

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules Yg.,(wqrz), because the syntactic cor-
rectness of this statement to be added has been proved in the corre-
sponding section.

Second, the SOS transition rules and the single assignment per macro step
constraint in Quartz are respected by the individual statements themselves.
The order is respected by the order within the resulting Quartz model.

Illustrative Example for Lemma 4.20

As an example, below are the inserted statements in the resulting Quartz
model of the ST_SIMPLE_PRG1 model:

loopA
immediate await (EI);
emit (DEBOUNCE_O01_EI) ; // 01 € Tiny(Warsr)
immediate await (DEBOUNCE_O1_E0); // 02 € Tiny(Waryr)
PRG_OUT1 = DEBOUNCE_01_0UT; // 03 € Xass(Warzr)
PRG_ET_OFF = DEBOUNCE_O1_ET_OFF; // 04 €Xass(Waryr)
ST_SIMPLE_FUN(...); // 05 € Tiny(Warer)
PRG_OUT2 = ST_SIMPLE_FUN_11; // 06 € Lass(Warsr)
emit (EQ) ;
pause;

}

|| DEBOUNCE_O1:DEBOUNCE(...); // 01 € Ziny(Warzr)

61

Chapter 4: Model Transformation of ST Models to Quartz Models

4.3. Experimental Results

The applicability of the introduced translation functions is evaluated with the
ST models listed in Table 4.1. The examples are listed with the Source Lines
of Code (SLOC) metric [BM14] of the ST model and the experimental results.
For evaluation purposes, the listed ST models and the expected Quartz models
are manually implemented to verify the applicability of the isolated translation
functions. To ensure the correctness of both models, ST and Quartz, they are
compiled with the built-in compilers of CODESYS and Awverest. The transla-
tion functions have been implemented as a prototype in PLCreX, resulting in
the overall test strategy shown in Figure 4.6. The correctness of the resulting
Quartz models is verified in two ways: (1) through manual reviews, differences
between the expected Quartz models and the automatically generated models
are identified, and (2) using the built-in compilers of Averest, the syntactic
correctness of the automatically generated Quartz models is ensured. Both

Codesys PLCreX Averest
(implemented manually) (implemented manually) (generated automatically)
4 P I > I
wst Tst»—»qrz (wst) ' > a)q"Z'
- J - J
compile compile
Averest
(implemented manually)
review
| WOgrz |-
| C—
compile

Figure 4.6.: Test strategy to evaluate the ST-to-Quartz transformation

tests passed for all examples (ignoring minor formatting differences between
manually implemented and automatically generated Quartz models), with the
following warnings:

e Initializing input variables: According to Lemma 4.2, input variables
of Quartz models are always invoked with connected values, because
input variables have only read access as specified in Section 3.3. Thus,
input variables cannot be set to specific values, which is why the example
simple calculation throws a warning for the initialized input variable,
since the initialization is skipped during translation.

Based on the experimental results in Table 4.1, it can be concluded that the
introduced translation functions are applicable and lead to correct Quartz
models. They can be reused in model-based design, if a few conditions are
considered. These are summarized in the following section.

62

4.4. Summary

Table 4.1.: Set of ST models and test results to evaluate the applicability of the
introduced ST-to-Quartz transformation

Model Source | w? | wery Result

2-of-3 logic function
Alarm function

Analog value processing 1
Analog value processing 2

[] | B1 | C1 passed
[] B2 | C2 passed
[Sch19] | B3 | C.3 passed
[] B4 | C4 passed
Arithmetic operators self B5 | C5 passed
Boolean operators self B6 | C.6 passed
Compensation system | 28 | [Sch19] | B.7 | C.7 passed
Condition statements | 15 self B8 | C8 passed
Data types and fields | 28 self B9 | C9 passed
Debounce | 20 | [GDV14] | B.10 | C.10 passed
Delayed assignments | 7 self B.11 | C.11 passed
Equality, inequality | 9 self B.12 | C.12 passed
Foot-controlled loop | 20 self B.13 | C.13 passed
Head-controlled loop | 18 self B.14 | C.14 passed
Immediate assignments 1 | 13 self B.15 | C.15 passed
Immediate assignments 2 | 19 self B.16 | C.16 passed
Immediate assignments 3 | 10 self B.17 | C.17 passed
Invoke function 1 | 7 self B.18 | C.18 passed
Left detection | 7 | [Sch19] | B.19 | C.19 passed
Numeric relations | 11 self B.20 | C.20 passed
Off delay timer | 39 | [GDV14] | B.21 | C.21 passed
On delay timer | 39 | [GDV14] | B.22 | C.22 passed
RS-Flip-Flop | 14 | [GDV14] | B.23 | C.23 passed
Right detection | 7 | [Sch19] | B.24 | C.24 passed
SR-Flip-Flop | 14 | [GDV14] | B.25 | C.25 passed

Simple calculation | 16 | [GDV14] | B.26 | C.26 | Pa5sed with

warnings

Simple program | 19 | [GDV14] | B.27 | C.27 passed
Tank control | 19 | [Sch19] | B.28 | C.28 passed
Track correction | 23 | [Sch19] | B.29 | C.29 passed
Two-Point controller | 21 | [Sch19] | B.30 | C.30 passed

= 8~ »» Z| SLOC

4.4. Summary

This chapter introduced the transformation of ST models to Quartz models.
For this purpose, individual translation functions were defined that take into
account the sequential execution order of ST statements. The applicability
of these translation functions was demonstrated using a set of ST examples.
Based on the presented lemmas and experimental results, the following theo-
rem encapsulates the entire transformation:

63

Chapter 4: Model Transformation of ST Models to Quartz Models

Theorem 4.1 (ST-to-Quartz Translation). Let w?, € QF, be an ST
model of variant ¢ € {fb, fun,prg}, and let Ty .qr.(w?%) be the model
transformation of wft to wyr.r using the translation functions defined in
this chapter. Then, the resulting Quartz model wg,..::

1. Conforms to the syntax rules of wy,
2. Preserves the semantics of wft

3. Contains constructs corresponding to the constructs of w¥, and pre-
serves the intended functionality of w?, under the following condi-
tions:

@ € {fb, fun,prg}
o Njge(wh) = A (wh)UA gt (wh) U iout (W), where models are

always invoked with defined input values, so no initializations
are required for A, (w%)

o Npaa(wh) = Appear(wh), where variables are represented as
memorized variables

e Imported models are available as Quartz models
e Functions are called formally complete in ST models

+ ey . + bool byte _word int ,dint uint _ udint
o Val](Wst) ol e {ony ™, oy 0" g™ o g o

Qgur, 0}, where agy, can be treated as an unbounded integer
and is specified in milliseconds

Py . cst id A __br true _false _arr nv
b VT(wst) ‘T E {Tmisc’ Tmisc) Tmise 1 Tmiser Tmiser Tmise > Tmise’ Tmisc

eq ne gt ge It le mul _div add sub
Teomp 7_comp? Tecomp> Tcomp 7_comp’ 7-comp7 Tarith> Tariths Tarith> Tarith?
expt _mod _um sel
Tarith Tarith Tarith> Teond
Py . 9 9 9 9
b va(wst) f0 € {Uinv7 Oass1 O cond> Uloop}

Proof The validity of Theorem 4.1 is proved as follows:

1. Syntax Conformance: Lemma 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,
4.9, 4.10, 4.11, 4.12, 4.13, 4.14 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20
demonstrate that each translated construct conforms to the syntax rules
of wy,, as specified in Section 3.3.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

Model declaration: Lemma 4.1

Interfaces: Lemma 4.2

Variables: Lemma 4.6

Data types and fields: Lemma 4.10

64

4.4. Summary

e POU imports: Lemma 4.11

o Expressions: Lemma 4.12

e POU invocations: Lemma 4.13 and 4.14
e Assignments: Lemma 4.15 and 4.16

e Conditions: Lemma 4.17

e Loops: Lemma 4.18 and 4.19

e Sequences: Lemma 4.20

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in wgr, for the considered constructs in w?,, preserving the original func-
tionality.

Overall, this results in the following solutions to the challenges summarized in
Section 4.1.

1. Cyclic execution of Quartz models (with and without memory):
The execution of Quartz models mimicking both POU variants, with
and without memory, depends on the invocation by the external Quartz
model, i.e., the external model is responsible for the cyclic execution.

2. Event-driven execution of synchronous parallel threads: An it-
eration of Quartz models mimicking POUs with memory is triggered via
event input EI and returned via event output EQ after a finite number
of macro steps n > 0, thus realizing an external event-driven execution
control of the resulting Quartz model.

3. Sequential execution of synchronous parallel threads: Due to the
event-driven execution control realized with the event interfaces EI and
EO, the invoking Quartz model can invoke instances depending on their
feedback via EO, thus allowing the sequential execution of synchronous
parallel threads taking into account an individual number of macro steps
of the instances.

4. Dynamic system time: The global clock synchronization is realized by
an additional memorized input CLK, i.e., the clock is controlled externally
and processed within the Quartz model with read access.

5. Translation of ST language constructs: The solution follows from
Theorem 4.1.

65

Chapter

Model Transformation of ST Models
to SCL Models

Contents
5.1. High-Level Design Flow — ST-to-SCL 68
5.2. From ST Models to SCL Models 69
5.2.1. Model Declaration 70
5.2.2. Imterfaces 72
5.2.3. Variables 76
5.2.4. Data Typesand Fields 77
5.2.5. Expressions 78
5.2.6. Assignments, 79
5.2.7. Conditions 81
5.2.8. LOOpS 82
5.2.9. Sequences 84
5.3. Experimental Results 86
5.4, Summary e e 88

The second approach to reusing existing POUs in model-based design is the
transformation of ST models into SCL models, where the goal is to create a
robust set of translation functions that ensure semantic preservation during
the transition. In addition to the approaches presented in [WS24a; WS24b],
it considers the following additional issues:

e Model Declaration: Mimicking the termination behavior of the initial
model, i.e., distinguishing between models with and without memory

o Interfaces and Variables: Additional interfaces for event-driven exe-
cution control and an external controlled time (provided as a bounded
integer)

e Data Types and Fields: Additional IEC 61131-3 data types

67

Chapter 5: Model Transformation of ST Models to SCL Models

The correctness of the translation functions is proved by theoretical reason-
ing, which includes a detailed analysis of the resulting syntax and semantics
compared to the syntax rules and semantics specified in Chapter 3. In addi-
tion, the theoretical results are evaluated with real-world and self-defined ST
models.

This chapter is structured as follows: Section 5.1 introduces the high-level
design flow and translation strategy. Section 5.2 defines the translation func-
tions and theoretical analysis. Section 5.3 presents an evaluation of the theo-
retical results, and Section 5.4 summarizes the transformation.

5.1. High-Level Design Flow — ST-to-SCL

The high-level design flow for transforming an ST model w?, € Q% of the
variant function block (¢ = fb), function (¢ = fun), or program (¢ = prg) to
an SCL model wgy € Q4 is shown in Figure 5.1.

IEC 61131-3 KIELER
@ Tstb—)scl (ws(’;)
@ > @scl I

Figure 5.1.: High-level design flow of the ST-to-SCL transformation

The ST-to-SCL transformation Ty s (wy) includes the following transforma-
tion steps':

—

t% 1 (0u(w%)): Model declaration (see Section 5.2.1)

[\

. ti"jcslcl(wLi): Interfaces (see Section 5.2.2)

3. thvae (w?): Variables (see Section 5.2.3)

st>—>scl

4.t stﬁscl(a l(w%)): Data types and fields (see Section 5.2.4)

5. 17, . (7(w%)): Expressions (see Section 5.2.5)

6. toas (00 (w5)): Assignments (see Section 5.2.6)

st—sc

7. tiﬁg‘él(afgnd(wz)): Conditions (see Section 5.2.7)

8 sztl::’spcl(aloop(wﬁ)): Loops (see Section 5.2.8)
P
9. t 7 (Bseq(wsear)): Sequences (see Section 5.2.9)

1t should be noted that based on experimental results in the latest version of KIELER, SCL
models are not intended to import external SCL models (due to the minimal instruction
set), and thus transformations of model imports and invocations are not considered in
this chapter.

68

5.2. From ST Models to SCL Models

Translation Strategy:

This chapter introduces two translation strategies illustrated in Figure 5.2. In
contrast to the strategies introduced in Chapter 4, in this approach both POU
variants (with and without memory) run in an infinite loop. The difference is
that the ST model is either transformed into an SCL model that (1) contains
variables that are reset to their defaults at the beginning of each iteration
(to mimic a POU without memory), or (2) runs in an infinite loop without
resetting the variables (to mimic a POU with memory). Figure 5.2a shows
the high-level runtime behavior of the resulting SCLL model that follows the
first translation strategy, where the set of input variables IN is read when an
iteration of the SCL model is triggered via the input variable EI in macro step
S;i. In the following macro steps during execution, the interfaces are synchro-
nized, where only CLK may be updated externally and is read. Neither input
variables IN are allowed to be updated nor output variables OUT are allowed
to be processed externally until the current iteration is terminated. In macro
step Sy,, OUT is returned to the invoking model for external processing. The
subsequent final macro step is used to switch to the next iteration (triggered
in the next PLC cycle) and to reset EO. In contrast, Figure 5.2b shows the
high-level runtime behavior of the resulting SCL model that follows the sec-
ond translation strategy, where the model is initialized in the first macro step
So and then runs in an infinite loop until an iteration is triggered externally
via the input variable EI. When an iteration is triggered in macro step S;, the
set of input variables IN and an external clock variable CLK are read and can
be processed. In the following macro steps during execution, the interfaces
are synchronized, where only CLK may be updated externally. Neither input
variables IN are allowed to be updated nor output variables OUT are allowed to
be processed externally until the iteration reaches the macro step S,,, where
EO is set to true. In this macro step, OUT and EO are returned to the invoking
model for external processing. The subsequent final macro step is used to
switch to the next iteration (triggered in the next PLC cycle) and to reset EO.

Challenges:

From this, the following challenges for translating ST models to SCL models
can be derived:

1. Cyclic execution of SCL models (with and without memory)
2. Event-driven execution of SCL models

3. Dynamic system time
4

. Translation of ST language constructs

5.2. From ST Models to SCL Models

This section defines the individual translation functions for translating an ST
model w¥ € Q% to an SCL model ws € Qs and analyzes the theoretical
correctness.

69

Chapter 5: Model Transformation of ST Models to SCL Models

Wait

CLK;

Wait

CLK;

Reset

pause l

CLK;

CLK;
H

s

CLK,
2'g
Statements

Statements

CLK;
H«

CLKm

CLKm

P’
=)
([pevse]

EO = false

(a) Model of a POU without memory

(b) Model of a POU with memory

Figure 5.2.: ST-to-SCL translation strategies: high-level runtime behavior of the
resulting SCL models

5.2.1. Model Declaration

This step covers the translation function for translating an ST model dec-
laration &, (w¥) to an SCL model declaration d,(wsqr). According to the
introduced translation strategies, the resulting SCL model of an ST model,
variant ¢ € { fb, fun,prg}, is executed in an infinite loop, reflecting the behav-
ior of the original ST model with and without memory. For this, in each PLC
cycle, the SCL model waits? until a loop iteration is triggered by an input,
where the termination of the iteration is returned by an output.

Definition 5.1 (Model Declaration — ST-to-SCL). Let Q7, = {w?, | ¢ €
{fb, fun,prg}} be the set of possible ST model elements. &, (wy) is translated
to 0w (wserr) using the translation function tngscl(éw(wz)), which is described
by Algorithm 10.

Correctness

To check the correctness of Definition 5.1, the following lemma is used.

2The wait functionality is derived from the immediate await macro of Quartz [Sch09].

70

5.2. From ST Models to SCL Models

Algorithm 10 Translate model declaration — ST-to-SCL
Input: &, (w?)
Output: 6§, (wser)
. . Ow .
Translation Function ¢ (d,(wf)):
module an(w?;){
A'L sl A'u c
tst»—‘fslcl (w;pt) tst»—?si:l (w;pt)
loop:
while ('EI){ pause; }
by
tstHscl(wft)
E0 = true; pause; E0 = false;
goto loop;

0w (wscl’) <~

Lemma 5.1. Let w?, be translated to wsy and ¢ € {fb, fun,prg}.
Then, tifﬁscl((sw (w?)) translates 0,(w) to 0w (wser) as specified in Defi-
nition 5.1. O, (wserr) conforms to the syntax rules of 6, (wser) and preserves
the semantics of d,(w%) regarding its termination behavior.

Proof The validity of Lemma 5.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of 6, (wse) with the
syntax rules of §,,(wsq) as specified in Section 3.4. Second, the preservation of
semantics is checked by comparing [0, (wse)]e (see Section 3.4) with [d,,(wi)]e
for p € { fb, fun,prg} (see Section 3.2). In particular, given the SOS transition
rules of Ull:(f;(wscl’)a Ulff)?;(;;d(wscl’)v Ufgém (wscl’)7 and Opause (Wscl’) as specified in
Section 3.4, 0, (wseq) results in an infinite loop whose iteration is executed
immediately when input EI becomes true and triggers EO at the end of an
iteration. Iterations are separated by opquse(wser). Consequently, [0, (wser)]e
preserves [d,(w?;)]¢ regarding its termination behavior (see Section 3.2 and
3.4). The difference between POUs with and without memory is that interfaces
and local variables are reset at the beginning of an iteration.

Illustrative Example for Lemma 5.1

Usage examples are shown below using snippets of the resulting SCL models®
in combination with a visualization of the high-level runtime behavior. The
resulting SCL model of example ST_ALARM in Figure 5.3 represents a model
without memory, and the resulting SCL model of example ST_ASS DEL in Fig-
ure 5.4 represents a model that preserves the state of the last macro step of
the current PLC cycle for the next iteration (i.e., for the next PLC cycle).

3Both SCL models are included in Appendix D.2 and D.9.

71

1
2
3
1
5

Chapter 5: Model Transformation of ST Models to SCL Models

module ST_ALARM{
input bool EI;
output bool EO;
input bool xSENSOR_L;

loop:

while ('EI){ pause; 1}

ST_ALARM = false // Reset

ST_ALARM .

E0 = true; pause; EO =
false;

goto loop;

CLK

ST_ALARM =

ST_ALARM

o=

Wait

Reset

Statements

Figure 5.3.: Resulting SCL model of example ST_ALARM (without memory)

module ST_ASS_DEL{
input bool EI;
output bool EO;
int x0 = 2;
int y0 = 1;

loop:

while ('EI){ pause; }
yo = y0O + x0;

E0 = true; pause; EO =
false;
goto loop;

Figure 5.4.: Resulting SCL model of example ST_ASS_DEL (with memory)

5.2.2. Interfaces

CLKj+1

Wait

Statements

This step covers the translation function for translating ST model interfaces
Ajger(w?;) to SCL model interfaces Ajge(wser)), where Ajge(wh) = Ajp(wh) U
Aout (wft) U Ainout (W;i)

Definition 5.2 (Interfaces — ST-to-SCL). Let QY = {w?, | ¢ € {fb, fun,
prg}} be the set of possible ST model elements. N;ge(wser) is derived from
wi, and extended by interfaces for event-driven execution control and by an
optional system time, using the translation function ¢hvidel (w?), which is de-
scribed by Algorithm 11.

Correctness

To check the correctness of Definition 5.2, the following lemmas are used.

st—scl

72

5.2. From ST Models to SCL Models

Algorithm 11 Translate interfaces — ST-to-SCL

Input: w?,
011tp11t3 Z:seq(wscl’)a Am (wscl’)7 Aout (wscl’)7 Ainout(('dscl’);
Translation Function tﬁfg’d(w;’;):
Ajp(wserr) < add input bool EI; > add Boolean input variable
Aoyt (wserr) < add output bool EO; > add Boolean output variable
if w? contains time-based logic then
Ain(wserr) < add input int CLK;
> add input variable

end
f o= funner # @, where e,y € Ep(wh), Err(wh) c Ei(w?,) then
Ayt (wser) < add output 2, (a(er)) an(wh);

> add output variable

e

end
orall e; € £(w?) do
if €; = ejys, where ejvs € Evs(wh), Eivs(wh) c &(w?) then
Ajp(wser) < add input t9, o (a(e;)) an(e;) [= tirice (m)1;
> add input variable with optional initialization

=h

end
if e; = eovs, where eoys € Egvs(wh), Eovs(wh) € Ei(w?,) then
Tmisc
Ajut(wserr) < add output 15, (a(e;)) an(e;) [= trise (m)];
> add output variable with optional initialization

Yseq(wser) < add an(e;) = timise (m); (if ¢ = fun)

st—scl
> add reset to default value if o = fun

end

if e; = e;ovs, where e;ovs € Eiovs(wh), Eiovs(wh) c E(wy,) then

A'L'nout (wscl’) < add input output t?t»—»scl(a(e’i)) aﬂ(ei) (=
tTmisc (7.[.)]7

stscl

> add inout variable with optional tnitialization
end

end

Lemma 5.2. Let w?, be translated to ws.y and ¢ € { fb, fun,prg}. Then,
for each interface e; € & (w5), tﬁﬁ‘f;’cl(wi) extends Lseq(wserr), Ain(Wserr),
Agut(Wserr)s o1 Nipout(Wserr) including optional initialization and reset to
default value as specified in Definition 5.2. Ajp(wserr), Dout(wser), and
Ainout (wser) conform to the syntax rules of Nijp(wser), Aout(wser), and
Ainout(Wser) Tegarding the storage class, data type, and name. Ygeq(wser)
conforms to the syntax rules of Lseq(wser). With and without initialization,
Ain(Wserr), Dout(wserr) (in combination with Xseq(wserr)), and Nipout (Wserr)
preserves the semantics of Nip(wi), Aout(wh), and Nipout(w?) regarding
information flow, modifiability, and initialization.

73

Chapter 5: Model Transformation of ST Models to SCL Models

Proof The validity of Lemma 5.2 is proved as follows: First, the syntactic cor-
rectness is checked by comparing the resulting syntax of Xseq(wserr), Ain(wserr),
Aout(wserr), and Ajpout (wserr) with the syntax rules of Ygeq(wser), Ain(wsel),
Aput(wser), and Ajpout(wser) as specified in Section 3.4 using induction on the
number of added interfaces &;(w?,), where ¢ = fun:

1. Base Case: When &;(wy) = @, there are no input variables, output
variables, and inout variables to add, which trivially conforms to the
syntax rules of Eseq(‘*‘)scl)a Aip (wscl)a Aout (wscl)> and Ainout(wscl)7 since
these sets remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in Xyeq(wserr),
Ain(wserr)y Aout(Wser), and Ajpout (wserr). Their syntax still conforms to
the syntax rules of geq(wser), Ain(Wser), Dout(Wser)s and Ajrout (Wser)-

Second, the semantic correctness is checked by comparing [Aj,(wsa)le,
[Aout(wser)]e in combination with the SOS transition rules of Yyeq(wse),
and [Ajnout (wser)]e (see Section 3.4) with [Aj,(wh)]e, [Aout(wh)]e, and
[Ainout (wh)]e (see Section 3.2).

Illustrative Example for Lemma 5.2

As an example, below are the derived interfaces of the ST_TON model*, where
one interface is initialized:

input bool IN; // added to Ajn(wger)
input int PT; // added to Ajn(wger)
output bool Q1 = false; // added to Aout(wseyr)
output int ET; // added to Acut(wserr)

Lemma 5.3. Let wﬁ be translated to wser, ¢ € {fb, fun,prg}, and wsq
be event-driven. Then, tiled(wz) adds the additional input variable EI to

Ain(wserr) and the additional output variable EO to Ayyi(wser) as specified
in Definition 5.2. Ajp(wserr) and Agyi(wserr) conform to the syntaz rules

of Ajn(wser) and Apyt(Wser) -

Proof The validity of Lemma 5.3 is proved by comparing the resulting syntax
of Ajp(wserr) and Agys(wserr) with the syntax rules of Ay, (wser) and Agyr(wser)
as specified in Section 3.4.

“Both models, ST and SCL, are included in Appendix B.22 and D.19.

74

5.2. From ST Models to SCL Models

Illustrative Example for Lemma 5.3

As an example, below are the derived interfaces of the ST_TON model®:

input bool EI; // added to Ajn(wger)
output bool EO; // added to Acut(wserr)

Lemma 5.4. Let w¥, be translated to wyer, ¢ € {fb, fun,prg}, and wi,
contains time-based logic, where time is a readable variable and is synchro-
nized externally. Then, t?tﬁglcl(wﬁ) adds an additional input to A (wWserr)
as specified in Definition 5.2. N, (wser) conforms to the syntax rules of

Ain (wscl) .

Proof The validity of Lemma 5.4 is proved by comparing the resulting syntax
of Ajp(wser) with the syntax rules of A;,(wse) as specified in Section 3.4.

Illustrative Example for Lemma 5.4

As an example, below is the derived input of the ST_TON model®:

input int CLK; // added to Ajnp(wser)

Lemma 5.5. Let wffn be translated to wgyr and wi;un has a return value,

which is processed by wg ". Then, tﬁf_‘fg’c (W) adds an additional output

to Aout(wserr) as specified in Definition 5.2. Agui(wser) conforms to the
syntaz rules of Agut(Wser)-

Proof The validity of Lemma 5.5 is proved by comparing the resulting syntax
of Ayyut(wserr) with the syntax rules of Agyy:(wse) as specified in Section 3.4.

Illustrative Example for Lemma 5.5

As an example, below is the derived output of the ST_SIMPLE_FUN model:

output float ST_SIMPLE_FUN; // added to Agut(wserr)

5Both models, ST and SCL, are included in Appendix B.22 and D.19.
°Both models, ST and SCL, are included in Appendix B.22 and D.19.
"Both models, ST and SCL, are included in Appendix B.26 and D.23.

75

Chapter 5: Model Transformation of ST Models to SCL Models

5.2.3. Variables

This step covers the translation function for translating local ST model vari-
ables Ayge(wi) to local SCL model variables Ayger(wserr)), where Ay ge(w?) =
Alocal(Wﬁf) U AinSt(w;’;)'

Definition 5.3 (Variables — ST-to-SCL). Let Q% = {w? | ¢ € {fb, fun,
prg}} be the set of possible ST model elements. Ayger(wserr) s derived from w¥,

using the translation function tﬁf;lcl(w;i), which is described by Algorithm 12.

Algorithm 12 Translate variables — ST-to-SCL
Input: w?,
Output: Eseq((«‘)scl’)a Alocal("‘)scl’)
Translation Function tﬁ”.j;lc (wi):
forall ¢y € &(w?) do
if ed(elVS) = @ then
Alocal(ff‘-’scl’) < add t?t»scl(a(ell/s)) an(ele) (= t;—:ﬁn:;ccl(”r)]a
> add local variable with optional initialization
Yseq(Wsarr) < add an(eys) =t (m); (if ¢ = fun)
> add reset to default value if o = fun

end

end

Correctness

To check the correctness of Definition 5.3, the following lemma is used.

Lemma 5.6. Let w?, be translated to ws.y and ¢ € { fb, fun,prg}. Then,
for each local variable ey € E(w?) that is not derived from external
models eq(eyys) = @, ti’f;lcl(w;’;) adds a local variable including optional
initialization value to Ajpeqr(wserr) and reset to default to Ngeq(wserr) as
specified in Definition 5.8. Ajoeal(wserr) conforms to the syntax rules of
Ajocai(wser) regarding the storage class, data type, and name. Xgeq(wser)
conforms to the syntax rules of Xseq(wser). With and without initialization,
Ajpcai(wserr) (in combination with Ygeq(wser)) preserves the semantics of

Ajocat (W) regarding modifiability and initialization.

Proof The validity of Lemma 5.6 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Ygeq(wser) and
Ajocal (Wserr) wWith the syntax rules of Ygeq(wser) and Ajpeqr(wser) as specified in
Section 3.4 using induction on the number of added variables &;(w?,), where

o = fun:

76

N}

5.2. From ST Models to SCL Models

1. Base Case: When &;(w?,) = @, there are no local variables to add, which
trivially conforms to the syntax rules of Ajpeqr(wser) and Xgeq(wser), since
these sets remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of local variables
with possible initialization.

3. Inductive Step: Adding an element to local variables with initializa-
tion results in an additional element in Ajyeqi(wserr) and Xgeq(wserr)-
Their syntax still conforms to the syntax rules of Ajyeqi(wse) and
Eseq(Wscl)-

Second, the semantic correctness is checked by comparing [Ajocar(wser)]e in

combination with the SOS transition rules of ¥, (wse) (see Section 3.4) with
[Aiocar(wh)]e (see Section 3.2).

Illustrative Example for Lemma 5.6

As an example, below are the derived local variables of the ST_ASS_DEL model®,
where both variables are initialized:

int xO0
int yoO

2; // added to Alocal(wscl')
1; // added to Apgeqr(Wserr)

5.2.4. Data Types and Fields

This step covers the translation function for translating ST data types and
fields A (w%) to SCL data types and fields AM] (wgerr).

Definition 5.4 (Translation of FBD data types and fields). Let Q7 =
{w¥ | ¢ € {fb, fun,prg}} be the set of possible ST model elements. A ST
data type or field ol*)(w%) € AN(w?) is translated to an SCL data type and
field ol N (weer) € AU (woer) using the translation function t2, ,(al*1(w%)),
which is described by Algorithm 39 in Appendiz J.0.1°.

Correctness

To check the correctness of Definition 5.4, the following lemma is used, noting
that the exclusion of data types is based on experimental tests in the latest
version of KIFLER with restriction to internal data types.

Lemma 5.7. Let w¥, be translated to wsqr, ¢ € {fb, fun,prg}, and bit
vector, integer, floating point, and duration be the considered data type
categories AUN(w?) as specified in Section 3.2. Then, tg‘tHscl(oz[+](w§))
translates a1 (w?) to al*N(wear) as specified in Definition 5.4. al*(waer)
conforms to the syntax rules of aH(wSCl) and preserves the semantics
of al*] (w?) regarding boundaries, precision, resolution, and defaults (if
applicable), with the following restrictions:

8Both models, ST and SCL, are included in Appendix B.11 and D.9.
9This algorithm describes an intuitive mapping, which is moved to the appendix for the
sake of readability, but is not necessary for understanding the following lemma.

77

Chapter 5: Model Transformation of ST Models to SCL Models

e\ . byte _word udint
o Va(wh) ae{ay “ap, of

internal SCL data types

, }: Data types are not supported by

Py . ® time _int _wint dinty . ;
o Va(ws):a(wh) e {agie, o™, o™ o™ }: Boundaries are changed

to those of o™ (wse) (see Section 3.5)

Proof The validity of Lemma 5.7 is proved as follows: First, the syntactic cor-
rectness is checked by comparing all resulting data types and fields al*!] (wWserr)
with syntax rules al*! (wser) as specified in Section 3.4. Second, the semantic
correctness is checked by comparing [[a[+](wscl)]]§ with [a[+](w£)ﬂ§ (see Sec-
tion 3.2 and 3.4), taking into account that the resolution of the duration data
type is restricted to milliseconds.

Illustrative Example for Lemma 5.7

Usage examples are given by illustrative examples of previous lemmas, such
as Lemma 5.6.

5.2.5. Expressions

This step covers the translation function for translating expressions in ST
models 7 (w?,) to expressions in SCL models T (wser)-

Definition 5.5 (Expressions — ST-to-SCL). Let Q7 = {w% | ¢ € {fb,
fun,prg}t} be the set of possible ST model elements. An expression in ST
models T(w?) € T (w,) is translated to an expression in SCL models T(wser) €

T (wserr) using the translation function t7, .. (7(wi)), which is described by
Algorithm 40 in Appendiz J.0.2%.

Correctness

To check the correctness of Definition 5.5, the following lemma is used, noting
that the exclusion of expressions is based on experimental tests in the latest
version of KIELER with restriction to internal operators.

Lemma 5.8. Let w?, be translated to wsey, ¢ € {fb, fun,prg}, and mis-
cellaneous, compare operators, arithmetic operators, conditional operator,
and boolean operators be the considered expression categories T(w;@) as
specified in Section 3.2. Then, for each T(wih) € T(wh), th (T(wh))
translates T(w%) to T(wser) as specified in Definition 5.5. T(wser) con-
forms to the syntax rules of T(wse) and preserves the semantics of T(w?)

regarding the type system and SOS rules, with the following restrictions:

'0This algorithm describes an intuitive mapping, which is moved to the appendix for the
sake of readability, but is not necessary for understanding the following lemma.

78

5.2. From ST Models to SCL Models

o Vr(wl) T ¢ {7 TSP because they are not covered by the in-

ternal SCL operators

Proof The validity of Lemma 5.8 is proved as follows: First, the syntactic cor-
rectness is checked by comparing all resulting expressions 7(wgq) with syntax
rules 7(wsy) as specified in Section 3.4. Second, the semantic correctness is
checked by comparing [7(wsa)]e with [7(w?)]e, their type system, and SOS
transition rules as specified in Section 3.2 and 3.4.

Illustrative Example for Lemma 5.8

As an example, below are two derived expressions of the ST_SIMPLE_FUN
model'!:

(COUNT + 1) // result of t7, _ (COUNT+1)
((A1 * B1) / C1) // result of T, ((A1#B1)/C1)

5.2.6. Assignments

This step covers the translation function for translating assignments in ST

models XU, (w%) to assignments in SCL models XU, (wserr)-

Definition 5.6 (Translation of assignments — ST-to-SCL). Let
Q7 = {wh | ¢ € {fb, fun,prg}} be the set of possible ST model elements

and Egss(w;’;) be the set of assigned wvariables. An immediate assign-

ment o"M(w%) € XImM(wh) (ie., rhs(ci™™(w¥)) does not depend on

lhs(aim™(w%)) and a delayed assignment in ST models 03 (w¥,) € 9L (w%)

(i.e., rhs(c(w¥)) does depend on lhs(c%(w%)) is translated to a cor-
responding immediate assignment oyt (wWserr) € Lo (wserr) and delayed
assz’gnment 0% (weerr) € B9 (weer) in SCL models using the translation

Function t-ess (02.5(w%)), which is described by Algorithm 13.

st—scl

Correctness

To check the correctness of Definition 5.6, the following lemmas are used.

Lemma 5.9. Let wy, be translated to wser, ¢ € {fb, fun,prg}, and
¥ =imm. Then, tiﬁ;cl(oimm(wz)) identifies the left-hand side and right-

ass
hand side of oi™™(w%,), and thus translates oi™™(w?) to oM™ (weer) as

specified in Definition 5.6. 0™ (wyqr) conforms to the syntax rules of
aimm(y ;) preserves the SOS rules of oi™™(w¥) and o (w%), and re-

spects the SCMoC.

"1Both models, ST and SCL, are included in Appendix B.26 and D.23.

79

16

19

Chapter 5: Model Transformation of ST Models to SCL Models

Algorithm 13 Translate assignment — ST-to-SCL

Input: ags s (wft)

Output: o7, (weer) ;
1 7 ass v .
Translation Function ¢ (o}, (w5)):
switch ¢ do

case imm do

| ol (wear) < Whs(0gi™ (W) = g (rhs(oi™));

end
case del do

| oagi(wser) < ths(of(wh) = 1l (rhs(o4e));

end

end

Proof The validity of Lemma 5.9 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of 014" (wser) with

' ass
the syntax rules of o//70" (ws) as specified in Section 3.4. Second, the semantic

correctness is checked by comparing the SOS transition rules of o?™™(w.)
with the SOS transition rules of o7 (w?,) (see Section 3.2 and 3.4). The

ass

SCMoC is implicitly respected, as demonstrated by the SOS transition rules.

Illustrative Example for Lemma 5.9

As an example, the immediately assigned variables of the ST_ASS_IMM1 model
and ST_ASS_IMM2 model are translated as follows!?:
y:i=x; .

= y=x; // resulting ohTd™ (Wserr)

= y0=x0; // resulting oiT™(wserr)
= yl=x1; // resulting oL (weerr)

yO:=x0; yl:=x1; y0:=x2;

= y0=x0; // resulting oI (wserr)
= yl=x1; // resulting ogss (Wserr
= y0=x2; // resulting o™ (wserr)

= y2=x0; // resulting o™ (waerr)
= y2=x1; // resulting o™ (wserr)

y0:=x0; x0:=y0+x1;

= y0=x0; // resulting Ué?sm(wscl’)
= x0=y0+x1; // resulting og™(Wserr)

Lemma 5.10. Let w’, be translated to wsey, ¢ € {fb, fun,prg}, and 9 =
del. Then, tz“szcl(add (w?)) identifies the left-hand side and right-hand

St ass
del

side of 0%l (w?), and thus translates 0% (w%) to 0% (wer) as specified
del

in Definition 5.6. 0% (wer) conforms to the syntaz rules of 03 (wee),

preserves the SOS rules of o (w?), and respects the SCMoC.

ass

12Both models, ST and SCL, are included in Appendix B.15, B.16, D.13, and D.14.

80

¥)

5.2. From ST Models to SCL Models

Proof The validity of Lemma 5.10 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of aff:é(wscl/) with
the syntax rules of %% (w) as specified in Section 3.4. Second, the semantic

correctness is checked by comparing the SOS transition rules of agZé (wser) with

the SOS transition rules of %€ (w?) (see Section 3.2 and 3.4). The SCMoC

ass
is implicitly respected, as demonstrated by the SOS transition rules.

Illustrative Example for Lemma 5.10

As an example, the delayed assigned variable of the ST_ASS_DEL model is trans-

lated as follows'3:

y0:=y0+x0;
= y0=y0+x0; // resulting o2 (wsepr)

5.2.7. Conditions

This step covers the translation function for translating conditions in ST mod-

els Efmd(w;‘;) to conditions in SCL models Efmd(wscz')-

Definition 5.7 (Translation of conditions — ST-to-SCL). Let QY, =
{we | e {fb, fun,prg}} be the set of possible ST model elements. A condition
in ST models 0 cona(wh) € Beona(w) is translated to a condition in SCL models

y y y Econ
Oecond(Wselr) € Leond(Wserr) using the translation function tst'_)s‘cll(afond(wi)),
which is described by Algorithm 14.

Algorithm 14 Translate condition — ST-to-SCL
Input: afo%d(w;’;)
Output: o, (wserr)
1 7 Econ 9 .
Translation Function t¢_" (6% (w?)):
switch ¥ do

case it do
o if (Zt;—twscl(Ab(q;md(u;ﬁ)))){
Uéond(wscl’) < tstHscl(Zl(U(Z:ond(wst))
end
case ¥ =ite do

if (t;twscl (Ab(UZZid(wﬁ)))) {

. tsEtHscl(El(o—(Z:toiLd(wﬁ))

Teona(Wsar) < | Jelse{ '
ti»—»scl(EQ(Uétoizd(wﬁ)))

}

end
end

B3Both models, ST and SCL, are included in Appendix B.11 and D.9.

81

[

16

Chapter 5: Model Transformation of ST Models to SCL Models

Correctness

To check the correctness of Definition 5.7, the following lemma is used.

Lemma 5.11. Let w?, be translated to wsqr and ¢ € {fb, fun,prg}.

> :
Then, t cond (o0 (wh)) translates o2 (w%) to 0¥ (wsar) as specified

in Definition 5.7. Ugond(wscl’) conforms to the syntaz rules of afond(wscl)

and preserves the SOS rules of 0¥ (w%).

Proof The validity of Lemma 5.11 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of afond(wscp) with
the syntax rules of afon 4(wscr) in Section 3.4. Second, the semantic correctness
is checked by comparing the SOS transition rules of afond(wscl) in Section 3.4
with the SOS transition rules of afond(w;i) in Section 3.2, considering that

statements are assumed to terminate within the same PLC cycle.

Illustrative Example for Lemma 5.11

As an example, the conditions of the ST_COND model are translated as follows'*:

IF x1 THEN // 4ntitial condition
x2:=TRUE;

END_IF;
= if(x1){ // resulting condition
= x2=true;
=}

IF x1 THEN // inttial condition
x0:=TRUE;

EL'SE
x0:= FALSE;

END_IF;
= if(x1){ // resulting condition
= x0=true;
= }elsedq
= x0=false;
= }

5.2.8. Loops

This step covers the translation function for translating loops in ST models

E}iop(w;i) to loops in SCL models Z}iop(wsd«).

Definition 5.8 (Translation of loops — ST-to-SCL). Let QF, =

{ws | ¢ € {fb, fun,prg}} be the set of possible ST model elements. A loop

in ST models a}iop(w;i) € Bipop(wh) is translated to a loop in SCL models
: . : Yoo

O-Z,;op(wscl’) € Yioop(Wserr) using the translation function tstleCl(a;’;Op(wﬁ)),

which is described by Algorithm 15.

MBoth models, ST and SCL, are included in Appendix B.8 and D.7.

82

5.2. From ST Models to SCL Models

Algorithm 15 Translate loop — ST-to-SCL
Input: al‘iop(w;'})

Output: ag)op(wscl,)

by
. . loop 0 ® .
Translation Function t,°7 (07,,,(w5)):

switch J do
case head do
whiz}e(t;HsdgAbd(al’gi)‘;d(w;’;)))){
©
Ulhead(wscl’) - tst»scl(z(o-loc;;? (wst))
00p pause;
}
end
case foot do
do:
¢
UfOOt(w ,) P tSZtHSCl(Z(O—ifOOO(; (w;’;))
loop *scl pause;
. t
L (17, V(o2 (@5))))] goto do; }
end
end
Correctness

To check the correctness of Definition 5.8, the following lemmas are used.

Lemma 5.12. Let w¥ be translated to wsy and ¢ € {fb, fun,prg}.

D) :
Then, tstl:"s”d(aﬁjic;)d(wﬁ)) translates Uﬁ)%;d(w;’;) to oﬁ)’ifz‘,d(wsd/) as specified

in Definition 5.8. aﬁ)%‘;d(wsclr) conforms to the syntax rules of afoeozd(wscl)

and preserves the SOS rules of U{‘Oeo‘;d(wsﬁ).

Proof The validity of Lemma 5.12 is proved as follows: First, the syntactic

correctness is checked by comparing the resulting syntax of Jhead(wscl,) with

loop
the syntax rules of Uﬁfo‘;d(wscl) as specified in Section 3.4. Second, the semantic

correctness is checked by comparing the SOS transition rules of Jﬁ)%‘;d(wsd) in

Section 3.4 with the SOS transition rules of alhof)‘;d(w;i) in Section 3.2.

Illustrative Example for Lemma 5.12

As an example, the head-controlled loop of the ST_LOOP_HEAD model is trans-
lated as follows!®:

i:=1i0; // intitial loop

WHILE i<=i1 DO

5Both models, ST and SCL, are included in Appendix B.14 and D.12.

83

16

Chapter 5: Model Transformation of ST Models to SCL Models

y = 1ij
i = i+x2;
END_WHILE;
y := x1;
= i = i0; // resulting loop
= while(i<=i1){
= y = i;
= i =1 + x2;
=}
=y = x1;

Lemma 5.13. Let w¥, be translated to wsy and ¢ € {fb, fun,prg}.
Then, oo (JfOOt(w;@)) translates ofOOt(w;@) to ol

st—scl\~ loop loop loop
. ., foot foot
in Definition 5.8. Tioop (wserr) conforms to the syntax rules of Tioop (Wser)

and preserves the SOS rules of afof);t(w;’;).

(wserr) as specified

Proof The validity of Lemma 5.13 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of alfo (:)(;: (wserr) with

the syntax rules of al]; ‘2‘; (wser) as specified in Section 3.4. Second, the semantic
correctness is checked by comparing the SOS transition rules of al’; 2‘;5(%01) in

Section 3.4 with the SOS transition rules of Ulj:;;(;f(w;’;) in Section 3.2.

Illustrative Example for Lemma 5.13

As an example, the foot-controlled loop of the ST_LOOP_FOOT model is trans-

lated as follows'6:

i:=i0; // initial loop
REPEAT
y := x0;
i =i + x2;
UNTIL i>il
END_REPEAT;
y := x1;
= i = i0; // resulting loop
= do:
= y = x0;
= i=1i + x2;
= pause;
= if (1 (i>i1)){
= goto do;
= }
=y = x1;

5.2.9. Sequences

This step covers the translation function for translating sequences in ST mod-
els Ygeq(wiy) to sequences in SCL models Ygeq(wserr)-

$Both models, ST and SCL, are included in Appendix B.13 and D.11.

84

5.2. From ST Models to SCL Models

Definition 5.9 (Translation of sequences — ST-to-SCL). Let Q7, =
{wg | ¢ e {fb, fun,prg}} be the set of possible ST model elements. There are
the following variants of ST statements considered in this approach:

o Assignments: 030" (w5) € SEI"(wh), 05 (wh) € BEE(wh)

L. t t
o Conditions: ol (wh) € Shoig(ws), olomy(wh) € SLo (W)

¢ ¢
e Loops: Uﬁf)%d(w;i) € Ef’o‘f)‘;d(wsﬁ), Ul{fo; (w?h) € E{:Z; (w?h)

According to the Definitions 5.6, 5.7, and 5.8, these ST statements are trans-
lated to the following variants of SCL statements:

e Pause: O'pause(wscl’) € Epcwse((")scl’)
o Assignments: o™ (wepr) € BT (wer), 0% (weerr) € B3 (weerr)
head (weerr) € o (wserr), ooy (wserr) € Bl on (wserr)

e Loops: Ulhoeo%d(wscl’) € Eﬁeo%d(wscl’)z O-lfoooo;(wscl’) € El{;‘;f(wscl’)

e Conditions: o

A set of the resulting SCL statements represents a sequence, denoted

. . I .
as Ygeq(wserr)- The translation function t % (Sseq(Wser)) inserts

Oi(wserr) € Bseq(wserr) to wser, following the process described by Algo-
rithm 16.

Algorithm 16 Add sequence — ST-to-SCL
Input: X4 (wser)
Output: wg

: s Ese
Translation Function ¢ 57 (Yseq(wserr)):
forall 0, € ¥, (wser) do
wser < add o; to the position w.r.t. its execution order and dependent

constructs
end

Correctness

To check the correctness of Definition 5.9, the following lemma is used.

Lemma 5.14. Let wft be translated to wgy and ¢ € {fb, fun,
prg}, Bseq(Wserr) # B, and Lgeq(wsar) be syntactically correct. Then,

t tpis st (Bseq(Wserr)) inserts each translated statement o € Yo (wser) to
wserr aS specified in Definition 5.9. The resulting SCL model wgsyr con-
forms to the syntaz rules of wsq and preserves the SOS rules of w?, (in

particular with regard to the execution order of the statements).

85

Chapter 5: Model Transformation of ST Models to SCL Models

Proof The validity of Lemma 5.14 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ¥eq(wsqr) with
the syntax rules of Ygeq(wser) as specified in Section 3.4 using induction on
the number of statements to be added Yeq(wserr):

1. Base Case: When Yq(wser) = &, there are no statements to be added,
which conforms to the syntax rules of o, (ws)-

2. Induction Hypothesis: The lemma holds for any set of statements to
be added Xgeq(wserr)-

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules ¥y.q(wsc), because the syntactic cor-
rectness of this statement to be added has been proved in the corre-
sponding section.

Second, the SOS transition rules are respected by the individual statements
themselves. The order is respected by the order within the resulting Quartz
model.

Illustrative Example for Lemma 5.14

As an example, below are the inserted statements in the resulting SCL model
of the ST_TON model'7:

if (IN '= LASTIN){ =01 €2l (wserr)
LASTIN = IN; =02 € B (weerr)
if (IN){ =03eX" (Wselr)
TSTART = CLK; < 04 € TYI (Woerr)
}elseq{
TSTART = 0; < 05 € T (Wser)
}
Q1_Templ = false; =06 € Sggy (Wsetr)
Q1 = Q1_Templ; <=J7E§;Lgszgwscl’)
ET = 0; =08 € Ligss (Wsel!
Yelseq{
if (IN & (1(Q1_Temp1))){ =09 e X (Wserr)
ETTIME = (CLK - TSTART); =010 € Xgog" (Wselr)
if (ETTIME < PT){ =o11 €3 (wserr)
cond\Wscl
ET = ETTIME; = 012 € B0 (Weerr)
}elseq{
Q1_Templ = true; <=0'13€Eérsnsm(wscl’)
Q1 = Q1_Templ; ¢=014eE$ﬁm(wsd0
ET = PT; = o15 € BT (wserr)
¥
}

}

5.3. Experimental Results

The applicability of the introduced translation functions is evaluated with
the ST models listed in Table 5.1. The examples are listed with the SLOC
metric [BM14] of the ST model and the experimental results. For evaluation
purposes, the listed ST models and the expected SCL models are manually

"Both models, ST and SCL, are included in Appendix B.22 and D.19.

86

5.3. Experimental Results

implemented to verify the applicability of the isolated translation functions.
To ensure the correctness of both models, ST and SCL, they are compiled with
the built-in compilers of CODESYS and KIELER. The translation functions
have been implemented as a prototype in PLCreX, resulting in the overall test
strategy shown in Figure 5.5. The correctness of the resulting SCL models is
verified in two ways: (1) through manual reviews, differences between the ex-
pected SCL models and the automatically generated models are identified, and
(2) using the built-in compilers of KIELER, the syntactic correctness of the
automatically generated SCL models is ensured. Both tests passed for all ex-

Codesys PLCreX KIELER
(implemented manually) (implemented manually) (generated automatically)
(4 @ I >
(o Tstl—>scl (wst) | > Dger I
- J L J
compile compile
KIELER
(implemented manually)
review
Wyl <
 J
compile

Figure 5.5.: Test strategy to evaluate the ST-to-SCL transformation

amples (ignoring minor formatting differences between manually implemented
and automatically generated SCL models), with the following warnings:

e Supported operators: According to Lemma 5.8, only a subset of the
considered ST expressions can be translated into corresponding SCL
expressions with the restriction to internal operators. Therefore, the
example arithmetic operators throws a warning for affected expressions.
Affected expressions are skipped during translation.

e Supported data types: According to Lemma 5.7, only a subset of the
considered ST data types can be translated into corresponding SCL data
types with the restriction to internal data types. Therefore, the example
data types and fields throws a warning for affected declarations. Affected
declarations and expressions are skipped during translation.

Furthermore, some examples are not testable:

e Model imports: Based on experimental results in the latest version of
KIELER, SCL models are not intended to import external SCL models,
which is why the examples analog value processing 2, debounce, invoke
function 1, simple program, and track correction are not testable and
are not listed in Appendix D. ST models that import other models are
not translated to SCL models by default.

Based on the experimental results in Table 5.1, it can be concluded that the
introduced translation functions are applicable and lead to correct SCL models

87

Chapter 5: Model Transformation of ST Models to SCL Models

Table 5.1.: Set of ST models and test results to evaluate the applicability of the
introduced ST-to-SCL transformation

O
Model | @ | Source w¥ | wser Result

7
2-0f-3 logic function | 11 | [Sch19] | B.1 | D.1 passed
Alarm function | 8 | [Sch19] | B.2 | D.2 passed
Analog value processing 1 | 8 [Sch19] B.3 | D.3 passed
Analog value processing 2 | 7 | [Sch19] | B.4 - not testable
Arithmetic operators | 20 self B5 | D4 passed‘ with
warnings
Boolean operators | 14 self B6 | D5 passed
Compensation system | 28 | [Sch19] | B.7 | D.6 passed
Condition statements | 15 self B8 | D.7 passed
Data types and fields | 28 self B.9 | D8 passed‘ with
warnings
Debounce | 20 | [GDV14] | B.10 - not testable

Delayed assignments | 7 self B.11 | D.9 passed

Equality, inequality | 9 self B.12 | D.10 passed

Foot-controlled loop | 20 self B.13 | D.11 passed

Head-controlled loop | 18 self B.14 | D.12 passed

Immediate assignments 1 | 13 self B.15 | D.13 passed

Immediate assignments 2 | 19 self B.16 | D.14 passed

Immediate assignments 3 | 10 self B.17 | D.15 passed
Invoke function 1 | 7 self B.18 - not testable

Left detection | 7 | [Sch19] | B.19 | D.16 passed

Numeric relations | 11 self B.20 | D.17 passed

Off delay timer | 39 | [GDV14] | B.21 | D.18 passed

On delay timer | 39 | [GDV14] | B.22 | D.19 passed

RS-Flip-Flop | 14 | [GDV14] | B.23 | D.20 passed

Right detection | 7 | [Sch19] | B.24 | D.21 passed

SR-Flip-Flop | 14 | [GDV14] | B.25 | D.22 passed

Simple calculation | 16 | [GDV14] | B.26 | D.23 passed

Simple program | 19 | [GDV14] | B.27 - not testable
Tank control | 19 | [Sch19] | B.28 | D.24 passed
Track correction | 23 | [Sch19] | B.29 - not testable

Two-Point controller | 21 | [Sch19] | B.30 | D.25 passed

that can be reused in model-based design, if a few conditions are considered.
These are summarized in the following section.

5.4. Summary

This chapter introduced the transformation of ST models to SCL models.
For this purpose, individual translation functions were defined that take into

88

5.4. Summary

account the sequential execution order of ST statements. The applicability
of these translation functions was demonstrated using a set of ST examples.
Based on the presented lemmas and experimental results, the following theo-
rem encapsulates the entire transformation:

Theorem 5.1 (ST-to-SCL Translation). Let w?, € QF be an ST
model of the variant <,0 € {fb, fun,prg} and let Ty s (w?;) be the model
transformation of w?, to wsy using the translation functions defined in
this chapter. Then, the resulting SCL model wg::

1. Conforms to the syntax rules of wgy
2. Preserves the semantics of wft

3. Contains constructs corresponding to the constructs of w(.’si and pre-
serves the intended functionality of w?, under the following condi-
tions:

o pe{fb, fun,prg}

L4 Aidcl(wft) = Azn(wz) U Aout(wﬁ) U Ainout(wft)

L4 Avdcl(wft) = Alocal(wft)

. Va[+](w;§) :altl e {abOOl aé”t,agmt,aumt Qgur, @}, where
Qqur can be treated as a bounded integer and is specified in
milliseconds

. cst id ™A __br true _false _arr nv
hd VT(O‘)) ‘T E { mzsc’ mzsc’Tmzsc 7Tmzsc’Tmzsc7Tmzsc ’Tmzsc’Tmzsc’

eq ne gt ge It le mul _div add sub
Teomps Teomps Teomps Teomps Teomps Teomps Tarith® Tariths Tariths Tarith
expt _mod ,_um sel
Tarith® Tarith> Tarith> Tcond

b va(wst) o€ {Uass7 Ufond’ U?;op}

Proof The validity of Theorem 5.1 is proved as follows:

1. Syntax Conformance: Lemma 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8,
5.9, 5.10, 5.11, 5.12, 5.13, and 5.14 demonstrate that each translated
construct conforms to the syntax rules of wgy as specified in Section 3.4.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

e Model declaration: Lemma 5.1
e Interfaces: Lemma 5.2

e Variables: Lemma 5.6

Data types and fields: Lemma 5.7

e Expressions: Lemma 5.8

89

Chapter 5: Model Transformation of ST Models to SCL Models

e Assignments: Lemma 5.9 and 5.10
e Conditions: Lemma 5.11
e Loops: Lemmas 5.12 and 5.13

e Sequences: Lemma 5.14

3. Construct Correspondence: Given the conditions of the theorem,

the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in ws for the considered constructs in w?,, preserving the original func-
tionality.

Overall, this results in the following solutions to the challenges summarized in
Section 5.1.

1. Cyclic execution of SCL models (with and without memory):

The execution of the SCL model with and without memory depends on
the invocation by an external model, i.e., an external model is responsible
for the cyclic execution of the resulting SCL model. Unlike variables of
a resulting SCL model based on an ST model with memory, variables of
a resulting SCL model based on an ST model without memory are set
to their default values (if necessary) at the beginning of each iteration.

. Event-driven execution of SCL models: An iteration of the SCL

model is triggered via the input variable EI and returned via the output
variable EQ after a finite number of macro steps (n > 0), thus realizing
an external event-driven execution control.

. Dynamic system time: The global clock synchronization is realized

by an additional input variable CLK, i.e., the clock is controlled externally
and processed within the SCL model with read access.

. Translation of ST language constructs: The solution follows from

Theorem 5.1.

90

Chapter

Model Transformation of FBDs to
Quartz Models

Contents
6.1. High-Level Design Flow — FBD-to-Quartz 92
6.2. From FBDs to Quartz Models 94
6.2.1. Model Declaration 94
6.2.2. Interfaces, 94
6.2.3. Variables 94
6.2.4. Data Typesand Fields 94
6.2.5. POUImports. 95
6.2.6. Expressions o 95
6.2.7. POU Invocations 95
6.2.8. Assignments 99
6.2.9. Sequences e 99
6.3. Experimental Results 99
6.4. Summary 100

The third approach to reusing existing POUs in model-based design is the
transformation of FBDs into Quartz models, where the goal is to create a
robust set of translation functions that ensure semantic preservation during the
transition. In addition to the approaches presented in [WS20; WS21; WS24b],
it considers a number of additional aspects as mentioned in Chapter 4 in the
context of the ST-to-Quartz transformation. The correctness of the translation
functions proposed in this chapter is proved by theoretical reasoning, which
includes a detailed analysis of the resulting syntax and semantics compared
to the syntax rules and semantics specified in Chapter 3. In addition, the
theoretical results are evaluated with real-world and self-defined FBDs.

This chapter is structured as follows: Section 6.1 introduces the high-level
design flow and translation strategy. Section 6.2 defines the translation func-

91

Chapter 6: Model Transformation of FBDs to Quartz Models

tions and theoretical analysis. Section 6.3 presents an evaluation of the theo-
retical results, and Section 6.4 summarizes the transformation.

6.1. High-Level Design Flow — FBD-to-Quartz

The high-level design flow for transforming an FBD w?b g€ Q?b ;4 of the variant
function block (¢ = fb), function (¢ = fun), or program (¢ = prg) to a Quartz
model wg, € {24, is shown in Figure 6.1.

IEC 61131-3 Averest
® bed»—> qrz (w?bd)
W pg > gz
/

Figure 6.1.: High-level design flow of the FBD-to-Quartz transformation

The FBD-to-Quartz transformation T fbdh,qrz(wfb ;) includes the following
transformation steps:

dw
Lt fbd—qrz

2. t?ggﬁqm(wfb ,): Interfaces (see Section 6.2.2)

(5w(wfbd)): Model declaration (see Section 6.2.1)

3. t?byd,ffqm(wfb ;): Variables (see Section 6.2.3)

4. t?‘bd,_)qrz(am(wfbd)): Data types and fields (see Section 6.2.4)
5. t?lj;»ﬁ;;? (whyg): POU imports (see Section 6.2.5)
6. t}bd,_)qm(T(w}Dbd)): Expressions (see Section 6.2.6)

7. t?gggqm(afm(wfbd)): POU invocations (see Section 6.2.7)

8. t?gggqm(agss(wfbd)): Assignments (see Section 6.2.8)

b

9. tfg;gqm(zseq(wqm,)): Sequences (see Section 6.2.9)

Translation Strategy:

This chapter introduces two translation strategies that are basically the same
as the translation strategies introduced in Section 4.1. The difference is the
translation of statements that are given as graphical FBDs and not as textual
ST statements. Taking into account an explicit execution order of the blocks
and assignments, this results in the two translation strategies illustrated in
Figure 6.2, where graphical blocks are used to demonstrate the relationship
to the underlying FBD. Figure 6.2a shows the high-level runtime behavior of
the initial FBD (top) and the resulting Quartz model (bottom) that follows
the first translation strategy, where the set of input variables IN is read when
the model is invoked at time ¢; (FBD) or in macro step S; (SCChart), respec-
tively, and where the set of output variables OUT is returned at time ¢,, (FBD)

92

6.1. High-Level Design Flow — FBD-to-Quartz

or in the final macro step S,, (SCChart). In contrast, Figure 6.2b shows the
high-level runtime behavior of the initial FBD (top) and the resulting Quartz
model (bottom) that follows the second translation strategy, where the model
is initialized at time to (FBD) or in the first macro step Sy (SCChart), re-
spectively, and then waits until an iteration is triggered (SCChart via input
variable EI). At time ¢,, (FBD) or in macro step S,, (SCChart), OUT and EO
are returned to the invoking model for external processing. The final macro
step in the resulting SCChart is used to switch to the next iteration (triggered
in the next PLC cycle).

CLK;
CLK;

Statements
g
Statements

CLK3
CLK3

ouT ouT j

immediate
await(El)

Statements
Statements

=
X
(@] [Sm

v
- emit(EO)
ouT '_.
pause

(a) Model of a POU without memory (b) Model of a POU with memory

Figure 6.2.: FBD-to-Quartz translation strategies: high-level runtime behavior of
the initial FBD (top) and resulting Quartz model (bottom)

Challenges:

Consequently, this leads to the following challenges for translating FBDs to
Quartz models, which are almost the same as for translating ST models to
Quartz models:

93

Chapter 6: Model Transformation of FBDs to Quartz Models

Cyclic execution of Quartz models (with and without memory)
Event-driven execution of synchronous parallel threads
Sequential execution of synchronous parallel threads

Dynamic system time

AN e

Translation of FBD language constructs

6.2. From FBDs to Quartz Models

This section defines the individual translation functions for translating an
FBD wfb - Q?b ; to a Quartz model wg,.r € Q. and analyzes the theoretical
correctness.

6.2.1. Model Declaration

The translation strategy for an ST model declaration to a Quartz model decla-
ration introduced in Section 4.2.1 can be applied to an FBD 4, (wfb 4)» because
the declaration is equivalent [GDV14; PLC09]. As a result, Definition 4.1 and
Lemma 4.1 are also valid for FBDs (if all occurrences of w¥, are replaced by

1 1 6w o— 5w
w?bd), resulting in tfdeqrz(éw(w;fbd)) = tsthrz(dw(wfbd)).

6.2.2. Interfaces

The translation strategy for ST model interfaces introduced in Section 4.2.2
can be applied to FBD interfaces Aidcl(wfb 5 = Am(wfb J) U Aout(wfb J) U
Amout(wfb 4), because the declaration is equivalent [GDV14; PLC09]. As a
result, Definition 4.2 and Lemma 4.2, 4.3, 4.4, and 4.5 are also valid for FBDs
(if all occurrences of w, are replaced by wfb), resulting in t?lfjijm(wfb 4) =

A'L c
tst»—>dql7'z (w?bd) .

6.2.3. Variables

The translation strategy for local ST model variables introduced in Sec-
tion 4.2.3 can be applied to FBD variables Avdcl(w?bd) = Alocal(w;fbd), because
the declaration is equivalent [GDV14; PLCO09]. As a result, Definition 4.3 and

Lemma 4.6, 4.7, 4.8, and 4.9 are also valid for FBDs (if all occurrences of w?,

1 1 AU C o= A'U C
are replaced by wfb 4)» resulting in ¢4l (wfb @) =t (wfb 2)-

6.2.4. Data Types and Fields

The translation strategy for ST data types and fields introduced in Sec-
tion 4.2.4 can be applied to FBD data types and fields Al*] (wfbd), because
the data types and fields are equivalent [GDV14]. As a result, Definition 4.4
and Lemma 4.10 are also valid for FBDs (if all occurrences of w?, are replaced

by w?bd), resulting in t‘}‘deqW(a[*](wfbd)) = tg‘tﬁqrz(am (wfbd)).

94

6.2. From FBDs to Quartz Models

6.2.5. POU Imports

The translation strategy for instantiated and invoked POUs in ST models
introduced in Section 4.2.5 can be applied to FBDs, because the instantiated
and invoked POUs in FBDs are handled in the same way as in ST models, such
as instances of POUs with memory represented as local variables and POUs
without memory invoked inline without a specific identifier [GDV14]. As a
result, Definition 4.5 and Lemma 4.11 are also valid for FBDs (if all occurrences

. . A, A
%2 (%2 imports [%2) — imports [¢2)
of wf, are replaced by wfbd), resulting in ¢, 370 (wfbd) =g (wfbd).

6.2.6. Expressions

The translation strategy of ST model expressions introduced in Section 4.2.6
can be applied to FBD expressions T(wfb 4)» because the translations consid-
ered by the algorithm are linked to the individual, specified syntax rules and se-
mantics of FBDs. Thus, Definition 4.6 and Lemma 4.12 are also valid for FBDs
(if all occurrences of w}; are replaced by w¥,), resulting in t%, .. (7(wf,,)) =

tqs—thrz (T (w;fbd)) .

6.2.7. POU Invocations

This step covers the translation function for translating POU invocations in
FBDs Efm(w}"b 4) to Quartz model invocations in Quartz models Y (Warar)-
The high-level runtime behavior of FBD (with memory) translated to a Quartz
model is similar to the high-level runtime behavior introduced in Section 4.2.7
with the difference that the statements and their execution order are not
present as textual statements and position, but as graphical FBDs and ex-
ecution order identifiers. Therefore, the adapted high-level runtime behav-
ior is illustrated in Figure 6.3. Figure 6.3a shows the runtime behavior of
an example FBD with memory that is triggered in each PLC cycle (red)
and invokes a model with memory and a model without memory depend-
ing on their execution order (blue). In contrast, Figure 6.3b shows the run-
time behavior of the resulting Quartz model, whose models with memory
are triggered by additional event-driven variables (red) and the model with-
out memory depending on its execution order (blue) without an additional
event-driven variable. As a consequence, the translation strategy for invo-
cations in ST models introduced in Section 4.2.7 can be applied to FBDs,
taking into account the graphical representation of the expressions and in-
vocations. More specifically, Definition 4.7 can be applied to FBDs (if all
occurrences of w?, are replaced by w}fb ;) with minor changes: Unlike the pre-
condition in Definition 4.7, POU invocations are not represented as complete
formal function call [GDV14], but all ports are visible in the graphical FBD,
i.e., the information is the same. However, the difference is that an argu-
ment 7 of an invoked model is not given as a string. For this reason, ¢ must
be identified before it is placed. This is described by Algorithm 17, which
describes a backward translation strategy introduced in [YKL13]. As a con-
sequence, the following replacement in Algorithm 5 must be considered for

95

Chapter 6: Model Transformation of FBDs to Quartz Models

@ fbd,1 (a)pou,Z » Wpou,3) Wgrz,1 (wqrz,Z » Wgrz,3)
@ fhd,1 @ pou,2 ®pou,3 Wgrz,1 Wgrz,2 Wgrz,3

gEO—‘%‘—:’ AAAAAAAAAAAA 5

Sy -
=7 ==
S st o o1
[y (e
f T f T
=t [
. : I ; o
(a) Initial FBD (b) Resulting Quartz model

Figure 6.3.: High-level runtime behavior of a model with memory that invokes two
models (Approach: FBD-to-Quartz)

FBDs: ¢ ,0r2(7) = t.g.(get expr(i)). Then, Lemma 4.13 and 4.14 are

3 3 3 Yinv .= $2iny
also valid for FBDs, resulting in tfdequ(UZw(w?bd)) = tsth,,Z(afm(wfbd)).

Algorithm 17 Get expression following backward translation strategy
Input: [hs
Output: Ti(w;fbd,)

Function get_expr(lhs):
find rhs € v U Eiov U Eyinst U Eprun U & punr, where a,r1(lhs) = ajr(rhs);
if rhs ¢ Eyjun then
‘ return Ti(wfbd,) = eval(agp(rhs), a(rhs),e.(rhs));
else
rhs < a;n(rhs) with parameter list &y s(rhs) U Eovs(rhs);
forall lhs® € £y 5(rhs) U Eovs(rhs) do
lhs' < assign get_expr(lhs');
update rhs;
end

return 7;(wf, ;) = rhs;
end

96

6.2. From FBDs to Quartz Models

Correctness

To check the correctness of the function get_expr(lhs), the following lemma
is used.

Lemma 6.1. Let wfbd be translated to wgr.r, ¢ € {fb, fun,prg}, and
wfbd does not contain explicit loops. Then, the function get_expr(hs)
described by Algorithm 17 identifies and returns the right-hand side ex-
pression T;(wpar) for lhs = element(z) with x € {(5out(wfbd),(5mout(wfbd),
5local(wfbd), din (w}fau’i) with w;;ou,i * wfbd}, where Ti(w?bd,) conforms to the
syntax rules of Ti(wfbd) and preserves the semantics of Ti(wfbd) regarding
the 1/0 behavior.

Proof The validity of Lemma 6.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of 7(wg,./) with the
syntax rules of 7(wgr») as specified in Section 3.3 using inductive reasoning.

1. Base Case: According to the specifications for a valid PLCopen xml
file [PLC09], there is a unique link between a,r7(lhs) and a;;(rhs) of
FBD elements. Thus, a call of get_expr(lhs) with lhs = element(z),
T € {50Ut(w?bd)’5in0“t(w;€bd)76local(w?bd)’5m(w§lc,i) with wf . # wjfbd}
always leads to a corresponding rhs. If rhs ¢ Eyrun, eval(arp(rhs),
air(rhs),ec(rhs)) is returned, which is a variable name or a constant.
This terminates the algorithm.

2. Inductive Hypothesis: For any right-hand side parameter list expres-
sion lhs' € Ey5(rhs) U Eovs(rhs), the function get_expr (lhs') syntac-
tically correctly derives a rhs’, so that the algorithm terminates after a
finite number of steps.

3. Inductive Step: Considering the recursive case where rhs € & sun. The
algorithm replaces rhs through the block name a;xn(rhs) with param-
eter list Eys(rhs) u &ovs(rhs) and recursively derives expressions for
parameter list elements lhs® € &y o(rhs)u&ovs(rhs), ensuring that each
recursive call maintains the appropriate a,rr(lhs') = a;7(rhs®) relation-
ship according to the inductive hypothesis. The correctness of these
recursive steps ensures that the final rhs expression correctly matches
lhs as required.

Thus, after executing the function, there are the following possible post
conditions:

a) If rhs ¢ Eyrun, eval(arp(rhs), ajr(rhs),ec.(rhs)) is returned, which
is a variable name or a constant. It also terminates the algorithm.

b) If rhs € Eyun, the Ths is correctly updated and replaced based on
recursive outcomes and transformations, maintaining the relation-
ship a,r7(lhs) = a;;(rhs), and returns final rhs.

97

1
2

15

16

S © ®

NN NN =
@ W o~ '

Chapter 6: Model Transformation of FBDs to Quartz Models

Since w?b , does not contain explicit loops by definition, the algorithm termi-
nates after a finite number of steps. Second, the semantic correctness is given
because this algorithm implements the backward translation strategy, whose
general correctness with respect to I/O behavior has been demonstrated in

[YKL13].

Illustrative Example for Lemma 6.1

As an illustrative example of how get_expr(lhs) is processed, below is a
snippet of the trace when get_expr (lhs) is called for the FBD_AIR_COND_CTRL!
model, parameter RSO.RESET1, i.e., [hs = RSO.RESET1. The order in which

get_expr (RSO.RESET1) is processed is visualized in Figure 6.4:

get_expr (RSO.RESET1):
get_expr (OR(<KIN1>, <IN2>)):
get_expr (<IN1>):
get_expr (OR(<IN1>, <IN2>, <IN3>,
get_expr (<IN1>):
get_expr (NOT (<IN1>)):
get_expr (<IN1>):

= INb5

= NOT (IN5)

get_expr (<IN4>):
get_expr (NOT (<IN1>)):
get_expr (<IN1>):

= IN8

= NOT (IN8)
= OR(NOT (IN5),...,NOT(IN8))
get_expr (KIN2>):
get_expr (NOT (<IN1>)):
get_expr (<IN1>):

= IN9

= NOT (IN9)

<IN4>):

;; OR(NOT (IN5),...,NOT(IN8)),NOT(IN9))

[N5

NOT

On
&) NoT

[N7

NOT

OR

[
(e
[
[

[N8

T

-0 wor

[| IN9

Figure 6.4.: Visualization of the processing sequence: get_expr (RSO.RESET1)

1. call
replace
2. call
replace
3. call
replace
4. call
return
update

9. call
replace
10. call
return
update
update
11. call
replace
12. call
return
update

return

or [

RSO

SET

RS

RESET1

Q1

'Both models, FBD and Quartz, are included in Appendix E.2 and F.2.

98

6.3. Experimental Results

6.2.8. Assignments

This step covers the translation function for translating assignments in FBDs
Egss(wjfb ;) to assignments in Quartz models XU, (wgr»r). The translation of
assignments in FBDs is quite similar to the translation of assignments in ST
models [GDV14], introduced in Section 4.2.8. For this reason, Definition 4.8
can be applied to FBDs (if all occurrences of wf, are replaced by w}fb 2
with minor changes. The difference is that in FBDs the right-hand side
rhs must first be extracted by the graphical model (or by elements of the
textual PLCopen xml format, respectively) before it can be processed. As a
consequence, the following replacement in Algorithm 6 must be considered for
FBDS: ;t»qrz(lhs(o-gss (wfbd))) e t;twqrz(get*expr (lhs(a-gss (w;fbd))))
Then, Lemma 4.15 and 4.16 are also valid for FBDs, resulting in

ZClSS D Zass
tfbd»qrz (Ugss (w?bd)) = tsb—»qrz (O-gss (w?bd)) .

6.2.9. Sequences

The translation strategy for sequences in ST models introduced in Sec-
tion 4.2.11 can be applied to sequences in FBDs Eseq(wfb 4), where only the
following statements are applicable to FBDs:

e Pause: opguse(Wyrar) € Epause (Wqrz')
e Model invocations: i, (Werz) € Liny(Wgrz)

e Assignments: ag;”;m(wqrzr) € Eé’;@m(wqmr), agzi(wqrz/) € Eggls (wgrz')

For this reason, Definition 4.11 (with limited statements) and Lemma 4.20 are

also valid for FBDs (if all occurrences of w?, are replaced by wfb 4> resulting

Yse 42
fb(;ql—)qrz (w;fbd) = tst!—e:ip”z (w;fbd) .

int
Due to the equivalence to ST models, additional examples for FBD model
declarations, interfaces, variables, data types and fields, POU imports, ex-
pressions, POU invocations, and sequences are not presented at this point.

6.3. Experimental Results

The applicability of the introduced translation functions is evaluated with the
FBDs listed in Table 6.1. For evaluation purposes, the listed FBDs and the
expected Quartz models are manually implemented to verify the applicability
of the isolated translation functions. To ensure the correctness of both models,
FBDs and Quartz, they are compiled with the built-in compilers of CODESYS
and Awverest. The translation functions have been implemented as a prototype
in PLCreX, assuming the FBDs are available in PLCopen xml format, result-
ing in the overall test strategy shown in Figure 6.5. The correctness of the
resulting Quartz models is verified in two ways: (1) through manual reviews,
differences between the expected Quartz models and the automatically gener-
ated models are identified, and (2) using the built-in compilers of Averest, the
syntactic correctness of the automatically generated Quartz models is ensured.

99

Chapter 6: Model Transformation of FBDs to Quartz Models

Both tests passed for all examples (ignoring minor formatting differences be-

Codesys PLCreX Averest
(implemented manually) (implemented manually) (generated automatically)
| @ (® _ I
a)fbd bed»—»qrz (wfbd) m Wqrz'
L J . J
compile compile
Averest
(implemented manually)
I review
WOgrz | <t
. J
compile

Figure 6.5.: Test strategy to evaluate the FBD-to-Quartz transformation

tween manually implemented and automatically generated Quartz models),
with the following warnings:

e Initializing input variables: Similar to the experimental results in the
context of the transformation from ST to Quartz (see Section 4.3), ac-
cording to Lemma 4.2 with remarks in Section 6.2.4, input variables can-
not be set to specific values, which is why the example simple calculation
throws a warning for initialized input variables, since the initialization
is skipped during translation.

Based on the experimental results in Table 6.1, it can be concluded that the
introduced translation functions are applicable and lead to correct Quartz
models. They can be reused in model-based design, if a few conditions are
considered. These are summarized in the following section.

6.4. Summary

This chapter introduced the transformation of FBDs to Quartz models. For
this purpose, individual translation functions were defined that take into ac-
count the sequential execution order of operators and invoked models. The
applicability of these translation functions was demonstrated using a set of
FBD examples. Based on the presented lemmas and experimental results, the
following theorem encapsulates the entire transformation:

Theorem 6.1 (FBD-to-Quartz Translation). Let wf,, € Q% be an
FBD of variant ¢ € {fb, fun,prg}, and let bequrz(W?bd) be the model
transformation of wfb 4 10 Wyrr using the translation functions defined in
this chapter. Then, the resulting Quartz model wg,::

1. Conforms to the syntax rules of wy,.

100

6.4. Summary

Table 6.1.: Set of FBDs and test results to evaluate the applicability of the intro-
duced FBD-to-Quartz transformation

Model | Source w}fb i | @ Result

2-of-3 logic function | [Sch19]! | E.1 | F.1 passed

Air Condition Control | [Tapl5] | E.2 | F.2 passed

Alarm function | [Sch19]' | E.3 | F.3 passed

Antivalence | [Karl8] | E4 | F.4 passed

Arithmetic operators self E5 | F.b5 passed
Bending Machine Control | [AG20] | E.6 | F.6 passed
Boolean operators self Ev7 | F.7 passed

Cylinder Control System | [Sch14] | E.8 | F.8 passed
Data types and fields self E9 | F9 passed
Debounce | [GDV14] | E.10 | F.10 passed
Dice Numbers Indicator | [Karl8] | E.11 | F.11 passed
KV Diagram optimized Chart | [Karl8] | E.12 | F.12 passed
Left detection | [Sch19]' | E.13 | F.13 passed
Pollutant Indicator | [Bubl7] | E.14 | F.14 passed
Reservoirs Control System 1 | [WZ07] | E.15 | F.15 passed
Reservoirs Control System 2 | [Karl8] | E.16 | F.16 passed
Roll Down Shutters | [AG20] | E.17 | F.17 passed
Cable Winch | [Tapl5] | E.18 | F.18 passed
Seven Segment Display | [WZ07] | E.19 | F.19 passed
Shop Window Lighting | [AG20] | E.20 | F.20 passed
Silo Valve Control System | [WZ07] | E.21 | F.21 passed
passed with
warnings
Simple Program 1 self E.23 | F.23 passed
Simple Program 2 self E.24 | F.24 passed
Smoke Detection System | [Taplb] | E.25 | F.25 passed
Sports Hall Lighting | [AG20] | E.26 | F.26 passed
Thermometer Code System | [Bubl7] | E.27 | F.27 passed
Toggle Switch 4x | [Bubl7] | E.28 | F.28 passed
Ventilation Control System | [Karl8] | E.29 | F.29 passed
Wind Direction Indicator | [Bubl7] | E.30 | F.30 passed

Lexample is given as ST model and manually implemented as FBD

Simple calculation | [GDV14] | E.22 | F.22

2. Preserves the semantics of wfb J

3. Contains constructs corresponding to the constructs of w?b d and pre-

serves the intended functionality of w?b 4 under the following condi-
tions:

o pe{fb, fun,prg}

. Aidd(w?bd) = Am(wﬁbd)quut(w}"bd)uAmout(wfbd), where mod-

101

Chapter 6: Model Transformation of FBDs to Quartz Models

els are always invoked with defined input values, so no initial-
izations are required for A, (w?)

. del(wfbd) = Alocal(wfbd) u Amst(wfbd), where variables of
Alocal(wfb ;) are to be represented as memorized variables

e Imported models are available as Quartz models

[+1¢, % . A [+] bool byte _word ,int . dint wint udint
o Vu (wfbd).a A o e N Y N

Qdur, 0}, where agy,, can be treated as an unbounded integer
and is specified in milliseconds

cst id A __br true _false _arr

{Tmism Tmisc> Tmisc » Tmiscr Tmise> Tmisc » Tmiscs
inv eq ne gt ge It le mul _div add

Tm@scv TCOTI’L}M Tcompa 7—CO'mpa Tcomzn Tcompa Tcompa Tamth’ Tm’zth’ Tamth’
sub expt _mod ,_um sel

Tarith> Tcond

° VT(wfbd) N

Tarith> Tarith® Tarith

° VO’(Q) t) O'E{O'm—wv ass}

Proof The validity of Theorem 6.1 is proved as follows, taking into account
the remarks in this chapter, when the linked lemmas of the ST-to-Quartz
transformation are applied to FBDs (see Section 6.2.2, 6.2.3, 6.2.4, 6.2.5, 6.2.6,
6.2.7, 6.2.8, and 6.2.9):

1. Syntax Conformance: Lemma 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,
4.10, 4.11, 4.12, 6.1, 4.13, 4.14 4.15, 4.16, 4.20, and 6.1 demonstrate
that each translated construct conforms to the syntax rules of wy,. as
specified in Section 3.3.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

e Model declaration: Lemma 4.1

o Interfaces: Lemma 4.2

e Variables: Lemma 4.6

e Data types and fields: Lemma 4.10

e POU imports: Lemma 4.11

o Expressions: Lemma 4.12

e POU invocations: Lemma 6.1, 4.13 and 4.14
e Assignments: Lemma 4.15 and 4.16

e Sequences: Lemma 4.20

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in wgr, for the considered constructs in wfb 4> breserving the original
functionality.

102

6.4. Summary

Overall, this results in the following solutions to the challenges summarized in
Section 6.2.

1. Cyclic execution of Quartz models (with and without mem-
ory)), Event-driven execution of synchronous parallel threads,
Sequential execution of synchronous parallel threads, and Dy-
namic system time: The solutions follow from the summarized solu-
tions in Section 4.4 in the context of the ST-to-Quartz transformation,
since they also hold for FBDs

2. Translation of FBD language constructs: The solution follows from
Theorem 6.1.

103

Chapter

Model Transformation of FBDs to
Data-Flow Oriented SCCharts

Contents
7.1. High-Level Design Flow — FBD-to-SCChart 106
7.2. From FBDs to Data-Flow Oriented SCCharts. 107
7.2.1. Model Declaration 107
7.2.2. Imterfaces 111
7.2.3. Variables 115
7.2.4. Data Types and Fields 118
7.2.5. POUImports. 118
7.2.6. Expressions 120
7.2.7. POU Invocations 121
7.2.8. Assignments 123
7.2.9. Sequences e 126
7.3. Experimental Results 128
T4, SUMMATY . . . o vttt e e 130

The fourth approach to reusing existing POUs in model-based design is the
transformation of FBDs into data-flow oriented SCCharts, where the goal is to
create a robust set of translation functions that ensure semantic preservation
during the transition. In addition to the approaches presented in [WS22;
WS23; WS24b), it considers the following additional issues:

e Model Declaration: Mimicking the termination behavior of the initial
model, i.e., distinguishing between models with and without memory

e Interfaces and Variables: Additional interfaces for event-driven exe-
cution control and an external controlled time (provided as a bounded
integer)

e Data Types and Fields: Additional IEC 61131-3 data types

105

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

e Sequential Execution: Sequential execution via additional event-
driven interfaces, which replaces the pre expression applied in [WSZQ]l

e POU invocations: Instantiation and invocation of user-defined models,
taking into account their individual termination behavior

The correctness of the translation functions is proved by theoretical reasoning,
which includes a detailed analysis of the resulting syntax and semantics com-
pared to the syntax rules and semantics specified in Chapter 3. In addition,
the theoretical results are evaluated with real and self-defined FBDs.

This chapter is structured as follows: Section 7.1 introduces the high-level
design flow and translation strategy. Section 7.2 defines the translation func-
tions and theoretical analysis. Section 7.3 presents an evaluation of the theo-
retical results, and Section 7.4 summarizes the transformation.

7.1. High-Level Design Flow — FBD-to-SCChart

The high-level design flow for transforming an FBD w?b g€ Q?b ;4 of the variant
function block (¢ = fb), function (¢ = fun), or program (¢ = prg) to a data-
flow oriented SCCharts wgeq € Qg is shown in Figure 7.1.

IEC 61131-3 KIELER
@
) bed>—>scd (a)fbd)
wfbd > Wged
y

Figure 7.1.: High-level design flow of the FBD-to-SCChart transformation

The FBD-to-SCChart transformation bedHSCd(w?b ;) includes the following
transformation steps:

1. t% dsed (O (w?b 2)): Model declaration (see Section 7.2.1)

2. t?ggﬁscd(wfbd): Interfaces (see Section 7.2.2)

3. t?bzd:fsc d(w;fb 4): Variables (see Section 7.2.3)

4. t;’c‘bd%cd(a[*] (wfbd)): Data types and fields (see Section 7.2.4)

5. t?g&’f;;&s (w?bd): POU imports (see Section 7.2.5)

6. tTpgrsca(T(WFpg)): Expressions (see Section 7.2.6)

7. t?gggscd(afm(wfbd)): POU invocations (see Section 7.2.7)

8. t?gjiscd(agss (wfyg)): Assignments (see Section 7.2.8)

%

9. tfbséiscd(ﬂseq(wscd/)): Sequences (see Section 7.2.9)

!The pre expression was applied in [WS22] to reflect the sequential order of assignments
in the underlying FBD.

106

7.2. From FBDs to Data-Flow Oriented SCCharts

Translation Strategy:

This chapter introduces the translation strategies illustrated in Figure 7.2.
Figure 7.2a shows both the initial high-level runtime behavior of an example
FBD without memory and the resulting high-level runtime of the resulting
SCChart. Basically, when the model is invoked at time t; (FBD) or in macro
step S; (SCChart) via input EI, respectively, inputs IN are read and variables
are initialized, i.e., in the resulting SCChart, the affected variables are set to
their default values. The model can read a dynamic system time CLK during
an iteration in macro step S;, ..., Sp. The resulting SCChart contains a finite
number of parallel threads that are executed according to the SCMoC, where
the execution order of the initial FBD is enforced. During an iteration, only
CLK is allowed to be updated externally. The final outputs OUT are allowed to
be processed externally when an iteration terminates in macro step S, when
output EO is triggered. In contrast, Figure 7.2b shows both the initial high-
level runtime behavior of an example FBD with memory and the high-level
runtime of the resulting data-flow oriented SCChart. Basically, the variables
are initialized at time to (FBD) or in macro step Sy (SCChart), respectively.
The subsequent processing is equivalent to the first strategy without memory.

Challenges:

From this, the following challenges for translating FBDs to data-flow oriented
SCCharts can be derived:

Cyclic execution of SCCharts (with and without memory)
Event-driven execution of synchronous parallel threads
Sequential execution of synchronous parallel threads

Dynamic system time

AR e

Translation of FBD language constructs

7.2. From FBDs to Data-Flow Oriented SCCharts

This section defines the individual translation functions for translating an
FBD w?bd € Q?bd to a data-flow oriented SCChart wgeqr € 5cq and analyzes
the theoretical correctness.

7.2.1. Model Declaration

This step covers the translation function for translating an FBD declaration
5w(w3fb 4) to an SCChart declaration 4, (wsear). According to the introduced
translation strategies, the resulting SCChart of an FBD, variant ¢ € { fb, prg},
is executed in an infinite loop without reset of variables, reflecting an FBD
with memory. In contrast, the resulting SCChart of an FBD, variant ¢ = fun,
is also executed in an infinite loop, but with variables set to their default values
at the beginning of each iteration, reflecting an FBD without memory. For the
reset and variable assignment, the control-flow oriented MOVE, SCCharts with

107

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

CLK;
CLK;

Statements
g
Statements

CLKs
CLKs

ouT l ouT

Statements

Statements

ouT

(a) without memory (b) with memory

Figure 7.2.: FBD-to-SCChart translation strategies: high-level runtime behavior
of the initial FBD (top) and resulting SCChart (bottom)

a € {bool, float,int} are integrated, which are derived from the IEC 61131-
3 MOVE selection function [GDV14] and listed in Listing K.1, K.2, and K.3.
These blocks simply move the input value to the output (with memory) when
the EI port is triggered (an indicated by the EO output), which is illustrated
in Section 7.2.8.

Definition 7.1 (Model Declaration — FBD-to-SCChart). Let Q?bd =
{wfbd | o € {fb, fun,prg}} be the set of possible FBDs. 5w(wszd) is trans-

lated to O, (wseqr) using the translation function tfc“gd%cd(éw(wfbd)), which is
described by Algorithm 18.

Correctness

To check the correctness of Definition 7.1, the following lemma is used.

108

7.2. From FBDs to Data-Flow Oriented SCCharts

Algorithm 18 Translate model declaration — FBD-to-SCChart
Input: 5w(w}0b 2)

Output: 6, (wsear)

Translation Function t% s d(éw(w}ob 2)):

import "MOVE,.sctx"

Aimports 2
b i sed (w fbd)

scchart ay, (w;fbd)
input bool EI

output bool EO
Ai C 4
t fbg»—iscd(w fbd)

Ayde ¥
t fbéﬁscd(w fbd)

ref MOVE, MOVE_O1
dataflow:
MOVE.O1 = {EI, ... };
D 0
Eepdrscd(Wipa)
E0 = ...;

0w (wscd’) e

> data-flow starts with reset to defaults using MOVE SCCharts if ¢ = fun

Lemma 7.1. Let wfbd be translated to wseqr and ¢ € {fb, fun,prg}.
Then, t%d._)scd(éw(wfbd)) translates 6w(w}0bd) to 0w (wseqr) as specified in
Definition 7.1. 0y,(wsear) conforms to the syntazx rules of d,(wseq) and
preserves the semantics of 6, (w?b 4) regarding its termination behavior.

Proof The validity of Lemma 7.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of d,,(wseqr) with the
syntax rules of d,(wscq). The correctness in both cases ¢ = fun and ¢ € {fb,
prg} follows from the syntactically correct import of a MOVE SCChart, decla-
ration of EI and EO, assignments, and invocations as specified in Section 3.5.
Second, there are two cases to distinguish when checking the semantic correct-
ness:

e Case 1 (¢ = fun): du(wseqr) starts each cycle by resetting variables
to their defaults, mimicking POUs without memory. Thus, [0y, (wsca)]e
preserves [0, (w?b 2)]¢ regarding its termination behavior (see Section 3.2
and 3.5).

e Case 2 (v € {fb,prg}): 0u,(wsear) starts each cycle with an invocation
or assignment without resetting variables to their defaults, mimicking
POUs with memory. Thus, [d,(wsed)]e preserves ﬂéw(wfb)¢ regarding
its termination behavior (see Section 3.2 and 3.5).

109

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Illustrative Example for Lemma 7.1

As simple examples, Figure 7.3 and Figure 7.4 show two SCCharts, with the
graphical data-flow oriented SCCharts in the front and the compiled control-
flow oriented SCCharts in the background (illustrating the resulting parallel
threads). In particular, Figure 7.3 shows an SCChart with reset? of variables
and Figure 7.4 shows an SCChart without reset of variables. The graphical
views illustrate the sequential execution from invocation by EI to triggering
E0. Both models increment X1 by 1, where the resulting SCChart with resets
always returns X1=4 (analogous to an FBD of the variant ¢ = fun), and
X1 in the resulting SCChart with memory either retains its current value (if
EI=false) or is incremented by one (if EI=true), which is equivalent to the
behavior of an FBD of the variant ¢ € { fb, prg}. Both scenarios are evaluated
within CODESYS and equivalent IEC 61131-3 FBDs.

import "MOVE_int.sctx"
scchart SIMPLE_ADD_FUN{
input bool EI
output bool EO

int X1 = 3

ref MOVE_int MOVE_O1 '

ref MOVE_int MOVE_02 input bool El
PUtUt bo Imt

dataflow: int X1 =3

ref MOVE_int MOVE_01

MOVE_01 = {EI, 3}; ref MOVE_int MOVE_02

X1 = MOVE_O01.0UT;

MOVE_02 = {MOVE_01.E0, X1 BT ove 012 i} oy

+ 13}; 3 J "Reset] © | _MOVE 02_ [:]
X1 = MOVE_02.0UT; A _EO
E0 = MOVE_02.EQ;

Figure 7.3.: Example SCChart illustrating a resulting model with reset

import "MOVE_int.sctx"
scchart SIMPLE_ADD_FB{

input bool EI - z

output bool EO ”' -

int X1 = 3 input bool El

ref MOVE_int MOVE_O1 9ututb

int X1=3

dataflow: ref MOVE_int MOVE_01
MOVE_01 = {EI, X1 + 1}; = @ oy
X1 = MOVE_01.0UT; _MOVE ot E]
E0 = MOVE_O1.EQ; X1 —;+._J ~EO

by 1

Figure 7.4.: Example SCChart illustrating the resulting model without reset

2Setting a variable to its default value requires a MOVE block, for which the data type must
be considered.

110

7.2. From FBDs to Data-Flow Oriented SCCharts

7.2.2. Interfaces

This step covers the translation function for translating FBD inter-
faces Aidcl(wfb ;) to SCChart interfaces Ajge(wseqr), where Aidcl(w}pb 5 =

Am(w?bd) U Aout(w?bd) U Ainout (w?bd)'
Definition 7.2 (Interfaces — FBD-to-SCChart). Let Q% = {wf,, | ¢ €

{fb, fun,prg}} be the set of possible FBD elements. A;qei(wseqr) is derived

from w?b 4 and extended by interfaces for event-driven execution control and by

an optional system time, using the translation function t?ggﬂscd(wﬁbd), which

is described by Algorithm 19.

Correctness

To check the correctness of Definition 7.2, the following lemmas are used.

Lemma 7.2. Let w?bd be translated to wseqr and ¢ € {fb,prg}.
Then, for each interface e; € Ei(w;fbd), t?ggﬁscd(w%d) extends Ajp(wWsear),
Aput(Wsedr), 01 Ainout(wsear) as specified in Definition 7.2. Ajyp(wsear),
Agut(Wsedr), and Ajpout(wsear) conform to the syntax rules of Ajp(Wsed),
Aput(Wsed), and Ajpout(wseq) regarding the storage class, data type, and
name. With and without initialization, A, (wsear), Aout(Wsear), and
Ajnout (Wsear) preserves the semantics of Am(wfbd), Aout(wfbd), and
Amout(w}pb 4) regarding information flow, modifiability, and initialization.

Proof The validity of Lemma 7.2 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of A, (wsedr),
At (Wsear), and Ajpout (wsear) with the syntax rules of Ay (wsed), Aout(Wsed),
and Ajpout(wseq) as specified in Section 3.5 using induction on the number of
added interfaces Ei(wfb Mk

1. Base Case: When Si(wfbd) = @, there are no input variables, output
variables, and inout variables to add, which trivially conforms to the
syntax rules of Ay, (wWsed), Aout(Wsed), and Ajpout (Wseq), since these sets
remain unchanged.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in A, (wsed),
Ayt (Wsedr), and Ajpout (Wsear). Their syntax still conforms to the syntax
rules of Ay (wsca), Aout(Wsed), and Ajpout (Wsed)-

Second, the semantic correctness is checked by comparing [Ag,(wsed)le,
[Aout(wsed)le, and [Ajnout(wsea)]e (see Section 3.5) with [[Am(w?bd)]]g,
[[Aout(wfbd)]]g, and [[Amout(wfbd)ﬂg (see Section 3.2).

111

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Algorithm 19 Translate interfaces — FBD-to-SCChart
Input: wfb d

OUtPU-t Am (Wscd’) Aout(Wscd’) Ainout(wscd’)’ Zseq(wscd’)
Translation Function tfdescd(wfbd)

Ajp(wseqr) < add input bool EI; > add Boolean input variable
Aput(wsear) < add output bool EO; > add Boolean output variable
if w}fb , contains time-based logic then
Ajn(wsear) < add input int CLK;

> add input variable
end

f o= funner +3, where e,y € ng(wfbd) ETT(wfbd) cé&; (wfbd) then

Aout(wsear) < add output ¢4, .,(alerr)) an(wfbd)
> add output variable

o

end
forall e; € E'(w}"bd) do
if e; = e;i5, where e;ys € SIVS(Wfbd) &Vs(wfbd) c&i(w bd) then

Ain(wsear) < add input 9, 4(a(e;)) an(e;) [= ;’géfjscd(ﬂ)];
> add input variable with optional initialization

end
if e; = e,y s, where e,y € Sovs(wfbd),é’ovs(w;fbd) c Si(w?bd) then
At (Wsear) « add output 3y, sq(a(€i)) an(ei) [=
TmlSC
fbd»scd(ﬂ)]

> add output variable with optional initialization
if p = fun then
MOVE;ny = {EI, t'misc)3
seq(wscd’) < N { fdeSCd()}
an(ei) = MOVE,;y .0UT;
> add reset to default value with corresponding MOVE instance
end

end

if e; = e;ovs, where e;ovs € giOVs(wfbd),giOVs (w?bd) c Ei(w?bd) then

Ainout(Wsear) < add input output 3, . (a(e)) an(e;) [=
frgé:scd(ﬂ)] ;

> add inout variable with optional tnitialization

end
end

Illustrative Example for Lemma 7.2

As an example, below are some derived interfaces of the FBD_AIR_COND_CTRL
model?:

input bool IN1 // added to Ajp(wseqr)
input bool IN2 // added to Ajn(wgeqgr)

w e

3Both models, FBD and SCChart, are included in Appendix E.2 and G.2.

112

7.2. From FBDs to Data-Flow Oriented SCCharts

Lemma 7.3. Let w?bd be translated to wgeqr and @ = fun. Then, for each

interface e; € &(w}"bd), t?gjiscd(wfbd) extends Nip(wWsear), Dout(Wsear) in-

cluding optional initialization, or Ajpout(wsear), and adds possible assign-
ments to defaults to Xgeq(wsear) as specified in Definition 7.2. N (wsear),
Agut(Wsedr), and Ajpout(wsear) conform to the syntax rules of Aip(Wsed),
Aput(Wsed), and Ajpout(wseq) regarding the storage class, data type, and
name. Yseq(wsear) conforms to the syntax rules of Ygeq(wsea). With and
without assignments to defaults, Aip(Wsear) s Dout (Wsedr), and Aipout (Wsear)
in combination with Yseq(wsear) preserves the semantics of A (wi),
Aput(wh), and Ajyout(wh) regarding information flow, modifiability, and
iitialization.

Proof The validity of Lemma 7.3 is checked as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of Ay, (wsedr),
Aout(Wsedr), Dinout (Wsedr), and Xgeq(wseqr) with the syntax rules of Ajy, (wsed),
Aout(Wsed), Dinout(Wsed), and Xgeq(wseq) as specified in Section 3.5 using in-
duction on the number of added interfaces Ei(wfb 2

1. Base Case: When &-(wfb ;) = @, there are no input variables, out-
put variables with possible initialization, and inout variables, and thus
no statements to add, which trivially conforms to the syntax rules of
Ain(wscd)7 Aout(wscd)y Ainout(wscd)y E{rlzv (wscd)7 and nggm(wscd)a since
these sets remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in Ay, (wsed),

b ; .
Aout(wscd’)a Ainout(wscd’)a Zlfnv(wscd)a and Eggsm(wscd)- Their syntax

still conforms to the syntax rules of A, (wsed), Aout(Wsed), Dinout (Wsed),
b :
E{m(wscd), and XU (wWsed)-
Second, the semantic correctness is checked by comparing [Ag,(wsed)le,
[Aout(wsed)]e, and [Ainout(wsed)]e in combination with the SOS transition
rules of E{:v(wscd) and YU (y 4), noting that MOVE instances termi-

nate immediately (see Section 3.5) with [[Ain(w}pbd)]]g, [[Aout(w;fbd)ﬂg, and
[[Amout(wfbd)]]g (see Section 3.2).

Illustrative Example for Lemma 7.3

As an example, below are some derived interfaces of the FBD_TWO_OF_THREE
model*:

“Both models, FBD and SCChart, are included in Appendix E.1 and G.1.

113

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

input bool xB1_Temp // added to Ajn(wgeqr)
input bool xB2_Temp // added to Ajn(wgeqr)

Lemma 7.4. Let wfbd be translated to wseqr and ¢ € { b, fun,prg}. Then,

t?ggﬁscd(wfbd) adds the additional input ET to A, (wseqr) and the additional
output EO to Agut(wsear) as specified in Definition 7.2. Ajp(wsear) and
Agut(wsear) conform to the syntax rules of Nip(wsed) and Aoyt (Wsed)-

Proof The validity of Lemma 7.4 is proved by comparing the resulting syn-
tax of Ay, (wsear) and Agyi(wsear) with the syntax rules of A;,(wseq) and
Agut(wseq) as specified in see Section 3.5.

Illustrative Example for Lemma 7.4

As an example, below are the derived interfaces of the SIMPLE_ADD_FUN model
introduced in Lemma 7.1:

input bool EI // added to Ajp(wseqr)
output bool EO // added to Aocut(wseqr)

Lemma 7.5. Let wjfbd be translated to wseqr, @ € {fb, fun,prg}, and

W?bd contains time-based logic, where time is a readable variable and is

synchronized externally. Then, t?gjﬁsc d(wfb ;) adds an additional input to

Ain(wsear) as specified in Definition 7.2. Ajp(wsear) conforms to the syntax
rules of Aip(Wsed)-

Proof The validity of Lemma 7.5 is proved by comparing the resulting syntax
of Ajp(wsear) with the syntax rules of A;,(wseq) as specified in Section 3.5.

Illustrative Example for Lemma 7.5

As an example, below is the derived input of the FBD_DEBOUNCE model®:
input int CLK // added to Ajn(wgeqr)

Lemma 7.6. Let w}c;fg be translated to wseq and w}c;‘g has a specified

return type, which is processed by w}{gg Then, t?ljjﬁscd(wfbd) adds an

additional memorized output for the specified return type to Agur(Wsear)
as specified in Definition 7.2. Agu(wseqr) conforms to the syntax rules of

Aout (wscd) .

®Both models, FBD and SCChart, are included in Appendix E.10 and G.10.

114

7.2. From FBDs to Data-Flow Oriented SCCharts

Proof The validity of Lemma 7.6 is proved by comparing the resulting syntax
of Aput(wseq) with the syntax rules of Ayyui(wseq) as specified in Section 3.5.

Illustrative Example for Lemma 7.6

As an example, below is the derived output of the FBD_SIMPLE_FUN model%:

output float FBD_SIMPLE_FUN // added to Aout(Wseqr)

7.2.3. Variables

This step covers the translation function for translating local FBD
variables Avdd(wfb ;) to local SCChart variables Aygei(wseqr), where

Avdcl((‘-}?bd) = Alocal({"}?bd) U Ajnst (w?bd)'

Definition 7.3 (Variables — FBD-to-SCChart). Let Q7 = {w?bd | pe

fod =
{fb, fun,prg}} be the set of possible FBD elements. Aygei(wsear) is derived
from w;fb 4 using the translation function t?bf:fsc d(wfb 4), which is described by

Algorithm 20.

Algorithm 20 Translate variables — FBD-to-SCChart
Input: W?bd
OUtPUt: Alocal("‘)scd’)y Ainst(wscd’)v Eseq (wscd’)
Translation Function t?gg’fﬂsc d(wfb ME
forall e; € Si(wfbd) do
if e4(eys) = @ then
Alocal(wscd’) < add t?descd(a(ele)) an(ele) (= t?géiscd(ﬂ)];
> add local variable with optional initialization

if ¢ = fun then
MOVE;x = {EI, t"misc (m)};
Eseq(wscd’) - N { fbd>—>scd()}
an(ei) = MOVE,;y .0UT;
> add reset to default value with corresponding MOVE instance
end
else
Ainst(wscd’) < add ref ed(ele) an(ele);
> add local variable for instance

end
end

Correctness

To check the correctness of Definition 7.3, the following lemmas are used.

5Both models, FBD and SCChart, are included in Appendix E.22 and G.22.

115

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Lemma 7.7. Let w?bd be translated to wgeqr and @ € { fb,prg}. Then, for

each local variable ey € Si(wfbd) that is not derived from external models

eqlews) = @, t?gjﬁscd(wﬁd) adds a local variable including optional ini-

tialization to Ajpeal(wsear) as specified in Definition 7.3. Ajocai(Wsear) con-
forms to the syntaz rules of Ajpeai(wseq) Tegarding the storage class, data
type, and name. With and without initialization, Ajpeqi(wWsear) preserves
the semantics of Alocal(wfb 4) regarding modifiability and initialization.

Proof The validity of Lemma 7.7 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Ajeqr(wseqar) with
the syntax rules of Ajeqi(wseq) as specified in Section 3.5 using induction on
the number of added variables & (w¥,,):

1. Base Case: When &-(wfb ;) = @, there are no local variables and thus
no statements to add, which trivially conforms to the syntax rules of
Ajocai(Wsed), since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of local variables
with possible initialization.

3. Inductive Step: Adding an element to local variables with initializa-
tion results in an additional element in Ajyeqr(wWsear). Its syntax still
conforms to the syntax rules of Ajyeqr(Wsed)-

Second, the semantic correctness is checked by comparing [Ajpcqr(wsed)]e
(see Section 3.5) with [[Alocal(w?bd)]]g (see Section 3.2).

Illustrative Example for Lemma 7.7

As an example, below is a snippet of the derived local variables of the
FBD_DATATYPES model”:

bool A1l // added to Alocal(“‘"scd')
bool A2 = true // added to Aypeqi(Wsear)

Lemma 7.8. Let w?bd be translated to ws.q and ¢ € {fun}. Then, for
each local variable ey € Si(wfbd) that is not derived from external models

eq(eys) = @, t?ﬂj}scd(w;’fbd) adds a local variable including optional ini-

tialization to Ajpeal(Wsear), and adds possible assignments to defaults to
Yseq(wsear) as specified in Definition 7.3. Ajpear(wsear) conforms to the
syntazx rules of Ajpeal(wseq) Tegarding the storage class, data type, and
name. Yseq(wsear) conforms to the syntax rules of Ygeq(wsea). With and

"Both models, FBD and SCChart, are included in Appendix E.9 and G.9.

116

o=

SN

7.2. From FBDs to Data-Flow Oriented SCCharts

without initialization, Ajocal(Wsear) in combination with Ygeq(wsear) pre-
serves the semantics of Alocal(w?bd) regarding modifiability and initializa-
tion.

Proof The validity of Lemma 7.8 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Ajycq(wseqr) and
Yseq(Wsear) with the syntax rules of Ajeqr(wsea) and Xgeq(wseq) as specified in
Section 3.5 using induction on the number of added variables Ei(wfb Ok

1. Base Case: When &(wfb ;) = @, there are no local variables and thus
no statements to add, which trivially conforms to the syntax rules of
Ajocat(Wsed) E{sv(wscd), and X7 (wseq), since these sets remain un-
changed and are optional.

2. Induction Hypothesis: The lemma holds for any set of local variables.

3. Inductive Step: Adding an element to local variables results in an

additional element in Ajyeqr(Wsear), E{TIZW (Wseq), and ™™ (w,.q). Their
b

syntax still conforms to the syntax rules of Ajgear(Wsed), 23,

EZ;SW (Wscd) :

(Wsed), and

Second, the semantic correctness is checked by comparing [Ajpcqr(wsed)]e

. L . s b ;
in combination with the SOS transition rules of szm(wscd) and X077 (wsed),
noting that MOVE instances terminate immediately (see Section 3.5) with

[[Alocal(wfbd)]]g (see Section 3.2).

Illustrative Example for Lemma 7.8

As an example, below are a derived variable including reset of the
SIMPLE_ADD_FUN model introduced in Lemma 7.1:

int X1 = 3 // added to Ajn(wWgeqr)
dataflow:
MOVE_01 = {EI, 3}; // added to Lseq(wseqr)
X1 = MOVE_01.0UT; // added to Lseq(Wseqr)

Lemma 7.9. Let wfbd be translated to wseqr and ¢ € {fb,prg}. Then,
for each local variable ey 4 € Si(w}obd) that is derived from external mod-
els eq(eys) + @, t?bzdﬁscd(wfbd) adds a local variable to Ajpsi(wWseqr) as
specified in Definition 7.3. Ajnst(wseqr) conforms to the syntax rules of

Ainst(wseq) Tegarding the name and preserves the semantics of Amst(wfbd)
regarding usage within the model.

117

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Proof The validity of Lemma 7.9 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Ajpst(wseqr) With
the syntax rules of Aj,st(wseq) as specified in Section 3.5 using induction on
the number of added variables Si(w?b Mk

1. Base Case: When Ei(wfb 4) = @, there are no instances, which triv-
ially conforms to the syntax rules of Aj,st(wseq), since this set remains
unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances.

3. Inductive Step: Adding an instance results in an additional element in
Ainst(wseqr). Tts syntax still conforms to the syntax rules of Aj,se(wWseq)-

Second, the semantic correctness is checked by comparing [Anst(wsed)]e
(see Section 3.5) with [[Amst(w}pbd)]]g (see Section 3.2).

Illustrative Example for Lemma 7.9

As an example, below is a snippet of the derived local variables of the
FBD_AIR_COND_CTRL model®:

ref RS RSO // added to Ajnst(wWseqr)

7.2.4. Data Types and Fields

This step covers the translation function for translating FBD data types and
fields A[J’](w?bd) to SCChart data types and fields Al*l(w,.e). FBD data
types and fields correspond to ST model data types and fields [GDV14]. Fur-
thermore, SCChart data types and fields correspond to SCL data types and
fields (see Section 3.5). Consequently, the translation strategy introduced in
Section 5.2.4 can be applied to the FBD-to-SCChart transformation, resulting
in t?bd%cd(am (wfbd)) = tg‘tHscl(a[Jr](wfbd)). Due to the equivalence to the
ST-to-SCL transformation, no additional examples for the FBD-to-SCChart
transformation are included at this point.

7.2.5. POU Imports

This step covers the translation function for translating POU imports
Aimports (w;fb ;) to SCChart imports Agmports(Wsed:)-

Definition 7.4 (POU imports — FBD-to-SCChart). Let Qf,,; =
{w}"bd | o € {fb, fun,prg}} be the set of possible FBD elements. POU imports
in FBDs Aimpmts(w?bd) are derived from external blocks eyys € E(wfbd),
ea(ervs) # @ and user-defined blocks e,jun € F’(wfbd). The imports are
translated to SCChart imports Nimports(wWsear) and extended by data type

specific MOVE models using the translation function t?ggﬁ;gi;

described by Algorithm 21.

(w}fbd), which is

8Both models, FBD and SCChart, are included in Appendix E.2 and G.2.

118

7.2. From FBDs to Data-Flow Oriented SCCharts

Algorithm 21 Translate POU imports — FBD-to-SCChart
Input: wfb d

Output: Ajyports(Wsedr)
Translation Function t%f:;;ﬁf (Wfbd)’

forall a(lhs(oimm (why))) do

ass
Aimports(wsear) < add import "MOVEf(Oé(th(UgZ;m(w?bd)))) .sctx";
> data type is derived from left-hand side of assigned variables

end
forall ey, € S(wfbd), ed(ews) # @ do

‘ Aimports(wscd’) « add import "(ed(elVS)) -sctx';
end
forall e, ;.. € F’(wfbd) (derived from w?bd) do

‘ Aimports(wscd’) < add import " (a’n(ebf“"')) 'SCtX";
end

Correctness

To check the correctness of Definition 7.4, the following lemmas are used.

Lemma 7.10. Let the IEC 61131-3 standard function blocks (RS, SR,
TOF, TON) [GDV1}] be available as semantically and syntactically correct
SCChart models. Then, for each instance ejy s € S(wfbd),ed(elvs) + O

and user-defined function eypun € F'(w;fbd), t?g&”ﬁzzy (w;fbd) adds the cor-

responding import to Nimports(Wsear) (if not already imported) as speci-
fied in Definition 7.4. Aimports(wsear) conforms to the syntax rules of
Aimports(Wsea) and preserves the semantics of Aimpoﬁs(wfb ;) regarding
instantiation and usage.

Proof The validity of Lemma 7.10 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Ajpmports(Wsedr)
with the syntax rules of Ajyports(wsed) as specified in Section 3.5 using in-
duction on the number of instances S(wfbd) ={ews | ealevs) # @} and user-
defined functions F'(w%,,):

1. Base Case: When S(w;fbd) =@ and F’(wjfbd) = &, there are no modules
to import, which trivially conforms to the syntax rules of Ajyports(Wsed),
since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances and
any set of user-defined functions.

3. Inductive Step: Adding an instance and user-defined function
to S(wfb ;) and F’ (wfb ;) results in two additional elements in

Ajmports(Wsear) (one for the instance and one for the user-defined
function). Its syntax still conforms to the syntax rules of Ajpports(Wsed)-

119

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Second, the semantic correctness is checked by comparing [Amports(Wsed) ¢
(see Section 3.5) with [[Aimports(w?bd)]]g (see Section 3.2).

Illustrative Example for Lemma 7.10

As an example, below are the derived import of the FBD_AIR_COND_CTRL
model”:

import "RS.sctx" // added to Ajmports(Wsear)

Lemma 7.11. Let the data types of required MOVE models be derived
from the assigned variables oz(lhs(azmm(wfbd))). Then, for each data type,

ass

tA'meo'rts
fbd—scd
already imported) as specified in Definition 7.4. Nimports(Wsear) conforms

to the syntaz rules of Nimports(Wsed)-

(wfbd) adds the corresponding import to Aimports(Wsear) (if not

Proof The validity of Lemma 7.11 is proved by comparing the resulting syn-
tax of Ajmports(wWsear) With the syntax rules of Ajpports(wsea) as specified in
Section 3.5 using induction on the data types of the left-hand side of the
assigned variables a/(lhs(oimm (wfb)

ass

1. Base Case: When lhs(oimm(wfbd)) = @, there are no derived data
types, which trivially conforms to the syntax rules of Ajyports(Wsed),
since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances and
any set of user-defined functions.

3. Inductive Step: Adding an instance and user-defined function to
1hs(ogss" (wfy,)) results in an additional element in Ajmports(wsear)- Its

syntax still conforms to the syntax rules of Ajpports(Wsed)-

Illustrative Example for Lemma 7.11
As an example, below is the derived import of the SIMPLE_ADD_FUN model
introduced in Lemma 7.1:

import "MOVE_int.sctx" // added to Ajmports(Wscdr)

7.2.6. Expressions

This step covers the translation function for translating expressions in FBDs
T(w}obd) to expressions in SCCharts T (wseq). The translation strategy for
the ST-to-SCL transformation introduced in Section 5.2.5 can be applied to
the FBD-to-SCChart transformation, because the translations are linked to

“Both models, FBD and SCChart, are included in Appendix E.2 and G.2.

120

7.2. From FBDs to Data-Flow Oriented SCCharts

the individual specifications of the ST and FBD constructs, and the result-
ing expressions for the SCL models are the same as for SCCharts (see Sec-
tion 3.5), resulting in t}descd(T(w}’bd)) = t;’tHsd(T(w?bd)). As summarized in
Lemma 5.8, only a subset of the considered FBD expressions can be translated
to equivalent SCChart expressions (using internal operators).

7.2.7. POU Invocations

This step covers the translation function for translating POU invocations in
FBDs Efm(w;fbd) to model invocations in SCCharts Efm(wscd/). As an il-
lustration, Figure 7.5 shows the high-level runtime behavior of an example
FBD with memory wypg1 invoking a model with memory wpoy,2 and a model
without memory wypey, 3, as well as the resulting SCChart wg.q,1 that invokes
the two models, w; 2 and w; 3. In particular, Figure 7.5a shows that wgpqg 1
is triggered in every PLC cycle at time ¢; and invokes wpoy,2 and wpeyu,3 de-
pending on their execution order at time ¢; and ¢, until an iteration of wyyq 1
terminates at time t¢,,, with ¢ < j < k <l <m and 4,j,k,[,m > 0. In con-
trast, Figure 7.5b shows that an iteration of the resulting SCChart wg.q1 is
triggered in each PLC cycle at macro step S; and invokes w; 2 and w, 3 de-
pending on their execution order at macro step S; and Si. The models are
invoked by the additional interfaces EI and EO of the corresponding compo-
nents. Consequently, an iteration of ws.q1 terminates at macro step S,, and
allows multiple macro steps of instances due to the event-driven execution
control using EI and EO. If an iteration of an instance terminates within the
same macro step per PLC cycle, it is possible to force a sequential execution of
parallel threads of SCCharts using the sequential statement (see Section 3.5)
without additional interfaces for event-driven execution control. However, for
a generic application of the introduced approach, this thesis focuses on event-
driven execution control. It is worth noting that this event-driven execution
control focuses on model invocations, although in principle it is possible to
invoke any operator of depending on its execution order (which was pursued,
for example, in an approach to transform IEC 61131-3 models into IEC 61499
models [Wen+09b]).

Definition 7.5 (POU Invocations — FBD-to-SCChart). Let Q‘ﬁbd =

{w}fbd | e {fb, fun,prg}} be the set of possible FBD elements. A POU invo-

cation U?M(wfbd) € E?m(w}pbd) (considering additional MOVE instances for re-
setting variables) is translated to a model invocation ¥, (Wsear) € B0, (Wsear)
in SCCharts using the translation function t?gglscd(afm (w]fbd)), which is de-
scribed by Algorithm 22 (that applies function get_exzpr described by Algo-

rithm 17).

Correctness

To check the correctness of Definition 7.5, the following lemma is used.

121

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

@ fbd,1 (a)pou,Z » Wpou,3) WDsced, 1 (a)x,Z » Wx 3)
@ fbd,1 @ pou,2 ®pou,3 Wsed, 1 Wy 2 Wx3

Az | |
N i

P
SER
[y
1 Tr)t\ (—E ° :)S‘
i St =>Sn
L. e S i :i EO
(a) Initial FBD (b) Resulting SCChart

Figure 7.5.: High-level runtime behavior of a model with memory invoking two
models (Approach: FBD-to-SCChart)

Algorithm 22 Invoke POU — FBD-to-SCChart
Input: Ufm(w]fb 2)

b
Output: Jlfm(wscdr)

Translation Function t?gg'isc (0, (Whp)):

o1 (Weear) < ain (0, (w,)) = {MOVE_(ID, 1) .E0, [CLK,] T};
> add invocation with EO trigger of previous component 1D, _1 and
system time (if specified)
forall i € Z,T = Eiv (0}, (w5,4)) U Eiovs(ay,,(wF,,)) do
i~ g sea(8et-expr (i));
> add translated input or inout argument

end

Lemma 7.12. Let w?bd be translated to wseq and ¢ € {fb, fun,

prg}. Then, t?lig»iscd(afnv(w}obd)) translates a model invocation in FBDs

ol (w?b 4) to a model invocation in SCCharts alf?fv (wsear) with related ar-

guments including synchronized system time (if specified) as specified in
Definition 7.5. O-Zf:v(wscd’) conforms to the syntax rules of afcfv (wseq) and

preserves the SOS rules of afm(w}pb 4) regarding termination behavior.

122

7.2. From FBDs to Data-Flow Oriented SCCharts

Proof The validity of Lemma 7.12 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of a{fv(wscd/) with the
syntax rules of Jﬁv(wscd) as specified in Section 3.5 using induction on the
number of input variables including inout variables Eyvs(a;in (a2, (w?b) U

Sz-ovs(ai]v(afm(wfbd))) of an invoked instance o7

w¥) with system time:
inv\" fbd

b
1. Base Case: When aifm(w;fbd) + O, Eivs(aiN(afm(wabd))) = @, and
Siovs(aiN(U?m(wfbd))) = @, there are no existing interfaces to add,

which conforms to the syntax rules of oszv (wWsed)-

2. Induction Hypothesis: The lemma holds for any set of input variables
including inout variables of an invoked instance.

3. Inductive Step: Adding an input and inout variable to giVs(aiN(O'?m,(

wfb) and Eovs(a; N(afm(wfb ;))) results in two additional interfaces

and a{fv(wscdf), which conforms to the syntax rules of aszv(wscd). Syn-
tactic correctness of get_expr follows from Lemma 6.1.

Second, the semantic correctness is checked by comparing the SOS transition
rules of aszv (wsed) (see Section 3.5) with the SOS transition rules of ai];fv (wfbd)
(see Section 3.2).

Illustrative Example for Lemma 7.12

As an example, below are the derived invocations of the FBD_DEBOUNCE
model'?. Furthermore, Figure 7.6 shows the graphical SCChart (compiled by
KIELER), which illustrates the sequential execution of the instances.

dataflow:
// DB_ON.EI < EI
DB_ON = {EI, CLK, IN, DB_TIME}
// DB_OFF.EI < DB_O0ON.EO
DB_OFF = {DB_ON.EO, CLK, !(IN), DB_TIME}
// MOVE_01.EI < DB_OFF.EQO
MOVE_01 = {DB_OFF.EO0, DB_OFF.ET}

// DB_FF.EI < MOVE_01.EO

DB_FF = {MOVE_O1.E0, DB_ON.Q, DB_OFF.Q}
// MOVE_02.EI < DB_FF.EO

MOVE_02 = {DB_FF.EO, DB_FF.Q1}

7.2.8. Assignments

This step covers the translation function for translating assignments in FBDs
Egss(wjfb ;) to assignments in SCCharts X, (wsea) or the corresponding se-
quence Xgeq(wsear), respectively. The strategy is to place a MOVE block between
each variable assignment to ensure that only the final output value of the pre-
vious block is processed, i.e., when the previous block terminates. This is

0Both models, FBD and SCChart, are included in Appendix E.10 and G.10.

123

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

(oB_oN.EN) (oB_OFFEI (MOVE_01.EI) (oB_FFEI (MOVE_02.EI)
H i 1 H H
1 1 1]]
1 1 ¥ 1 1
: :
: : : i i
1 —— H 1 1
CLK : ‘ i our ! ! ET_OFF
' o DB_oFF L MOVE 01_ ' ' =
El —— T o N 1 M 2 Iil out ouT
°K pg ON | ! [—PT Q : T tSET‘ DB_FF ! . MOVE_02 =
— 1 1 [1
1Y IN | : H RESET Q" : =0
1 : 1 : 1
' ' ' ' '
1 ! 1 1 1
' i ' ' '
DB_TIME ; : ' | :
: : H : :
1 1]]]
1 1 1 1 1
1 1 1 1 1
' - : : :
(DB_ON.EO] (DB_OFF.EQ) (MOVE_0L.EO) (bB_FFEO) (MOVE_02.EQ]

Figure 7.6.: Graphical SCChart of the translated FBD_DEBOUNCE model

illustrated in Figure 7.7 using the FBD_SIMPLE_PRG2 example, which instan-
tiates the ST_LOOP_HEAD example!! mentioned in Section 5.3. In particular,
Figure 7.7a shows, that the intermediate output value is not assigned to QUT,
because MOVE_O1 and ST_LOOP_HEADO have not terminated. In contrast, Fig-
ure 7.7b shows, that the final output value is assigned to OUT, as soon as
MOVE_01 and ST_LOOP_HEADO terminate. This reflects the runtime behavior of
the initial FBD shown in Figure 7.7c and Figure 7.7d in both scenarios, within
and after the first PLC cycle.

Definition 7.6 (Translation of assignments — FBD-to-SCChart).
Let Q?bd = {wfbd | o € {fb,prg}} be the set of possible FBD elements and

Egss(w?bd) = {Ugss(wfbd) ’ lhs(agss(wfbd)) € 50V(wfbd)ng‘OV(wfbd)} be the set
of assigned variables, where (Sov(wfbd) Ué'iov(wfbd)) m&v(wfbd) is not neces-

sarily an empty set. An immediate assignme@t Ué@m(w?bd) € Zg’;gm(wfbd) (i.e.,
rhs(aé’?sm(wfbd)) does not depend on lhs(olm™

ment Jggé(wfbd) € Egﬁé(w}pbd) (i.e., rhs(ofllgi(wfbd)) in FBDs does depend on

s (wfbd)) and a delayed assign-

lhs(od! (wfbd)) is translated to a sequence Ygeq(wsear) in SCCharts using the

ass
translation function t?gj:scd(agss (w?bd)), which is described by Algorithm 23.

Correctness

To check the correctness of Definition 7.6, the following lemma is used.

Lemma 7.13. Let wfbd be translated to wseqr, @ € {fb, fun,prg}, and

. b
Y =imm. Then, tfgjiscd(agss(w?bd)) translates o¥,, (w;fbd) t0 Eseq(Wsed)
as specified in Definition 7.6. Yseq(wsear) conforms to the syntax rules

"The translated SCL model was compiled to an equivalent control-flow oriented SCChart
using KIELER.

124

7.2. From FBDs to Data-Flow Oriented SCCharts

EO El out (0)
El —=ST_LOOP_HEADO MOVE 01 ouT

y (10) IN EO

(a) View in KIELER (after the 6th macro step, i.e., within the first

PLC cycle)
EO El out (1)

El —=ST_LOOP_HEADO MOVE 01 ouT
vy U W B EO

(b) View in KIELER (after the 7th macro step, i.e., after the first
PLC cycle)

ST_LOOP_HEADO
ST_LOOP_HEAD

oo 1 o |

]

<

-

1O |10 := 100 i
5

WHILE i| 10 | <= il 10 | DO

3O M 10 | :=i[10 ;]
1Q i 10 J:=4di 10 |+ x2[2 |
5

END_WHILE;

@ H 10 EEET 1 ==

(C) View in CODESYS (after the 6th simulation step, i.e., within the
first PLC cycle)

ST_LOOP_HEADO
ST_LOOP_HEAD

[1]
Y| ouT
| t
1
1
1
1O [92 J:=i0[o
2/ WHILE i[%2 | < i1[10] DO
31O Vod0 | := i 12
gr) i 2 = 2 P2 2 |
5 END_WHILE;
Q W 10] = x1[1 e

(d) View in CODESYS (after the 7th simulation step, i.e., after the first
PLC cycle)

Figure 7.7.: Views during simulation of the FBD_SIMPLE_PRG2 example

of Yseq(wsed), preserves the SOS rules of Ué?sm(w}obd), and respects the
SCMoC.

Proof The validity of Lemma 7.13 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Z{T?v(wscd/) and

125

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Algorithm 23 Translate assignment — FBD-to-SCChart
Input: agss(wfb 2)
Output: Xeeq(w?)
1 7 Eass v .
Translation Function tfdescd(aass(wfbd)).
MOVE;xy = {MOVE-(IDp-1).EO, 34 c0q(
z:seq(ﬁ‘-)scd’) - get,expr(lhs(agss(w?bd))))}’
an(ei) = MOVE,y .0UT;
> add invocation with EO trigger of previous component IDy_1)

YImm(..qr) with the syntax rules of Z{é’v(wscd) and XM (. .4) as speci-
fied in Section 3.5. Second, the semantic correctness is proved by comparing
the SOS transition rules of Zﬁv(wscd) and XM (¢ .4), noting that MOVE in-
stances terminate immediately (see Section 3.5) with the SOS transition rules
of gimm (wfb) (see Section 3.2). The SCMoC is respected because FBDs are

ass

limited to implicit loops in this approach [GDV14].

Illustrative Example for Lemma 7.13

As an example, the immediately assigned variables of the FBD_SIMPLE PRG2
model are translated as follows'?:

0UT := ST_LOOP_HEADO.y; // initial FBD assignment
= MOVE_O01 = {ST_LOOP_HEADO.EO, ST_LOOP_HEADO.y}
= 0UT = MOVE_01.0UT
= EO0 = MOVE_O1.ED

7.2.9. Sequences

This step covers the translation function for translating sequences in FBDs
Eseq(wfbd) to sequences in SCCharts Yseq(wsedr)-

Definition 7.7 (Translation of sequences — FBD-to-SCChart). Let
Q;fbd = {w;fbd | € {fb, fun,prg}} be the set of possible FBD elements. There
are the following variants of FBD statements:

e POU invocations: Uz-m(wfbd) € va(wfbd)

o Assignments: Ugfsm(wjfbd) € Eé?sm(w}pbd), Ug;ls(wfbd) € Zggi(w%d)

According to the Definition 7.5 and 7.6, these FBD statements are translated
to the following variants of SCChart statements:

e Model invocations: oipy(Wsear) € Diny(Wsear)

o Assignments: ol (wyear) € S (W)

A set of the resulting SCChart statements represents a sequence, denoted as
. . X .
Yseq(wsear). The translation function tfggiscd(zseq(wscd’)) inserts o;(wsedr) €

Yseq(Wsedr) 0 Weear, following the process described by Algorithm 24.

2Both models, FBD and SCChart, are included in Appendix E.24 and G.24.

126

7.2. From FBDs to Data-Flow Oriented SCCharts

Algorithm 24 Add sequence — FBD-to-SCChart
Input: ¥cq(wWsedr)
Output: wgeqr
. . b))
Translation Function ¢ ;70 (Yseq(wsear)):
forall 0, € ¥, (wscqr) do
wsear < add o; to the position w.r.t. its execution order and dependent

constructs;

> execution order of parallel threads is enforced by event-driven
execution control
end

Correctness

To check the correctness of Definition 7.7, the following lemma is used.

Lemma 7.14. Let w?bd be translated to wseqr, ¢ € { fb,prag}, Lseq(wWsear) #

»
@, and Lseq(wsear) be syntactically correct. Then, tfggiscd(zseq(wscd’))

inserts each translated statement o; € Zseq(wscd/) to wseqr- The resulting
SCChart wseqr conforms to the syntax rules of wscq, preserves the SOS rules

of wfbd (in particular with regard to the execution order of the statements),
and respects the SCMoC.

Proof The validity of Lemma 7.14 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Xgeq(wsear) with
the syntax rules of ¥,eq(wseq) as specified in Section 3.5 using induction on
the number of statements to be added ey (wsedr):

1. Base Case: When Y4 (wseqa) = @, there are no statements to be added,
which conforms to the syntax rules of 0, (wseq)-

2. Induction Hypothesis: The lemma holds for any set of statements to
be added seq(wsear)-

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules Yseq(wseq), because the syntactic cor-
rectness of this statement to be added has been proved in the corre-
sponding section.

Second, the SOS transition rules and the SCMoC are respected by the state-
ments themselves. The order is maintained by sequential execution, which is
ensured by event-driven execution control.

Illustrative Example for Lemma 7.14

As an example, below are the inserted statements in the resulting SCChart of
the FBD_DEBOUNCE model'3:

3Both models, FBD and SCChart, are included in Appendix E.10 and G.10.

127

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

dataflow:

DB_ON = {EI, CLK, IN, DB_TIME} <01
DB_OFF = {DB_ON.EO, CLK, !(IN), DB_TIME} <= 02
MOVE_01 = {DB_OFF.E0, DB_OFF.ET} < 03
ET_OFF = MOVE_O01.0UT =04
DB_FF = {MOVE_O1.E0, DB_ON.Q, DB_OFF.Q} < o5
MOVE_02 = {DB_FF.EO, DB_FF.Q1} <= 0g
0UT = MOVE_02.0UT <=o7
EO0O = MOVE_02.EO <= 08

7.3. Experimental Results

The applicability of the introduced translation functions is evaluated with the
FBDs listed in Table 7.1. For evaluation purposes, the listed FBDs and the
expected SCCharts are manually implemented to verify the applicability of the
isolated translation functions. To ensure the correctness of both models, FBDs
and SCCharts, they are compiled with the built-in compilers of CODESYS and
KIELER. The translation functions have been implemented as a prototype in
PLCreX, assuming the FBDs are available in PLCopen xml format, resulting
in the overall test strategy shown in Figure 7.8. The correctness of the resulting
SCCharts is verified in two ways: (1) through manual reviews, differences
between the expected SCCharts and the automatically generated SCCharts
are identified, and (2) using the built-in compilers of KIELER, the syntactic
correctness of the automatically generated SCCharts is ensured.

Codesys PLCreX KIELER
(implemented manually) (implemented manually) (generated automatically)
P P
| D fpq bed>—>scd (wfbd) } _iI Wsed’ I
- J L J
compile compile
KIELER
(implemented manually)
review
Wscd <
| C—
compile

Figure 7.8.: Test strategy to evaluate the FBD-to-SCChart transformation

Both tests passed for all examples (ignoring minor formatting differences be-
tween manually implemented and automatically generated SCCharts), with
the following warnings:

e Supported operators: Similar to the experimental results in the con-
text of the transformation from ST to SCL (see Section 5.3), according
to Lemma 5.8 with remarks in Section 7.2.6, only a subset of the consid-
ered FBD expressions can be translated to corresponding internal SC-
Chart expressions. Therefore, the example arithmetic operators throws

128

7.3. Experimental Results

Table 7.1.: Set of FBDs and test results to evaluate the applicability of the intro-
duced FBD-to-SCChart transformation

Model | Source wfb 4 | Weedr Result
2-of-3 logic function | [Sch19]! | E.1 | G.1 passed
Air Condition Control | [Tapl5] | E.2 | G.2 passed
Alarm function | [Sch19]' | E.3 | G.3 passed
Antivalence | [Karl8] | E4 | G.4 passed

passed with

Arithmetic operators self E5 | G5 .
warnings
Bending Machine Control | [AG20] | E.6 | G.6 passed
Boolean operators self E7 | G7 passed

Cylinder Control System | [Sch14] | E.8 | G.8 passed

Data types and fields self E9 | G9 passed. with
warnings

Debounce | [GDV14] | E.10 | G.10 passed

Dice Numbers Indicator | [Karl8] | E.11 | G.11 passed

KV Diagram optimized Chart | [Karl8] | E.12 | G.12 passed

Left detection | [Sch19]' | E.13 | G.13 passed

Pollutant Indicator | [Bubl7] | E.14 | G.14 passed
Reservoirs Control System 1 | |] | E15 | G.15 passed
Reservoirs Control System 2 | [Karl8] | E.16 | G.16 passed

Roll Down Shutters E17 | G117 passed

Cable Winch | [Tapl5] | E.18 | G.18 passed

Seven Segment Display | [WZ07] | E.19 | G.19 passed

Shop Window Lighting | [AG20] | E.20 | G.20 passed

Silo Valve Control System | [WZ07] | E.21 | G.21 passed
Simple calculation | [GDV14] | E.22 | G.22 passed' with

warnings

Simple Program 1 self E.23 | G.23 passed

Simple Program 2 self E24 | G.24 passed

Smoke Detection System | [Tapls] | E.25 | G.25 passed

Sports Hall Lighting | [AG20] | E.26 | G.26 passed

Thermometer Code System | [Bubl7] | E.27 | G.27 passed

Toggle Switch 4x | [Bubl7] | E.28 | G.28 passed

Ventilation Control System | [Karl8] | E.29 | G.29 passed

Wind Direction Indicator | [Bubl7] | E.30 | G.30 passed

a warning for affected expressions. Affected expressions are skipped dur-
ing translation.

e Supported data types: Similar to the experimental results in the con-
text of the transformation from ST to SCL (see Section 5.3), according
to Lemma 5.7 with remarks in Section 7.2.4, only a subset of the consid-
ered FBD data types can be translated to corresponding SCChart data
types. Therefore, the example data types and fields throws a warning for
affected declarations. Affected declarations and expressions are skipped

129

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

during translation.

e Reset of variables: According to Lemma 7.3, only output variables
are considered to be reset to their default values for the FBD variant
@ = fun. Otherwise, external values are overridden by default values
due to the SCMoC. Therefore, the example simple calculation throws a
warning for the affected input variable. The reset to default values for
input and inout variables is skipped during translation.

Based on the experimental results in Table 7.1, it can be concluded that the
introduced translation functions are applicable and lead to correct SCCharts
that can be reused in model-based design, if a few conditions are considered.
These are summarized in the following section.

7.4. Summary

This chapter introduced the transformation of FBDs to data-flow oriented
SCCharts. For this purpose, individual translation functions were defined that
take into account the sequential execution order of blocks and assignments.
The applicability of these translation functions was demonstrated using a set
of FBD examples. Based on the presented lemmas and experimental results,
the following theorem encapsulates the entire transformation:

Theorem 7.1 (FBD-to-SCChart Translation). Letw?,, € Q% be an
FBD of the variant ¢ € { fb, fun,prg} and let bed’_’SCd(w?bd) be the model

transformation of w;fb 4 10 Wsear using the translation functions defined in
this chapter. Then, the resulting SCChart wgeq:

1. Conforms to the syntax rules of wgeq

2. Preserves the semantics of wfb J

3. Contains constructs corresponding to the constructs of w;fb 4 and pre-

serves the intended functionality of wfb 4 under the following condi-
tions:

o @ e {fb, fun,prg}
° Aidcl(wfbd) = Am(wfbd)UAout(wabd)uAmwt(wfbd), where mod-

els are always invoked with defined input values, so no reset are
required for Ay, (wjfb) for FBD variant ¢ = fun

b Avdcl(w}pbd) = Alocal(("}fbd) U Ainst(w}pbd)

e Imported models are available as SCCharts

o Valt] (w;fbd) alt] e {aboel qint qdint quint o, ot} where

(] 7 7 ’
Qgur can be treated as a bounded integer and is specified in

milliseconds

130

7.4. Summary

o Vr(why) i T € (TSl T TN b e pse o
TZ?@'ZC’ Tcegmp’ T(?oemp’ ngmpv TCgoemp? Téf)mp’ Tclgmp? T;Z%lhv chnli;‘)th) Tgrc‘licgh)
ch%h: 75;6527 Téﬁ%, Tariths Tffrlbd

o Vo (why):oe{on, ol

Proof The validity of Theorem 7.1 is proved as follows:

1. Syntax Conformance: Lemma 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8,
7.9, 5.7 (see remarks in Section 7.2.4), 7.10, 7.11, 5.8 (see remarks in
Section 7.2.6), 7.12, 7.13, and 7.14 demonstrate that each translated
construct conforms to the syntax rules of wg.q4 as specified in Section 3.5.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

e Model declaration: Lemma 7.1

Interfaces: Lemma 7.2 and 7.3
Variables: Lemma 7.7, 7.8, and 7.9
Data types and fields: Lemma 5.7 (see remarks in Section 7.2.4)

e POU imports: Lemma 7.10

e Expressions: Lemma 5.8 (see remarks in Section 7.2.6)
e POU invocations: Lemma 7.12

e Assignments: Lemma 7.13

e Sequences: Lemma 7.14

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in wgq for the considered constructs in w}pb 4> breserving the original
functionality.

Overall, this results in the following solutions to the challenges summarized in
Section 7.1.

1. Cyclic execution of SCCharts (with and without memory): The
cyclic execution of a resulting SCChart (with and without memory) de-
pends on the invocation by an external model. When an SCChart is
invoked, an iteration is triggered that terminates after a finite number
of macro steps (n > 0). Unlike variables of a resulting SCChart based
on an FBD with memory, variables of a resulting SCChart based on an
FBD without memory are set to their default values (if necessary) at the
beginning of each iteration.

131

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

2. Event-driven execution of synchronous parallel threads: An it-

eration of an SCChart and iterations of its instances (executed in parallel
threads) are triggered by additional interfaces (EI and EO) of each com-
ponent, which allows event-driven execution control.

Sequential execution of synchronous parallel threads: Due to
the event-driven execution control, the invoking SCChart can invoke in-
stances depending on the feedback of the previous blocks. This allows
a sequential execution of synchronous parallel threads, allowing an indi-
vidual number of macro steps of the invoked models.

Dynamic system time: A dynamic system time is realized by an
additional input CLK, i.e., the clock is controlled externally and processed
within the resulting SCChart with read access.

. Translation of FBD language constructs: The solution follows from

Theorem 7.1.

132

Chapter

Formal Methods-Based Optimization
of Data-Flow Models

Contents

8.1. High-Level Design Flow — Optimization
8.2. Optimization of Data-Flow Models

8.2.1.
8.2.2.
8.2.3.
8.2.4.
8.2.5.
8.2.6.
8.2.7.
8.2.8.
8.2.9.

8.2.10.
8.2.11.
8.2.12.
8.2.13.
8.2.14.
8.2.15.
8.2.16.

Operators e
From Graphical Data-Flow Models to Textual Models .
Identification of Submodels
From Submodels M to SMV Formulas Mgpn,
fi-Simplification of Mgy o v v v o oo oo
From fi1(Mgmy)" to SMV Formulas f1(Mgmny) - - - - . .
Equivalence Check of Mgy, and fi(Mgny) -« -« o o ..
From Submodels M to SMT Formulas Mgy
fo-Simplification of Mgy . o o o o oo oo
From f1(Mgmy) to SMT Formulas (fi(Msmy))smt - - -
fo-Simplification of (f1(Msmw))smt - « =« v o v v oo o
Pattern-Based Formula Refactoring
Selection of Optimized SMT Formulas
Equivalence Check of Mg and Qg o o o o o L
From Qg,,¢ to Initial Submodels M’
Reconstruct Software Model

8.3. Experimental Results

8.4, Summary e

This chapter focuses on a formal methods-based optimization of data-flow
models (like data-flow oriented SCCharts, Quartz models, and others), where
the goal is to automatically identify potentially optimizable submodels and
optimize them while ensuring semantic preservation and leaving the non-
modifiable components unchanged. The purpose is to reduce the number of

133

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

components in data-flow-related expressions where the user can configure the
optimization strategy. More specifically, this chapter proposes a generic iden-
tification strategy of submodels in real-world applications and introduces an
applicable formal methods-based optimization strategy for data-flow models
using NuSMV, Z3Py, and PLCreX. In addition to the approaches presented
in [WS23; WS24b], it considers the following additional optimization strategy:

e Pattern-based submodel refactoring: A pattern-based submodel
refactoring of the optimized formulas, which improves the optimization
results as demonstrated in Section 8.2

The correctness of the semantics during the optimization is ensured by an inte-
grated equivalence check using NuSMV and Z3Py. In addition, the syntactic
correctness is checked for the set of real-world applications of the case study
by compilation after reconstruction.

This chapter is structured as follows: Section 8.1 introduces the high-level
design flow and optimization strategy. Section 8.2 defines the translation and
optimization steps, as well as the theoretical analysis. Section 8.3 presents an
evaluation of the theoretical results and analyzes the optimization potential
in real-world examples. Section 8.4 summarizes the optimization.

8.1. High-Level Design Flow — Optimization

The high-level design flow with a focus on optimizing an FBD wfbd € Q?bd,
a data-flow oriented ST model w?, € Q% a data-flow oriented Quartz model
Wgrz € Qqrz, and a data-flow oriented SCChart wgeq € §25¢q is shown in Fig-
ure 8.1, with wgou € {wft,w?bd}. The individual transformations Tpoyed(Wpou)

Torzsd(Warz)s Tsedsd(Wsed), and Tgq(M(wq)) are explained in the next sec-
tion.

IEC 61131-3 NusMv §3MI;I;/
SRS

Averest [E - PL&:reX \

Tpom—»d (a)gou) _
| Wygrz JI < Tqrz»—>d (wqrz) E @d I
ELER Tscdi—>d (wscd)) A
?‘ Tisd (M(@4))
scd |~

Figure 8.1.: High-level design flow of the optimization process with focus on the
models and system architecture

134

8.2. Optimization of Data-Flow Models

Optimization Strategy:

The basic concept of the optimization process is shown in Figure 8.2. The
idea is to express graphical data-flow models in textual form and then split
them into two categories: (1) submodels that can be potentially optimized
and (2) non-modifiable components. The submodels are then simplified using
formal methods and pattern-based submodel refactoring. In particular, the
model checker NuSMV [Robl0] is used to generate a simplified canonical rep-
resentation of the submodels, and the SMT solver Z3Py! is used for algebraic
simplification. Consequently, formal methods are used for correct simplifi-
cation, which goes beyond their usual purpose of demonstrating correctness.
The overall approach includes multiple model-to-model translations including
simplifications A, equivalence checking F, and a configurable optimization
o € O implemented in PLCreX [WS23; WS24b].

) Graphical —
Textual Data-Flow Model Textual
Data-Flow Data-Flow

Model Model
Algebraic > s
Textual Simplification N Optimized
Submodels Pattern-Based Optimization Textual
Submodel Submodels

Simplified
Canonical
Representation

Refactoring Variable Accesses ||
! Operators
Edges

Figure 8.2.: High-level design flow of the optimization process with focus on the
optimization strategy [WS23]

A 4

Challenges:
This approach leads to the following challenges:

1. Identification of potentially optimizable submodels
2. Configurable optimization

3. Correctness of the optimization

8.2. Optimization of Data-Flow Models

This section introduces the optimization of data-flow models, whose low-level
design flow is illustrated in Figure 8.3. The transformation TPOUHd(wfou) in-
cludes the following steps:

1. A;: FBD-to-ST transformation (see Section 8.2.2)
2. As: Identification of submodels (see Section 8.2.3)

"https://microsoft.github.io/z3guide/

135

https://microsoft.github.io/z3guide/

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Translation

@ Original

| (4
1 . '—)
Equivalence Check A @ fbd st Data-Flow Model

Simplification

Optimization

Ay o~ (L(w), M), © € {wf,wy:,0q}

Ay i M= Mgy, NuSMV
Models

A4 . Msmu = fl (Msmv),

As : fi (Msmu), = f1(Mgmp)
€1 Mymo = f1(Mgmo)

. . SMT Z3Py
AS . fl (Msmv) = (fl (Msmu))smt A6 MM mt Models

Ag : (f1 Mgmp))sm =
f2 ((fl (Msmv))smt)

Ay 300, ¥y € {1 Mgmo))sme»
f2 ((fl (Msmv))sint)7 f2 (Msmr)+}

A7t Mg = fo(Mmi)

\
01 Qo = {(x0,x1,%2,x3) |

(x0 € f3(L2((fi Msmp))sm)) Ax1 =B Ax2 =B Ax3 =)V
(xo = Ax1 € [3(f/1(Msm))sm) Ax2 =DBAx3 =)V

(X0 =DAX] =DAX) € Mgm AX3 =D)V

(xo =@Ax1 =B Ax2 =B AX3 € f3(f2(Msm)))}

£ Msmt = f3 (Qsmt)

. / Optimized
A Qg = M Data-Flow Model

Ap : (L(w), M(w)/) = Cl)/, ' € {CO?;, s Warz! s Wged }

Figure 8.3.: Low-level design flow of the optimization process [WS23]

The transformations Ty, ..q(wWerz) and Tsegord(wseq) include the following steps:
1. Ag: Identification of submodels (see Section 8.2.3)
The optimization process Ty, .q(M(wq)) includes the following steps:

1. As, As: NuSMYV-related translations (see Section 8.2.4 and 8.2.6)
2. Ay: NuSMYV-related simplification (see Section 8.2.5)
3. e1: Equivalence check using NuSMV (see Section 8.2.7)

136

8.2. Optimization of Data-Flow Models

Ag, Ag: Z3Py-related translations (see Section 8.2.8 and 8.2.10)
A7, Ag: Z3Py-related simplification (see Section 8.2.9 and 8.2.11)
Aqp: Pattern-based formula refactoring (see Section 8.2.12)

o: Configurable optimization (see Section 8.2.13)

e2: Equivalence check using Z3Py (see Section 8.2.14)

Aq1: Reconstruct submodels (see Section 8.2.15)

10. Aj2: Reconstruct model (see Section 8.2.16)

© X N o o

8.2.1. Operators

Since the optimization and translation process requires multiple model-to-
model translations between the different software models, Table 8.1 provides
an overview of the operators supported in this approach when translating the
original data-flow models ST, SCCharts, and Quartz to NuSMV and Z3Py
(and vice versa) [WS23]. This overview is used for several translations ex-
plained in the following subsections.

Table 8.1.: Overview of supported operators across the ST, SCChart, Quartz,
NuSMV, and Z3Py models [WS23]

ST ‘ SCChart ‘ Quartz ‘ NuSMV ‘ Z3Py
Boolean operators (with a()) = abo)

T (Wet) | Tooot(@Wsea) | Thom (War2) LA Not (A1)
rond(ey | pand (g, | 78w,) | A & L. & Ay | And(Ap, .., An)
7—bool((")st) Tboorol(wscd) Tl?gol(wqrz) >\1 [...)\n 01”(/\1 e)\n)

Tooot (W) | Thool (Wsed) | Thoo (Warz) A1 xor A Xor (A1, Ag)
Equality /Inequality operators

€eq €q €q _ —_
Tcomp(wst) 7—comp(ff‘-)scd) Tcomp(wqrz) T = T2 T == T2

comp(wst) TgJemp(WSCd) Tgoemp(wqrz) m = m m = m

Conditional operator
goerlbd(wst) ‘ cond(WSCd) ‘ cond(quZ) ‘)‘b 7Moo m ‘ If (>\b s T, 772)
Correctness

To check the correctness of the overview, the following lemma is used.

Lemma 8.1. Let an ST, SCChart or a Quartz operator be translated
to a corresponding NuSMV or Z3Py operator (and vice versa) as listed
in Table 8.1. Then, the resulting NuSMV and Z3Py operator conforms
to the syntax rules of NuSMV and Z3Py, and preserves the semantics of
the original operator. This is also true after translating the NuSMV and
7Z3Py operator back to the original model operator.

137

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Proof The validity of Lemma 8.1 is proved by a systematic comparison. First,
it is checked whether the syntax of the translated operators conforms to the
specifications of NuSMV [Rob10] and Z3Py?. Second, the semantic preser-
vation is verified by comparing the specified functionality of the translated
NuSMV and Z3Py operators with that of the original ST, SCChart, and
Quartz operators, as detailed in Section 3.2, 3.3 and 3.5. Furthermore, it
can be concluded that this equivalence holds when operators are translated
back from NuSMV and Z3Py to their respective original model forms, thus
ensuring bi-directional semantic consistency.

Illustrative Example for Lemma 8.1

Ilustrative examples are implicitly given by the mapping of the operators in
Table 8.1.

8.2.2. From Graphical Data-Flow Models to Textual Models

Step A; of the optimization process Ty, q(M(wq)) requires the graphical data-
flow model to be represented as an equivalent textual model, which is only rele-
vant for Tpousd(wpou), since SCCharts and Quartz models are already available
in a textual format [WS23]. An FBD-to-ST transformation is often supported
by the PLC vendor (like CODESYS, Beremiz, and others) and also supported
by PLCreX [WS24b] following the backward translation strategy introduced
in Section 6.2.7. In addition, Chapter 6 introduced an FBD-to- Quartz trans-
formation and Chapter 7 introduced an FBD-to-SCChart transformation.

8.2.3. Identification of Submodels

Step Ay relevant for Thoumd(wiou), Tyrasd(wrz) and Tsegod(wsea) splits the
textual data-flow model into potentially optimizable submodels® M and non-
modifiable components L [WS23]. The idea is illustrated in Figure 8.4 using
an example SCChart. In particular, the model wg.4 is split into two sets: (1)
set L contains non-modifiable components (like instance T1) and (2) set M
contains submodels with potentially optimizable expressions (like m;).

Completeness

To check the completeness of the strategy, the following lemma is used.

Lemma 8.2. An FBD, FBD-based ST model, SCChart, and a data-
flow oriented Quartz model can be completely decomposed into potentially
optimizable submodels M and non-modifiable components L.

*https://microsoft.github.io/z3guide/
3 Arithmetic expressions are treated as submodels, but are not optimized in this approach.

138

https://microsoft.github.io/z3guide/

8.2. Optimization of Data-Flow Models

m L={T1}
A L M = {my,my, m3}
B —T——4 &l &

ol [

5

E ———— |

F _+__IPNTT1 °

G fmz m3

H - & + |

Figure 8.4.: Visualization of the submodel identification using a simple SCChart
example [WS23]

Proof The validity of Lemma 8.2 is proved by an analysis of the specifica-
tions of the original models. More specifically, an FBD, an FBD-based ST
model, a data-flow oriented Quartz model, and an SCChart are restricted to
assignments and model invocations, where Quartz models can additionally
contain pause statements X,qyse(wqrz) (see Section 3.2, 3.3, and 3.5). Thus, a
data-flow model can be completely decomposed into the sets L and M, where
Ypause(Wqrz) 1s assigned to L.

Illustrative Example for Lemma 8.2

As an example, the following submodels are identified for the simple SCChart
example in Figure 8.4.
TL = {A & ((B | C & D) & !(E)), F+G}
=mi: A & ((B | C&D) & !(E))

=mgo: F + G

8.2.4. From Submodels M to SMV Formulas M,,,,

Step Ag represents the first step of the optimization process Ty.q(M(wy)),
which focuses on a simplification using NuSMYV. To do this, first each expres-
sion m € M is translated into a corresponding NuSMV formula mgn, € Mgme
using a mapping of the operators as listed in Table 8.1 [WS23].

Correctness

To check the correctness of the translation, the following lemma is used.

139

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Lemma 8.3. A submodel expression m can be translated into a NuSMV
formula mgmy if m contains operators that are restricted to those listed in
Table 8.1. Mgy conforms to the syntax rules of Mgmy and preserves the
semantics of m.

Proof The validity of Lemma 8.3 follows from Lemma 8.1.

Illustrative Example for Lemma 8.3

As an example, my of the simple SCChart example in Figure 8.4 is translated
to M1 smo as follows. According to Table 8.1, the operators are syntactically
equivalent. Therefore, no changes result.

A& ((B | C&D) & !'(E))
= (A&((B|(C&D))&!'E))

8.2.5. f;-Simplification of M,,,,

Once Mg, has been created, in step Ay of the optimization process
Tiga(M(wq)), each formula mgy, € Mg, will be expressed as an equivalent
simplified formula f1(mgsmy)’ € f1(Msmy)' using a built-in simplification of
NuSMV*. Depending on the underlying complexity of the formula, this may
lead to an initial simplification of the submodel [WS23]. In this context,
it may happen that besides the operators listed in Table 8.1, additional
temporary variables and case expressions appear (which still follow the
syntactical rules) [Rob10].

8.2.6. From f;(M,,,,)" to SMV Formulas f;(M,,,)

Due to the possibility of additional case expressions and additional temporary
variables in fj(Mgmy)’, in step As of the optimization process Ty.q(M(wq)),
a translation back to the expressions restricted to the operators listed in Ta-
ble 8.1 is required and realized by a model-to-model transformation based on
the NuSMV grammar [Robl10]. Additionally, a reduction to the set of original
variables is required [WS23].

8.2.7. Equivalence Check of M, and f;(Mg,)

Step €1 of the optimization process Ty.q4(M(wq)) ensures the correctness of
My and f1(Mgme) by an equivalence check using NuSMYV.
Correctness

To check the correctness of the simplification and back translation, the follow-
ing lemma is used.

“Simplification is triggered by printing the formula.

140

16

8.2. Optimization of Data-Flow Models

Lemma 8.4. A NuSMYV formula mgm, can be expressed as an equivalent
simplified formula f1(mgsmy)’, which possibly contains additional tempo-
rary variables and case expressions. After translating fi(msmy)’ back
into an expression restricted to the operators listed in Table 8.1 follow-
ing the syntax rules of NuSMV, the result is a possibly simplified formula
f1i(Msmur) that conforms to the syntax rules of fi(msmy) and preserves
the semantics of Mgmy .-

Proof The validity of Lemma 8.4, i.e., step Ay and Aj, is proved for each
formula during runtime by an equivalence check €1 using NuSMV as illustrated
in the example below. In particular, NuSMV is used to check whether for all
elements m € M the following assertion holds: mgmy = f1(Msmy)-

Illustrative Example for Lemma 8.4

As an illustrative example, the following snippet illustrates the equivalence
check using the derived submodel my of the FBD_POLL example:

m2 smoy: ((!(IN3)&IN2&IN1) | (IN3&! (IN2)&IN1) | (IN3&IN2&! (IN1)))

/7 Dy

= FORMULA =

= case

= IN1 : case

= IN2 : !IN3;

= TRUE : IN3;

= esac;

= TRUE : (IN2 & IN3);
= esac

// €1 M2 smoy = fl(m2,sm7j)f

= ((!'(IN3)&IN2&IN1) | (IN3&!(IN2)&IN1) | (IN3&IN2&! (IN1)))=CIN1?7(!IN2&!
IN3):(IN1?7(IN27!IN3:IN3):(IN2&IN3))

= FORMULA = TRUE

8.2.8. From Submodels M to SMT Formulas Mg,

Similar to the translation of the submodels from M to Mg, in step Ag
of the optimization process Ty 4(M(wq)), each expression of the submodels
m € M is translated into a corresponding Z3Py formula m.,; € Mgy using a
mapping of operators as listed in Table 8.1 [WS23].

Correctness

To check the correctness of the translation, the following lemma is used.

141

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Lemma 8.5. A submodel expression m can be translated into a Z3Py
formula mgmy if m contains operators that are restricted to those listed in
Table 8.1. mgmy conforms to the syntax rules of mgme and preserves the
semantics of m.

Proof The validity of Lemma 8.5 follows from Lemma 8.1.

Illustrative Example for Lemma 8.5

As an example, m; of the simple SCChart example in Figure 8.4 is translated
to m1 sme as follows.

A& ((B | C&D) & !'(E))
= And (A, And (0r (B, And(C,D)),Not(E)))

8.2.9. f>-Simplification of M,,,;

Once Mgy, has been created, in step A; of the optimization process
Tya(M(wq)), each formula mgy,: € Mgy will be expressed as an equivalent
simplified formula fo(mgsme)’ € fo(Msme)” using the built-in simplification
feature of Z3Py, such as eliminating unnecessary terms, using associative and
commutative properties, and solving equations [WS23]. Although there are
no Z3Py-based methods to ensure that expressions are simplified to a unique
canonical form®, simplification by Z3Py is considered as a possible subsequent
simplification of submodels already simplified by NuSMV fi(Mgmy).

8.2.10. From f;(Mg,,) to SMT Formulas (f1(Mgmns))sme

In step Ag of the optimization process Ty.q(M(wq)), f1(Msme) is translated
into equivalent Z3Py formulas (f1(Mgsmy))smt for a subsequent simplifica-
tion (depending on the optimization configuration and formula complexity)
[WS23]. This translation is restricted to the operators listed in Table 8.1,
which is implicitly given by the fact that fi(Mgmy) is already restricted to
these operators.

8.2.11. f,-Simplification of (f1(Mmw))sme

After the simplified NuSMV formulas fi(Mgp,) have been translated into
corresponding Z3Py formulas (f1(Mgmy))sme, & further simplification is per-
formed using Z3Py’s built-in simplification feature in step Ag of the opti-
mization process Ty.q(M(wy)), as introduced in Section 8.2.9, denoted as

f?((fl(Msmv))smt) [WS23]

Shttps://microsoft.github.io/z3guide/

142

https://microsoft.github.io/z3guide/

8.2. Optimization of Data-Flow Models

8.2.12. Pattern-Based Formula Refactoring

Comparing each submodel m € M with the corresponding formula in Mgy,

fQ(Msmt); (fl (Msmv))smty and f2((f1(Msm’U))smt)a it can be concluded that7
depending on the complexity of the original submodel, different simplification
approaches can have different effects on the following metrics:

e Number of Operators (NoO): Number of visible operators (without
instances) in the corresponding graphical data-flow model

e Number of Edges (NoE): Number of visible edges in the correspond-
ing graphical data-flow model

o Number of Variable Accesses (NoV): Sum of visible input variables
and connected instance output variables, i.e., variables accessed by the
submodels

Overall, there is no guarantee that the corresponding formula represents the
most optimal solution. Thus, as an additional optimization approach, step Aqg
of the optimization process Ty q(M(wq)) considers a pattern-based formula
refactoring with a focus on exclusive or patterns.

Definition 8.1 (Exclusive Or Pattern). An exclusive or operator ez-
pressed with the operators listed in Table 8.1 can have one of the following
patterns within Z3Py:

e Pattern 1: If-Not
L If(T1,Not (12),72);

e Pattern 2: Not-Equal
1 ‘ Not (Eq(m1,72));

In both scenarios, the pattern can be replaced through Xor (my,T2).

Correctness

To check the correctness of Definition 8.1, the following lemma is used.

Lemma 8.6. Both patterns listed in Definition 8.1 conform to the logic
of Xor (11 ,72) and thus, can be expressed as Xor (11 ,7T2), which reduces the
number of variable accesses compared to pattern 1 and reduces the number
of operators compared to patterns 1 and 2.

Proof The validity of Lemma 8.6 is proved by an equivalence check of the
exclusive or operator and both patterns using Z3 theorem proving. In partic-
ular, Z3Py is used to check whether for any assignment of the variables 7 and
79 the following assertion holds: pattern 1 = Xor(7;,72) and pattern 2 =
Xor (71,72). In addition, the reduction to one operator is implicitly confirmed
by the refactoring strategy. In pattern 1, the variable access is reduced to two
times.

143

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Illustrative Example for Lemma 8.6

As an example, Figure 8.5 illustrates pattern 1, which is identified in wy g of
the FBD_POLL example. The original submodel is shown in Figure 8.5a and the
optimization is shown in Figure 8.5b. The pattern-based formula refactoring
reduces NoO, NoE, and NoV, as shown in Figure 8.5c.

IN3— !
INZﬁ N2
& —

IN1
IN1

|N3ﬁ o

IN2— | —— & — | —0OUT2]

IN3 — — ——
IN1 _J_
IN2—— g
INg—

&)
- _f_[|N3—J

INT— !

—OUT2

(b) Simplified ~ model (op-opt):
NoO = 4, NoE = 10, NoV = 6
(a) Original submodel mz: NoO = 7,
NoE = 16, NoV =9

IN1

IN2
L,

INS— " — .—ouT2
IN2— g
IN3

(C) Refactored model:
NoO = 3, NoE = 8§,
NoV =5

Figure 8.5.: Simplification of ms of the FBD_POLL example (with and without
pattern-based formula refactoring)

8.2.13. Selection of Optimized SMT Formulas

With the goal of optimizing the original software model, the question arises
which corresponding element of the four sets should be used for each sub-
model to create the set 5,:. To do this, in step o of the optimization
process Ty.q(M(wq)), the resulting formulas can be rated using the met-
rics NoO, NoE, and NoV. While these metrics provide a possible indication of
the complexity of the resulting submodels, the perceived complexity depends
on the preferences of the individual user. Consequently, there is a risk that

144

8.2. Optimization of Data-Flow Models

with a fixed choice of one of the corresponding formula in Mgy, fo(Magmt),
(f1(Msmv))smt, and fo((f1(Msmw))smt), the resulting optimization with re-
spect to NoO, NoE, and NoV may not fully satisfy the user’s preferences
[WS23].

The problem is illustrated by two simplifications in Figure 8.6 applied to
mg of the Cylinder Control System example. NoO is higher in Scenario 1
in Figure 8.6a, but leads to a lower NoE and NoV compared to Scenario 2
in Figure 8.6b. Thus, it can be concluded that not all metrics can be op-
timized equally following a single simplification strategy, which is why the
user can choose [WS23]. This gives the user the flexibility to manually select
the optimization strategy based on personal preference. Possible optimization
strategies according to the introduced metrics are variable access (var-opt),
number of operators (op-opt), and number of edges (edge-opt).

More specifically, the set of optimized formulas €4, is created as follows,
where exactly one element from one of the four introduced sets is selected as
the resulting optimization of a formula wgp,: € Qsm¢ (depending on the chosen
optimization strategy and the metrics of each corresponding formula in the
different sets, as demonstrated in Section 8.3):

Qsmt = {(zo, 71,72, 73) |
(zo € f3(f2((f1(Msmv))smt)) ANT1 =B AT = B AT3 = D)V
(xo=aArx1€ f3((fi(Msmp))smt) Ax2a =SB Ax3=3)V
(ro=@ AT =B ATy € Mgt A3 =)V

(CE() =SONT1 =B NTy=DBNx3 € fS(fQ(Msmt)))}

8.2.14. Equivalence Check of M,,,; and .,

As a previous step before the optimized submodel is reconstructed, in step e
of the optimization process Ty.q(M(wq)) it is checked whether the optimized
formulas Q,,,; are equivalent to Mg,,,;. Thus, this steps checks the correctness
of the translation in step Ag, simplifications in step A7, Ag and Ajg, and
optimization in step o.

Correctness

To check the correctness of the translation, simplifications and optimization,
the following lemma is used.

Lemma 8.7. FEach optimized formula wgmy € Qgme conforms to the syntax
rules of wsme and preserves the semantics of Mgmt € Mgme, which implicitly
confirms the correctness of translation Ag, simplifications A7, Ag, and
A1g, and optimization o.

145

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

ME1
INaO— g = |
INS

INb1—!—&—!“L

INcO & —OUTAm

ME2

INb1
INcl)—— !

(a) Simplification Scenario 1: NoO = 10, NoE = 18,
NoV =8

INcO & —OUTAm
INb1

n . j
INc1 & —!

INb1
|

INc1
ME1l—— | — g J

INC) —— |

ME2 — ! —J_

INa0 & —

INS _J

(b) Simplification Scenario 2: NoO = 9, NoE = 19, NoV = 10

Figure 8.6.: Comparison of two different simplification scenarios related to ms of
the Cylinder_Control_System example

Proof The validity of Lemma 8.7 is proved by an equivalence check for each
formula during runtime using Z3Py. In particular, similar to Lemma 8.6, it is
checked whether for all elements mg,,: € Mgy the following assertion holds:
Wsmt' = Mgme- This implicitly confirms the syntactic correctness of wgpme.

Illustrative Example for Lemma 8.7

As an illustrative example, the following snippet illustrates the equivalence
check using ms of the FBD_POLL example and op-opt optimization strategy:
// Dg:

m2 sm¢: Or (And (IN1, IN2, Not(IN3)), And(IN1, Not(IN2), IN3), And(Not (IN1
), IN2, IN3))

146

NN

NN N
S0 G B

NN N
0%

8.2. Optimization of Data-Flow Models

// Ag:
fo(ma sme): Or(And (IN1, IN2, Not(IN3)), And(IN1, Not(IN2), IN3), And(Not(
IN1), IN2, IN3))

// Ag:

(f1(m2,emv))sme: If(INL,If(IN2,Not (IN3),IN3),(And(IN2,IN3)))
// Ag:

F2((f1 (M2, smv))sme): I£(IN1, Not(IN3 == IN2), And(IN2, IN3))
// A7 = Ajg:

no pattern identified

// Ag = Aig:
Pattern 1 identified
= If(IN1,Xor(IN2,IN3),And(IN2,IN3))

// A9:>A10:
Pattern 2 identified
= If(IN1,Xor (IN3,IN2),And(IN2,IN3))

// o: selected formula: Ag= Ajg
op-opt: If(IN1,Xor(IN2,IN3),And(IN2,IN3))

// €

solve ((Or (And (IN1, IN2, Not(IN3)), And(IN1, Not(IN2), IN3), And(Not(IN1
), IN2, IN3))!=If(IN1,Xor(IN2,IN3),And(IN2,IN3))))
= no solution

8.2.15. From (), to Initial Submodels M/’

If the correctness is confirmed by the equivalence check in step eo, the step
Ay of the optimization process Ty,q(M(wy)) translates g,¢ back to the
submodels M’. Since the set Qg,,; is available as Z3Py formulas and thus
restricted to the operators listed in Table 8.1, the translation back to M’ is
straightforward (see Section 8.2.1) [WS23].

8.2.16. Reconstruct Software Model

In step A1o of the optimization process Ty,..q(M(wq)), the original submodels
M are replaced through the optimized and back translated submodels M’.
Combined with the non-modifiable components, this leads to the optimized
software model w’'.

Correctness

To check the correctness of the reconstruction, the following lemma is used.

Lemma 8.8. The resulting optimized software model w' conforms to
the syntax rules of w and preserves the semantics of the original software
model, which implicitly confirms the correctness of the back translations

AH and A12.

147

N

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Proof The validity of Lemma 8.8 is proved by the correctness of the optimized
formulas (see Lemma 8.7) and by restrictions to the supported operators listed
in Table 8.1, whose correctness follows from Lemma 8.1.

Illustrative Example for Lemma 8.8

As an example, the following model represents an optimized model of the
simple SCChart example in Figure 8.4.

Ti = {A & ((B | C&D) & !(E)), F+G}
= T1 = {A & (!(E)) & (C?(DIB):B), F+G}

I =T1.Q & H
= T1.Q & H

8.3. Experimental Results

Following the optimization approach presented in the previous section, this
section identifies the optimization potential for data-flow models using indus-
trial examples from PLC vendors and literature. The optimization potential is
evaluated using the system architecture shown in the high-level design flow in
Figure 8.1 in Section 8.1. For a fair evaluation of the optimization possibilities,
Table 8.2 lists a collection of representative data-flow models with the number
of potentially optimizable submodels and the average runtime for determining
all four optimized submodels with code generation for the selected strategy®.
These models have been manually implemented as data-flow oriented SCCha-
rts in KIELER and are optimized using the optimization process implemented
as a prototype in PLCreX". The resulting optimized SCCharts are compiled
in KIELER to check their syntactic correctness. The selection of real-world
examples from PLC vendors and literature ensures practical relevance and
objectivity when evaluating the optimization potential using the introduced
optimization process. In total, 96 submodels are available as input models,
which results in 288 optimized output models after optimization.

The optimized submodels are listed in detail in Appendix L in a textual ST-
like format®, which allows to reproduce the experimental results in Table 8.3
that summarizes the experimental results of the case study. Additionally, two
results are shown in Figure 8.7 to demonstrate that the optimization strategy
can affect the other metrics. For example, while the op-opt strategy reduces
the number of operators in Figure 8.7a, it increases the number of variable ac-
cesses. Similarly, optimizing the model in Figure 8.7b with respect to op-opt
saves less number of variable accesses compared to the other strategies. Thus,
of particular interest is the comparison of the average optimization potential
using the strategies op-opt, edge-opt, and var-opt, evaluated by the NoE,
NoO, and NoV metrics for the resulting model. The results are summarized

5The case study was tested on Windows 11, x64, 11th Gen Intel(R) Core(TM) i7-11850H,
2.50GHz, 8 cores, 32GB RAM DDR4, with Python 3.9.18. The average refers to the
mean of the three optimization strategies.

"The latest release supports FBDs as input models.

8This format represents an intermediate PLCreX format.

148

8.3. Experimental Results

Table 8.2.: Data-flow model overview, including number of submodels, number of
operators (without instances), and average runtime for determining all
four optimized submodels with code generation for the selected strat-
egy (based on related work without pattern-based formula refactoring

[WS23))
— @ a
°©3g | = 8 o
8T |28 g
ID Data-Flow Model | 2 g £ 0 | Q = Source
EZ| =2 5
=5 Z ®) o
Z 0 o
1 Air Condition Control 4 9 2.04 s | [Tapl5]
2 Antivalence 3x 1 10 | 1.15s | [Karl§]
3 Bending Machine Control | 15 21 5.21s | [AG20]
4 Cylinder Control System 6 30 | 3.59s | [Schl4]
5 Dice Numbers Indicator 9 67 | 6.58 s | [Karl§]
6 | KV Diagram optimized Chart 2 13 | 1.51s | [Karl§]
7 Pollutant Indicator 3 18 | 2.07s | [Bubl7]
8 Reservoirs Control System 1 4 35 | 3.34s | [WZ0T]
9 Reservoirs Control System 2 4 35 | 3.31s | [Karl§]
10 Roll Down Shutters 2 24 | 2145 | [AG20]
11 Cable winch 4 28 | 2.69s | [Taplh]
12 Seven Segment Display 7 81 5.93 s | [WZ07]
13 Shop Window Lighting 8 15 | 3.11s | [AG20]
14 Silo Valve Control System 1 11 1.22s | [WZ0OT]
15 Smoke Detection System 3 28 | 2.32s | [Taplh]
16 Sports Hall Lighting 12 17 4.29 s | [AG20]
17 Thermometer Code System 3 10 | 1.76 s | [Bub17]
18 Toggle Switch 4x 1 27 | 1.88 s | [Bubl7]
19 Ventilation Control System 3 25 | 2425 | [Karl§]
20 Wind Direction Indicator 4 34 2.78 s | [Bubl7]

in Table 8.4. As expected, each optimization strategy leads to the best im-
provement of the corresponding metric. In detail, the optimization approach
and examples show an optimization potential of about 35 % for NoO with
the op-opt strategy (on average), about 30 % for NoE with the edge-opt
strategy (on average), and about 26 % for NoV with the var-opt strategy (on
average). The edge-opt strategy leads to the same optimization of the NoV
metric. Overall, as in the case study without pattern-based formula refactor-
ing [WS23], it can be concluded that the edge-opt strategy is the best choice
in terms of the NoE, NoO, and NoV metrics, since it tends to produce the
best balanced optimizations, even if NoO is not reduced as much as with the
op-opt strategy (on average).

149

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Table 8.3.: Experimental results of the case study with values in percent relative to
the non-optimized model ranging from -75% (better) to 10.7% (worse)
(based on experimental results of related work without pattern-based

formula refactoring [WS23])

op-opt edge-opt var-opt
ID | NoE | NoO | NoV || NoE | NoO | NoV || NoE | NoO | NoV
1 -5.0 | -11.1 0.0 -5.0 | -11.1 0.0 0.0 0.0 0.0
2 | -474 | -50.0 | -44.4 || -47.4 | -50.0 | -44.4 | -47.4 | -50.0 | -444
3 | -15.7 | -28.6 | -6.7 -15.7 | -28.6 | -6.7 -9.8 | -14.3 | -6.7
4 0.0 -10.0 | 10.7 -3.4 -6.7 0.0 0.0 0.0 0.0
) -9.8 | -14.9 | -45 -98 | -11.9 | -7.6 -9.8 | -11.9 | -7.6
6 | -28.0 | -38.5 | -16.7 || -28.0 | -38.5 | -16.7 || -28.0 | -38.5 | -16.7
7 | -43.6 | -50.0 | -38.1 || -43.6 | -50.0 | -38.1 | -43.6 | -50.0 | -38.1
8 -3.1 -2.9 -3.3 -4.6 0.0 -10.0 -4.6 0.0 -10.0
9 | -13.6 | -86 | -194 || -13.6 | -86 | -194 | -13.6 | -8.6 | -194
10 | -21.7 | -29.2 | -13.6 || -21.7 | -29.2 | -13.6 | -21.7 | -29.2 | -13.6
11 | -44.0 | -57.1 | -27.3 || -44.0 | -57.1 | -27.3 || -28.0 | -28.6 | -27.3
12 | -31.3 | -34.6 | -27.8 || -31.3 | -34.6 | -27.8 | -28.8 | -29.6 | -27.8
13 | -16.2 | -26.7 | -9.1 -16.2 | -26.7 | -9.1 -16.2 | -26.7 | -9.1
14 | -65.2 | -72.7 | -58.3 || -65.2 | -72.7 | -58.3 || -65.2 | -72.7 | -58.3
15 | -48.0 | -50.0 | -45.0 || -48.0 | -50.0 | -45.0 || -48.0 | -50.0 | -45.0
16 | -7.1 | -17.6 0.0 -7.1 | -17.6 0.0 -7.1 | -17.6 0.0
17 | -42.9 | -50.0 | -38.9 || -42.9 | -50.0 | -38.9 || -42.9 | -50.0 | -38.9
18 | -72.9 | -70.4 | -75.0 || -72.9 | -70.4 | -75.0 || -72.9 | -70.4 | -75.0
19 | -23.2 | -24.0 | -22.6 || -28.6 | -24.0 | -32.3 || -28.6 | -24.0 | -32.3
20 | -62.9 | -58.8 | -66.7 || -62.9 | -58.8 | -66.7 | -62.9 | -58.8 | -66.7

Table 8.4.: Average number of edges, operators, and variable accesses after opti-

mization
Optimization | @ Number | @ Number | @ Number of
Strategy of Edges | of Operators | Var. Accesses
op-opt -30.07 % -35.28 % -25.33 %
edge-opt -30.59 % -34.82 % -26.83 %
var-opt -28.95 % -31.54 % -26.83 %

8.4. Summary

This chapter introduced a formal methods-based optimization of data-flow
models using NuSMV, SMT Z3Py, and a pattern-based refactoring approach.
For this purpose, several model-to-model transformations, simplifications,
equivalence checks, and an optimization were defined, with which the opti-
mization potential of a set of real-world data-flow models has been identified.
Based on the presented lemmas and experimental results, the following
theorem encapsulates the entire optimization:

150

8.4. Summary

HEEl op-opt Hl edge-opt E var-opt
NS
=
I
X X X X 2
o m o o N~ o o o
1 '_I| 1

Number of Number of Number of
Edges Oper. Nodes Acc. Var.

(a) Cylinder Control System

HEEl op-opt Ell edge-opt E var-opt

B NN 0 aaesmm———

X X X X X X
o o o LN o o LN o0} o0}
oo A oo A ' ' '
Number of Number of Number of
Edges Oper. Nodes Acc. Var.

(b) Dice Numbers Indicator

Figure 8.7.: Experimental Results

Theorem 8.1 (Formal Methods-Based Optimization of Data-Flow
Models). Let w € {w’,wyrs,wsea} be a textual data-flow model that is
translated according to the transformations Tpoyd(wpou); Tyrasd(wgrz)
and Tsegoq(wseq), and optimized according to the optimization process
Tayd(M(wq)) introduced in this chapter. Then, the resulting model w':

1. Can be completely decomposed into potentially optimizable submod-
els and non-modifiable submodels

2. Is optimized for one of the following metrics:
e Number of operators (NoO)
e Number of edges (NoE)
e Number of variable accesses (NoV)

3. Conforms to the syntax rules of w and preserves the semantics of w

Proof The validity of Theorem 8.1 is proved as follows:

1. Submodels: Lemma 8.2 shows that a data-flow model can be com-
pletely decomposed into the sets of non-modifiable submodels L and

151

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

potentially optimizable submodels M (see Section 8.2.3).

2. Optimization Potential: Experimental results on real-world models
show an optimization potential with respect to the NoO metric of about
35.2 % on average, with respect to the NoE metric of about 30.5 % on
average, and with respect to the NoV metric of about 26.8 % on average
(see Section 8.3).

3. Syntax Conformance and Semantic Preservation: According to
Lemma 8.1, the operators are restricted to those listed in Table 8.1,
which are supported by all of the considered software models (see Sec-
tion 3.5 and 3.2). Furthermore, the following lemmas and theorems
addresses the preservation of semantics during the optimization process,
which are structured as follows:

e Ay: Lemma 8.2

e Ajs: Lemma 8.3

e Ay, As: Lemma 8.4

e Ag: Lemma 8.5

e Aqy: Lemma 8.6

o A7, Ag, Ag, Ayg, 0 Lemma 8.7
e Aq1, A1 Lemma 8.8

Overall, this results in the following solutions to the challenges summarized in
Section 8.1.

1. Identification of potentially optimizable submodels: The solution
follows from Section 8.2.3.

2. Configurable optimization: The solution follows from Section 8.2.13.

3. Correctness of the optimization: The solution follows from Sec-
tion 8.2.

152

Chapter

Control-Flow Oriented SCCharts of
POU-Based Quartz Models

Contents
9.1. High-Level Design Flow — Quartz-to-SCChart 154
9.2. Pattern-based Quartz Code Refactoring 156
9.3. From Quartz Models to SCCharts. 160
9.3.1. Model Declaration 160
9.3.2. Imterfaces 161
9.3.3. Variables 162
9.3.4. Data Typesand Fields 164
9.3.5. Expressions 165
9.3.6. Immediate Transitions 166
9.3.7. Await 167
9.3.8. Pause 169
9.3.9. Assignments 170
9.3.10. Synchronous Concurrency 172
9.3.11. Loops o 173
9.3.12. Halt 175
9.3.13. Abort 177
9.3.14. Conditions 178
9.3.15. Sequences 180
9.4. SCChart Optimization 183
9.4.1. Flattening Hierarchy 183
9.4.2. Removing States 184
9.5. Experimental Results 185
9.6. Summary e e 187

This chapter focuses on a code refactoring of FBD-based and ST-based Quartz
models and their transformation to control-flow oriented SCCharts, providing

153

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

an alternative view for system analysis. The goal is to create a robust set
of translation functions that ensure semantic preservation during the transi-
tion. More specifically, this chapter details a pattern-based code refactoring of
Quartz models and a set of detailed translation functions. In addition to the
approaches presented in [WS22], it considers the following additional issues:

e Model Declaration: Translation of model declaration

Interfaces and Variables: Translation of interfaces and variables

Data Types and Fields: Translation of data types and fields

e Expressions: Translation of expressions

Statements: Additional Quartz statements to extend the approach
from FBD-based Quartz models to ST-based Quartz models

The correctness of the translation functions is proved by theoretical reasoning,
which includes a detailed analysis of the resulting syntax and semantics com-
pared to the syntax rules and semantics specified in Chapter 3. In addition,
the theoretical results are evaluated with real-world and self-defined Quartz
models.

The outline of this chapter is as follows: Section 9.1 introduces the high-level
design flow and translation strategy. Section 9.2 defines a pattern-based code
refactoring of Quartz models, Section 9.3 defines the translation functions and
theoretical analysis, and Section 9.4 defines possible SCChart optimizations.
Section 9.5 presents an evaluation of the theoretical results, and Section 9.6
summarizes the transformation.

9.1. High-Level Design Flow — Quartz-to-SCChart

The high-level design flow for transforming an FBD-based or ST-based Quartz
model wy,, € Qg to a control-flow oriented SCChart wge. € Q4 is shown in
Figure 9.1.

KIELER
Averest
Tqrz>—>scc (wqrz) Wsee
Wgrz >
|
T Tscemssce (@sec)
arzeqrz(@grz)

Figure 9.1.: High-level design flow of the Quartz-to-SCChart transformation

The Quartz code refactoring T, omqrz(wqr>) includes the following refactoring
approach:

. t?{;gqm(zm (wgrz)): Pattern-based Quartz code refactoring (see Sec-
tion 9.2)

154

9.1. High-Level Design Flow — Quartz-to-SCChart

In addition, the Quartz-to-SCChart transformation Ty, iy sec(wqrz) includes the
following transformation steps:

1. tg;:z,_,scc(éw(wqm)): Model declaration (see Section 9.3.1)

2. tﬁiggsw(Aidd(wqm)): Interfaces (see Section 9.3.2)

3. tﬁ?’zﬁlscc(Aloml(wqm)): Variables (see Section 9.3.3)

4. tZ‘TZHSCC(a[J’](wqm)): Data types and fields (see Section 9.3.4)

5. tgrszcc(T(quz))i Expressions (see Section 9.3.5)

6. tf;;"if;?g (Prothing(wWerz)): Immediate Transition (see Section 9.3.6)
7. tqzﬁéﬁ‘é"cc(pgwm(wm)): Await (see Section 9.3.7)

8. tqzr”;i;ecc(ppause(wqm)): Pause (see Section 9.3.8)

9. t?ﬂ;.iscc(pgss(wqm)): Assignments (see Section 9.3.9)

10. t?ﬁg&%cc(aconc(wqm)): Synchronous concurrency (see Section 9.3.10)
by

11. tq,fg.of,’scc(pfoop(wqrz)): Loops (see Section 9.3.11)

12. thth“.ifscc(ohalt(wqrz)): Halt (see Section 9.3.12)

13. tqzr“z*’ﬁf;cc(pgbort(wqm)): Abort (see Section 9.3.13)

14. t?f?ﬁ‘écc(pgond(wqm)): Conditions (see Section 9.3.14)

b
15. tgratssce(BEseq(wseer)): Sequences (see Section 9.3.15)
Furthermore, the transformation includes the following SCChart optimizations
Tscemssce (Wscc) :

5,
o toon e (X (wsee)): Flattening Hierarchy (see Section 9.4.1)

° t?csgﬁfgcc(E(wscc)): Removing States (see Section 9.4.2)

Translation Strategy:

This chapter introduces the translation strategies shown in Figure 9.2'. Fig-
ure 9.2a illustrates the translation strategy of a Quartz model without mem-
ory and Figure 9.2b shows the translation strategy of a Quartz model with
memory, whose high-level runtime behavior was introduced in Chapter 4 for
ST-based Quartz models and in Chapter 6 for FBD-based Quartz models. The
translation strategy in this chapter leads to a graphical control-flow oriented
SCChart that visualizes the control flow of the Quartz model (and the orig-
inal FBD or ST model, respectively). In this context, a pattern-based code
refactoring of the Quartz model is considered that (assuming the pattern is
available) leads to a hierarchical control-flow oriented SCChart as an alter-
native view of the POU behavior. In addition, possible optimizations of the
resulting SCChart are considered.

!The states can contain inner behavior which is considered, but hidden in the examples
shown in this chapter.

155

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

v
S_0
} S_i
immediate)
. ’
Si awalt(EI) immedia(e:

await E|I
1
v
S_j
=y _1
s_|
Sm I pause ' pauseI
1
(s] =
=
(emit(EO) |

ouT emit(EO)

1
| EO} ==

(a) Left: Quartz model, right: SCChart I pause e
(both without memory)

(b) Left: Quartz model, right: SCChart
(both with memory)

Figure 9.2.: Quartz-to-SCChart translation strategies: high-level view of the initial
Quartz model and the resulting SCChart

Challenges:
This approach leads to the following challenges:

1. Correct code refactoring of the initial Quartz model
2. Correct and complete translation of the considered Quartz constructs

3. Correct optimization of the resulting SCChart

9.2. Pattern-based Quartz Code Refactoring

This section introduces three different pattern-based Quartz code refactoring
approaches for FBD-based Quartz models that are also applicable to ST-based
Quartz models. The basic strategy is to split the conditions within a loop into
nested loops that contain only those statements of the original conditions that
are relevant to the current iteration [WS22|. Placing the statements at the end
of a loop ensures that the statements are executed exactly once per iteration
(even after an abort).

Definition 9.1 (Patterns — Quartz-to-Quartz). Let Egeq(wqm) be a pos-
sible Quartz sequence representing one of the following three patterns ¥ € {1,

156

9.2. Pattern-based Quartz Code Refactoring

2,3} with instantaneous constructs and X3(wqr») including the last statement
that is equal to Opause(wWqrz), and each pattern considering two representations:
(1) as a conditional expression and (2) as an if-else statement:

e Pattern 1: Condition statement

1 loop{ Xo;

2 T =)\}{ 2T T2

3 ... // add. assignments

: B3, }

1 // Sy={z=r; ... }, ¥o= {z=m3; ... }

2 loop{ Xo; if()\ll’){ 31; lelsel Xo; } X3; 1}

e Pattern 2: Nested condition statement within else branch

1 loop{ Xo;

2 a:=)\g?7'4:()\z{?7'1:72);

3 ... // add. assignments

! Y3,

1 // Yi={z=T1; ... }, Ya={z=ro; ... }, Yg={w=14; ... }

2 loop{ Xo; if(/\g){ Yy; relsed 'L‘f()\ll’){ Y1, telsedl ¥o; } } X3; }

e Pattern 3: Nested condition statement within if branch

1 loop{ Xo;

2 z =X 2 O 2 o) o

3 ... // add. assignments

4 Y3, F

1 // Ba={z=r1; ... }, Yo={z=12; ... }, Yg={z=4; ... }

2 loop{ To; ifOS)I{ ifON){ T1; lelsef So; } lelse{ Za; } ¥N3; }

feq(wqm) is refactored to Z?gq(wqrz’) using the translation function
?J;ﬁ,aqcﬁz(ﬂseq(wqm)), which is described by Algorithm 25.

Correctness

To check the correctness of Definition 9.1, the following lemma is used.

Lemma 9.1. Let 9 € {1,2,3} and Z?eq(wqm) be a possible
Quartz sequence of an infinite loop U;ZO]; (wgrz) containing instanta-
neous statements with the final statement equal to Jpause(wqm). Then,

refact

qrquTZ(Zseq(wqrz)) translates Z?eq(wqrz) to E?eq(wqrz) as specified in
Definition 9.1. Eseq(wqm 1) conforms to the syntaz rules of B2, (wrz) and
preserves the SOS transition rules of Eseq(wqm).

seq

157

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 25 Refactor Quartz code — Quartz-to-Quartz
Input: E?eq(wqm)
Output: E?eq(wqrz/)
Translation Function tquﬁi‘l;ﬁz(ilgeq(wqrz)):
switch ¢ do
case 1 (Pattern 1) do

loop{
immediate abort{
e (Wars) < Loop{ Xo(wgrz);¥a(warz); X3(werz) 5 }

Juhen (A% (wyr2)) 5
Z:0 (wqrz) 5 EI(quz) 5 Z3 (wqrz) 5 }

end
case 2 (Pattern 2) do
loop{
immediate abort{
loop{

immediate abort{
1OOP{ EO(quz) 5 EQ(quz) H
Y3(wgrz); }
}when(/\ll’ (wgrz))
2o (quz) 321 (wqr‘z) ;23 (quz) 5
}when()\g(wqm)) ;
>0 (quZ) 324 (wqrz) ;23 (wqrz) 3 }

=0 (‘*’qTZ’) <

seq

end
case 3 (Pattern 3) do
loop{
immediate abort{
loop{
immediate abort{
loo Yolw ;29 (w, ;
deq (wqrz’) <« Eg%wqroz() ;qr}z) 2(qrz)
}When(AI{ (wWgr=))s
2o (wqrz) 3201 (quz) 323 (wqrz) 5
Jwhen (! A (wyr2)) s
2o (wqrz) 324 (wqrz) 323 (wqrz) H }
end
end

Proof The validity of Lemma 9.1 is proved as follows: First, the syntactic

correctness is checked by comparing the resulting syntax of E?eq(wqrzr) with
9

seq
tion of semantic is checked for all scenarios of A (wg,,) and A} (wgr») by com-

the syntax rules of X7, (wqr-) as specified in Section 3.3. Second, the preserva-

paring the SOS transition rules of Z?eq(wqrz), aligoj;(wqm), o (Wer), and

Opause(Wqrz) (see Section 3.5) with those of the initial constructs afeq(wqw),

158

9.2. Pattern-based Quartz Code Refactoring

allg(f;(wqm), afond(wqm), and opguse(wqrz) (see Section 3.3). Since strong
aborts lead to a condition check before the micro steps are executed [Sch09]
and the statements are instantaneous (except the last one of X3(wgr2)), each
micro step of the sequences is executed once per macro step, preserving the
initial semantics.

Illustrative Example for Lemma 9.1

As an example, Figure 9.3 illustrates each of the three introduced patterns.
In particular, Figure 9.3a illustrates Pattern 1, Figure 9.3b illustrates Pattern
2, and Figure 9.3c illustrates Pattern 3.

loop{ loop{
50; immediate abort{ @
if(c1) loop{
S1; S0;S82;83;} @
else }when(cl) ;
52; S0;S1;83;}
S3;}
(a) Pattern 1
loop{ (" 1oop{
S0; immediate abort{ @
if(c2) loop{
S4; immediate abort{
else loop{
if(cl1) [S0;52;S83;}
}when(cl);
else S0;S81;S83;} J
S2; }when(c2) ;
S35} S0;S4;S83;} J
(b) Pattern 2
loop{ (" 1oop{
S0; immediate abort{ @
if(c2) loop{
if(c1) immediate abort{
Silg loop{
else [S0;52;83;}
S2; }when(cl);
else S0;S81;83;} J
S4; }when(!c2);
5337} S0;S4;S3;} J

(C) Pattern 3

Figure 9.3.: Illustration of the Quartz code pattern-based refactoring approach
[WS22]

159

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

9.3. From Quartz Models to SCCharts

This section defines the individual translation functions for synthesizing a
graphical SCChart wgee € Qgee from a Quartz model €y, € Q. and analyzes
the theoretical correctness.

9.3.1. Model Declaration

This step covers the translation function for translating a Quartz model dec-
laration d,(wqr») to an SCChart declaration dy,(wsee).

Definition 9.2 (Model Declaration — Quartz-to-SCChart). Let wy,, be
the set of possible Quartz elements. d,,(wqrz) is translated to 0y, (Weeer) using
the translation function tgyz,_)scc((sw (wgrz)), which is described by Algorithm 26.

Algorithm 26 Translate model declaration — Quartz-to-SCChart

Input: 0y, (wgrz)

Output: 6, (wseer)

Translation Function tg‘ﬁszcc (0w (wgrz)):

scchart ap,(wgr){
tArizdgscc (Ajder (wqrz))
tqufz(&lscc (Avdcl (quz))
region:

t?rz»scc (wqm)

6@.} (wscc’) <~

Correctness

To check the correctness of Definition 9.2, the following lemma is used.

Lemma 9.2. Let wg, be translated to wse. Then, tg‘;z,_,scc(éw(wqm))
translates 0y, (wWgrz) to 0w (wseer) as specified in Definition 9.2. 0y, (wsee')
conforms to the syntax rules of d,(wsee) and preserves the semantics of

0w (wqrz) regarding its termination behavior.

Proof The validity of Lemma 9.2 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ¢, (wser) with
the syntax rules of d,(wse) as specified in Section 3.5. Second, the preserva-
tion of semantics is checked by comparing [0, (wsee)]e (see Section 3.5) with
[0w(wgr=)]e¢ (see Section 3.3), where model imports are ignored in this chapter.

Illustrative Example for Lemma 9.2

As an example, Figure 9.4 shows the resulting textual and synthesized SC-
Chart of the ST_ALARM model?.

2Both models, Quartz and SCChart, are included in Appendix C.27 and H.1.

160

1
2

9.3. From Quartz Models to SCCharts

ST_ALARM

scchart ST_ALARM{
input bool xSENSOR_L
1
1/ ST_ALARM = IXSENSOR_L &

'XSENSOR_M & !IXSENSOR_R |
:xSENSOR_L & xSENSOR_R

region:
initial state SO
immediate do ST_ALARM = ...
final state S1

/

Figure 9.4.: SCChart of the ST_ALARM example

9.3.2. Interfaces

This step covers the translation function for translating Quartz model in-
terfaces Ajge(wgrz) to SCChart interfaces Ajge(wsee), where Ajge(werz) =
Ain(quz) U Aout (wqrz) U Ainouz‘,((JJ(ﬂz)-

Definition 9.3 (Interfaces — Quartz-to-SCChart). A,z (wseer) is de-
rived from Ajge(wqrz) using the translation function t@gﬁscc(Aidd(wqm)),
which is described by Algorithm 27.

Algorithm 27 Translate interfaces — Quartz-to-SCChart
IHPUt: Aidcl((")qrz)
Output: A, (wscc’)a Aout((/Jscc’)a Ainout((/Jscc’)
Translation Function t@giﬁfscc(Aidd(wqrz)):
forall e; € Ajqe(wyrz) do
if e; € Ajp(wgrz) then
| Ain(wsee) < add input [signal] tj, (a(e;)) an(e;)

qrzescc

end

if e; € Aput(wgr>) then

| Aput(wseer) < add output [signal] tg......(a(ei)) an(es)
end

if e; € Amout(wqrz) then

| Ainout(wseer) < add input output g, ...(a(ei)) an(e:)
end

end
> signal keyword is only required for event variables

Correctness

To check the correctness of Definition 9.3, the following lemma is used.

Lemma 9.3. Let wyr. be translated to wser. Then, for each interface
e; € Aidcl(wqrz)’ t(%}gﬁscc(Aidcl(wqrz)) extends Ain(wscc’); Aout(Wscc’)y or

161

N =

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Ainout (wseer) as specified in Definition 9.3. Nin(wsee') Dout(Wseer), and
Ainout(Wseer) conform to the syntax rules of Ajp(Wsee), Aout(Wsee), and
Ainout (Wsee) regarding the storage class, data type, and name. A (wWseer),
Aout(wseer), and Ajpout(wseer) preserves the semantics of Ay (wgrz),
Aout(Wgrz), and Ajpout(wgr2) regarding information flow and modifiabil-
ity.

Proof The validity of Lemma 9.3 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of A, (wsee),
Aput(Wsee), and Ajpout (wseer) with the syntax rules of Ay (wWsee), Aout (Wsee)s
and Ajpout (wsee) as specified in Section 3.5 using induction on the number of
added interfaces Ajgei(wgrz):

1. Base Case: When A4 (wqrz) = @, there are no input variables, output
variables, and inout variables to add, which trivially conforms to the
syntax rules of A, (wsee), Aout(Wsee), and Ajpout (Wsee), since these sets
remain unchanged.

2. Induction Hypothesis: Lemma 9.3 holds for any set of input variables,
output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in A, (wseer),
Ayt (Wseer)y and Ajpout (wseer). Their syntax still conforms to the syntax
rules of A;, (Wscc)7 Aout(wscc)7 and Ajnout (Wscc)-

Second, the semantic correctness regarding information flow and modifiabil-
ity is checked by comparing [Ajn(wsee)]e; [Dout(Wsee)]e; and [Asnout (Wsee) ¢
(see Section 3.5) with [Ay,(wer2)]e, [Dout(wgrz)]e, and [Asnout(wWor2)]e (see
Section 3.3).

Illustrative Example for Lemma 9.3

As an example, below are the derived interfaces of the ST_ALARM Quartz
model®:

input bool xSENSOR_L // added to Ajn(Wseer)
input bool xSENSOR_M // added to Ajn(wWseer)
input bool xSENSOR_R // added to Ajp(wWseer)

9.3.3. Variables

This step covers the translation function for translating local Quartz
model variables A,ge(wqrz) to local SCChart variables Ayge(wseer)), where

Avydel (quz) = Alocal (quz)-

3Both models, Quartz and SCChart, are included in Appendix C.27 and H.1.

162

9.3. From Quartz Models to SCCharts

Definition 9.4 (Variables — Quartz-to-SCChart). A,g.(wseer) is derived
from Aygei(wgrz) using the translation function t@gﬁlscc(Aloml(wqm)), which
is described by Algorithm 28.

Algorithm 28 Translate variables — Quartz-to-SCChart
Input: Alocal(wq'rz)
Output: Alocal(Wscc’)
Translation Function t(%%.i—c)lscc(Alocal(wqrz)):
forall elvs € Alocal(wqrz) do
| Asocal(Wseer) < add tg,.. .o (alers)) anlews);
end

Correctness

To check the correctness of Definition 9.4, the following lemma is used.

Lemma 9.4. Let wy. be translated to wser. Then, for each local vari-
able ervs € Ajpear(wgrz)), tﬁgﬁlscc(Aloml(wqm)) adds a local variable to
Ajocat(Wseer) as specified in Definition 9.4. Ajpear(wseer) conforms to the
syntaz rules of Apeai(wsee) regarding the storage class, data type, and
name. Ajoeal(Wsee) preserves the semantics of Ajpeqi(werz) regarding mod-

ifiability and initialization.

Proof The validity of Lemma 9.4 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Ajyeqi(wseer) with
the syntax rules of Ajyeqr(wsee) as specified in Section 3.5 using induction on
the number of added variables Ajoeqr(wWqrz):

1. Base Case: When Aj,cq1(wqr») = @, there are no local variables to add,
which trivially conforms to the syntax rules of Ajycqi(wgrz), since this
set remains unchanged.

2. Induction Hypothesis: Lemma 9.4 holds for any set of local variables.

3. Inductive Step: Adding a local variable results in an additional ele-
ment in Ajyeqr(wseer). Its syntax still conforms to the syntax rules of

Alocal (wscc) .

Second, the semantic correctness regarding modifiability and initialization
is checked by comparing [Ajocar(wsee)]e (see Section 3.5) with [Ajocar(werz)]e
(see Section 3.3).

163

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Illustrative Example for Lemma 9.4

As an example, below is a derived local variable of the FBD_DATATYPES Quartz
model*:

bool Al // added to Alocal(“uscc’)

9.3.4. Data Types and Fields

This step covers the translation function for translating Quartz data types
and fields A1 (w,,.) to SCChart data types and fields AN (wgee)).

Definition 9.5 (Data types and fields — Quartz-to-SCChart). Let
a(wgrz) be a considered Quartz data type and o (wqr») be a Quartz model data
field. Quartz data types and fields A (wgrz) are translated to SCChart data
types and fields A" (wyer) using the translation function tg‘TZHSCC(a[Jr](wqrz)),
which is described by Algorithm 41 in Appendixz M.0.1 that defines a straight-
forward mapping of data types.

Correctness

To check the correctness of Definition 9.5, the following lemma is used.

Lemma 9.5. Let wgy, be translated to wser and bit vector, integer, float-
ing point, and duration be the considered data type categories .Am(wqrz)
as specified in Section 3.3. Then, tgrszcc(a[+](wqrz)) translates a1 (wg,.)
to alt] (wseer) as specified in Definition 9.5. 04[+](wsccf) conforms to the
syntaz rules of a[+](wqrz) and preserves the semantics of a[+](wqrz) re-
garding boundaries, precision, resolution, and defaults (if applicable), with
the following restrictions:

b
o Va(wgr) @ a(wgrz) € {0 (Warz), a2 (wyr2), nat{ 4294967296} } :
Data types are not supported by internal SCChart data types

o Va(wyr:) @ a(wgr:) € {a™(wyr), int{32768}, int{2147483648},

dur

nat{65536}}: Boundaries are changed to those of ai™(wse.) (see
Section 3.5)

Proof The validity of Lemma 9.5 is proved as follows: First, the syntactic cor-
rectness is checked by comparing all resulting data types and fields .A*] (Wseer)
with the syntax rules of Al*l(w,..) as specified in Section 3.5. Second, the se-
mantic correctness regarding boundaries, precision, resolution, and defaults
(if applicable) is checked by comparing [[a[+](wscc)]]§ (see Section 3.5) with
[[a[J“](wqm)]]g (see Section 3.3).

“Both models, Quartz and SCChart, are included in Appendix F.9 and H.8.

164

9.3. From Quartz Models to SCCharts

Illustrative Example for Lemma 9.5

Usage examples are given by illustrative examples of previous lemmas, such
as Lemma 9.4.

9.3.5. Expressions

This step covers the translation function for translating expressions in Quartz
models T (wgr») to expressions in SCCharts T (wgcee)-

Definition 9.6 (Expressions — Quartz-to-SCChart). An ezpression in
Quartz models T(wqrz) € T (wgrz) is translated to an expression in SCCharts
T(Wseer) € T (wseer) using the translation function ty,..c..(T(Wer2)), which is
described by Algorithm 42 in Appendix M.0.2.

Correctness

To check the correctness of Definition 9.6, the following lemma is used.

Lemma 9.6. Let wy. be translated to ws.r and miscellaneous, com-
pare operators, arithmetic operators, conditional operator, and Boolean
operators be the considered expression categories T (wqr») as specified in
Section 3.5. Then, for each T(wgrz) € T (Wgrz) s taramsee(T(War2)) translates
T(wgrz) to T(wseer) as specified in Definition 9.6. T(wseer) conforms to the
syntax rules of T(wsee) and preserves the semantics of T(wqr») Tegarding
the type system and SOS transition rules, with the following restrictions:

o VT(wgrz) : T ¢ {Tﬁgc,ﬁfﬁ}, because they are not covered by the

internal SCChart operators

Proof The validity of Lemma 9.6 is proved as follows: First, syntactic correct-
ness is checked by comparing the syntax of each resulting expression 7(wsecr)
with the syntax rules of the corresponding expression 7(wscc) as specified in
Section 3.5. Second, the semantic correctness regarding the type system and
SOS transition rules is checked by comparing the semantics, type system, and
SOS transition rule of each resulting expression 7(wsc.) (see Section 3.5) with
the semantics, type system, and SOS transition rule of the corresponding ex-
pression 7(wgr») (see Section 3.3).

Illustrative Example for Lemma 9.6

As an example, below is the derived expression of the ST_ALARM Quartz model®:

(! (xSENSOR_L) & !(xSENSOR_M) & !(xSENSOR_R)) | (xSENSOR_L &
xSENSOR_R)

®Both models, Quartz and SCChart, are included in Appendix C.27 and H.1.

165

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

9.3.6. Immediate Transitions

This step covers the translation function for translating an immediate transi-
tion pattern in Quartz prothing(wqr-) to an immediate transition in SCCharts

Onothing (WSCC’) .

Definition 9.7 (Translation of immediate transitions — Quartz-
to-SCChart). An immediate transition in Quartz Ppothing(Werz) €
Prothing(wqr=) has the following pattern:

1 ‘ Zl(pnothing(wqrz)); O'nothing(wq'r'z):' E2(pnothing("-)qrz)):'

This pattern is translated to an immediate transition Opothing(Wseer) €

nothing

by
Enothing(Wseer) in SCCharts using the translation function ty 256l (Prothing(Werz)),
which is described by Algorithm 29.

Algorithm 29 Translate an immediate transition — Quartz-to-SCChart

Input: Pnothing (wqrz)
OUtPUt: Onothing (Wscc’)

3)
Translation Function t4,%750d (Pnothing (wer=)):
[initiall state Xi(Pnothing(wWqrz))
O'nothing(wscc’) < { immediate go to E2(pnothing(quz))

[finall state X2(Pnothing(Werz))
> initial and final identifiers are optional and are used for the first and

last state

Correctness

To check the correctness of Definition 9.7, the following lemma is used.

Lemma 9.7. Let wqr, be translated to wsee - Then,
by .

th
tqrgowslgg (pnothing(wqrz)) translates pnothing(wqrz) to Unothing(wscc’) as

specified in Definition 9.7. Unothing(wSCC') conforms to the syntax rules of

Unothing(wscc) and preserves the SOS transition rules of Pnothing(Wer)-

Proof The validity of Lemma 9.7 is proved as follows: First, syntactic cor-
rectness is checked by comparing the syntax of o,, ;... g (wseer) with the syntax
rulesof o, ;7. g(wscc) as specified in Section 3.5. Second, the semantic correct-
ness is checked by comparing the SOS transition rules of anothing(wscc) (see
Section 3.5) with those of the sequence 31 (0pothing(Werz)) = Onothing(War=),
O'nothing(wqrz)v and E2(Unmfhing(quz)) = Unothing(wqrz) (See Section 33)

166

9.3. From Quartz Models to SCCharts

initial state S1 {S1; nothing; S2;} =

immediate go to S2)
q nothing
final state S2 @_ _____

Figure 9.5.: SCChart of Quartz sequence {S1; nothing; S2;} [WS22]

Illustrative Example for Lemma 9.7

As an example, Figure 9.5 shows an immediate transition from state S1 to
state S2. S1 is entered and left in the same macro step, because the nothing
statement does not change any variables or stop control flow [WS22].

9.3.7. Await

This step covers the translation function for translating await statement pat-
terns in Quartz P? it (Wgrz) to await transitions in SCCharts Zgwait(wscd)-

aw
Definition 9.8 (Translation of await statements — Quartz-to-
SCChart). A sequence containing an await statement in Quartz

PO it (Warz) € PP (wWerz) has one of the following patterns:
o Await (V¥ =reg)

U i (War2)) s g (Warz) 5 Ba(pyi (Wars)) ;
o Immediate await (U =imm)
1 ‘ Zl(PiTU:;t(WQM))i Giﬁﬁit(wqm); 22(172%:%(“’(17"2));

FEach of these patterns is translated into a corresponding await transition

in SCCharts 9, (wseer) € BV (wsewr) using the translation function

t?r“z%?i;c(pgwait(wqm)), which is described by Algorithm 30.

Correctness

To check the correctness of Definition 9.8, the following lemma is used.

Lemma 9.8. Let wg,. be translated to wser. Then, t?ﬁ}._‘i?cc(pgwait (wgrz))
translates po, i (Warz) to 0%, (Wsewr) as specified in Definition 9.8.
Ugwait(wscc') conforms to the syntax rules of a}fwait(wscc) and preserves

the SOS transition rules of pb,ui(Warz)-

Proof The validity of Lemma 9.8 is proved as follows: First, syntactic cor-
rectness is checked by comparing the syntax of agwm-t (wseer) With the syntax
rules of Ugwait(WSCC) as specified in Section 3.5. Second, the semantic cor-
rectness is checked by comparing the SOS transition rules of agwait(wscc) (see
Section 3.5) with those of the sequence 1(pY,.i(Wars)) = Tnothing(War),
afwait(wqm), and Yo (pgwait(quz)) = Onothing(Wqr-) (see Section 3.3).

167

[

SN

N -

TR W

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 30 Translate await statement — Quartz-to-SCChart

IHPUt: pgwa@'t(wqrz)

Output: Ugwm‘t(wscd)

Translation Function tqzﬂg.”_‘,’?cc (pgw it (Warz)):

if ¥ =reg then

[initial] state Xi(p. .7 (wgr2))

await

if A(07% (wgr-)) abort to
079 (waeet) < 1 * await \Warz
awmt(scc) 22(p2i§m't(wqrz))
[finall state Ya(p, o7 . (werz))
end

if ¥ = imm then
[initiall state X1 (pi™" (wyr2))

await
i i i ; b Limm
O () < | OIS 1T N (=) abort
to E2(pawait(‘*)qﬂz))
[final] state Zo(pi™ (wer2))

end
> initial and final identifiers are optional and are used for the first and

last state

Illustrative Examples for Lemma 9.8

As an example, Figure 9.6 shows a regular await statement, where the transi-
tion from state S1 to state S2 becomes active in the next macro step after S1
is entered. In contrast, Figure 9.7 shows an immediate await statement, where
the transition from state S1 to state S2 becomes active in the same macro step
when 81 is entered [WS22] (if Boolean condition a is true).

initial state S1 {S1; await(a); S2;} =
if a abort to 82 await
final state S2

Figure 9.6.: SCChart of Quartz sequence {S1; await(a); S2;} [WS22]

initial state S1 {S1; immediate await(a); S2;} =
immediate await

immediate if a abort to S2
final state S2 @----E----

Figure 9.7.: SCChart of Quartz sequence {S1; immediate await(a); S2;}
[WS22]

168

N =

TR W

9.3. From Quartz Models to SCCharts

9.3.8. Pause

This step covers the translation function for translating pause statement pat-
terns in Quartz Ppayse(wqrz) to pause transitions in SCCharts Xpayse(Wseer)-

Definition 9.9 (Translation of pause statements — Quartz-to-
SCChart). A pause statement ppouse(Wqrz) € Ppause(Wqrz) is translated

to a pause transition in SCCharts opouse(Wseer) € Lpause(Wseer) using

2 > .
tarssec(Ppause (War)), where 5% ee(Ppause (war=)) = ettt (Pyestuie (War=))

= N(0[% (wgr2)) = true.

Correctness

To check the correctness of Definition 9.9, the following lemma is used.

Lemma 9.9. Lemma 9.8 is also walid for pause statements, if
b
N(o9 - (wgrz)) = true.

Proof Lemma 9.9 is valid, because a pause statement is never instanta-
neous. It consumes a logical unit of time. Therefore, both Quartz statements,
pause and wait (true), are equivalent, as confirmed by Schneider [Sch09] and
demonstrated in the example below [WS22].

Illustrative Examples for Lemma 9.9

As an example, Figure 9.8 shows a await(true) transition in the resulting
SCChart. In contrast, Figure 9.9 shows a pause transition in the resulting
SCChart. Both resulting SCCharts are equivalent.

initial state S1 {S1; await(true); S2;} =
if true abort to S2 await

final state S2 @ true

Figure 9.8.: SCChart of Quartz sequence {S1; await(true); S2;} [WS22]

initial state S1 {S1; pause; S2;} =
abort to S2
pause
final state S2 @

Figure 9.9.: SCChart of Quartz sequence {S1; pause; S2;} [WS22]

169

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

9.3.9. Assignments

This step covers the translation function for translating assignment patterns
in Quartz models P2, (wq) to sequences including assignments in SCCharts

Z‘seq (Wscc’) .

Definition 9.10 (Translation of assignments — Quartz-to-SCChart).
A sequence including an immediate assignment and a delayed assignment in
Quartz pY, (wyrz) € P2 (wyrz) has one of the following patterns:

e Immediate Assignment (Y =imm)

1 ‘ Uri;Tsm (wgrz); X1 (pf:snsm (wgrz)) ;

e Delayed Assignment (¥ = del)

U] 08 (Wars) 5 pause(war=)) s 1 (pgEk (warz)) 5

FEach of these patterns is translated to a corresponding sequence includ-
ing assignment in SCCharts Ygeq(wseer) using the translation function

t?ﬁ;iscc(pgss(wq,«z)), which is described by Algorithm 31.

Algorithm 31 Translate assignment — Quartz-to-SCChart
Input: pJ,,(wyrs)

Output: Xseq(wsee)

Translation Function thT“;i,scc(pgss (wgrz)):

if ¥ =imm then

e (Waeer) (_{ immediate do oy (Wer2) g0 to Xi(pass (Werz)) }
SeqiTsee [final] state Xi(pla™(wgrz))
end
if ¥ = del then
state X,; "pause" {
initial state Xy ""
do lhs(aggi(wqrz))) = pre(rhs(aggé(wqm))))
abort to X
Yseq(Wseer) < final state Xg; ""
}
immediate [do 7hs(pd(wyr,)) = ... 1 join
t0 51 (e (wqr-))
[final] state ¥1(p%l(wyr.))
> 1hs(0% (wWyr2))) without next keyword

ass

end
> initial and final identifiers are optional and are used for the first and

last state

170

9.3. From Quartz Models to SCCharts

Correctness

To check the correctness of Definition 9.10, the following lemmas are used.

Lemma 9.10. Let wy,, be translated to weeer. Then, t?ﬂ;&scc(pgss (wgrz))
translates P (wWerz) to Lseq(Wsewr) as specified in Definition 9.10.
Yseq(wseer) conforms to the syntaz rules of Ygeq(wsee) and preserves the
SOS transition rules of p™™ (wgr2).

Proof The validity of Lemma 9.10 is proved as follows: First, the syntactic
correctness is checked by comparing the syntax of Ygeq(wseer) with the syntax
rules of Xyeq(wsee) as specified in Section 3.5, considering the do prefix of
assignments. Second, the semantic correctness is checked by comparing the
SOS transition rules of Xyeq(wsce) (see Section 3.5) with those of the sequence
Oped (wgrz) and X1 (pha (Werz)) = Onothing(Wer-) (see Section 3.3).

Illustrative Examples for Lemma 9.10

As an example, Figure 9.10 shows an immediate assignment, where a is in-
stantaneously set to b [WS22].

initial state S1 {S81; a=b; S2;} =
immediate do a=b go to S2 immediate assignment
final state S2 @_____/_a-_-l-)---

Figure 9.10.: SCChart of Quartz sequence {S1; a=b; S2;} [WS22]

[

SN

Lemma 9.11. Let wy,, be translated to weeer. Then, t?ﬂ;.iscc(pgss (wgrz))
translates ple(wyrz) 1o Lseq(Wsew) as specified in Definition 9.10.
Yseq(Wseer) conforms to the syntax rules of Ygeq(wsee) and preserves the
SOS transition rules of p (wyrs).

Proof The validity of Lemma 9.11 is proved as follows: First, the syntac-
tic correctness is checked by comparing the syntax of ¥geq(wseer) with the
syntax rules of Xyeq(wsce) as specified in Section 3.5, considering the pre op-
erator in SCCharts applied in [WS22] and do prefix of assignments. Second,
the semantic correctness is checked by comparing the SOS transition rules of
Yseq(wsee) (see Section 3.5) with those of the sequence aggé (wWgrz), Opause(Wqrz),

and 21 (p (wyr2)) = Tnothing(Wqr2) (see Section 3.3).

171

N =

10
11

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Illustrative Examples for Lemma 9.11

As an example, Figure 9.11 shows a delayed assignment, where a is instanta-
neously set to 1 and in the next macro step, b is set to 1, although a is set to
2 in the same macro step [WS22].

initial state S1
immediate do a =1 go to S
state S "pause" {

initial state SO ""

do b = pre(a) abort to

st la=1 la=2
final state S1 " QQJTT7 > 7el|:y;u;srsgz;;m p—-2--=
}
immediate do a=2 join to
S2
final state S2

{S1; a=1; next(b)=a; pause; a=2; S2;} =

pause

Figure 9.11.: SCChart of Quartz sequence {S1; a=1; next(b)=a; pause; a=2;
52;} [WS22]

9.3.10. Synchronous Concurrency

This step covers the translation function for translating synchronous concur-
rency in Quartz Yeone(wqrz) to parallel regions in SCCharts Xeone(Wseer)-

Definition 9.11 (Translation of synchronous concurrency — Quartz-
to-SCChart). Synchronous concurrency in Quartz Xcone(wgrz) has the fol-
lowing pattern:

1 ‘ 21(wqm); [... 1l En(quz);

This pattern is translated to parallel regions in SCCharts Xeone(wseer) using the
translation function tqzﬁgﬁ,‘gcc(Econc(wqm)), which is described by Algorithm 32.

Algorithm 32 Translate synchronous concurrency — Quartz-to-SCChart

Input: Yeone(wgrz)
Output: Y one(wseer)
Translation Function t?ﬁgﬁfscc(Econc(wqw)):
region:
initial state 31 (Zconc(wgrz))
Econc("dscc’) <~
region:
initial state X, (Xconc(wgrz))

172

9.3. From Quartz Models to SCCharts

Correctness

To check the correctness of Definition 9.11, the following lemma is used.

Lemma 9.12. Let wg,, be translated to wgeer. Then, t?;gﬁfscc(zmc(ww))
translates Ycone(wgrz) to Beonc(wseer) as specified in Definition 9.11.
Y conc(Wseer) conforms to the syntax rules of ¥.,,.(wsee) and preserves the
SOS transition rules of ¥,,,.(wWgrz)-

conc

Proof The validity of Lemma 9.12 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of X, .(wseer) with
the syntax rules of ¥_,,,.(wscc) as specified in Section 3.5, where n = 2. Second,
the semantic correctness is proved by comparing the SOS transition rules of
Yeone(Wscee) (see Section 3.5) with those of Yeonc(wgrz) (see Section 3.3), where
n=2.

Illustrative Example for Lemma 9.12

As an example, Figure 9.12 shows synchronous concurrency of states S1, S2,
S3, and Sn. At the macro steps, the statements in the regions are synchronized
and can interact. Any abort statements will affect all parallel regions. The
synchronous concurrency terminates as soon as the last of the parallel regions
terminates [WS22].

region: {S1;]182; || S3; || Sn;} =
initial state S1

region:
initial state S2 @ @

region:
initial state S3

region: @ @
initial state Sn

Figure 9.12.: SCChart of Quartz sequence {S1; || S2; || S3; || Sn;} [WS22]

9.3.11. Loops

This step covers the translation function for translating loop variants in Quartz

Pl’zop(wqm) to loop variants in SCCharts Zz)op(wsccr)).

Definition 9.12 (Translation of loops — Quartz-to-SCChart). A loop
in Quartz has one of the following patterns p?oop(wqm) € P;Zop(wqrz):

e Head-controlled loop (¥ = head, ¥1(p}<(wyr)) = E(alh“;d(wqm)))

oop 00

1 ‘ Jﬁﬁ;ﬁ(“WTZ)J E2(Fﬁi§f(quZ));

173

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

e Foot-controlled loop (¥ = foot, Zl(plj;ooif(wqrz)) = E(Of:)‘z)';t(wqm)))

t t
L] oo (wara) s Sa (Pl (wars)) 5

e Infinite loop (¥ =inf, Z1(p§:jp(wqrz)) = Z(a;:(;(wqm)))

P t
1 ‘ O’Z:Oj;(quZ) ; X2 (plfoooop (wqrz)) 5

FEach of these patterns is translated to a corresponding loop in SCCharts

. _ >
UZ’;Op(wSCC/) € Zfoop(wsccr) using the translation function tqﬂgoﬁscc(p}iop(wqm)),

which is described by Algorithm 33.

Correctness

To check the correctness of Definition 9.12, the following lemma is used.

)
Lemma 9.13. Let wy,, be translated to weer. Then, tqﬂg‘ﬂfscc(pfoop(wqm))
translates p?wp(wqrz) to Jﬁop(wsccr) as specified in Definition 9.12.
U?;Op(wsccf) conforms to the syntax rules of a;’gop(wscc) and preserves the
SOS transition rules ofpfoop(wqrz).

Proof The validity of Lemma 9.13 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of al’iop(wscc,) with

the syntax rules of aﬁmp(wscc) as specified in Section 3.5, considering nesting
of statements. Second, the semantic correctness is checked by comparing the
SOS transition rules of 2}90 Op(wscc) (see Section 3.5) with those of the sequence

Ugyop(wqm’) and 22(p;’;0p(wqrz)) = Unothing(wqrz) (See Section 3.3).

Illustrative Examples for Lemma 9.13

As an example, Figure 9.13 shows a head-controlled loop al}gi‘;d(wq,«z), where

S1 immediately switches to a final state where a Boolean condition a is checked
before the other statements S1 are executed. In contrast, Figure 9.14 shows a
foot-controlled loop Ul]; ‘z;f(wqm), where the statement S1 is executed and the
Boolean condition a is ignored. After S1 has been terminated, a is checked. If a
is true then S1 is executed again, otherwise S1 is not executed again [WS22].
Figure 9.14 illustrates an infinite loop, that executes statement S1 without
checking a Boolean condition. Consequently, this loop variant represents a

special case of the foot-controlled loop of O(;f (wgrz) for which it can be assumed

loo,
that the termination condition is never true® [WS22].

6 .
la = false, because a is always true

174

9.3. From Quartz Models to SCCharts

Algorithm 33 Translate loop — Quartz-to-SCChart

Input: p?oop(wqm)
Output: Jf’;op(wsccl)

. . Eloop 0
Translation Function #,,2%;.. (ploop (wgrz)):

if ¥ = head then
[initial] state Zl(aﬁg;d(wqrz)){
initial state X3
immediate go to X9
final state X9
head

.) C 7
o-lho?)l;d(wscc’) - immediate if A (UZOOp (wgr2) g0 to ...

}
immediate if !()\b(al]f)‘f)‘;d(wqm))) join

to X (p?oeo%d (wgrz))

[final] state X, (p{fo‘;d (wgrz))

end
if ¥ = foot then

[initial]l state X (al{g; (wgr=)){

initial state >

final state X,
foot(, .y« | immediate if ({0 (wgr:)) g0 to %

Uloop }
foot

immediate if !()\b(aloop (wgrz))) join

to X (plfoooj,f (wqrz))

[final] state X (p{oooozf(wqrz))

end
if ¥ =inf then

inf foot
‘ Uloop(wsccl) <0

loop

(Wseer) =)\b(al{;’z(wqm)) = true

end
> initial and final identifiers are optional and are used for the first and

last state

9.3.12. Halt

This step covers the translation function for translating halt statements in
Quartz Xpa(wqrz) to halt statements in SCCharts 3, (wseer)-

Definition 9.13 (Translation of halt statements — Quartz-to-
SCChart). A halt statement in Quartz opep(werz) € Zpai(wWgrz) s

translated to a halt statement in SCCharts opap(Wseer) € Xp 4 (Wseer) using

) 4
t(?rhzaifscc(o-halt (quZ)) , where tqzrhzagscc (Uhalt (quZ)) = thlgﬁ)SCC (UZZZ(L (quZ)) —

E(U;Zf;(wqm)) = pause.

175

W N =

SN

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

{while(a)}{ $1;}S2;} =

S1 = {pause; pause;}
initial state S1{
initial final state S1 ""

a
immediate if a go to S2 O ————3 ®a
}

immediate if !a join to S2 Y
final state S2 a
|

Figure 9.13.: SCChart of Quartz sequence {while(a){S1;} S2;} [WS22]

while

initial state S1{ {do S1; while(a); S2;} =
initial state S1 ""
S1 = {pause; pause;}
final state S3 ""
immediate if a go to S1 >_!_a_
L 1, S .
immediate if !a join to 82 while
final state S2 a
Figure 9.14.: SCChart of Quartz sequence {do S1; while(a); S2;} [WS22]
{do S1; while(true);} = {loop S1;} =
initial state S1{
initial state S1 S1 = {pause; pause;}
final state S3 "'
immediate go to S1 Q/'
¥ e -
loop = while(true)
Figure 9.15.: SCChart of Quartz sequence {loop S;} [WS22]
Correctness

To check the correctness of Definition 9.13, the following lemma is used.

Lemma 9.14. Lemma 9.13 is also valid for halt statements Xpqt(wr2),
53 inf _
(0 (10gr-)) = pause.

Proof Lemma 9.14 is valid, because the halt statement represents an infinite
loop executing a pause statement that consumes one logical unit of time per

176

[

oo W

o=

9.3. From Quartz Models to SCCharts

iteration. Consequently, the halt statement never terminates [WS22|. There-
fore, both Quartz statements, halt and loop{pause;}, are equivalent, as
demonstrated in the illustrative example below and confirmed by Schneider

[Sch09].

Illustrative Examples for Lemma 9.14

As an example, Figure 9.16 shows a halt statement realized as infinite loop. In
contrast, Figure 9.17 shows a halt statement with a resulting state that never
terminates [WS22].

{loop pause;} =

initial state S1 ""
abort to S2

final state S2 ""
immediate go to S1 &.::@
loop

Figure 9.16.: SCChart of Quartz sequence {loop{pause;}} [WS22]

loop pause

{halt} =

halt

O

Figure 9.17.: SCChart of Quartz sequence {halt;} [WS22]

initial state S1 ""

9.3.13. Abort

This step covers the translation function for translating abort statement pat-
terns in Quartz beort(wqrz) to abort transitions in SCCharts Zgbort(wscd)-

Definition 9.14 (Translation of abort statements — Quartz-to-
SCChart). An abort statement in Quartz has one of the following patterns

pgbort(wqrz) € ijort (quz)-'
o Abort (¥ =reg, X1(p’;? (wgrz)) == Y(o' (wgrz)))

abort abort

Ul otbene(Wars) s BP0, (Wars)) s

o Immediate abort (9 =imm, 31 (p"T™ (wer2)) = S0 (wer2)))

s el wars) i eyt (Wars)) s
FEach of these patterns is translated to a corresponding abort transition

i SCCharts Ugbort(wscd) € Egbort(wscd) using the translation function

t?ﬂé’ﬁfgcc(pgbort(wqrz)), which is described by Algorithm 34.

177

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 34 Translate abort — Quartz-to-SCChart

Input: py,,(wqr=)
Output: Ugbort (Wseer)

. . b

Translation Function t,%% e (pUy .t (Werz)):

if ¥ =reg then
[initiall state 31(p;9 (werz))

U;igrt(wscc’) - if)‘b(o'gzgrt(wqrz)) abort to 22(p22grt(wqrz))

[finall state Ya(p..Y . (wgrz))

end

if ¥ =imm then
[initiall state Xi(pi7o" (wgrz))

! abort
I () < immediate if)\b(afggﬁ(wqm)) abort
abort \Wscc to Zg(pgbrz:}t(wqrz))_
[finall state Yo(pliur(wWerz))
end

> initial and final identifiers are optional and are used for the first and
last state

Correctness

To check the correctness of Definition 9.14, the following lemma is used.

%
Lemma 9.15. Let tqﬁ;grgcc(pgbm(wqm)) translate pgboﬁ(wqrz) to
Ugbort(wscd) as specified in Definition 9.14. Then, Ugbort(wsccz) conforms
to the syntax rules of Ugbort(wscc) and preserves the SOS transition rules
(0
Ofpabort(wqrz)'

Proof The validity of Lemma 9.15 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of agbm,t(wsccf)
with the syntax rules of aﬁbmt(wscc) as specified in Section 3.5). Second,
the semantic correctness is checked by comparing the SOS transition rules

of 0%, (wsee) (see Section 3.5) with those of the sequence 0%, . (w,r-) and
22(pgbort(wqrz)) = Unothing(wqrz) (See Section 3'3)'

Illustrative Examples for Lemma 9.15

As an example, Figure 9.18 shows a resulting regular abort transition from S1
to S2. In contrast, Figure 9.19 shows a resulting immediate abort transition
from S1 to 82 [WS22].

9.3.14. Conditions

This step covers the translation function for translating condition patterns in

Quartz Pfon 4(wWqr2) to condition variants in SCCharts Efon g(Wseer)-

178

I N U R

1 N U R

9.3. From Quartz Models to SCCharts

initial state S1 {abort S1; when(a); S2;} =
if a abort to S2 when

final state S2 @ a

Figure 9.18.: SCChart of Quartz sequence {abort S1; when(a); S2;} [WS22]

initial state S1 {immediate abort S1; when(a); S2;} =
immediate if a abort to S2 when

final state S2 @-.a__

Figure 9.19.: SCChart of Quartz sequence {immediate abort S1; when(a);
52;} [WS22]

Definition 9.15 (Translation of conditions — Quartz-to-SCChart).
A condition in Quartz has one of the following patterns pf(md(wqrz) €

Plona(@ar=):
e if condition ¥ = it)

1 ‘ Zl("éznd(wqrz» if O\b(aztond(wqw))){ EQ(Uzan(WqTZ)) } ES(Uiznd(WqTZ))

e if-else condition ¥ = ite)

1 ‘ Si(olts (wqrz)) ifO\b(Uite (werz))) 1L Sa (ol (werz)) Felsed{ 23(Uif,id(wqr2))

cond cond cond

\ } Sa(oll, 4(werz))

Each of these patterns is translated to a corresponding condition in SCCharts

. . >
afond(wsccz) € Zg(md(wsccx) using the translation function tqquﬁ,dscc(pfond(wqm)),

which is described by Algorithm 35.

Correctness

To check the correctness of Definition 9.15, the following lemma is used.

b
Lemma 9.16. tq,fgﬁflscc(pfond(wqrz)) translates pfond(wqm) to Ugond(wscd)
as specified in Definition 9.15. afond(wscc/) conforms to the syntazr rules
of Ufond(wscc) and preserves the SOS transition rules ofpfgnd(wqrz).

Proof The validity of Lemma 9.16 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of afond(wscc/)
with the syntax rules of Jfond(wscc) as specified in Section 3.5. Second, the
semantic correctness is checked by comparing the SOS transition rules of

179

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 35 Translate condition — Quartz-to-SCChart

IHPUt: p?ond (quZ)
Output: afond(wsccr)

Translation Function t?ﬁg&‘fgcc(pfond(wqm)):

if ¥ =it then

[initial] state Zl(aifmd(wqm))

immediate if A(0¥ . (wg2)) go
to ZQ(Jcond(quZ))

immediate if !(A\’(0¥ (wgr2)) g0
to Z]3(O-cond((")qTZ))

state Ba(0™ . (wgrz))

immediate go to Eg(acond(wqm))

[final] state ¥3(0” ,(wgr:))

Teond(Wseer) <

end
if ¥ = del then
[initiall state %1(0%¢ (wgrz))

immediate if A°(0%¢ (wgr2)) g0

to ZQ(Ucond(wqrz)))
immediate if !(A\’(0%€ (w4.)) go
to 23(O-cond((")‘17’2’))
state Ya(0™¢ (wgr2)) .
immediate go to X4(0”C (wer-))
state E3(O-cond(("'}qrz))
immediate go to 24(acond(wqm))
[final] state Y4(0" (wgr:))

ite

O cond (WSCC') <

end
> initial and final identifiers are optional and are used for the first and
last state

ol (wsee) (see Section 3.5) with those of the sequence X1(0% (wgr2)) =
Unothzng(wqrz) Ucond(wqrz) and EB(Ucond(wqm)) = O'nothing(wqrz) for pattern
1 (see Section 3.3), and by comparing the SOS transition rules of aiffn a(Wsee)
(see Section 3.5) with those of the sequence $1(0¢ (wyr2)) = Tnothing (Wyrz),

Z’éﬁld(wqm) and Z4(0wnd(wqm)) '= Opothing(Wqr>) for pattern 2 (see Sec-

tion 3.3).

Illustrative Examples for Lemma 9.16

As an example, Figure 9.20 shows an if condition where state S2 is executed
if condition a is true. Figure 9.21 shows an if-else condition, where state S2
is executed if condition a is true, and state S3 is executed otherwise.

9.3.15. Sequences

This step covers the translation function for translating sequences in Quartz
models Ygeq(wgrz) and Quartz patterns P(wgr,) to sequences in SCCharts

Eseq (wscc’) .

180

9.3. From Quartz Models to SCCharts

initial state S1
immediate if a go to S2

immediate if 'a go to S3 {8t if(a){ S2;} 837} =

if

state S2 1:

-a
immediate go to S4 =—===3» S2 =~
state S3 —— S
immediate go to S4 2:la

final state S4

Figure 9.20.: SCChart of Quartz sequence {S1; if(a) S2; S3;} [WS24a]

{S1; if(a){ S2; Jelse{ S3;} S4;} =

initial state S1{ i
I

initial state S1 1:a
=iZ-is2 N

, N
final state S3 "" @
immediate go to S1 N]
¥ Rl 20 §

2:la

Figure 9.21.: SCChart of Quartz sequence {S1; if(a) S2; else S3; S4;}
[WS22]

Definition 9.16 (Translation of sequences — Quartz-to-SCChart). Let
Yseq(wgrz) be a set of Quartz statements and P(wgr-) a set of Quartz patterns
that are translated to a set of SCChart statements Yseq(wseer) according to the
Definition 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.1}, and 9.15. The translation
function t?ﬁ;ﬁ,scc(ﬁseq(wwd)) inserts 0;(Wsee') € Lseq(Wseer) 10 wseer, following
the process described by Algorithm 36, where i > 0.

Algorithm 36 Add sequence — Quartz-to-SCChart
Input: .4 (wseer)
Output: wge

Translation Function thﬁ;.q_,scc (Bseq(wseer)):

forall o, € ¥, (wseer) do
if ¢ >0 then
e { immediate [goljoin] to o
see [final] state o,
> add o; to the position w.r.t. its
execution order, use join for states that contain states (otherwise
go), and add final identifier in last state
else
‘ Waeee! <—{ initial state o; }

end

end

181

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Correctness

To check the correctness of Definition 9.16, the following lemma is used.

Lemma 9.17. Let Yseq(wseer) be syntactically correct. Then,

b .

tarstssce(Lseq(Wseer)) inserts each translated statement o; € Xy, (Wseer) to0
Wseer - The resulting SCChart wseer conforms to the syntax rules of wsee and
preserves the SOS transition rules of wyy..

Proof The validity of Lemma 9.17 is proved as follows: First, syntactic cor-
rectness is checked by comparing the resulting syntax of Xsq(wser) with the
syntax rules of Ygeq(wsee) as specified in Section 3.5 using induction on the
number of statements to be added Xgeq(wseer):

1. Base Case: When ., (wscer) = @, there are no statements to be added,
which conforms to the syntax rules of o, (wsec)-

2. Induction Hypothesis: The lemma holds for any set of statements to
be added Xseq(wsce)-

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules ¥gcq(wsee) in both scenarios ¢ = 0 and
i > 0, because the syntactic correctness of this statement to be added
has been proven in the appropriate section.

Second, the overall semantic correctness is given by the individual semantic
correctness of each inserted statement.

Illustrative Examples for Lemma 9.17

As an example, Figure 9.22 shows a sequence of inserted statements S1, S2,
83, and Sn. Switching between statements does not consume time, and if the
individual statements terminate instantaneously, the sequence also terminates
instantaneously [WS22]. In addition, switching of sequences containing other
sequences (such as 82) is indicated by the green triangle [WS22].

initial state S1
immediate go to S2
state S2 { ... }

immediate join to S3 S2
state S3 @'* >» S3 -

immediate go to Smn
final state Sn

{S1; 82; S3; Sn;} =

Figure 9.22.: SCChart of Quartz sequence {S1; S2; S3; Sn;} [WS22]

182

9.4. SCChart Optimization

9.4. SCChart Optimization

This section defines optimization strategies Tsceosce(wsee) for a resulting
Quartz-based SCChart wgeer € Qe that are derived from related work in the
context of synthesized safe state machines from Esterel [PTHO6].

9.4.1. Flattening Hierarchy

This step covers the strategy for flattening the state hierarchy, where the
focus is on removing surrounding states, which contain a single initial state
that optionally followed by other states [PTHO06].

Definition 9.17 (Optimization of hierarchy — Quartz-to-SCChart).
A surrounding state in Quartz-based SCCharts, which contains a single initial
state that optionally followed by other states has one of the following patterns:

e Pattern 1: Initial state only

1 ‘ initial state Sz{ initial state Sy{ ... } }

e Pattern 2: Initial state with one other state

1 initial state Sz{
2 inttial state Sy
3 ... to Sz
[final] state Sz{ ... } }

In both scenarios, the surrounding state is removed as follows, using a trans-

> .
lation denoted as tyamsses™ (X (wsee)):

e Pattern 1: Initial state only

1 ‘ initial state Sy "Sz + Sy"{ ... }

e Pattern 2: Initial state with one other state

1 initial state Sy "Sy + Sz
2 ... to Sz
[final] state Sz{ ... } }

Correctness

To check the correctness of Definition 9.17, the following lemma is used.

Lemma 9.18. Removing the surrounding state following Definition 9.17
does not change the conditions for the termination or transition behavior
of the Quartz-based SCChart.

183

N =

oA W

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Proof Lemma 9.18 is valid, because the transition from an initial state to an-
other state contains only the immediate transition, which executes the nothing
statement. If only the initial state is available, no transition is executed. Addi-
tionally, this is confirmed by manually comparing the synthesized Sequentially
Constructive Graphs [Han+13] of both models (with and without hierarchy op-
timization) using KIELER, e.g., for the following illustrative example, where
additional temporary variables that are immediately assigned are ignored.

Illustrative Example for Lemma 9.18

As an example, Figure 9.23 illustrates pattern 2 before optimization and Fig-
ure 9.24 illustrates pattern 2 after optimization, where the surrounding state
Sx is removed.

o S1
initial state Sx{

initial state Sy
immediate abort to Sz

final state Sz
} ()

Sx

Figure 9.23.: SCChart before hierarchy optimization (Pattern 2)

initial state Sy "Sy + Sx" S1
immediate abort to Sz

final state Sz

Figure 9.24.: SCChart after hierarchy optimization (Pattern 2)

9.4.2. Removing States

This step covers the strategy for removing states, where the focus is on states
without internal actions [PTHO06].

Definition 9.18 (Optimization of states — Quartz-to-SCChart). A
state in Quartz-based SCCharts can be removed under the following conditions
using the translation function denoted as t?ggﬁfgcc(z(wm)):

e The state is an initial state, has no internal actions, and has only one
outgoing immediate transition without condition and action.

e The state has no internal actions and has only one outgoing immediate
transition without condition and action. The incoming transition of the
subsequent state is redirected accordingly.

184

9.5. Experimental Results

e The state has no internal actions, only one incoming immediate tran-
sition without condition, and one outgoing transition without condition.
The incoming transition of the subsequent state is redirected accordingly,
and actions are combined.

o The state is a final state, has no internal actions, and has no outgoing
transitions.

Correctness

To check the correctness of Definition 9.18, the following lemma is used.

Lemma 9.19. Removing states following Definition 9.18 does not change
the conditions for the termination or transition behavior of the Quartz-
based SCChart.

Proof Lemma 9.19 is valid, because the considered states contain only im-
mediate outgoing transitions (which execute the nothing statement) or no
outgoing transitions. Additionally, this is confirmed by manually comparing
the synthesized Sequentially Constructive Graph of both models (with and
without state optimization) using KIELER, e.g., for the following illustrative
example, where additional temporary variables that are immediately assigned
are ignored.

Illustrative Example for Lemma 9.19

As an example, Figure 9.25 illustrates all scenarios before optimization and
Figure 9.26 after optimization.

initial state Sa
immediate go to Sb

state Sb{ ... }

join to Sc

state Sc If=

immediate do f = true go -> SP D>» Sc -» Sd O = >
to Sd

state Sd{ ... }

join to Se
final state Se

Figure 9.25.: SCChart before state optimization

9.5. Experimental Results

The applicability of the introduced Quartz code refactoring and transforma-
tion to control-flow oriented SCCharts is evaluated with the Quartz models

185

1 N U R

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

initial state Sb{ ... } If=

do f = true join to Sd Sb true Se
final state Sd{ ... } g

Figure 9.26.: SCChart after state optimization

listed in Table 9.1. For evaluation purposes, the expected SCCharts are man-
ually implemented in KIELER and the refactoring and translation functions
as a prototype in PLCreX, resulting in the overall test strategy shown in Fig-
ure 9.27. Similar to the previous chapters, the correctness of the automatically
generated control-flow oriented SCCharts is verified in two ways: (1) manual
reviews are used to identify differences between the expected SCCharts and the
automatically generated SCCharts, and (2) the built-in compilers of KIELER
and Averest are used to verify the syntactic correctness of the refactored and
automatically generated models.

PLCreX PLCreX PLCreX
(implemented manually) (implemented manually) (implemented manually)
L Tqrqurz (C()qrz) Tqrz>—>scc (wqrz) Tscerssee (wscc)
Averest KIELER KIELER
(generated automatically) (implemented manually) (generated automatically)
review I |
Wyrz WDscc < = L <
T &
 J __J L J
compile compile compile

Figure 9.27.: Test strategy to evaluate the Quartz-to-SCChart transformation in-
cluding optimization and Quartz code refactoring

Both tests passed for all examples (ignoring minor formatting differences be-
tween manually implemented and automatically generated SCCharts), with
the following warnings:

e Supported operators: According to Lemma 9.6, only a subset of the
considered Quartz expressions can be translated to corresponding in-
ternal SCChart expressions. Therefore, the example arithmetic opera-
tors throws a warning for affected expression. Affected expressions are
skipped during translation.

e Supported data types: According to Lemma 9.5, only a subset of the
considered Quartz data types can be translated to corresponding SC-
Chart data types. Therefore, the example data types and fields throws a
warning for affected declarations. Affected declarations and expressions

186

9.6. Summary

Table 9.1.: Set of examples and test results to evaluate the applicability of the
introduced Quartz-to-SCChart transformation

Model | Source | wgr: | Wsee Result
Alarm function | [Sch19] | C.2 | H.1 passed
Foot-controlled loop self C.13 | H.2 passed
Head-controlled loop self C.14 | H3 passed
passed with
warnings
RS-Flip-Flop | [GDV14] | C.23 | H.5 passed
2-0f-3 logic function | [Sch19] | C.1 | H.6 passed
Boolean operators self F.7 | HY passed
Data types and fields self F.9 | HS passed. with
warnings
KV Diagram optimized Chart | [Karl8] | F.12 | H.9 passed
Left detection | [Sch19] | F.13 | H.10 passed
Roll Down Shutters | [AG20] | F.17 | H.11 passed
Thermometer Code System | [Bubl7] | F.27 | H.12 passed
Toggle Switch 4x | [Bubl7] | F.28 | H.13 passed

Arithmetic operators self C5 | H4

are skipped during translation.

Based on the experimental results in Table 9.1, it can be concluded that the
introduced refactoring and translation functions are applicable and lead to
correct SCCharts intended for an alternative model view. As a full exam-
ple, Figure 9.28 demonstrates the different steps from refactoring the initial
Quartz model (see Figure 9.28a and Figure 9.28a), to the transformation into a
control-flow oriented SCChart with subsequent optimization (see Figure 9.28d)
using an FBD-based Quartz example introduced in [WS22]".

9.6. Summary

This chapter introduced a Quartz code refactoring and transformation to
control-flow oriented SCCharts. For this purpose, a code refactoring, individ-
ual translation functions, and optimizations were defined, whose applicability
was demonstrated using a set of Quartz examples. Based on the presented
lemmas and experimental results, the following theorem encapsulates the en-
tire transformation:

Theorem 9.1 (Quartz-to-SCChart Translation). Let Ty .orqrz(wgrz)
be the code refactoring of wyr, Tgrzessce(Wqr=) be the model transformation
of wgrz t0 wseer, and Tgeerssee(wseer) be the model optimization of wgee

as introduced in this chapter. Then, the resulting control-flow oriented
SCChart wgeer:

"Note that S0 is empty, which is why it does not appear in the resulting SCChart.

187

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

1. Conforms to the syntax rules of wsec
2. Preserves the semantics of wg,

3. Contains constructs corresponding to the constructs of wg,, and pre-

serves the intended functionality of wy,, under the following condi-
tions:

o Val

no imported Quartz models

Aidcl(wqrz) = Azn (wqrz) U Aout (quz) U Az'nout (wqrz)
Avolcl(wqrz) = Ajocal (quz)

+](wqr2) s altl e {02, o™, "™, o™ gy, "}, where
Qgur can be treated as an bounded integer and is specified in
milliseconds

bool . int . dint . wuint

cst id A _br true _false

VT(quZ) FT € {eIIIlt(?T), mzsc’Tmzsc7Tmzsc 7Tmzsc7 Tmzsc’ misc

arr inv eq ne gt ge It le mul div
Tmiscr Tmisc) Tcomps Tcomp? Teompy Tcomp Tcompﬂ 7-comp7 Tamtiﬂ Tarzth’
add sub expt _mod _um sel

Tarith> Tarith Tarith’ Tarith> Tarith® Teond

. s 9)
VU(quz) 1o € {Unothing> O qwaits Ipauses Ocones Tjoops Thaltsr T gport

¢ (v
O cond> Uass}

Proof The validity of Theorem 9.1 is proved as follows:

1. Syntax Conformance: Lemma 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9,
9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, and 9.17 demonstrate that each
translated construct conforms to the syntax rules of ws.. as specified in
Section 3.5. Furthermore, Lemma 9.18 and 9.19 demonstrate that the
optimized SCChart conforms to the syntax rules of ws.. as specified in
Section 3.5.

Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

Code refactoring: Lemma 9.1

Model declaration: Lemma 9.2

Interfaces: Lemma 9.3

Variables: Lemma 9.4

Data types and fields: Lemma 9.5

Expressions: Lemma 9.6

Immediate transition: Lemma 9.7

Await: Lemma 9.8

Pause: Lemma 9.9

Assignments: Lemma 9.10 and 9.11

188

9.6. Summary

Synchronous Concurrency: Lemma 9.12

Loop: Lemma 9.13

e Halt: Lemma 9.14

e Abort: Lemma 9.15

e Conditions: Lemma 9.16
e Sequences: Lemma 9.17

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in wge. for the considered constructs in wy,., preserving the original func-
tionality, taking into account the previous refactoring and subsequent
optimizations.

Overall, this results in the following solutions to the challenges summarized in
Section 9.1.

1. Correct code refactoring of the initial Quartz model: The solu-
tion follows from Section 9.2.

2. Correct and complete translation of the considered Quartz con-
structs: The solution follows from Section 9.3.

3. Correct optimization of the resulting SCChart: The solution fol-
lows from Section 9.4.

189

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

1 loop{

2 immediate abort{

3 loop{
1 loop{ | immediate abort{
2 if (IN){ // c2 5 loop{
3 if (T >= PT){ // cl 6 Q = false; // 82
4 Q = true; // S1 7 ET = T; // S2
5 ET = PT; // S1 8 T_NEW = T + CLK; // S2
6 T_NEW = T; // S1 9 next (T) = T_NEW; // S3
7 Yelsed{ 10 pause; // 83
8 Q = false; // S2 11 }
9 ET = T; // S2 12 }when (T >= PT); // cli
10 T_NEW = T + CLK; // S2 13 Q = true; // S1
11 } 14 ET = PT; // S1
12 }elsed{ 15 T_NEW = T; // S1
13 Q = false; // 84 16 next (T) = T_NEW; // S3
14 ET = 0; // 84 17 pause; // 83
15 T_NEW = 0; // 84 18 }
16 ¥ 19 }when (!'IN); // lc2
17 next (T) = T_NEW; // S3 20 Q = false; // 5S4
18 pause; // 83 21 ET = 0; // S4
19} 22 T_NEW = 0; // 54

23 next (T) = T_NEW; // S3

(a) Initial Quartz Model ij) pause; /7 83

(b) Refactored Quartz Model (Pattern 3)

- ey
1 Q = false; E
ET=T; !
T_NEW=T+CLK /T = pre(T_NEW) i
---------------- —————
O; X N
"""""""""""""""""" ! /1 Q = false;
Y | ETes ;
4 T>=PT i |- _1_'_r15_v_v_=_g_> | T = pre(T_NEW)
’l 1 Q = true; : :
1 ET=PT; 1
! T_NEW=T| |
1 1 1
1 1
1 1
/ H
@ : .
\ /T = pre(T_NEW ! !
L e : :‘
\ ,'
\‘\ 'II
(¢) Resulting control-flow oriented SCChart (not optimized)
IN
1 Q = false;
T>=PT ’
ET=0;
| Q = false; lo._T_NEW=0___ .
ET=T; 4
O:__I-'!E!V_iI:_‘Z':'S ->
r I T =pre(T_NEW) -
I T = pre(T_NEW) /T = pre(T_NEW)

(d) Resulting control-flow oriented SCChart (optimized)

Figure 9.28.: From Quartz to control-flow oriented SCChart [WS22]

190

oo 10

Conclusions

This thesis explored the reuse of existing IEC-61131-3 ST- and FBD-based
POUs in model-based design (which supports formal verification) by translat-
ing them into synchronous models. The central objective was to investigate,
using Quartz, SCL and SCCharts as examples, whether ST- and FBD-based
POUs can be translated into synchronous models while maintaining their be-
havioral semantics. In this context, it has been shown that the structural
complexity of data-flow models in real-world applications can be reduced using
formal methods and formula refactoring. Additionally, the possibility of trans-
lating ST- and FBD-based Quartz models into control-flow oriented SCCha-
rts has been presented. In this context, specific patterns have been identified
that allow the transformation of FBD-based Quartz models into hierarchical
control-flow oriented SCCharts. A summary of the contributions is shown in
Figure 10.1, where the elements are labeled according to the categories below.
These categories contain the key findings and answers to the hypotheses H1,
H2 and H3 that were formulated in Section 1.1.

1. H1: Model-Based Design of Program Organization Units

A detailed model transformation from textual ST models to correspond-
ing Quartz and SCL models, and from graphical FBDs to data-flow
oriented Quartz models and SCCharts were presented. The correctness
of the transformations has been demonstrated by theoretical reason-
ing, and the theoretical results have been evaluated with real-world and
self-defined IEC 61131-3 examples, with the translation functions im-
plemented as a prototype in PLCreX. As shown in Theorem 4.1, 5.1,
6.1, and 7.1, the transformations preserve the original runtime behav-
ior of ST- and FBD-based POUs. Furthermore, it has been shown that
existing variable and instance names are retained, and additional vari-
ables provide traceability to the original IEC 61131-3 POU and internal
ports. Existing control structures such as loops and conditions are also
preserved. This allows an intuitive post-translation modification. Over-
all, this translation enables reuse in model-based design using KIELER
and Awerest, which support formal verification.

191

Chapter 10: Conclusions

Verifcation,
PLC Synthesis, ...
: i
: PLCreX .
IEC 61131-3 4 KIELER

» > Wscl

th

wscc

A
Y
S

J -
vrz
w[:[QSJ 3
L :
\

Wsed

Figure 10.1.: Contribution Summary

2. H2: Formal Methods-Based Optimization of Data-Flow Models

By introducing a configurable optimization strategy based on NuSMYV
SMT Z3Py, and formula refactoring, a formal methods-based optimiza-
tion process for data-flow models has been developed. As shown in The-
orem 8.1, the optimization approach effectively detects and minimizes
the structural complexity of data-flow models in real-world applications
without changing the logical behavior of the models, where structural
complexity is measured by the number of variable accesses (including
output variables of instances), operators, and edges. Empirical evalua-
tions using industrial examples from PLC vendors and literature demon-
strated significant optimization potential, with the optimization process
implemented in PLCreX, confirming that data-flow models in real-world
applications are frequently presented in a more complex structure than
their logic requires.

H3: Control-Flow Oriented SCCharts of Quartz Models

A detailed model transformation from ST- and FBD-based Quartz mod-
els to control-flow oriented SCCharts has been presented. This trans-
formation takes into account hierarchy and state optimization of the
resulting SCCharts. The correctness of the translation functions has
been demonstrated by theoretical reasoning, and the theoretical results
have been evaluated with ST- and FBD-based Quartz models, with
the translation functions and optimizations implemented as a prototype
in PLCreX. As shown in Theorem 9.1, by detecting specific patterns,
Quartz models can be translated into hierarchical control-flow oriented
SCCharts, providing an alternative control flow view for system analysis

192

Chapter 10: Conclusions

and design.

4. PLCreX

PLCreX has been developed as part of this thesis. It’s a project for
simplification, transformation, analysis, and validation of IEC 61131-3
POUs. PLCreX encapsulates the approaches developed in this thesis
and serves as a tool to support in challenges of real-world applications.

While this thesis offers robust translations and specific tool support, addi-
tional research and development would further enhance the applicability. For
example, adding more language features to SCL (such as importing other mod-
els or foot-controlled loops) or more detailed documentation, or considering
external data types and operators in the introduced approaches could make
the transformation process more intuitive for professionals with an industrial
background. Furthermore, variables in resulting SCL models that are derived
from POUs without memory are reset by default, even if they are updated
within the same macro step. Resetting is not necessary in these cases. In ad-
dition, initializing variables in Quartz at the time of declaration, rather than
through separate immediate assignments, would reduce overall lines of code
and potentially simplify the traceability with regard to the original IEC 61131-
3 model.

Additional research is recommended for translating FBDs to data-flow ori-
ented SCCharts and Quartz models. The approaches presented in this thesis
enforce the preservation of sequential execution in the original FBDs including
instances, resulting in statements being executed sequentially although they
could be executed in parallel. The decomposition of POUs into independent
paths is recommended.

Furthermore, when translating FBDs to data-flow oriented SCCharts fol-
lowing the approach of additional MOVE blocks, there are intermediate values
at the input ports of these MOVE blocks when at least one instance in the
model does not terminate within the current macro step (or loop iteration,
respectively), which may be the result of invalid operations. These results do
not affect the original semantics (and do not cause a runtime error in C-based
simulations in KIELER) because they are not passed until the MOVE blocks
have been triggered accordingly. However, the affected expressions should be
protected from invalid operations.

Additionally, future research could explore more complex refactoring pat-
terns within the synchronous paradigm to alternatively visualize the mod-
els and potentially identify additional hierarchical structures in data-flow or
control-flow oriented models. Investigating alternative forms of hierarchical
decomposition or synchronous concurrency could extend the approaches pre-
sented in this thesis. For example, LLMs could be used to identify similar
patterns or control structures in large applications, or to suggest appropriate
refactoring strategies in individual POUs.

Furthermore, the formal methods-based optimization introduced in this the-
sis employs the Z3Py theorem solver and the NuSMV model checker. Other
model checkers, theorem solvers, algorithms, or minimization techniques (with

193

Chapter 10: Conclusions

and without LLM support) could increase the observed minimization poten-
tial. Further research could investigate the impact of the introduced optimiza-
tion strategies on code size and execution speed across different platforms. In
addition, it would be beneficial if the optimization approach could take into ac-
count user-defined patterns or templates, which are treated as non-modifiable
and thus excluded from optimization.

Moreover, PLCreX would benefit from additional IEC 61131-3 features and
language constructs to apply the introduced methods to more complex real-
world applications. Since PLCreX is based on an ST-like intermediate repre-
sentation, other languages can be easily integrated.

In summary, this thesis presents detailed approaches for transforming ex-
isting ST- and FBD-based POUs into synchronous models, an optimization
strategy for data-flow oriented models, and the synthesis of control-flow ori-
ented SCCharts from ST- and FBD-based Quartz models. This enables the
transition from traditional IEC 61131-3 development to model-based design
using synchronous languages, while reusing existing IEC 61131-3 development
efforts.

194

Bibliography

[AG20]

[And95]

[BAVO0S]

[BB13]

[BBY1]

[BBK12]

[BD12]

[BDLOA]

Siemens AG. LOGO!-Library — Simple application examples -
ID: 109783504 - Industry Support Siemens. https://support.
industry.siemens.com/cs/document/109783504/. Dec. 2020.

Charles André. “Synccharts: A visual representation of reactive
behaviors”. In: Université de Nice-Sophia Antipolis, 1995.

Giilden Bayrak, Farisoroosh Abrishamchian, and Birgit Vogel-
Heuser. “Effiziente Steuerungsprogrammierung durch automatis-
che Modelltransformation von Matlab/Simulink/Stateflow nach
IEC 61131-3”. In: Automatisierungstechnische Prazis (atp) 50.12
(2008), pp. 49-55.

Jan Olaf Blech and Sidi Ould Biha. “On Formal Reasoning on
the Semantics of PLC using Coq”. In: ArXiv (2013), pp. 1-35.
eprint: arXiv:1301.3047v1.

Albert Benveniste and Gérard Berry. “The synchronous ap-
proach to reactive and real-time systems”. In: Proceedings of the
IEFEE. Vol. 79. 9. 1991, pp. 1270-1282. poI: 10.1109/5.97297.

Sebastian Biallas, Jorg Brauer, and Stefan Kowalewski. “Ar-
cade.PLC: A verification platform for programmable logic con-
trollers”. In: 27th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2012 - Proceedings. 2012,
pp. 338-341. 1SBN: 9781450312042. DOI: 10 . 1145 /2351676 .
2351741.

Haniel Barbosa and David Déharbe. “Formal Verification of PLC
Programs Using the B Method”. In: Abstract State Machines, Al-
loy, B, VDM, and Z. Ed. by John Derrick, John Fitzgerald, Ste-
fania Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve Reeves,
and Elvinia Riccobene. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, pp. 353—-356. 1SBN: 978-3-642-30885-7.

Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen.
“A Tutorial on Uppaal”. In: Formal Methods for the Design of
Real-Time Systems: International School on Formal Methods for
the Design of Computer, Communication, and Software Systems,
Bertinora, Italy, September 13-18, 2004, Revised Lectures. Ed.
by Marco Bernardo and Flavio Corradini. Berlin, Heidelberg:

195

https://support.industry.siemens.com/cs/document/109783504/
https://support.industry.siemens.com/cs/document/109783504/
arXiv:1301.3047v1
https://doi.org/10.1109/5.97297
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1145/2351676.2351741

Bibliography

[Bec+15]

[Ben+-03]

[Ber16]

[BG92]

[Bial6]

[BM14]

[Bub17]

[Cav+14]

[CGPO1]

Springer Berlin Heidelberg, 2004, pp. 200-236. 1SBN: 978-3-540-
30080-9. por: 10.1007/978-3-540-30080-9_7. URL: https:
//doi.org/10.1007/978-3-540-30080-9_7.

Bernhard Beckert, Mattias Ulbrich, Birgit Vogel-Heuser, and
Alexander Weigl. Regression Verification for Programmable
Logic Controller Software. Tech. rep. 6. Karlsruher Institut fir
Technologie (KIT), 2015. 16 pp. DOI: 10.5445/IR/1000047251.

Albert Benveniste, Paul Caspi, Stephen Edwards, Nicolas Halb-
wachs, Paul Le Guernic, and Robert Simone. “The Synchronous
Languages 12 Years Later”. In: Proceedings of the IEEE 91 (Feb.
2003), pp. 64-83. DOI: 10.1109/JPROC.2002.805826.

Yves Bertot. “Coq in a Hurry”. 3rd cycle. Lecture. Types
Summer School, also used at the University of Goteborg, Nice,
Ecole Jeunes Chercheurs en Programmation, Universite de Nice,
France, June 2016. URL: https://cel.hal.science/inria-
00001173.

Gérard Berry and Georges Gonthier. “The Esterel synchronous
programming language: design, semantics, implementation”. In:
Science of Computer Programming 19.2 (1992), pp. 87-152. ISSN:
0167-6423. DOI: https://doi.org/10.1016/0167-6423(92)
90005-V.

Sebastian Biallas. Verification of Programmable Logic Controller
Code using Model Checking and Static Analysis. Aachen: Shaker
Verlag GmbH, 2016. 1SBN: 978-3-8440-4711-0.

Sonam Bhatia and Jyoteesh Malhotra. “A survey on impact of
lines of code on software complexity”. In: 2014 International
Conference on Advances in Engineering & Technology Research
(ICAETR - 201/4). Aug. 2014, pp. 1-4. por: 10.1109/ICAETR.
2014.7012875.

Otto Bubbers. Ldsungen: Skript Steuerungstechnik fir UT.
Gottlieb-Daimler-Schule 2, Technisches Schulzentrum Sin-

delfingen mit Abteilung Akademie fiir Datenverarbeitung.
Sindelfingen, 2017.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto
Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover,
Marco Roveri, and Stefano Tonetta. “The nuXmv Symbolic
Model Checker”. In: Computer Aided Verification. Ed. by
Armin Biere and Roderick Bloem. Cham: Springer International
Publishing, 2014, pp. 334-342. 1SBN: 978-3-319-08867-9.

Edmund Clarke, Orna Grumberg, and Doron Peled. Model
Checking. MIT Press, Jan. 2001. 1SBN: 978-0-262-03270-4.

196

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.5445/IR/1000047251
https://doi.org/10.1109/JPROC.2002.805826
https://cel.hal.science/inria-00001173
https://cel.hal.science/inria-00001173
https://doi.org/https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1109/ICAETR.2014.7012875
https://doi.org/10.1109/ICAETR.2014.7012875

Bibliography

[Cim+-00]

[CMO3]

[CR14]

[DBF15]

[DMB16]

[DV12]

[Ebr+23]

[Eno+16]

[Fer+15]

Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and
Marco Roveri. “NUSMV: a new symbolic model checker”.
In: STTT 2 (Mar. 2000), pp. 410-425. por: 10 . 1007 /
$100090050046.

Dominique Cansell and Dominique Mery. “Foundations of the B
Method.” In: Computers and Informatics 22 (Jan. 2003), 31 p.

Luis Cruz Salazar and Oscar Rojas Alvarado. “The Future of
Industrial Automation and IEC 614993 Standard”. In: Oct. 2014.
DOI: 10.1109/CIIMA.2014.6983434.

Déniel Darvas, Enrique Blanco Vinuela, and Borja Fernandez
Adiego. “PLCverif: A Tool to Verify PLC Programs Based on
Model Checking Techniques”. In: 15th International Conference
on Accelerator and Large Fxperimental Physics Control Systems.
2015. DOI: 10.18429/JACoW-ICALEPCS2015-WEPGF092

Déniel Darvas, Istvan Majzik, and Enrique Blanco Vinuela.
“Generic representation of PLC programming languages for
formal verification”. In: Proceedings of the 23rd PhD Mini-
Symposium (Budapest, Hungary). Zenodo, Feb. 2016, pp. 6-9.
DOI: 10.5281/zenodo.51064.

Wenbin Dai and Valeriy Vyatkin. “Redesign Distributed PLC
Control Systems Using TEC 61499 Function Blocks”. In: IEEE
Transactions on Automation Science and Engineering 9.2 (2012),
pp- 390—401. por: 10.1109/TASE.2012.2188794.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and
Cristina Seceleanu. “PyLC: A Framework for Transforming
and Validating PLC Software using Python and Pynguin
Test Generator”. In: Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing. SAC ’23. Tallinn, Estonia:
Association for Computing Machinery, 2023, pp. 1476-1485.
ISBN: 9781450395175. DOI: 10.1145/3555776 . 3577698. URL:
https://doi.org/10.1145/3555776.3577698.

Eduard Enoiu, Daniel Sundmark, Adnan Causevic, Robert
Feldt, and Paul Pettersson. “Mutation-Based Test Generation
for PLC Embedded Software Using Model Checking”. In:
Testing Software and Systems. Cham: Springer International
Publishing, Oct. 2016, pp. 155-171. 1SBN: 978-3-319-47442-7.
DOI: 10.1007/978-3-319-47443-4_10.

Borja Fernandez Adiego, Daniel Darvas, Enrique Blanco Vin-
uela, Jean-Charles Tournier, Simon Bliudze, Jan Olaf Blech, and
Victor Manuel Gonzalez Suarez. “Applying Model Checking to
Industrial-Sized PLC Programs”. In: IEEE Transactions on In-
dustrial Informatics 11.6 (2015), pp. 1400-1410. 1sSN: 1551-3203.
DOI: 10.1109/TII.2015.2489184M4-Citavi.

197

https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/s100090050046
https://doi.org/10.1109/CIIMA.2014.6983434
https://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
https://doi.org/10.5281/zenodo.51064
https://doi.org/10.1109/TASE.2012.2188794
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1007/978-3-319-47443-4_10
https://doi.org/10.1109/TII.2015.2489184 M4 - Citavi

Bibliography

[GDV14]

[Gom+09]

[Gri+4-20]

[Hal+91]

[Hal9g]

[Han+13]

[Han+14]

[Har08]

[Har87]

Electronic German Commission for Electrical, Information Tech-
nologies of DIN, and VDE. Programmable controllers - Part 3:
Programming languages (IEC 61131-8:2013); German version
EN 61131-3:2013. Standard. Berlin: DIN German Institute for
Standardization, 2014.

Daniel Gomez-Prado, Qian Ren, Maciej J. Ciesielski, Jérémie
Guillot, and Emmanuel Boutillon. “Optimizing data flow
graphs to minimize hardware implementation”. In: 2009 Design,
Automation & Test in Europe Conference € Exhibition (2009),
pp. 117-122.

Lena Grimm, Steven Smyth, Alexander Schulz-Rosengarten,
Reinhard von Hanxleden, and Marc Pouzet. “From Lustre
to Graphical Models and SCCharts”. In: 2020 Forum for
Specification and Design Languages (FDL). 2020, pp. 1-8. DOI:
10.1109/FDL50818.2020.9232944.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pi-
laud. “The synchronous data flow programming language LUS-
TRE”. In: Proceedings of the IEEE 79.9 (1991), pp. 1305-1320.
DOI: 10.1109/5.97300.

Nicolas Halbwachs. “Synchronous programming of reactive sys-
tems - A tutorial and commented bibliography”. In: LNCS 1427
(Jan. 1998), pp. 1-16.

Reinhard Hanxleden, Michael Mendler, Joaquin Aquado, Bjorn
Duderstadt, Insa Marie-Ann Fuhrmann, Christian Motika,
Stephan Mercer, Owen O’Brien, and Partha Roop. Sequen-
tially Constructive Concurrency: A Conservative Extension of
the Synchronous Model of Computation. Tech. rep. [Online].
Available: https://nbn-resolving.org/urn:nbn:de:101:1-
201402136745. Kiel: Selbstverlag des Instituts fiir Informatik,
2013.

Reinhard von Hanxleden, Bjorn Duderstadt, Christian Motika,
Steven Smyth, Michael Mendler, Joaquin Aguado, Stephen Mer-
cer, and Owen O’Brien. “SCCharts: Sequentially Constructive
Statecharts for Safety-Critical Applications”. In: SIGPLAN Not.
49.6 (June 2014), pp. 372-383. 1sSN: 0362-1340. poOI: 10.1145/
2666356.2594310.

John Harrison. “Theorem Proving for Verification (Invited Tuto-
rial)”. In: Computer Aided Verification. Ed. by Aarti Gupta and
Sharad Malik. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 11-18. 1SBN: 978-3-540-70545-1.

David Harel. “Statecharts: a visual formalism for complex
systems”. In: Science of Computer Programming 8.3 (1987),
pp. 231-274. 18SN: 0167-6423. DOI: https://doi.org/10.1016/

198

https://doi.org/10.1109/FDL50818.2020.9232944
https://doi.org/10.1109/5.97300
https://nbn-resolving.org/urn:nbn:de:101:1-201402136745
https://nbn-resolving.org/urn:nbn:de:101:1-201402136745
https://doi.org/10.1145/2666356.2594310
https://doi.org/10.1145/2666356.2594310
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9

Bibliography

[Hua+19]

[Jee+09]

[JRO1]

[JT10]

[Karl8|

[Kar53]

[Kas+24]

[Kel4-01]

[Koz+24]

[LB21]

0167-6423(87)90035-9. URL: https://www.sciencedirect.
com/science/article/pii/0167642387900359.

Yanhong Huang, Xiangxing Bu, Gang Zhu, Xin Ye, Xiaoran
Zhu, and Jianqgi Shi. “KST: Executable Formal Semantics of
IEC 61131-3 Structured Text for Verification”. In: IEEE Access 7
(2019), pp. 14593-14602. 1sSN: 21693536. DOI: 10.1109/ACCESS .
2019.2894026.

Eunkyoung Jee, Junbeom Yoo, Sungdeok Cha, and Doohwan
Bae. “A data flow-based structural testing technique for FBD
programs”. In: Information and Software Technology 51.7 (2009),
pp- 1131-1139. 1ssN: 09505849. Do1: 10.1016/j.infsof .2009.
01.003.

Fernando Jimenez-Fraustro and Eric Rutten. A synchronous
model of IEC 61131 PLC languages in SIGNAL. 2001. DOI:
10.1109/EMRTS.2001.934016.

Karl Heinz John and Michael Tiegelkamp. IEC 61131-3:
Programming industrial automation systems: Concepts and
programming languages, requirements for programming systems,
decision-making aids. Springer Berlin Heidelberg, 2010, pp. 1-
390. 1SBN: 9783642120145. DOI: 10.1007/978-3-642-12015-2.

Cihat Karaali. Grundlagen der Steuerungstechnik. de. 3rd ed.
Wiesbaden, Germany: Springer Fachmedien, May 2018.

Maurice Karnaugh. “The map method for synthesis of combina-
tional logic circuits”. In: Transactions of the American Institute
of Electrical Engineers, Part I: Communication and Electronics
72.5 (1953), pp. 593-599. DOI: 10.1109/TCE.1953.6371932.

Maximilian Kasperowski, Niklas Rentz, Séren Domros, and Rein-
hard von Hanxleden. “KIELER: A Text-First Framework for
Automatic Diagramming of Complex Systems”. In: Sept. 2024,
pp. 402-418. 1SBN: 978-3-031-71290-6. DOL: 10.1007/978-3-
031-71291-3_33.

Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J., and Ri-
erson Leanna K. A Practical Tutorial on Modified Condition/De-
cision Coverage. Tech. rep. 2001.

Heiko Koziolek, Virendra Ashiwal, Soumyadip Bandyopadhyay,
and Chandrika K R. Automated Control Logic Test Case Gen-
eration using Large Language Models. 2024. arXiv: 2405.01874
[cs.SE]. URL: https://arxiv.org/abs/2405.01874.

Guolin Lyu and Robert William Brennan. “Towards IEC
61499-Based Distributed Intelligent Automation: A Literature
Review”. In: IEEE Transactions on Industrial Informatics 17.4
(2021), pp. 2295-2306. DOT: 10.1109/TII.2020.3016990.

199

https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://doi.org/10.1109/ACCESS.2019.2894026
https://doi.org/10.1109/ACCESS.2019.2894026
https://doi.org/10.1016/j.infsof.2009.01.003
https://doi.org/10.1016/j.infsof.2009.01.003
https://doi.org/10.1109/EMRTS.2001.934016
https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.1007/978-3-031-71291-3_33
https://doi.org/10.1007/978-3-031-71291-3_33
https://arxiv.org/abs/2405.01874
https://arxiv.org/abs/2405.01874
https://arxiv.org/abs/2405.01874
https://doi.org/10.1109/TII.2020.3016990

Bibliography

[Le +11]

[Le 4+91]

[Lew98]

[LF22]

[Liu+24]

[New+16]

[New+18]

[ORS92]

[PE10]

Thierry Le Sergent, Alain Guennec, Sébastien Gérard, Yann Tan-
guy, and Frangois Terrier. “Using SCADE System for the De-
sign and Integration of Critical Systems”. In: Oct. 2011. DOI:
10.4271/2011-01-2577.

Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude
Le Maire. “Programming real-time applications with SIGNAL”.
In: Proceedings of the IEEE 79.9 (1991), pp. 1321-1336. DOTI:
10.1109/5.97301.

Robert W. Lewis. Programming Industrial Control Systems Us-
ing IEC 1131-3 (I E E Control Engineering Series). 1998. ISBN:
0852969503.

Stephan Lukasczyk and Gordon Fraser. “Pynguin: auto-
mated unit test generation for Python”. In: Proceedings
of the ACM/IEEE J4th International Conference on Soft-
ware Engineering: Companion Proceedings. ICSE ’22. ACM,
May 2022. por: 10 . 1145 / 3510454 . 3516829. URL: http :
//dx.doi.org/10.1145/3510454.3516829.

Zihan Liu, Ruinan Zeng, Dongxia Wang, Gengyun Peng, Jingyi
Wang, Qiang Liu, Peiyu Liu, and Wenhai Wang. Agents{PLC:
Automating Closed-loop PLC Code Generation and Verification
in Industrial Control Systems using LLM-based Agents. 2024.
arXiv: 2410.14209 [cs.SE]. URL: https://arxiv.org/abs/
2410.14209.

Josh Newell, Linna Pang, David Tremaine, Alan Wassyng, and
Mark Lawford. “Formal Translation of IEC 61131-3 Function
Block Diagrams to PVS with Nuclear Application”. In: NASA
Formal Methods.8th International Symposium, NFM 2016, Min-
neapolis, MN, USA, June 7-9, 2016, Proceedings. Ed. by San-
jai Rayadurgam and Oksana Tkachuk. Vol. 9690 SV -. Lecture
Notes in Computer Science TS - CrossRef. Cham: Springer Inter-
national Publishing, 2016, pp. 206—220. 1SBN: 978-3-319-40647-3.
DOI: 10.1007/978-3-319-40648-0_16M4-Citavi.

Josh Newell, Linna Pang, David Tremaine, Alan Wassyng,
and Mark Lawford. “Translation of IEC 61131-3 Function
Block Diagrams to PVS for Formal Verification with Real-Time
Nuclear Application”. In: Journal of Automated Reasoming 60
(Jan. 2018), pp. 1-22. DOI: 10.1007/510817-017-9415-7.

Sam Owre, John M. Rushby, and Natarajan Shankar. “PVS: A
prototype verification system”. In: International Conference on
Automated Deduction. Springer. 1992, pp. 748-752.

Olivera Pavlovic and Hans-Dieter Ehrich. “Model Checking PLC
Software Written in Function Block Diagram”. In: 2010 Third
International Conference on Software Testing, Verification and

200

https://doi.org/10.4271/2011-01-2577
https://doi.org/10.1109/5.97301
https://doi.org/10.1145/3510454.3516829
http://dx.doi.org/10.1145/3510454.3516829
http://dx.doi.org/10.1145/3510454.3516829
https://arxiv.org/abs/2410.14209
https://arxiv.org/abs/2410.14209
https://arxiv.org/abs/2410.14209
https://doi.org/10.1007/978-3-319-40648-0_16 M4 - Citavi
https://doi.org/10.1007/s10817-017-9415-7

Bibliography

[PLCO9]

[Plo04]

[Pra+17]

[PTHOG]

[Rob10]

[R6s+15]

[Sal+23]

[SB16]

Validation. IEEE, 2010, pp. 439-448. 1SBN: 9780769539904. DOI:
10.1109/ICST.2010.10.

PLCopen. Technical Paper PLCopen Technical Committee 6,
XML Formats for IEC 61131-8 Version 2.01 — Official Release.
Tech. rep. 2009.

Gordon Plotkin. “A Structural Approach to Operational Seman-
tics”. In: J. Log. Algebr. Program. 60-61 (July 2004), pp. 17-139.
DOL: 10.1016/3.jlap.2004.05.001.

Herbert Prahofer, Florian Angerer, Rudolf Ramler, and Friedrich
Grillenberger. “Static Code Analysis of IEC 61131-3 Programs:
Comprehensive Tool Support and Experiences from Large-Scale
Industrial Application”. In: IEEE Transactions on Industrial In-
formatics 13.1 (2017), pp. 37-47. 1SSN: 15513203. DOI: 10.1109/
TII.2016.2604760.

Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxle-
den. “Synthesizing Safe State Machines from Esterel”. In: Pro-
ceedings of the 2006 ACM SIGPLAN/SIGBED Conference on
Language, Compilers, and Tool Support for Embedded Systems.
LCTES ’06. Ottawa, Ontario, Canada: Association for Comput-
ing Machinery, 2006, pp. 113-124. 1sBN: 159593362X. DOI: 10.
1145/1134650.1134667.

Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim,
Gavin Keighren, Emanuele Olivetti, Marco Pistore, Marco
Roveri, and Andrei Tchaltsev. NuSMV 2.6 User Manual. Povo
(Trento) — Italy, 2010.

Susanne Rosch, Sebastian Ulewicz, Julien Provost, and Birgit
Vogel-Heuser. “Review of Model-Based Testing Approaches in
Production Automation and Adjacent Domains—Current Chal-
lenges and Research Gaps”. In: Journal of Software Engineering
and Applications 08 (Jan. 2015), pp. 499-519. por: 10. 4236/
jsea.2015.89048.

Mikael Ebrahimi Salari, Eduard Paul Enoiu, Cristina Seceleanu,
Wasif Afzal, and Filip Sebek. “Automating Test Generation of
Industrial Control Software Through a PLC-to-Python Transla-
tion Framework and Pynguin”. In: 2023 30th Asia-Pacific Soft-
ware Engineering Conference (APSEC). 2023, pp. 431-440. DOI:
10.1109/APSEC60848.2023.00054.

Klaus Schneider and Jens Brandt. “Quartz: A Synchronous
Language for Model-Based Design of Reactive Embedded
Systems”. In: Dordrecht: Springer Science+Business Media,
Jan. 2016, pp. 1-30. DOI: 10.1007/978-94-017-7358-4_3-1.

201

https://doi.org/10.1109/ICST.2010.10
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1109/TII.2016.2604760
https://doi.org/10.1109/TII.2016.2604760
https://doi.org/10.1145/1134650.1134667
https://doi.org/10.1145/1134650.1134667
https://doi.org/10.4236/jsea.2015.89048
https://doi.org/10.4236/jsea.2015.89048
https://doi.org/10.1109/APSEC60848.2023.00054
https://doi.org/10.1007/978-94-017-7358-4_3-1

Bibliography

[Sch+18]

[Sch09]

[Sch14]

[Sch19]

[Shi+24]

[SLH16]

[SS06]

[STF12]

[Sun+-08]

[Tapl5]

Alexander Schulz-Rosengarten, Reinhard Von Hanxleden,
Frédéric Mallet, Robert De Simone, and Julien Deantoni.
“Time in SCCharts”. In: 2018 Forum on Specification Design
Languages (FDL). 2018, pp. 5-16. poI: 10.1109/FDL. 2018.
8524111.

Klaus Schneider. The Synchronous Programming Language
Quartz. Internal Report 375. Kaiserslautern, Germany: Depart-
ment of Computer Science, University of Kaiserslautern, Dec.
2009.

Bernd Schréder. Steuerungstechnik fir Ingenieure. de. 2014th ed.
essentials. Wiesbaden, Germany: Springer Fachmedien, Sept.
2014.

Karl Schmitt. SPS-Programmierung mit ST: nach IEC 61131
mit CoDeSys und mit Hinweisen zu STEP 7 im TIA-Portal. de.
Nov. 2019.

Jianqi Shi, Yinghao Chen, Qin Li, Yanhong Huang, Yang Yang,
and Mengyan Zhao. “Automated Test Cases Generator for IEC
61131-3 Structured Text Based Dynamic Symbolic Execution”.
In: IEEE Transactions on Computers 73 (2024), pp. 1048-
1059. URL: https://api. semanticscholar . org/CorpusID:
266895399.

Steven Smyth, Stephan Lenga, and Reinhard von Hanxleden.
“Model Extraction of Legacy C Code in SCCharts”. In: FElec-
tronic Communications of the EASST 74 (Oct. 2016). DOI: 10.
14279/tuj.eceasst.74.

Klaus Schneider and Tobias Schuele. “A Framework for Verify-
ing and Implementing Embedded Systems.” In: MBMYV. 2006,
pp. 242-247.

Doaa Soliman, Kleanthis Thramboulidis, and Georg Frey. “Func-
tion Block Diagram to UPPAAL Timed Automata Transforma-
tion Based on Formal Models”. In: IFAC Proceedings Volumes
45 (2012), pp. 1653-1659.

Christoph Sunder, Monika Wenger, Christian Hanni, Ivo Gosetti,
Heinrich Steininger, and Josef Fritsche. “Transformation of ex-
isting TEC 61131-3 automation projects into control logic ac-
cording to IEC 61499”. In: 2008 IEEE International Confer-
ence on Emerging Technologies and Factory Automation. IEEE,
2008, pp. 369-376. 1SBN: 1424415063. DOL: 10.1109/ETFA.2008.
4638420.

Herbert Tapken. LOGO! - Lésungen. de. 5th ed. Haan, Germany:
FEuropa-Lehrmittel, Jan. 2015.

202

https://doi.org/10.1109/FDL.2018.8524111
https://doi.org/10.1109/FDL.2018.8524111
https://api.semanticscholar.org/CorpusID:266895399
https://api.semanticscholar.org/CorpusID:266895399
https://doi.org/10.14279/tuj.eceasst.74
https://doi.org/10.14279/tuj.eceasst.74
https://doi.org/10.1109/ETFA.2008.4638420
https://doi.org/10.1109/ETFA.2008.4638420

Bibliography

[TF11]

[Thr13]

[VK02]

[Wen+09a]

[Wen+09b]

[WEV09]

[Wir71]

[WS20]

[WS21]

Kleanthis Thramboulidis and Georg Frey. “Towards a Model-
Driven IEC 61131-Based Development Process in Industrial Au-
tomation”. In: Journal of Software Engineering and Applications
04 (04 2011), pp. 217-226. 1SSN: 1945-3116. DOIL: 10.4236/ jsea.
2011.44024M4-Citavi.

Kleanthis Thramboulidis. “IEC 61499 vs. 61131: A Comparison
Based on Misperceptions”. In: Journal of Software Engineering
and Applications 06.08 (2013), pp. 405-415. 1SSN: 1945-3124. DOI:
10.4236/ jsea.2013.68050. URL: http://dx.doi.org/10.
4236/jsea.2013.68050.

Norbert Voélker and Bernd Johann Kramer. “Automated Veri-
fication of Function Block Based Industrial Control Systems”.
In: Sci. Comput. Program. 42 (Jan. 2002), pp. 101-113. DoOI:
10.1016/3S1571-0661(04)00135-5.

Monika Wenger, Alois Zoitl, Christoph Siinder, and Heinrich
Steininger. “Semantic Correct Transformation of IEC 61131-3
Models into the IEC 61499 Standard”. In: 2009 IEEE Confer-
ence on Emerging Technologies Factory Automation. IEEE, Sept.
2009, pp. 1-7. 1SBN: 978-1-4244-2727-7. DOI: 10.1109/ETFA .
2009.5347144.

Monika Wenger, Alois Zoitl, Christoph Siinder, and Hein-
rich Steininger. “Transformation of IEC 61131-3 to IEC
61499 based on a model driven development approach”. In:
IEEE International Conference on Industrial Informatics
(INDIN). IEEE, 2009, pp. 715-720. 1SBN: 9781424437603. DOI:
10.1109/INDIN.2009.5195891.

Awang Noor Indra Wardana, Jens Folmer, and Birgit Vogel-
Heuser. “Automatic program verification of continuous function
chart based on model checking”. In: IECON Proceedings (Indus-
trial Electronics Conference). IEEE, Dec. 2009, pp. 2422-2427.
DOI: 10.1109/IECON.2009.5415231.

Niklaus Wirth. “The Programming Language Pascal”. In: Acta
Inf. 1.1 (Mar. 1971), pp. 35-63. 1ssN: 0001-5903. DO1: 10.1007/
BF00264291. URL: https://doi.org/10.1007/BF00264291.

Marcel Christian Werner and Klaus Schneider. “Reengineering
Programmable Logic Controllers Using Synchronous Program-
ming Languages”. In: Forum on Specification and Design Lan-
guages (FDL). Work in Progress. Kiel, Germany, 2020.

Marcel Christian Werner and Klaus Schneider. “Translation of
Continuous Function Charts to Imperative Synchronous Quartz
Programs”. In: 2021 19th ACM-IEEE International Conference
on Formal Methods and Models for System Design (MEM-
OCODE). 2021, pp. 104-110. DOI: 10.1145/3487212.3487338.

203

https://doi.org/10.4236/jsea.2011.44024 M4 - Citavi
https://doi.org/10.4236/jsea.2011.44024 M4 - Citavi
https://doi.org/10.4236/jsea.2013.68050
http://dx.doi.org/10.4236/jsea.2013.68050
http://dx.doi.org/10.4236/jsea.2013.68050
https://doi.org/10.1016/S1571-0661(04)00135-5
https://doi.org/10.1109/ETFA.2009.5347144
https://doi.org/10.1109/ETFA.2009.5347144
https://doi.org/10.1109/INDIN.2009.5195891
https://doi.org/10.1109/IECON.2009.5415231
https://doi.org/10.1007/BF00264291
https://doi.org/10.1007/BF00264291
https://doi.org/10.1007/BF00264291
https://doi.org/10.1145/3487212.3487338

Bibliography

[WS22]

[WS23]

[WS24a]

[WS24b)]

[WV04]

[WV09]

[WZ07]

(WZ12]

Marcel Christian Werner and Klaus Schneider. “From TEC
61131-3 Function Block Diagrams to Sequentially Constructive
Statecharts”. In: 2022 Forum on Specification € Design Lan-
guages (FDL). 2022, pp. 1-8. poI: 10.1109/FDL56239 .2022.
9925656.

Marcel Christian Werner and Klaus Schneider. “Formal
Methods-Based Optimization of Dataflow Models with
Translation to Synchronous Models”. In: 2028 Forum on
Specification € Design Languages (FDL). 2023, pp. 1-8. DOIL
10.1109/FDL59689.2023.10272138.

Marcel Christian Werner and Klaus Schneider. “From Imperative
Sequential Structured Text Models to Synchronous Quartz and
Sequentially Constructive Models”. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltun-
gen und Systemen (MBMYV). ITG-Fachbericht. Kaiserslautern,
Germany: VDE, 2024, pp. 164-174.

Marcel Christian Werner and Klaus Schneider. “PLCreX -
Open-Source Project for Simplification, Transformation, Anal-
ysis, and Validation of Programmable Logic Controllers”. In:
Methoden wund Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen (MBMYV). ITG-
Fachbericht. Kaiserslautern, Germany: VDE, 2024, pp. 182-
185.

Daniel Witsch and Birgit Vogel-Heuser. “Automatische Code-
generierung aus der UML fir die IEC 61131-3”. In: Eingebet-
tete Systeme. Ed. by Peter Holleczek and Birgit Vogel-Heuser.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 9-18.
ISBN: 978-3-642-18594-6.

Daniel Witsch and Birgit Vogel-Heuser. “Close integration be-
tween UML and IEC 61131-3: New possibilities through object-
oriented extensions”. In: 2009 IEEE Conference on Emerging
Technologies & Factory Automation (2009), pp. 1-6. URL:
https://api.semanticscholar.org/CorpusID: 15055648.

Glunter Wellenreuther and Dieter Zastrow. Automatisieren
mit SPS Ubersichten und Ubungsaufgaben - Von Grund-
verknipfungen bis Ablaufsteuerungen: STEP 7-Programmierung,
Lésungsmethoden, Lernaufgaben, Kontrollaufgaben, Ldsungen,
Beispiele zur Anlagensimulation. Berlin Heidelberg New York:
Springer-Verlag, 2007. ISBN: 978-3-834-89210-2.

Monika Wenger and Alois Zoitl. “Re-use of IEC 61131-3 struc-
tured text for IEC 61499”. In: Mar. 2012. por: 10.1109/ICIT.
2012.6209917.

204

https://doi.org/10.1109/FDL56239.2022.9925656
https://doi.org/10.1109/FDL56239.2022.9925656
https://doi.org/10.1109/FDL59689.2023.10272138
https://api.semanticscholar.org/CorpusID:15055648
https://doi.org/10.1109/ICIT.2012.6209917
https://doi.org/10.1109/ICIT.2012.6209917

Bibliography

[Xio+20]

[YKL13]

[Yoo+07]

[ZSM11]

Jiawen Xiong, Gang Zhu, Yanhong Huang, and Jianqgi Shi.
“A user-friendly verification approach for IEC 61131-3 PLC
programs”. In: Electronics (Switzerland) 9.4 (Apr. 2020). I1SSN:
20799292. DOI: 10.3390/electronics9040572.

Junbeom Yoo, Eui Sub Kim, and Jang Soo Lee. “A behavior-
preserving translation from FBD design to C implementation
for reactor protection system software”. In: Nuclear Engineering
and Technology 45.4 (2013), pp. 489-504. 1SSN: 1738-5733. DOI:
10.5516/NET.04.2012.085.

Li Hsien Yoong, Partha Roop, Valeriy Vyatkin, and Zoran Salcic.
“Synchronous Execution of IEC 61499 Function Blocks Using Es-
terel”. In: 2007 5th IEEE International Conference on Industrial
Informatics. Vol. 2. 2007, pp. 1189-1194. po1: 10.1109/INDIN.
2007 .4384944.

Justyna Zander, Ina Schieferdecker, and Pieter Mosterman.
Model-Based Testing for Embedded Systems. Sept. 2011. ISBN:
9781439818459.

205

https://doi.org/10.3390/electronics9040572
https://doi.org/10.5516/NET.04.2012.085
https://doi.org/10.1109/INDIN.2007.4384944
https://doi.org/10.1109/INDIN.2007.4384944

Appendix

Detailed Syntax and Semantics

Contents
A.1. IEC 61131-3 FBDs and ST Models 208
A.1.1. POU Variants and Declaration 208
A.1.2. POU Interfaces 209
A.1.3. Local Variablesin POUs 210
A.1.4. Elementary IEC 61131-3 Data Types and Fields 211
A.1.5. Expressionsin POUs 212
A.1.6. Conditions in ST Models 216
A1.7. Loopsin ST Models 216
A2, Quartz Models 217
A.2.1. Quartz Variants and Declaration 217
A.2.2. Module Imports 217
A.2.3. Quartz Interfaces 218
A.2.4. Local Variables in Quartz Models 219
A.2.5. Elementary Quartz Data Types and Fields 219
A.2.6. Expressions in Quartz Models 220
A.2.7. Abortions in Quartz Models 223
A.2.8. Assignments in Quartz Models 224
A.2.9. Await Statements in Quartz Models 224
A.2.10.Synchronous Concurrency in Quartz Models 225
A.2.11.Conditions in Quartz Models 225
A.2.12.Halt Statements in Quartz Models 226
A.2.13. Module Invocations in Quartz Models 226
A.2.14.Loops in Quartz Models 227
A.2.15. Nothing Statements in Quartz Models. 228
A .2.16.Pause Statements in Quartz Models 228
A.2.17.Sequences in Quartz Models 228
A3. SCLModels 229
A.3.1. SCL Variants and Declaration. 229
A.3.2. SCL Interfaces 229

207

Appendix A: Detailed Syntax and Semantics

A.3.3. Local Variables in SCL Models 230
A.3.4. Elementary SCL Data Types and Fields 230
A.3.5. Expressions in SCL Models 231
A.3.6. Assignments in SCL Models 234
A.3.7. Conditions in SCL Models 235
A.38. Loopsin SCLModels 235
A.3.9. Pause Statements in SCL Models 236
A.3.10.Sequences in SCL Models 236
A.4. Data-Flow Oriented SCCharts 237
A.4.1. Data-Flow Oriented SCCharts Declaration 237
A.4.2. Local Variables in SCCharts 237
A.4.3. SCChart Imports 238
A.4.4. Synchronous Concurrency in Data-Flow Oriented SC-
Charts e 238
A.4.5. Module Invocations in Data-Flow Oriented SCCharts . 239
A.4.6. Sequences in Data-Flow Oriented SCCharts 239
A.5. Control-Flow Oriented SCCharts 239
A.5.1. Control-Flow Oriented SCCharts Declaration 239
A.5.2. Abortions in control-flow oriented SCCharts 240
A.5.3. Await Transitions in control-flow oriented SCCharts . . 241
A.5.4. Synchronous Concurrency in control-flow oriented SC-
Charts e 241
A.5.5. Conditions in control-flow oriented SCCharts 241
A.5.6. Halt Statements in control-flow oriented SCCharts . . . 243
A.5.7. Loops in control-flow oriented SCCharts 243
A.5.8. Immediate Transitions in control-flow oriented SCCharts 246
A.5.9. Pause Statements in control-flow oriented SCCharts . . 246
A.5.10.Sequences in control-flow oriented SCCharts 246

A.1. TEC 61131-3 FBDs and ST Models

A.1.1. POU Variants and Declaration

Syntax of POU elements

PROGRAM a,, (whoy)

o Su(Wlb) Y [Dua(@B)] [Daa(whod)] [S(whid)]

END_PROGRAM

FUNCTION_BLOCK an(wpou

def b
b 5 (wPOU - [zdcl(wpou)] ['udcl(wpou)] [Z(w;)cou]
END_FUNCTION_BLOCK
FUNCTION a,(wii’) [: a]
) (Jun d:ef A fun fun
w \Wpou [zdcl(wpou :| [vdcl(wpou)] [Z(wpou]

END_FUNCTION

208

A.1. IEC 61131-3 FBDs and ST Models

Semantics of POU elements

o [6,(whot)]e L { defines a POU element whos with X(whoy), started at

time ¢ with initial conditions set by Ajgq(whos) and Ayge(whes) when
invoked, terminating at time t + 6 and preserving internal state across
invocations by a resource, i.e., whyy, has memory }

. ﬂéw(wggu)]]g f { defines a POU element w}:gu with E(wggu), started at
time ¢ with initial conditions set by Aidd(wggu) and Avdcl(wggu) when
invoked, terminating at time t + 6 and preserving internal state across
invocations by another POU element, i.e., w;ff,’u has memory }

. ﬂéw(wggf)¢ def { defines an ST model element w$§£ with Z(w},cgf) and

optional output of data type «, started at time ¢ with initial conditions
set by Aidcl(w};gf) and Avdcl(wgéﬁl) when invoked, terminating at time
t + 6 and not preserving internal state after invocation by another POU
element, i.e., wggf has no memory }

A.1.2. POU Interfaces
Syntax of POU interfaces

VAR_INPUT
o x1 ag+][:=w1];
€
° Am (Wgou) =
Ty 04£L+][:=wn];
END_VAR
VAR_OUTPUT
i Ty a&ﬂ [:=w1];
€
o Ajut (wgou) =
T, a%+][:=wn];
END_VAR
VAR_IN_OUT
2 olt]
def te Lo
L Ainout (wgou) =
e ol
n . n H
END_VAR
Semantics of POU interfaces
o [Ain(wiou)le def { defines a set of variables z1,...,z, with corresponding
data types [[agﬂ]]g, ceey [[ak]]]g. These variables are assigned to optional
predefined default values [wi]e, ..., [wn]e or to externally supplied val-

ues at time ¢t when w,fou is invoked. Their values cannot be modified
until wy,, terminates at time ¢+6, i.e., all instructions of wpy, have been
processed in the current PLC cycle. }

209

Appendix A: Detailed Syntax and Semantics

o [Asut(wiou)]e def { defines a set of variables z1,...,x, with correspond-

ing data types [[a£+]]]£, e, [[aT[;]]]g. These variables are assigned to op-
tional predefined default values [wi]e, ..., [wn]e at time ¢ when wyo,
is invoked, and passed to invoking element with final computed values
when w)y, terminates at time ¢+6, i.e., all instructions of wy,, have been
processed in the current PLC cycle. }

[Ainout (wWiou) e et { defines a set of variables 1, ..., z, with correspond-

ing data types [[aEJr]]]g, e, [[ak]]]g. These variables are assigned to ex-
ternally supplied values at time ¢ when wy,,, is invoked. Their values can
be modified until wpy, terminates at time ¢ + 6, i.e., all instructions of
wpou have been processed in the current PLC cycle, and then passed to
invoking element }

A.1.3. Local Variables in POUs

Syntax of local variables in POUs

def
L Az'nst‘(('ﬂ);fou) =

VAR
Ty ag+][:=w1];
L4 Aloczzl(wgou) d:ef
Ty - a7[1+][:=wn];
END_VAR
VAR

x1 : an(ky);

T ¢ an(kn);
END_VAR

Semantics of local variables in POUs

o [Apocar(wpou)]e def { defines a set of variables x1, ..., z, with correspond-

ing data types [[agﬂ]]g, cey [[a£l+]]]§. Depending on the POU variant, the
variables keep their values from previous invocation or are assigned to
optional predefined default values [w]e, ..., [wy]e at time ¢ when wyo,
is invoked. These variables can be modified and processed locally un-
til wpoy terminates at time ¢ + 6, i.e., all instructions of wyy,, have been
processed in the current PLC cycle. }

[Ainst(wpou) e &« { defines a set of instances x1,...,xz, of correspond-
ing POUs with memory [an(k1)]e, ..., [an(kn)]¢, that can be processed
locally between wlfou was invoked at time ¢ and w,fou terminates at time
t+6, i.e., all instructions of wjy, have been processed in the current PLC
cycle. }

210

A.1. IEC 61131-3 FBDs and ST Models

A.1.4. Elementary IEC 61131-3 Data Types and Fields
Syntax of elementary IEC 61131-3 data types and fields

Syntax of bit vector data types ap,(wiou) € Apy (Whou):

o ol (why) = def {BOOL} denotes Boolean values
b def
° abgte (Wpou) = <

o al(wh,) = def {WORD} denotes two byte bit masks

{BYTE} denotes single byte bit masks

Syntax of integer data types a;(wiou) € Ai(Wiou):

o a"(wh,) = def {INT} denotes bounded signed integers
. af‘"t(w}fou) f {DINT} denotes bounded signed double integers
o alint(wf) def {UINT} denotes bounded unsigned integers

udint

o (W) = def {UDINT} denotes bounded unsigned double integers

(2

Syntax of floating-point data types a,(wpou) € Ar(Whou):

o alc(wh,) = def {REAL} denotes floating-point values

Syntax of numeric data types aupum (wpou) € Ai(Whou) U Ar(wiou):
L anum(“ﬁ)ﬂ) € {O‘i(w}fw)a O‘T(wﬁfou)}

Syntax of duration data types agur (Wiou) € Adur (Wiou):

def

o g (Whou) =

{TIME} denotes interval value in milliseconds
Syntax of data type fields o™ (wjou) € A" (wpou):

def

e o (whou) = {ARRAY[0..n] OF a(wjou)} denotes arrays

Semantics of elementary IEC 61131-3 data types and fields

Semantics of bit vector data types ap, (Wpou) € Apw (Wpou):

o [abool(win)]e dgf({false true}, false)
e ef
hd [[abyt (pou)]]f = <{Oohexaffhez’} oohex)

def <

o [arord(win)]e = ({0000nes, £E£Epes }, 00004,)

Semantics of integer data types a;(wpou) € Ai(Whou)
def
o [oi™(whou)]e = ({-2"°,2"° -1},0)
def
b [[a;imt(w;’ou)]]{ =e <{_231¢ 231 - 1}7 0)
; def
b [[O‘Z‘“m(wfoun]& = <{07216 -1},0)

211

Appendix A: Detailed Syntax and Semantics

; def
b [[a?dlnt(wfou)ﬂf = ({07 232 - 1}7 O>
Semantics of floating-point data types oy (wyou) € Ar(wpou):
o [ared(wim)]e def ({single precision floating-point (32 Bits)},0)
Semantics of duration data types agur(Wpou) € Adur (Whou):

o [olime(wiva)]e € ({0,2%2 - 1},0)

Semantics of data type fields ot (wpou) € A* (Wpou):

o [(wWhou)]e def { group with n + 1 elements of data type a(wpou)}

A.1.5. Expressions in POUs
Syntax of expressions in POUs

Syntax of constants and general expressions Toisc(Wpou) € Tmise(Whou):

def
o 7! (whou) = {x} denotes a value constant

o 7o po’u,) "{y} denotes an identifier y

. mzsc(Whou) = & {(7(wpou)) } denotes a bracket

o TITUE (wh) = def {TRUE} denotes a true-constant

o a8 ,) < {FALSE} denotes a false-constant
o U (Whou) = e {z[n]1} denotes access to index n of array x
o T (why) = wf {z .y} denotes access to port y of instance x

Syntax of comparison operators Teomp(Wpou) € Teomp(Whou):

e = 5 'f = st
b Tcomp(wpou) def {Wl 7r2} 1 L denotes equality
{EQ(my,m) }, if ¢ e{st, fbd}

def [{m <> m}, ifp=st

) denotes inequality
{NE(my,m9)}, if pe{st, fbd}

comp (Wpou)

b 7—comp((f‘)pou) denotes greater than

{GT(my,m) }, if pe{st, fbd}

{7T1 >= 7T2} ingZSt

def
o T denotes greater than/e-
comp (Wou) = {GE(m1,m)}, if e {st, fbd} & /
qual to
dof [{m < m}, ifp=st
° Comp(Whou) = denotes lower than

def{{m > mo}, if p=st

{LT(7T1,7T2)} ifcpe{st,fbd}

212

A.1. IEC 61131-3 FBDs and ST Models

det | {m <= m},
b comp(pou)
{LE(7T1,7T2)},

qual to

if op=st
if p e {st, fbd}

denotes lower than/e-

Syntax of arithmetic operators Tuith (wiou) € Tarith (Wiou):

{MUL (71, 7m2) },

; def |{m * ma},
o Tonith(Whou) = {
tion

{m / n2},

° dw(ou) def
Tarith\Wp {DIV(T(l,ﬂ'g)}

add {m + m},

def
i amth(pou) {{ADD(TM ,71'2)}

{m - ne}
{SUB(m; ,7r2) },

def
o Torimn(Whou) =

{777"] k¥ 772}

t def
o Tt (Whou) =

tial function

mod (w) def {771 MOD 772}
ou

Tarith \Wp {MOD (771 ’?72) } ’

tion

{EXPT(1)y1,m2) },

if p=st
Hp=s denotes a multiplica-
if p € {st, fbd}
if p=st
if p € {st, fbd}
if p=st
if p € {st, fbd}
if p=st
if p € {st, fbd}
if p=st
if p € {st, fbd}

denotes a division

denotes an addition

denotes a subtraction

denotes an exponen-

if o=st
if p e {st, fbd}

denotes a modulo func-

° Tamh(wpou) = { 71} denotes an unary minus

Syntax of bitwise operators Ty, (wpou) € Tov (Whou):

M & ... & M\), if = st
o TId(wh,) = def {\1 AND ... AND \,}, ifp=st denotes a con-
{AND(A1, ..., A\n)), if o € {st, fbd}
junction
o def J{A\1 OR ... OR A}, if p=st .
o 2 (wpou) = {{OR()\l A} if e {st, fod) denotes a disjunc-
tion
zor @ - def {)\1 X0R)\2}, if p = st .
o 7o (Whou) = (XOROG, M)} if € (st fbd) denotes an exclusive or
if op=st

ot [{NOT At}
o () L 0T A1)
{NOT (A1) },

denotes a negation

if o e {st, fbd}

Syntax of conditional operators Teond(wpou) € Teond (Wpou):

sel @ def

e T pou

cond

{SEL()\b 1,772 } denotes a conditional operator

213

Appendix A: Detailed Syntax and Semantics

Type system of expressions in POUs

Type system of comparison operators Taomp(wWpou) € Teomp(Wpou), considering
v € {eq,ne, gt, ge,lt,le}:
: Oé(w;;ou) T2 - a(w;:ou)

Tcomp (Wpou) abZOl (WPOU)

Type system of arithmetic operators 7, ... (wjou) € Tarith(Whou), considering
v € {mul, div, add, sub,um}:

m : Cnpum (w;fou) [772 P Opum (wgou)]

T,;y”‘th (w;fou) * Opum (Wgou)

Type system of modulo operator Tg;fgl (wpou) € Tarith (Whou):

771i : al(wpou) 77% : O‘i(wzfou)
Tano (Whou) * @i(Wiou)

Type system of exponential function operator TSfﬁZ(wpou) Tarith (Whou):

77{ : ar(wpou) T2 - anum(w;fou)
t
;fgh (whou) * e (Wiou)

Type system of bitwise operators Tl;L (wiou) € Tow(wWpou), considering v € {and,
or,xor,not}:
>\1 : abv(wgou) [/\2 Oy (Wgou) >\n F Oy (wgou)]

Tbv (Whou) : O‘bgOl (Wiou)

Type system of conditional operator Tcsoefl 2(Wiou) € Teond(Whou):

A\ ozzz"l(w;fou) 71 a(wpou) T2 a(Wiou)
(f;éd(wpou) a(“pOU)

Semantics of expressions in POUs

Semantics of constants and general expressions Timisc(Wpou) € Tmisc(Wpou):

[re(wima)le < [2]e

o [720 (whou)]e €'y

o [(whon)]e d—ef (Tmise (o))
o [rire (whn)]e ' true

o [l (whon)e = False

o [727 (o) e < [In]]

o [(who)e € [k 2],

214

A.1. IEC 61131-3 FBDs and ST Models

Semantics of comparison operators Teomp(Wiou) € Teomp(Wpou):

def

o [meomp(wpou)]e = [[7"1]]5 = [W2H§

[comp(wpou)]]f - [[71—1]]5 * [[WQ]]g

[[Tcomp(wpou)]]f [[7"1]]5 > [W2H§

[rsmp(Who)]e €' [m1]le >= [

[[comp(wpau)]]f - [[71—1]]5 < [[7-(2]]5
e [, comp(wpou)]]é [[”1]]5 <= [[72]]5
Semantics of arithmetic operators Tarith (Whou) € Tarith (Whou):

o [77 (wh)]e = [me - [nee

di def [m]
[7arien (whou)]e = 77;]]2

Tt (Whou)le = [m]e + [nale

;Zzh(WpOU)]]é [[771]]5 - [[772]]5
ex def [n2]
b [[Tarﬁ];(pOU)]]é [n]] ke

o def 4 i
[[Tamth(wgou)]]{ = [[771]]5 mod [[772]]5

def

* [[arzth(wpou)]]§ _[[Ul]]g

Semantics of Boolean operators Ty, (Wpou) € Tou (Whou):

o [(wima)le € e A A Dle

i [[Tl?r(wpoum& = [P\l]]fv v [Anle
o [(who)le €' [M]le @ [Mo],

def

o [(wiou)]e = —~[M]e

Semantics of conditional operators Ts;ll 2(Whou) € Teond(Whou):

[mile, if [A"]e = true

[m2]e, otherwise

def
o [Tomna(whou)le = {

SOS transition rules of expressions in POUs

o (&, 7(wWhu)) —> (nothing, {[r ()¢}, true)

215

Appendix A: Detailed Syntax and Semantics

A.1.6. Conditions in ST Models

Syntax of conditions in ST models

(W) IF \(o® (wf)) THEN %4(o? (w%))
Teond (& END_IF

Site d:ef IF \°(oife (wf)) THEN X4(o'f (w))
Tcond ¥ ELSE Xo(0™¢ (w%)) END_IF

SOS transition rules of conditions in ST models

SOS transition rules of o (w?) e X% (w?):

[[)\b]]é = true A (&, El) (nothing, D1, true)
. (¢ { IF A\’ THEN ¥,

END. TF }) LN (nothing, D1, true)
[[)\b]]€ false A {(£,31) —» (nothmg,{} true)

¢ IF A\’ THEN %y |, T .
(€ { END_IF }> — (nothing, {}, true)

SOS transition rules of o€ (w?) e X (w?):

[[)\b]]g = true A (&, Zl) (nothing, D1, true)

o (€ IF A\’ THEN Y,
ELSE Y, END_IF

}) I, (nothing, D1, true)

[[)‘bﬂg = false A (€, X2) —> (nothmg,Dg, true)
i (€ { IF A\’ THEN ¥,

T .
ELSE Y, END_IF }> —> (nothing, Dy, true)

A.1.7. Loops in ST Models

Syntax of loops in ST models

t
st -

(o2
loop UNTIL Ao(o] o (wh)

b d
o ohend (o det [WHILE N (oead(wh)) DO
loop \“st S(opesd(ws)) END WHILE

SOS transition rules of loops in ST models

SOS transition rules of Ul];f;f(wﬁ) € El];‘g(wﬁ):

216

A.2. Quartz Models

(&,%) N (nothing, D, true)

(e REPEAT X)_11'»
o | UNTIL \°

. WHILE NOT)\’ DO
(nothing, {D,{ D END WHILE }},true)

s head(, \® head (, ¥ \.
SOS transition rules of oy (w;) € Xy (wy):

[[)‘b]]g = true A (£, %) N (nothing, D, true)
(€ WHILE \° DO) T
"] ¥ END_WHILE

[)
. WHILE A’ DO
(nothzng,{?l{ D END WHILE }},true)
[[)\b]]g = false
° WHILE \° DO T .
<§’{ 5} END_WHILE }) —> (nothing, {},true)

A.2. Quartz Models

A.2.1. Quartz Variants and Declaration

Definition A.1 (Syntax of Quartz elements). A Quartz module is de-
clared as follows [Sch09]:

[Aimports (quz)]
def module an(wqm) ([Aidcl (wqrz)]) {
® 0, (quz) = [Avdcl(wqrz)]
[E(wgrz)]
}

Definition A.2 (Semantics of Quartz elements). The semantics of wg,-
are defined as follows [Sch09]:

o [0u(wgr2)]e d:ef{ defines a Quartz model element wqr, with X(wgz),
started at time t with initial conditions set by Ajgei(wgrz) and Ayger(wWqrz)
when invoked, terminating at time t + 6 and preserving internal state
across macro steps. }

A.2.2. Module Imports

Definition A.3 (Syntax of Quartz model imports). Imported Quartz

models are grouped as a set AimPOTts(wqrz), whose syntax is defined as follows
[Sch09):

import xi.*;
def | .
L Aimpm"ts(wqrz) = :

import x,.*;

217

Appendix A: Detailed Syntax and Semantics

Definition A.4 (Semantics of Quartz model imports). The semantics
of Dimports(Wqrz) are defined as follows [Sch09)]:

o [Aimports(wgrz)]e d=€f{ defines a set of imported Quartz models x4, ..., Ty,

that can be instantiated and invoked by wer-. }

A.2.3. Quartz Interfaces

Definition A.5 (Syntax of Quartz interfaces). The syntaz of Aj,(werz),
Aout(Wgrz), and Njpout(wgrz) is defined as follows [Sch09]:

]

[event] ozEJr ?x1

d
i Azn (wqrz) :ef

[+]

[event] ay - 7z,

[+]

[event] a; * '

d
L4 Aout (wqrz) :ef

[+]

[event] o5 " 'z,

[+]

[event] o7 o7

L4 Ainout (quz) =

]

[event] oz,[;r Tn,

Definition A.6 (Semantics of Quartz interfaces). The semantics of
Ain(Wgrz)s Dout(Wyrz), and Ajpout(wer>) are defined as follows [Sch09]:

o [Ain(wgrz)]e d:ef{ defines a set of variables x1, ..., x, with corresponding

data types [[erJr]]]g, e [[04,[:]]]5. These variables are assigned to externally
supplied values at time t when wq,. 1s invoked. Their values can be
modified until wq,. terminates at time t+0, i.e., all instructions of Wy,
have been processed. Variables classified as event wvariables are reset to
their default values if they are not assigned in the current macro step. }

[Aout (wgrz)]e d:ef{ defines a set of variables x1,. .., T, with corresponding

data types [[agﬂ]]g, ceey [[ak]]]g. These variables can be updated until wg, .
terminates at time t + 0, and are passed to invoking element in each
macro step. Variables classified as event wvariables are reset to their
default values if they are not assigned in the current macro step. }

[Ainout (wWgr2) e d:ef{ defines a set of variables x1, . .., x, with correspond-

ing data types [[agﬂ]]g, ey [[ak]}]g. These variables can be read and up-
dated until wgr, terminates at time t + 60, and are passed to invoking
element in each macro step. Variables classified as event wvariables are
reset to their default values if they are not assigned in the current macro

step. }

218

A.2. Quartz Models

A.2.4. Local Variables in Quartz Models

Definition A.7 (Syntax of local variables in Quartz models). The
syntax of Ajpeai(werz) s defined as follows:

]

[event] aEJr 1]

L4 Alocal(wqrz) = n
+

[event] g ' xp;

Definition A.8 (Semantics of local variables in Quartz models). The
semantics of Njocal(wWqr2) are defined as follows:

o [Apcar(wgrz)]e d:ef{ defines a set of variables x1,...,x, with correspond-

ing data types [[Ozgﬂ]]g, e [[ak]}]g. These variables can be read and up-
dated internally in every macro step until wgy,, terminates at time t+ 6.
Variables classified as event variables are reset to their default values if
they are not assigned in the current macro step. }

A.2.5. Elementary Quartz Data Types and Fields

Definition A.9 (Syntax of elementary Quartz data types and
fields). The syntaz of a(wgrz) € A(wgrz) and a* (wgr») € A" (wgr) is defined
as follows [Sch09]:

Syntax of bit vector data types cuy(Wgrz) € Apy(Wrz):

d
o)% (wyr2) Lef {bool} denotes Boolean values

Syntazx of integer data types ov(wgrz) € Ai(wWgrz):

° aﬁ”t(wqm) dzef{int{n}} denotes bounded signed integers

Syntaz of integer data types oi(wyrz) € Ai(wWgrz):

° a%‘mt(wqm) def {nat{n}} denotes bounded unsigned integers

Syntaz of floating-point data types o (wWgrz) € Ar(Wgrz):

o o’ wg,.,) £ {real} denotes floating-point values
Syntaz of numeric data types apum(Werz) € Ai(wgrz) U Ar(Wgrz):
° Oénum(wqrz) € {ai(quZ)a ar(‘*’qm)}
Syntaz of duration data types ogyr(wWqrz) € Adur(Wgrz):
° afﬂ}e(wqm) o {nat} denotes interval value in unbounded integer

Syntaz of data type fields o (wqr.) € A" (wWgr2):

219

Appendix A: Detailed Syntax and Semantics

o o (wgrz) d:ef{[n]a(wqm) y} denotes arrays

Definition A.10 (Semantics of elementary Quartz data types and
fields). The semantics of a(wgrz) € A(wgrz) and o™ (wgrz) € A" (wqrz) are
defined as follows [Sch09]:

Semantics of bit vector data types oy (Werz) € Apy(Wgrz):

° [[CVZZOZ(quz)]]£ dgf({false,true},false)

Semantics of integer data types oi(wqrz) € Ai(wgrz):

o [(wers)]e dﬁf<{—n n-1},0)
L [[O‘umt(wqrzn]f ({0 n- 1} 0)

Semantics of floating-point data types a,(wgrz) € Ap(wgrz):

o [y (wgr)]e dgf({single precision floating-point (32 Bits)},0)
Semantics of duration data types oy, (Wgrz) € Adur (Wpou)

def

o [agin (wer:)]e = (N, 0)

Semantics of data type fields a* (wgrz) € A (wgrz):
o [af (wgr2)]e d:ef{ group with n elements of data type a(wqr»)}

A.2.6. Expressions in Quartz Models

Definition A.11 (Syntax of expressions in Quartz models). The

syntax Of Tmisc(wqrz)y 7—comp(wqrz), %rith(wqrz); %v(wqr‘z)y and 7::ond("‘)qrz) 18
defined as follows [Sch09]:

Syntax of constants and general expressions Tmisc(Wqrz) € Tmisc(Wqrz):

o ﬁfltsc(wqrz) = {x} denotes a value constant x

o mwc(wqw) = {y} denotes an identifier y

o mlsc(cum) = {(T(wqm))} denotes a bracket

o ﬁfb’;fc(wqrz) = {true} denotes a true-constant

. Tﬂi‘f(wqm) = {false} denotes a false-constant

. %Zc(wqrz) = {.CL‘ [n]} denotes access to index n of array x

Syntazx of comparison operators Teomp(Warz) € Teomp(Werz):

. Tcomp(wq’rz) {7r1 == my} denotes equality

220

A.2. Quartz Models

o comp(wq’f’z) = {711 = 7} denotes inequality

° Tcomp(wqm) {711 > my} denotes greater than

. Tcg,fmp(wqrz) = {7r1 >= my} denotes greater than/equal to

o Comp(qm) = {7r1 < ma} denotes lower than

. comp(wqrz) = {7r1 <= my} denotes lower than/equal to
Syntaz of arithmetic operators Taritn(Wgrz) € Tarith(Werz):

. Tg’;;‘tlh(wqrz) {7)1 * 1} denotes a multiplication

div

hd amth(wqrz) = {771 / n2} denotes a division

gfﬁh(wqm) = {771 + 19} denotes an addition

;Qflbth(wqrz) = {771 - 12} denotes a subtraction

;fﬁl;l(qrz) {exp(m 1,72) } denotes an exponential function

o gﬁfgl(wqm) = {17” % mi2} denotes a modulo function

e T

amh(wqm) = { m} denotes an unary minus

Syntaz of bitwise operators Ty, (wgrz) € Top(Werz):

. Tlf”d(quZ) def{)\l ... & \,} denotes a conjunction
o 74y (Wgrz) def{)\l | ... | A} denotes a disjunction
o o (wqm) def {A\1 = Ao} denotes an exclusive or

® T Ot(wqrz) = {')\1} denotes a negation

Syntaz of conditional operators Teond(Wqrz) € Teond(Wqrz):

° Tcond(wqm) = {)\b7771 7'('2)} denotes a conditional operator

Definition A.12 (Type system of expressions in Quartz models). The
type system of T(wqrz) is defined as follows [Sch09]:

Type system of comparison operators Tgomp(wqm) € Teomp(wWqrz), considering
v € {eq,ne, gt, ge,lt,le}:

e a(wqrz) T2 - a(wq'rz)

7—gomp (wqrz) : OégzOl (quz)

Type system of arithmetic operators 7 .. (wWqrz) € Tarith(Werz), considering
~ € {mul, div, add, sub,um}:

M : Onum (quz) [772 P Opym (quz)]

Tc?m‘th (wqm) * Onum (wqrz)

221

Appendix A: Detailed Syntax and Semantics

Type system of modulo operator T amﬁl(wqm) € Tarith(Wgrz):

77{ : O‘i(quZ) 77; : O‘i(wqw)
Tantth (War) * @i(wars)

Type system of exponential function operator Tefzzz (wWqrz) € Tarith(wgrz)

7771« Oy (Wq'rz) N2 Cpym (Wq'rz)
expt
Tarith (Warz) = ar(wgrz)

Type system of bitwise operators T&}(wqrz) € Tow(wgrz), considering v € {and,
or,xor,not}:
At abv(wqrz) [)\2 F Oy (wqrz) o AptQupy (quz)]

Ty (Warz) : 00 (wgr2)

Type system of conditional operator 7% (wyr») € Teond(Wars):

AP ai’g"l(wqm) T a(wgrs) T2 a(wgrs)

Ts:rlLd (Warz) * aWgrz)

Definition A.13 (Semantics of expressions in Quartz models). The
semantics of T(wqrz) € T (wgrz) are defined as follows [Sch09]:

Semantics of constants and general expressions Tmise(Wqrz) € Tmisc(Wqrz):

o [o(wgr)]e @ [2]e

. def
[[Trzndisc(quZ)]]ﬁ = Yy

[]

s IITTbmsc(quZ)]]ﬁ (Tmlsc(wq'rz))
o [l (wer)e < true
-M%ﬁ%wk:wa

° [[%gc(wqm)]]g = [[«’E[n]]]g

Semantics of comparison operators Teomp(Warz) € Teomp(Warz):

o [rhmp(wera)le @ [mile = [m2],

[72p (wr2)]e € [mil # [

[[ngmp(wqm)]]i & [[Wl]]f > [[772]]6

[y (war)le € [male >= [ma,

[72 i (war:)le & Tl < [

[(ar:)le € [malle <= [m2,

Semantics of arithmetic operators Torith(Warz) € Tarith (Wqrz)

222

A.2. Quartz Models

7 (war)le © Tl - Inale

def [m]
arzth(wqr?«')ﬂﬁ [[Z;]]Z

[,
[,
® [[amth(quZ)]]E :e [[771]]5 + [[772]]5
[7ar amt n(wWarz) e e [[771]]5 - [[772]]5
o [t (wgr) e < T
o [rino (war=)]e e [Wl]]g mod [[773]]5
[[arzth(quZ)]]f d:ef_[[nl]]ﬁ
Semantics of Boolean operators Ty, (werz) € Ton(Werz):
. ﬂﬁ?”d(wqrz)]]s Il n- A Dl
o [(wgrz)le e [[)‘1]]5 Ve v A e
o [(war)le @ Pale @ Dol
o [t (war)le < -Dule

Semantics of conditional operators Tcond(wqrz) € Teond(Wqrz):

se def | [m1lle, if [\°]¢ = true
cmlzd(quZ)]]ﬁ ¢ ¢
[ma]e, otherwise

Definition A.14 (SOS transition rules of expressions in Quartz mod-
els). The SOS transition rules of T(wgrz) € T (wgr») are defined as follows
[Sch09):

o (6, 7(wgr2)) —> (nothing, {[7(wer=)]e}, true)

A.2.7. Abortions in Quartz Models

Definition A.15 (Syntax of abortions in Quartz models). The syn-
tax of strong delayed abortions X9 (wer>) and strong immediate abortions
S (wers) is defined as follows [Sch09):

abort
d
° agzgrt(wqrz) ' abort Y(wgrz) when()\b(wqm)); denotes a strong de-
layed abortion

oM (w qm) = immediate abort Y(wg.) when(\(wy.)); denotes a

stmng immediate abortion

Definition A.16 (SOS transition rules of abortions in Quartz mod-
els). The SOS transition rules of strong delayed abortions X\:9 (wer>) and

strong immediate abortions X" (wy,) are defined as follows [Sch09):

.y . reg reg .
SOS transition rules of 0,7 (wWerz) € X7 (Werz):

223

Appendix A: Detailed Syntax and Semantics

(£,%) LN (nothing, D, true)
(¢,{abort ¥ when(\’);}) LN (nothing,D true)

(&,2) — (E’ D, false)

[]
immediate abort X'

(¢, {abort ¥ when(\’);}) N ({ when(\?); },D, false)

SOS transition rules of o™ (wgrz) € ST (wgrs):

. [A]¢ = true
(5,{ illxir:zc(i)i\?;e abort }) N (nothing,{},true)
[A\]e = false n (€, E) (nothing, D, true)
(5,{ ;ﬁr:relc(i)l\?;e abort }) LN (nothing, D, true)
. [A\e = false A (€,5) —> L (3, D, false)

immediate abort X T immediate abort X'
<§7{ when(\"); }) <{ when(\"); },D, false)

A.2.8. Assignments in Quartz Models

Definition A.17 (Syntax of assignments in Quartz models). The syntax
of MM (wyy) € NI (W) and 03 (wyrs) € S (wyrz) ds defined as follows
[Sch09]:

o (wars) ©{ @ = 75)

mmm

— emit(z) = 0,00 (Wgrz) <= T =true

b ggls(wqrz =ef{ next(g;) = T(l’); }

Definition A.18 (SOS transition rules of assignments in Quartz mod-
els). The SOS transition rules of oo™ (wWyr) € B (Wyr) and o2 (wy,.) €
Ede

tes(wgrz) are defined as follows [Sch09):

o (6,0 2o (nothing, {[w]e = [7]e}, true)
o (&%) > (o = [r(@)]e}, [7(2)]e, true)

A.2.9. Await Statements in Quartz Models

Definition A.19 (Syntax and SOS transition rules of await state-
ments in Quartz models). The syntaz of strong delayed await statements
Yo (wgr2) and immediate await statements S (w,,,) is defined as follows
[Sch09]. The SOS transitions rules are derived from equivalent constructs:

224

A.2. Quartz Models

d .
Tasa(wgrz) “ await (\(wgr2)) ; denotes a strong delayed await state-

ments
— Ogsa(wgrz) == do pause; while(!)\b(wqm));
— Ogsa(wgrz) = abort halt; When()\b(wqrz));

'me def

hd ass (quZ)
await statements

immediate await()\b(wqm)); denotes an immediate

— Ué’s’gm(wqm) = while(!\’(wy,)) pause;

— oM (y,,,) = immediate abort halt; when(A\’(wgr.));

A.2.10. Synchronous Concurrency in Quartz Models

Definition A.20 (Syntax of synchronous concurrency in Quartz mod-
els). The syntax of a synchronous parallel statement Xeonc(wqrz) is defined as
follows [Sch09]:

d
L4 Econc(quz) zele(quZ) || 22(wq7"2)

Definition A.21 (SOS transition rules of synchronous concurrency in
Quartz models). The SOS transition rules of a synchronous parallel state-
ment Leonc(werz) are defined as follows [Sch09]:

(€,51) —> (20, D1, 1) A (€, D) —> (55, Da, f)
(€451 || T2}) —> ({Z} || S5, D1UDs, fi A fo)

A.2.11. Conditions in Quartz Models

Definition A.22 (Syntax of conditions in Quartz models). The syntaz
of Ucond(wst) € Econd(w;pt) and o't (w%) € T (w¥) is defined as follows
[Sch09):

def it ()‘b(acond(wqrz))) {
® O-cond(wqrz) z:1(0-0011d(wq7'z))

}
if (0% (W) DA

cond

21 (Ucond(quZ))
}elseq

22 (Ucond (quZ))

def
® cond(wqrz)

¥

Definition A.23 (SOS transition rules of conditions in Quartz
models). The SOS transition rules of o (wgrz) € L% (wgrs) and
ole (wgrz) € B1¢ (wqr2) are defined as follows [Sch09):

O cond

SOS transition rules of o (werz) € 22 (wgrz):

225

Appendix A: Detailed Syntax and Semantics

[\ = true a (€, 51) —> (1, Dy, f1)
(& (1) {21})) = (1. D1 7o)

[[)\b]]£ = false A (&, 21) (nothing, {}, true)
(& ,{1f()\b){21}}) —> (nothing, {}, true)

SOS transition rules of aii%d(wqrz) e X (wgrs):

[M]¢ = true n(€,51) —> > (S, Dy, i)
. i£(\)) {2 ,

o] i b e

[\] = false A (€, 55) —> (25, Da, o)
o if(\){Z T

<f,{ Lelso (S} }) —> (35, Dy,)

A.2.12. Halt Statements in Quartz Models

Definition A.24 (Syntax and SOS transitions rules of halt state-
ments in Quartz models). The syntar of halt statements Xpqt(werz)
is defined as follows [Sch09]. The SOS transitions rules are derived from
equivalent constructs:

d .)) .
o Opait(Wgrz) e halt; denotes an infinite loop doing nothing

— Ohait(Wgrz) = do pause; while(true);

A.2.13. Module Invocations in Quartz Models

Definition A.25 (Syntax of Quartz module invocations). The
syntax of Quartz module invocations of a non instantiated module

mu(wqrz) € Emu(wqrz) and of an instantiated module Umu(wqrz) € Emv(wqrz)
is defined as follows, where k represents the module and x the instance name:

R Umv(wqm) def {k(I(Umv(wqrz))7O(szq;v(wqm)))[?]} denotes a Quartz
module invocations of a non instantiated module

o« ol (wgrs) F {2 B @0} (@), Ol (W) (5]} denotes a

Quartz module invocations of an instantiated module

Definition A.26 (SOS transition rules of Quartz module in-
Vocatlons) The SOS transition rules of a mnon mstantiated module

mv (wgrz) € Emv (wqrz) and of an instantiated module o v(wqm) € va(wqm)
is defined as follows, where k represents the module cmd x the instance name:

SOS transition rules of aifq;qj (wgrz) € Ezfv;v (wgrz):

226

A.2. Quartz Models

T

s (€7sznv> - <O-zfnv7D7f)

SOS transition rules of O'Zfé)v (wgrz) € Z{gv(wqw):

1y 2o (ol D, f)

b (o nuv’

' Finu

A.2.14. Loops in Quartz Models

Definition A.27 (Syntax of loops in Quartz models). The
syntar of Ul];‘;‘;f(wqrz) € Z{OOO‘Z(MQTZ), U;‘Oe;;d(wqrz) € E?Oe(%d(wqrz), and

Jligjp(wqrz) € E;ij(wqm) is defined as follows:

do:
d t
° O’l{::;t(wwz) = Z](Ulj;?;z)v (wqri))
while(A' (0 (wr2)));
. while(A* (0] (wgr2))){
o opl(wers) T S(ofund(wrs))
}
loop{
. def ;
ot ()]Sl)

}
- ag'gg;(wqm) = agj;;f(wqm) — Ab(a{;;t(wqm)) = true

Definition A.28 (SOS transition rules of loops in Quartz

models). The SOS transition rules of Ul{:;?(wqrz) € le;ooozf(wqm) and
a{’o‘;‘;d(wqm) € Effo‘;d(wqm) are defined as follows:

SOS transition rules of al]:;;‘;(wqm) € Z{oooc;f(wqm):

(€, %) —> (%, D, false)

(€,{do 3 while(A\Y);}) —» ({¥'; while(A\Y) X1, D, false)

SOS transition rules of alhoeo‘;?d(wqrz) € E?O'Z‘;)d(wqrz):

[\] = true A (€,5) —» (£, D, false)
(€, {while(\') BV) —» ({3'; while(\!) £},D, false)
[[)\b]]E = false
(€, {while(\Y) }) —» (nothing, {},true)

227

Appendix A: Detailed Syntax and Semantics

A.2.15. Nothing Statements in Quartz Models

Definition A.29 (Syntax of nothing statements in Quartz mod-
els). The syntax of nothing statements X,othing(Wqr=) is defined as follows

[Sch09]:

def .
b Enothing(quz) = nothing;

Definition A.30 (SOS transition rules of nothing statements
in Quartz models). The SOS transition rules of nothing statements
Ynothing(Wqr2) are defined as follows [Sch09]:

e (¢, nothing;) N (nothing, {},true)

A.2.16. Pause Statements in Quartz Models

Definition A.31 (Syntax of pause statements in Quartz models). The
syntax of pause statements Lpguse(Wqrz) is defined as follows [Sch09]:

def
L4 z:pause((f‘)qrz) = Dpause;

Definition A.32 (SOS transition rules of pause statements in Quartz
models). The SOS transition rules of pause statements Lpquse(wqr=) are de-
fined as follows [Sch09]:

o (¢, pause;) —» (nothing, {}, false)

A.2.17. Sequences in Quartz Models
Definition A.33 (Syntax of sequences in SCL models). The syntaz of
a sequence Ygeq(Wqr2) is defined as follows [Sch09]:

01 (wq'rz) H
. Zseq(wqrz) dzef UZ(W:qrz);
Un(wqrz);

Definition A.34 (SOS transition rules of sequences in Quartz mod-
els). The SOS transition rules of a sequence Lseq(wqrz) are defined as follows

[Sch09):
(€,01) —» (0}, Dy, false)
(€. {o1;0:}) —> ({0%;02;}, Dy, false)
(€.01) = (01, Du.truc) A {§,02) = {04, Ds. o)

(€,{o1;09;}) —> (05, {D1U D2}, fo)

228

A.3. SCL Models

A.3. SCL Models

A.3.1. SCL Variants and Declaration

Definition A.35 (Syntax of SCL elements). An SCL module is declared
as follows, assuming fized order of N;ge(wWset); Avdet(Wser), and L(wse):
sef module ay,(wseq){
L4 5w(wscl) = [Aidcl(wscl)] [Avdcl(wscl)] [E(wscl)]
}

Definition A.36 (Semantics of SCL elements). The semantics of wsy are
defined as follows:

o [0u(wser)le d:ef{ defines an SCL model element wgq with X(wse), started
at time t with initial conditions set by N;ge(wser) and Ayge(wser) when
voked, terminating at time t + 6 and preserving internal state across
macro steps. }

A.3.2. SCL Interfaces

Definition A.37 (Syntax of SCL interfaces). The syntax of Aip(wser),
Aput(wser), and Ajpout(wser) s defined as follows:

; input [signal] agﬂ x1 [=w11 ;]
i Ain((f‘-)scl) :€f :

input [signal] ol @, T=w,1)

wef output [signal] agﬂ z1 [=wi]1[;]
o Aout(wscl) = : 4]

output [signal] of’ z,[=w,][;]

wef input output agﬂ x1 [=w1l [;]
L Az'nout((v‘)scl) = : (4
N

input output ag - x,[=w,][;]
Definition A.38 (Semantics of SCL interfaces). The semantics of
ANin(wse) s Aout(wser); and Ajpout(wse) are defined as follows:

o [Ain(wser)]e dzef{ defines a set of variables x1, ..., x, with corresponding
data types [[agﬂ]]g, ey [[a£L+]]]§. These variables are assigned to optional
predefined default values [w1]e, ..., [wy]e or to externally supplied values
at time t when wgy s invoked. Their values can be modified until wgey
terminates at time t+0, i.e., all instructions of wg have been processed.
Variables classified as signal variables are reset to their default values if
they are not assigned in the current macro step. }

229

Appendix A: Detailed Syntax and Semantics

o [Aout(wsar)le d:ef{ defines a set of variables x1, ..., x, with corresponding
data types [[agﬂ]]g, ceey [[ag]]]g. These variables are assigned to optional
predefined default values [wi]e, ..., [wp]e at time t when wyq is invoked,
and passed to invoking element in each macro step with current value
(assumed SCL was synthesized into an SCChart that is instantiated by
another model). Variables classified as signal variables are reset to their
default values if they are not assigned in the current macro step. }

o [Ainout(wser)]e d:ef{ defines a set of variables x1, ..., x, with correspond-
ing data types [[agﬂ]]g,...,[[ak]}]g. These variables are assigned to ex-

ternally supplied values at time t when wgy is invoked. Their values
can be modified until wse terminates at time t + 60, and passed to invok-
ing element in each macro step with current value (assumed SCL was
synthesized into an SCChart that is instantiated by another model). }

A.3.3. Local Variables in SCL Models

Definition A.39 (Syntax of local variables in SCL models). The syntax
of Appeal(wser) is defined as follows:

[+]

Qg X1 [=w1] [;]
de
i Aloctzl(wscl) :f n
+

Qp =~ Tp [=wn] [;]
Definition A.40 (Semantics of local variables in SCL models). The

semantics of Ajpeal(wser) are defined as follows:

d . .
o [Ajocar(wser)]e :ef{ defines a set of variables x1,...,x, with correspond-

ing data types [[ozgﬂ]]g, e [[ozq[f]]]g. These variables are assigned to op-
tional predefined default values [wi]e,. .., [wn]e at time t when weq is
mvoked and keep their values when switching from one macro step to
another. These variables can be modified and processed locally until wgse
terminates at time t+0, i.e., all instructions of wsq have been processed. }

A.3.4. Elementary SCL Data Types and Fields

Definition A.41 (Syntax of elementary SCL data types and
ﬁelds). The syntax Ofa(wscl) € A(wscl) and o (wscl) e A (wscl) is defined as
follows:

Syntazx of bit vector data types cupy(wser) € Apy(Wser)

d
ol (wyy) Lef {bool} denotes Boolean values

Syntazx of integer data types cvj(wse) € Ai(wser):

o o (wgy) d:ef{int} denotes bounded signed integers

230

A.3. SCL Models

Syntazx of floating-point data types a(wse) € Ap(Wser):
. Te“l(wscl) {float} denotes floating-point values
Syntaz of numeric data types apym (wser) € Ai(wser) U Ar(Wser):
o pum(wsar) € {@i(wsar), ar(Wser) }
Syntazx of duration data types cgur(Wser) € Agur(Wser)

d . . .
o ol (W) :ef{int} denotes interval value in bounded integer

Syntaz of data type fields o (wser) € A (wWser) -
o o (wse) def {a(wsa) y[n]} denotes arrays

Definition A.42 (Semantics of elementary SCL data types and
fields). The semantics of a(wse) € A(wser) and a*(wse) € A" (wse) are
defined as follows:

Semantics of bit vector data types apy(wWser) € App(Wser)

. [[abg"l(wsd)ﬂg = ({false true}, false)
Semantics of integer data types a;(wser) € Ai(wser):

o [0 (weer)e ¥ ({231 + 1,231~ 1},0)
Semantics of floating-point data types c,(wser) € Ar(wser):

o [l (wse)]e dzef({single precision floating-point (32 Bits)},0)
Semantics of data type fields o (wseq) € A" (wser):

o [at (wsa)le d:ef{ group with n elements of data type a(wser)}

A.3.5. Expressions in SCL Models

Definition A.43 (Syntax of expressions in SCL models). The syntax
Of Tmisc(wscl); 7:307711)("‘)30[)7 7:iw"z'th("‘)scl)y 7Zn}(Wscl); and 7-cond(wscl) is deﬁned

as follows:

Syntazx of constants and general expressions Tmisc(Wser) € Tmise(Wsel) -

[ncfltsc(wscl) = {X} denotes a value constant x
* mlsc(wSCl) = {y} denotes an identifier y

d mzsc(wscl) = {(T(wsd))} denotes a bracket

. ,ii"gi(wsd) {true} denotes a true-constant

231

Appendix A: Detailed Syntax and Semantics

. Txls‘f(scl) {false} denotes a false-constant

. ﬂn’;gc(wscl) {a: [n]} denotes access to index n of array x

Syntaz of comparison operators Teomp(Wsel) € Teomp(Wsei):

o Teomp(Wser) A {m == w2} denotes equality

Teomp(W scl) = {7r1 = ma} denotes inequality

Tgomp(wscl) def {m > ma} denotes greater than

Tcomp(wscl) = {7r1 >= 7o} denotes greater than/equal to

comp(wscl) { w1 < ma} denotes lower than
® Tcl(e)mp(wscl) o {m <= m} denotes lower than/equal to

Syntazx of arithmetic operators Tarith (Wser) € Tarith (Wsel) :

. Tarﬁh(wsd) def {m * 2} denotes a multiplication

g;fth(wscl) {7]1 / n2} denotes a division

add
Tarith

(wscl) = {771 + 12} denotes an addition

amth(wscl) = {171 - n2} denotes a subtraction

;’;Zogl(wsd) {m 1 % mi2} denotes a modulo function

o Tamh(wsd) = { m} denotes an unary minus

Syntazx of bitwise operators Ty, (wWser) € Tov(Wsel) :

def

o Témd(wscl) {\M & ... & \,} denotes a conjunction

def

o 7 (wset) = {1 | ... | A} denotes a disjunction

xror

o 70 (Wset) def {\ " Ao} denotes an exclusive or

def

o 7% (wsy) = {!\1} denotes a negation

Syntazx of conditional operators Teond(Wser) € Teond(Wsel):
o T ond(wSCl) = {)\b77r1)} denotes a conditional operator

Definition A.44 (Type system of expressions in SCL models). The
type system of T(wse) is defined as follows:

Type system of comparison operators Tgomp(wscl) € ﬁomp(wsd), constdering
v € {eq,ne, gt, ge,lt, le}:

T - O5(Wscl) ™ a(wscl)

Tg)mp (wscl) : 04220[(Wscl)

232

A.3. SCL Models

Type system of arithmetic operators Tamh(wscl) € Tarith(wser), considering 7 €
{mul, div, add, sub,um}:

m : Cpum (wscl) [772 : O‘num(wscl)]

T;Ym‘th (wscl) * Qpyum (Wscl)

Type system of modulo operator T amgz(wscl) € Tarith(Wser)

Ui e (wscl) 775 L Qg (wscl)
;;ft% (WSCZ) 87 (wscl)

Type system of bitwise operators 7, (wse) € Tow(wser), considering v € {and,
or,zor,not}:

)\1 : abv(wscl) [)\2 : abv(wscl))\n : abv(“scl)]
T[Z; (wscl) : aggd(wscl)

Type system of conditional operator Tﬁfid(wscz) Teond(Wsel) :

L algzoz(wscl) - CV(Wscl) 2 - a(wscl)

coend(wscl) a(wscl)

Definition A.45 (Semantics of expressions in SCL models). The
semantics of T(wse) € T(wser) are defined as follows:

Semantics of constants and general expressions Tmisec(Wser) € Tmise(Wsel) :

b [[T:ZSC(WSCZ)HE - [[l']]g

® [[Trigisc(wscl)ﬂg =y

o [77 (wse)le “ (Tmise(wsar))
e [zﬁi(wscz)ﬂg “f true

o | £‘§iie(wsd)]]g Xl faise

o [ro (wsa)]e © /2 [n1],

Semantics of comparison operators Teomp(wsci) € Teomp(Wsel):

o [rsnp(wsa)]e & [[Wlﬂgz [ma]e
e [comp(wscl)]]§ = [[Wl]]g?ﬁ [ma]
o [r8hmp(wse)]e & [[Wl]]g> [ma]e
o [mp(wsa)le @ [ma]e >= [ma]
o [rlh i (wee)]e © [[Wl]]g< [ma]
o [7e p(wse)]e © [[Wl]],g< [l

233

Appendix A: Detailed Syntax and Semantics

Semantics of arithmetic operators Tarith(Wset) € Tarith (Wsel)+

[z (wse)le @ [l - [nele

v def [m
b [[Tgrith(wscl)]]f = %

[[Tadd

def
arith wSCl)]]ﬁ = [[nlﬂg + [[772]]§

(
o [, (wo)le = Imle — [me]e
(

[[mod

def + 4 ;
Tarith ("jscl)]]é~ = [[Uﬂ]g mod [[77%]]5

def
[raviin (wse)le = _[[nlﬂg
Semantics of Boolean operators Ty, (wser) € Tow(Wser):

o [reriwea)le © Ile A A [l

or def
o [y (wee)le = [Malle v - v [Anle
Tor def
b [[Tbv (wscl)]]ﬁ = [[)‘1]]5@[[)‘2]]5
no def
o [(wsea)le = ~[Mle
Semantics of conditional operators T5% (wser) € Toond(Wsel):

[mile, if [[)\b]]g = true

1 def
b [[Tcsoend(wscl)]]f = {[[71_2]]5 otherwise

Definition A.46 (SOS transition rules of expressions in SCL mod-
els). The SOS transition rules of T(wseq) € T (wser) are defined as follows:

i (ga 7_((-’Jscl)) _T» <n0thinga {[[T(wscl)]]f}7 t’l"UG)

A.3.6. Assignments in SCL Models

Definition A.47 (Syntax of assignments in SCL models). The syntax

of oMM () € DI (o) and 0% (wee) € 2L (weyy) is defined as follows:

o oM (we) ¥ [do] = = 7] }

e def
o ohei(wsa) = { [do] @ = 7(2)[;] }
Definition A.48 (SOS transition rules of assignments in SCL

models). The SOS transition rules of o™ (wey) € SUM(w,y) and

ass ass
0% (weey) € 29 (weer) are defined as follows:

o (&, (W) N (nothing, {x = [7]¢}, true)

o (€,0% (wee))) —> (nothing, {z = [r(x)]e}, true)

234

A.3. SCL Models

A.3.7. Conditions in SCL Models
Definition A.49 (Syntax of conditions in SCL models). The syntaz of

Ui’;nd(wscl) € Ef:t(md(wscl) and Uizend(wsd) € sznd(wscl) is defined as follows:

iF (0 (wser))L }

® cond(WSCl) _f { %] (Uc(md(wscl))
}

1 O (050 (Wser))
it def 1(Ucond(wSCl))
o 01t (i) 9 Telsel
Sa(0tona(@set))
b

Definition A.50 (SOS transition rules of conditions in SCL

models). The SOS transition rules of Uzmd(wscl) € (wset) and

z’;end(wscl) cond(wscl) are defined as follows:

cond

SOS transition rules of o™ (wsa) € B (wser):
[\] = true A (€, 51) —> (1, D1, f1)
(&, (iE (A {Z1}}) — <z'1,1>1,f1>
[N], = falsen (€, 21> (nothing, {}, true)
(€, {1E(\){D1}}) —> (nothing, {}, true)

SOS transition rules of Jifﬁld(wsd) € Ziﬁld(wscl):

[NI¢ = true a (€, 51) —> (4, D1, f1)
) i b
o] toaes o)
[\ = false A (€, Sa) —» (24, Do, fo)
° . b
e 1o b e
A.3.8. Loops in SCL Models

Definition A.51 (Syntax of loops in SCL models). The syntar of
OOt(wsc) € nfo t(wscl) and %% (wey) € M€ (4w,) is defined as follows:

Uloop loop loop loop
do:
t
S (o7 (Waer)
foot def pause,
o 0j o (Wser) = . t
loop Wse 1f()\b(o—l];(;(;(wscl))){
goto do;
}

235

Appendix A: Detailed Syntax and Semantics

while(A°(0)¢%% (wee))){

head loop
def S (ghead(,
° Ul}ﬁ;eo(;zd(wscl) = pafug)eo?j(sct)
}
loop:
; def)
RGO B A
goto loop;
inf foot foot

— Uloop(wscl) = Oioop (wse1) =)\b(oloop (wser)) = true

Definition A.52 (SOS transition rules of loops in SCL models). The

SOS transition rules of J{O‘;‘Z(wscl) € El];f)‘g(wscl) and al}ff(;d(wscl) € Zlfﬁ;d(wsd)

are defined as follows:

SOS transition rules of Jfooo';t(wscl) € E{O(;(Z(wsd):

(£,%) N (X', D, false)
) <§,{ do: })—T»({E’; while(\') %},D, false)

if(\) goto do;

SOS transition rules of Uﬁ)f%d(wsd) € Elhoeo‘;d(wscl):

[[)\b]]6 = true A (€, %) L (X', D, false)
(€, {while(\Y) 21) —» ({; while(\) ¥},D, false)
[[)\b]]f = false
(¢, {while(\?) X}) N (nothing, {},true)

A.3.9. Pause Statements in SCL Models

Definition A.53 (Syntax of pause statements in SCL models). The
syntax of pause statements Lpause(wscr) s defined as follows:

def
i Epause("‘)scl) = pause;

Definition A.54 (SOS transition rules of pause statements in SCL
models). The SOS transition rules of pause statements Xpquse(wser) are de-

fined as follows:
o (¢.pause;) —» (nothing, {}, false)

A.3.10. Sequences in SCL Models

Definition A.55 (Syntax of sequences in SCL models). The syntazx of
a sequence Ygeq(wser) is defined as follows:

236

A.4. Data-Flow Oriented SCCharts

Ul(wscl)§
(] Eseq(wscl) d:fff 02(“};86[);
Un(wscl)§

Definition A.56 (SOS transition rules of sequences in SCL mod-
els). The SOS transition rules of a sequence Ygeq(wser) are defined as follows:

(¢,01) —» (0}, Dy, false)

(€, {0102 }) —> ({0];02;}, Dy, false)

(€,01) —> (0}, D1, true) a (€, 02) — (0, Ds, f2)
(&,{o1;02; }) N (05,{D1; D3}, fa)

A.4. Data-Flow Oriented SCCharts

A.4.1. Data-Flow Oriented SCCharts Declaration

Definition A.57 (Syntax of data-flow oriented SCChart elements). A
data-flow oriented SCChart is declared as follows, assuming fixed order of
Aidcl((*)scd); Avdcl(wscd); and E(wscd)-'

[Aimports (wscd)]

scchart ap(wseq){
def [Aidcl (wscd)]

i 5w(wscd) = [Avdcl(wscd)]

dataflow:

[E(wsed)]

3

Definition A.58 (Semantics of data-flow oriented SCChart ele-
ments). The semantics of ws.q are defined as follows:

o [0 (wsed)le dzef{ defines a data-flow oriented SCChart wgeq with X(wseq),
started at time t with initial conditions set by A;ger(wWsea) and Ayger(wsed)
when invoked, and preserving internal state across macro steps. Further-
more, wWseq Never terminates. }

A.4.2. Local Variables in SCCharts

Definition A.59 (Syntax of local variables in SCCharts). The syntax
of Appcal(Wseq) and Ajpst(wseq) is defined as follows:
[+] - .
| x1 [=w1[;]
hd Alocal(wscd) =
(+]

Qp = Tp [(=w,][;]

237

Appendix A: Detailed Syntax and Semantics

ref x1 ki

def

L4 Ainst(wscd) =
ref x, k,

Definition A.60 (Semantics of local variables in SCCharts). The se-
mantics of Ajpcal(Wsed) and Ajpsi(wseq) are defined as follows:

o [Aocar(wsed)]e d:ef{ defines a set of variables 1, ..., T, with correspond-
ing SCCharts [o]¢, ..., [[a,[:]]]g. These variables are assigned to optional
predefined default values [wi]e, ..., [wn]e at time t when wseq is invoked
and keep their values when switching from one macro step to another.
These variables can be modified and processed locally until wgeq termi-
nates at time t + 0, i.e., all instructions of ws.q have been processed. }

o [Ainst(wsed)]e def { defines a set of wvariables ki,...,k, of SCCharts

[zile,- -, [znle. These instances are invoked at time t when wseq is
imvoked and keep their values when switching from one macro step to
another. }

A.4.3. SCChart Imports

Definition A.61 (Syntax of SCChart imports). Imported SCCharts are
grouped as a set Nimports(Wsed), whose syntax is defined as follows:

import "xp.sctx”;

de

L4 Aimports(wscd) =
import "x,.sctx”;

Definition A.62 (Semantics of SCChart imports). The semantics of
Aimports(Wsed) are defined as follows:

o [Aimports(Wsed)]e d:ef{ defines a set of imported SCCharts x1,...,x, that
can be instantiated and invoked by wseq. }

A.4.4. Synchronous Concurrency in Data-Flow Oriented SC-
Charts

Definition A.63 (Syntax of synchronous concurrency in data-flow
oriented SCCharts). The syntar of a synchronous parallel statement
Yeonc(Wsed) s defined as follows:

d
L4 Econc(wscd) gle(wscd) ; EZ(Wscd)

Definition A.64 (SOS transition rules of synchronous concurrency in
data-flow oriented SCCharts). The SOS transition rules of a synchronous
parallel statement Yeonc(wseq) are defined as follows:

(€,51) —> (1, D1, fi) A (& Ba) —> (25, Da, f)
(€AZ1 || Z2}) — ({S) || Z3,{D1; Do}, fi A fo)

238

A.5. Control-Flow Oriented SCCharts

A.4.5. Module Invocations in Data-Flow Oriented SCCharts

Definition A.65 (Syntax of SCChart invocations). The syntax of an
SCChart invocation va (wgrz) € Ezm;(quZ) is defined as follows, where k the
instance name:

mu(wqm) A {k {I(Umv(wqm))};} denotes a Quartz module invoca-
tions of an instantiated module

Definition A.66 (SOS transition rules of SCChart lnvocatlons) The

SOS transition rules of an SCChart invocation alj;bv(wqm) € Emv(‘*’qm) are
defined as follows:

SOS transition rules of alf?fv (wgrz) € Zlfsv (wgrz):
b v
® (’O-zfnv> < zfnv’[[k]]f f>

A.4.6. Sequences in Data-Flow Oriented SCCharts

Definition A.67 (Syntax of sequences in Data-Flow Oriented SC-
Charts). The syntaz of a sequence Xseq(wseq) is defined as follows:

01 (wqrz);

d g2\ W s

) Eseq(wscd) Ef 2(:qu),
Un(wqrz);

Definition A.68 (SOS transition rules of sequences in Data-Flow
Oriented SCCharts). The SOS transition rules of a sequence Ygeq(wsed)
are defined as follows:

(€,01) —> (0], D1, 1) A (&, 09) —> (0, Ds, f2)
(€,{o1;09}) —> ({0};05}, {D1; Do}, f1 A f2)

A.5. Control-Flow Oriented SCCharts

A.5.1. Control-Flow Oriented SCCharts Declaration

Definition A.69 (Syntax of control-flow oriented SCChart ele-
ments). A control-flow oriented SCChart is declared as follows, assuming
fized order of Nigei(wWsee), Avdel(Wsee), and X(wsee):

scchart a,(wsee){

[Aidcl (Wscc)]
def [Avdcl (wscc)]

o 0y(Wsee) = region:

[X(wsce)]

[region: ...]

239

Appendix A: Detailed Syntax and Semantics

Definition A.70 (Semantics of control-flow oriented SCChart ele-
ments). The semantics of wse. are defined as follows:

o [0u(wsee)]e def { defines a control-flow oriented SCChart wse. with
Y(wsee), started at time t with initial conditions set by Ajge(wsee) and
Aygel(wsee) when invoked, and preserving internal state across macro
steps.

A.5.2. Abortions in control-flow oriented SCCharts

Definition A.71 (Syntax of abortions in control-flow oriented SC-
Charts). The syntaz of a strong delayed abortion X779 (wsee) and a strong

. abort
immediate abortion X7 (wsee) is defined as follows:

st [initial] state ¥i(0,;7 (wWsee))

o 09 (weee) = 3 if N(007 (wsee)) abort to Eo(ol? (wsee)) | de-
[final] state (0., (wsce))

notes a strong delayed abortion
[initial] state X1(c" (wWsee))

L\ abort
; def | immediate if A(0™"(wse)) abort to
o oMM (w = - abort denotes
abori(0ee) =0 ot ()

[final] state Zo(07'"™ (wsee))
a strong immediate abortion

Definition A.72 (SOS transition rules of abortions in control-flow
oriented SCCharts). The SOS transition rules of a strong delayed abortion
319 (Wsee) and a strong immediate abortion X" (wsee) are defined as
follows:

. reg reg .
SOS transition rules of 0,7 (Wsee) € X ;7 (Wsee):

(&€,%1) N (nothing, D1, true)

* [initial] state ¥ .
(6,4 if X\ abort to Xy) —» (nothing, D, true)
[final] state o
T
. <£721>_»< ,1’D1>false>

[initial] state ¥
(€,{ if A’ abort to X)—T»
[final] state X9
[initial] state X
({ immediate if A\’ abort to Xy },Di, false)
[final] state X5

e imm mmm .
SOS transition rules of oLl (Wsee) € Mo (Weee) -

[[)\bﬂg =true A (EQ,DQ,fQ)
[initial] state X
(¢,{ immediate if A\’ abort to X)—T»<EI2,D2,f2>
[final] state Yo

240

A.5. Control-Flow Oriented SCCharts

[\]e = false A (€, %) LN (nothing, D1, true)
[initial] state X3
(6,4 immediate if A’ abort to X,)—T»(nothing,Dl,true)
[final] state o

[A\]e = false n (€,%) LN (37, D1, false)
[initial] state X
(€,{ immediate if A\’ abort to X)—T»
[final] state Yo
[initial] state X
({ immediate if A\’ abort to Xy },Dy, false)
[final] state X9

A.5.3. Await Transitions in control-flow oriented SCCharts

Definition A.73 (Syntax and SOS transition rules of await transitions
in control-flow oriented SCCharts). The syntax of a delayed await tran-
sition ngfait(wscc) and a immediate await transition L0 (wsee) is defined
as follows. The SOS transitions rules are derived from equivalent constructs:

° O-:Lz)gait (wSCC) = nggrt(wscc)

b Uéﬁﬁ't (Wsee) = Uf;m%(wscc)

A.5.4. Synchronous Concurrency in control-flow oriented SC-
Charts

Definition A.74 (Syntax of synchronous concurrency in control-flow
oriented SCCharts). The syntaxr of a synchronous parallel statement
Yeonc(Wsee) 18 defined as follows:

region:

d Y1(w
o 2czmc(Wscc) :€f rel:gj_éfl-SCC)]

[Y2(wsee)]

Definition A.75 (SOS transition rules of synchronous concurrency
in control-flow oriented SCCharts). The SOS transition rules of a syn-
chronous parallel statement Xeone(wsee) are defined as follows:

(€,51) —» (5}, Dy, f1) A (€, Ta) —> (55, Ds, fo)
(651 || Z2}) = ({Z] || SH3ADIUD:Y, fi A fo)

A.5.5. Conditions in control-flow oriented SCCharts

Definition A.76 (Syntax of conditions in control-flow oriented
SCCharts). The syntaz of o (wsee) € Z% (wsee) and o€ (wsee) €

ite . - cond cond
Yo ((Wsee) is defined as follows:

241

Appendix A: Detailed Syntax and Semantics

[initial] state El(%ond(“é‘@))

immediate if A°(0% . (wsec)) go
to E2(cond(wscc))

lef | immediate if !(A(0¥ (wsee))) go
to 23(cond(wscc))

state Eg(acond(wscc))

[:| E3(O'cond(w$‘35)) .
[final] state Y3(0” . (wsee))

d
hd cond (Wsce)

[initial] state %1(0% (wsee))

immediate if AP(0% (wsee)) g0

to 22(cond(wscc))
immediate if !(A’(0% (wsee))) g0
ite (OJ)def to Z3(gfnd(wscc))
cond \rsee state Eg(acond(wscc))

-] Z:4(Jcond(wscc))
state Eg(acond(wscc))

[] z:4(Jc(md(WSCC)) .
[final] state X4(0"% (wsee))

® O

Definition A.77 (SOS transition rules of conditions in control-flow
oriented SCCharts). The SOS transition rules of awnd(wscc) € Ectond(wscc)

and U?Oild(wscc) € Eé@%d(wscr/’) are defined as follows:

SOS transition rules of ait[md(wscc) € Egmd(wscc):

[N]¢ = true a (€, Sa) —> (S5, Do, fo)

[initial] state X3
immediate if A\’ go
to Yo
. immediate if !(A\°) go |, T
(e,{ Tmmediate 2O &0 by T (5150}, D, o)
state Yo
[...] X3
[final] state Y3
)\b = false A 723 —T» 2’,733, 3
¢ 3
[initial] state X3
immediate if A\’ go
to Yo
® immediate if !(A’) go T
S () e) — (33, D3, f3)
state Yo
[...] 23
[final] state X3

SOS transition rules of Ucond(%w) € Ezfnd(wscc):

242

A.5. Control-Flow Oriented SCCharts

[\], = true A (€,) —> (55, Da, fo)
[initial] state)
immediate if A\’ go

to Yo
immediate if !(A’) go
b to X3
state Yo
[...] X4
state X3
[...] X4
[final] state Y4

) 5 ({; 54}, Da, fo)

'], = false n (€, 53) —> (85, Dy, f3)
[initial] state X3
immediate if A\’ go

to Yo
immediate if !(A’) go
® to X3
state Yo
[...] X4
state X3
[...] X4
[final] state Y4

)—T» ({X5;%4}, D3, f3)

A.5.6. Halt Statements in control-flow oriented SCCharts

Definition A.78 (Syntax and SOS transitions rules of halt state-
ments in control-flow oriented SCCharts). The syntax of halt statements
Yhait(wsee) is defined as follows. The SOS transitions rules are derived from
equivalent constructs [Sch09)]:

d
o Ghatr(wse) = N(of (wie)) = true A S1(0f0 (wiee)) =

Epause (Wscc))

A.5.7. Loops in control-flow oriented SCCharts

Definition A.79 (Syntax of loops in control-flow oriented SCCha-

rts). The syntax of afo(;‘;f(wscc) € Zl};oo';f(wscc) a{’oeo‘;d(wscc) € E?Oeo‘;d(wscc) and
Jloop(wscc) € Eloop(wscc) 1s defined as follows:

243

Appendix A: Detailed Syntax and Semantics

[initial] state ¥ (Ul];‘;?(wscc))

state Y, (0] oo (wace))

foot def immediate if)\b(al{)‘z;f(wscc))

o w =
loop(scc) go to El(alj;itg(wscc))

immediate if !()\b(afoifg (Wsee))

join to Ya(o7or (Wsee))

[final] state ZQ(O'IJZZZ(WSCC))

[initial] state Zi(aﬁf}‘;d(wscc))

immediate if A’(0750 (wsce))

go to X (Ulhoeo%d(wscr:))

immediate if !()\b(alhoeo‘;d(wscc))

def join to Zg(aﬁ%‘;d(wscc))

state Y3 (Jl}ﬁ)‘;‘;d(wscc))

® Ul}g;;d (Wsee) =

state Zn(Uhead(wscc))

loop
go to Ei(gl}z%%d(wscc»
[final] state Eg(alhoeo‘;d(wscc))
1 d
. O'ZZZOJ;(WSCC) ffol];f;;(wscc) — /\b(alj;(g;f(wscc)) = true

Definition A.80 (SOS transition rules of loops in control-flow

oriented SCCharts). The SOS transition rules of alj;oo‘;f(wscc) € E{OOO‘Z(wSCC)

and Uﬁ%‘;d(wscc) € Eﬁeoi)d(wscc) are defined as follows:

SOS transition rules of al{gg(wsw) € E{O‘;‘Z(wsw):

244

A.5. Control-Flow Oriented SCCharts

(€,5,) —> (21, Dy, f)

({Z0;

SOS transition rules of alhead(wscc) € E?Oeo‘;d(wscc):

[initial] state X3

state X,
immediate if A’
go to X
immediate if !(AY)
join to 3o
[final] state X,
[initial] state ¥
immediate if A°
go to 3
immediate if !(A\%)
join to 3o
state X

state X,
go to 3
[final] state Yo

oop

}. Dn, fn)

[N]¢ = true A (€, %) —> (£, Dy, f;)

({Z

[initial] state ¥;
immediate if A’
go to X
immediate if !(\%)
join to o
state X

state X,

go to ¥

[final] state X,

[initial] state 3

immediate if A°
go to X

immediate if !(AP)
join to 3o

state X1

state X,
go to X
[final] state X,

1. Dy, fi)

245

Appendix A: Detailed Syntax and Semantics

'], = false n (€, 5a) —> (85, Dy, fo)
[initial] state 3
immediate if A

go to X
immediate if !(\?)

join to 3o
state X1

) —> (5, Dy, fo)

state X,
go to 3
[final] state Yo

A.5.8. Immediate Transitions in control-flow oriented SCCha-
rts

Definition A.81 (Syntax of immediate transitions in control-flow ori-
ented SCCharts). The syntax of an immediate transition Xpothing(Wsee) 5
defined as follows:

[initial] state Xi(Cnothing(Wsee))
€, . .
® Onothing(Wsee) = | immediate abort to Xa(0pnothing(Wsee))
[final] state Xa(0nothing(Wsee))

Definition A.82 (SOS transition rules of immediate transitions in
control-flow oriented SCCharts). The SOS transition rules of an imme-
diate transition Ypothing(Wsee) are defined as follows:

T
(€, X2) — (9, Dy, f2)
[initial] state X .
(¢,{ immediate abort to Xg) — (X5, Dy, fo)
[final] state X9

A.5.9. Pause Statements in control-flow oriented SCCharts

Definition A.83 (Syntax and SOS transition rules of pause state-
ments in control-flow oriented SCCharts). The syntax of pause state-
ments Xpause (Wsee) s defined as follows. The SOS transitions rules are derived
from equivalent constructs:

® Tpause(Wsce) = 0oy (Wsce) == N (00t i (wsee)) = true

A.5.10. Sequences in control-flow oriented SCCharts

Definition A.84 (Syntax of sequences in control-flow oriented SC-
Charts). The syntaz of a sequence Ygeq(wsce) is defined as follows:

wof initial state 0;(0seq(Wsee))

of | .) .

o Yoq(wsee) = 1 immediate [goljoin] to 0;(0seq(wsee))
[final] state 0;(0seq(Wsee))

246

A.5. Control-Flow Oriented SCCharts

Definition A.85 (SOS transition rules of sequences in control-flow
oriented SCCharts). The SOS transition rules of a sequence ¥geq(wsee) are
defined as follows:

(€,01) —» (0], D1, f1) A (€, 02) —> (0, Da, f)
(€, {o1;02}) —> ({01504}, {D1; Do}, fi A fo)

247

w N =

o B

Appendix

ST Model Examples

PROGRAM ST_TWO_OF_THREE
VAR_INPUT
xB1_Temp : BOOL;
xB2_Temp : BOOL;
xB3_Temp : BOOL;

END_VAR
VAR_OUTPUT
xP1_Temp : BOOL;
END_VAR
xP1_Temp := xB1_Temp AND xB2_Temp OR xB1_Temp AND xB3_Temp OR xB2_Temp

AND xB3_Temp;
END_PROGRAM

Listing B.1: ST Model: ST_TWO_OF_THREE

FUNCTION ST_ALARM : BOOL
VAR_INPUT
xSENSOR_L : BOOL;
xSENSOR_M : BOOL;
xSENSOR_R : BOOL;
END_VAR

ST_ALARM := (NOT xSENSOR_L AND NOT xSENSOR_M AND NOT xSENSOR_R) OR (
xSENSOR_L AND xSENSOR_R);
END_FUNCTION

Listing B.2: ST Model: ST_ALARM

FUNCTION ST_SCALE : REAL
VAR_INPUT
iX : INT;
rY_MAX : REAL;
rY_MIN : REAL;
END_VAR

ST_SCALE := (rY_MAX - rY_MIN) / 32760.0 * iX + rY_MIN;
END_FUNCTION

Listing B.3: ST Model: ST_SCALE

FUNCTION_BLOCK ST_AVAL_PROC
VAR
rPressure : REAL;

249

8

19

21

15

Appendix B: ST Model Examples

iPres
END_VAR

ST_SCALE (iX :=

sure_Per INT;

iPressure_Per, rY_MAX := 10.0, rY_MIN

=> rPressure);

END_FUNCT

I0N_BLOCK
Listing B.4: ST Model: ST_AVAL_PROC

FUNCTION_BLOCK ST_OP_ARITH

VAR
x01
x02
x03
x04
x05 :
x06 :
x1 :

x2

x3 :

x4

END_VAR

x01 :=
x02 :=
x03 :=
x04 :=
x05 :=
x06 :=
END_FUNCT

FUNCTION_
VAR
x01
x02
x03 :
x04 :
x1
x2
END_VAR

x01 :=
x02 :=
x03 :=
x04 :=
END_FUNCT

PROGRAM S
VAR
rQ
xQ1
xQ2
xQ3
END_VAR

IF rQ <
xQ3
xQ2

xQ1 :=

END_IF;

IF rQ >=

REAL;
REAL;
REAL;
REAL;
REAL;
REAL;
REAL
REAL
INT
INT := 2;

I
]

-

N e

x1 +
x1 -
x1 * x2;

x1 / x2;
EXPT(x1, x2);
x3 MOD x4;
ION_BLOCK

x2;
x2;

Listing B.5: ST Model: ST_-OP_ARITH

BLOCK ST_OP_BOOL

BOOL;
BOOL;
BOOL ;
BOOL;
BOOL :=
BOOL :=

TRUE;
FALSE;

NOT x1;

x1 AND x2;
x1 OR x2;

x1 XOR x2;
ION_BLOCK

Listing B.6: ST Model: ST_0P_BOOL

T_COMPENS

REAL :=
BOOL;
BOOL;
BOOL;

1500.0;

1000.0 THEN
FALSE;
FALSE;
FALSE;

1000.0 THEN

6.

0,

ST_SCALE

250

=
o w

|

18

SR

NN NN
N

NN NN
® N O

15

15

16

1

I R
S © ® =

[CEN SR RN
Y R W N =

Appendix B: ST Model Examples

xQ3
xQ2
xQ1
END_IF;

IF rQ >=
:= FALSE;
:= TRUE;

xQ3
xQ2
xQ1 :
END_IF;
IF rQ >
xQ3 :
xQ2

xQ1 :=

END_IF;
END_PROGR

FUNCTION_
VAR
x0
x1
x2
END_VAR

FALSE;

2000.

= TRUE;

3000.0

TRUE ;
TRUE;
TRUE;

AM

:= FALSE;
:= TRUE;

0

THEN

THEN

Listing B.7: ST Model: ST_COMPENS

BLOCK ST_COND

BOOL;
BOOL

BOOL :=

IF x1 THEN

x2 := TRUE;
END_IF;
IF x1 THEN

x0 := TRUE;
ELSE

x0 := FALSE;
END_IF;

TRUE ;
TRUE;

END_FUNCTION_BLOCK

Listing B.8: ST Model: ST_COND

FUNCTION_BLOCK ST_DATATYPES

VAR
Al
A2
A3
A4
A5
A6
AT
A8
A9
A10
A11
A12
A13
A14
A15
Al6
A17
A18
A19
A20
A21
A22
A23
A24
A25 :

END_VAR

BOOL;

BOOL :=

BYTE;
WORD ;
INT;
INT :=
DINT;

: DINT :=
: UINT;

UINT
UDINT;
UDINT
REAL;
REAL
TIME;
TIME
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

TRUE;

2;

2;

=2;

=2;
= 1.23;
= T#5000MS;
[1..2] OF BOOL;
[1..2] OF BYTE;
[1..2] OF WORD;
[1..2] OF INT;
[1..2] OF DINT;
[1..2] OF UINT;
[1..2] OF UDINT;
[1..2] OF REAL;
[1..2] OF TIME;

251

[N

|

[0

Appendix B: ST Model Examples

END_FUNCTION_BLOCK

Listing B.9: ST Model: ST_DATATYPES

FUNCTION_BLOCK ST_DEBOUNCE
VAR_INPUT
IN : BOOL;
DB_TIME : TIME;
END_VAR
VAR_OUTPUT
0UT : BOOL;
ET_OFF : TIME;
END_VAR
VAR
DB_ON : TON;
DB_OFF : TON;

DB_FF : SR;
END_VAR
DB_ON(IN := IN, PT := DB_TIME);
DB_OFF(IN := NOT IN, PT := DB_TIME);
ET_OFF := DB_OFF.ET;
DB_FF (SET1:= DB_ON.Q, RESET := DB_OFF.Q);
0UT := DB_FF.Q1;

END_FUNCTION_BLOCK
Listing B.10: ST Model: ST_DEBOUNCE

FUNCTION_BLOCK ST_ASS_DEL

VAR
x0 : INT := 2;
yO : INT := 1;
END_VAR
yoO := yO + x0;

END_FUNCTION_BLOCK
Listing B.11: ST Model: ST_ASS_DEL

FUNCTION_BLOCK ST_OP_IN_EQ

VAR
x0 : BOOL;
x1 : BOOL := TRUE;
x2 : BOOL := FALSE;
END_VAR
x0 := x1 = x2;
x0 := x1 <> x2;

END_FUNCTION_BLOCK

Listing B.12: ST Model: ST_OP_IN_EQ

FUNCTION_BLOCK ST_LOOP_FOOT

VAR_OUTPUT
y : INT;
END_VAR
VAR
x0 : INT := 0;
x1 : INT := 1;
x2 : INT := 2;
i : INT;
i0 : INT := 0;
il : INT := 10;
END_VAR

252

13

15
16
17
18
19

15
16
17
18
19

Appendix B: ST Model Examples

i := 1i0;
REPEAT

y := x0;

i = i + x2;

UNTIL i > i1

END_REPEAT;

y := x1;
END_FUNCTION_BLOCK

Listing B.13: ST Model: ST_LOOP_FOOT

FUNCTION_BLOCK ST_LOOP_HEAD

VAR_OUTPUT
y : INT;
END_VAR
VAR
x1 : INT := 1;
x2 : INT := 2;
i : INT;
i0 : INT := O0;
i1l : INT := 10;
END_VAR
i := 1i0;
WHILE i <= i1 DO
y = ij;
i =i + x2;
END_WHILE;
y = x1;

END_FUNCTION_BLOCK

Listing B.14: ST Model: ST_LOOP_HEAD

FUNCTION_BLOCK ST_ASS_IMM1

VAR
x : INT := 2;
y : INT := 2;
x0 : INT := 2;
yO : INT;
yl : INT;
x1 : INT;
END_VAR
y = x;
yO := x0;
yl := x1;

END_FUNCTION_BLOCK

Listing B.15: ST Model: ST_ASS_IMM1

FUNCTION_BLOCK ST_ASS_IMM2

VAR
x0 : INT := 2;
x1 : INT := 2;
x2 : INT := 2;
yO : INT;
yl : INT;
y2 : INT := 2;
END_VAR
yo := x0;
yl := x1;
yo := x2;

253

15
16
17
18

19

(S NV

1

[0

[N

N I

Appendix B: ST Model Examples

y2 := x0;
y2 := x1;
yO := x0;
x0 := y0O + x1;

END_FGNCTIDN_BLOCK
Listing B.16: ST Model: ST_ASS_IMM2

FUNCTION ST_ASS_IMM_OUT : BOOL
VAR_INPUT
x : INT;
END_VAR
VAR_OUTPUT
y: INT;
END_VAR

y = x;
ST_ASS_IMM_OQUT := TRUE;
END_FUNCTION

Listing B.17: ST Model: ST_ASS_IMM_OUT

FUNCTION_BLOCK ST_ASS_IMM3
VAR
yl: INT;
y2: BOOL;
END_VAR

ST_ASS_IMM_OUT(x := 4, y => y1, ST_ASS_IMM_OUT => y2);
END_FUNCTION_BLOCK

Listing B.18: ST Model: ST_ASS_IMM3

FUNCTION ST_LEFT1 : BOOL
VAR_INPUT
xSENSOR_L : BOOL;
xSENSOR_R : BOOL;
END_VAR

ST_LEFT1 := xSENSOR_L AND NOT xSENSOR_R;
END_FUNCTION

Listing B.19: ST Model: ST_LEFT1

FUNCTION_BLOCK ST_OP_NUM_REL

VAR

x0 : BOOL;

x1 : INT := 1;

x2 : INT := 2;
END_VAR
x0 := x1 < x2;
x0 := x1 <= x2;
x0 := x1 > x2;
x0 := x1 >= x2;

END_FUNCTION_BLOCK
Listing B.20: ST Model: ST_OP_NUM_REL

FUNCTION_BLOCK ST_TOF
VAR_INPUT
CLK: TIME;
IN: BOOL;

254

15

16

_oe e
N o= O © 0w

St

~

W OWw W W WNNNNNNNNNN
9 o 03

AW 0 o=

w
ot

36

S I N R

— e e e
B W N = O © o

15

16

o= e
S © w

W =

ot

NN NN NN
[S

-

Appendix B: ST Model Examples

PT: TIME;
END_VAR
VAR_OUTPUT
Ql: BOOL := FALSE;
ET: TIME;
END_VAR
VAR

ETTIME: TIME;

TSTART: TIME;

LASTIN: BOOL;

Q1_Templ: BOOL;
END_VAR

IF (IN <> LASTIN) THEN
LASTIN := IN;
IF IN THEN
TSTART := CLK;
ELSE
TSTART
END_IF;
Q1_Templ := TRUE;
Q1 := Q1_Tempil;
ET T#OMS ;
ELSE
IF ((NOT IN) AND Q1_Templ) THEN
ETTIME := CLK - TSTART;
IF (ETTIME < PT) THEN
ET := ETTIME;
ELSE
Q1_Templ := FALSE;
Q1 := Q1_Templ;
ET := PT;
END_IF;
END_IF;
END_IF;
END_FUNCTION_BLOCK

T#OMS;

Listing B.21: ST Model: ST_TOF

FUNCTION_BLOCK ST_TON
VAR_INPUT
CLK: TIME;
IN: BOOL;
PT: TIME;
END_VAR
VAR_OUTPUT
Q1: BOOL := FALSE;
ET: TIME;
END_VAR
VAR
ETTIME: TIME;
TSTART: TIME;
LASTIN: BOOL;
Q1_Templ: BOOL;
END_VAR

IF (IN <> LASTIN) THEN

LASTIN := IN;
IF IN THEN

TSTART := CLK;
ELSE

TSTART := T#OMS;

END_IF;

Q1_Templ := FALSE;
Q1 := Q1_Templ;
ET := T#O0MS;

255

(S N R

Appendix B: ST Model Examples

ELSE
IF (IN AND (NOT Q1_Templ)) THEN
ETTIME := CLK - TSTART;
IF (ETTIME < PT) THEN
ET := ETTIME;
ELSE
Q1_Templ := TRUE;
Q1 := Q1_Templ;
ET := PT;
END_IF;
END_IF;
END_IF;

END_FUNCTION_BLOCK

Listing B.22: ST Model: ST_TON

FUNCTION_BLOCK ST_RS

VAR_INPUT

SET: BOOL;

RESET1: BOOL;
END_VAR
VAR_OUTPUT

Q1: BOOL;
END_VAR
VAR

Q1_Tmp: BOOL;
END_VAR
Q1_Tmp := (SET OR Q1_Tmp) AND (NOT RESET1);
Q1 := Q1_Tmp;

END_FUNCTION_BLOCK

Listing B.23: ST Model: ST_-RS

FUNCTION ST_RIGHT1 : BOOL
VAR_INPUT
xSENSOR_L : BOOL;
xSENSOR_R : BOOL;
END_VAR

ST_RIGHT1 := NOT xSENSOR_L AND xSENSOR_R;
END_FUNCTION

Listing B.24: ST Model: ST_RIGHT1

FUNCTION_BLOCK ST_SR

VAR_INPUT

SET1 : BOOL;

RESET : BOOL;
END_VAR
VAR_OUTPUT

Q1 : BOOL;
END_VAR
VAR

Q1_Tmp : BOOL;
END_VAR

Q1_Tmp := SET1 OR (Q1_Tmp AND (NOT RESET));

Q1 := Q1_Tmp;
END_FUNCTION_BLOCK

Listing B.25: ST Model

: ST_SR

256

CUA W N e

15
16
17

IS U R R

19

Appendix B: ST Model Examples

FUNCTION ST_SIMPLE_FUN : REAL

VAR_INPUT

A1 : REAL;

B1 : REAL;

Cl1 : REAL := 1.0;
END_VAR
VAR_IN_OUT

COUNT : INT;
END_VAR
VAR

COUNTP1 : INT;
END_VAR

COUNTP1 := COUNT + 1;
COUNT := COUNTP1;
ST_SIMPLE_FUN := (Al % B1) / Ci;
END_FUNCTION

Listing B.26: ST Model: ST_SIMPLE_FUN

PROGRAM ST_SIMPLE_PRG1
VAR_INPUT
PRG_IN : BOOL;
PRG_A : REAL;
PRG_B : REAL;
PRG_C : REAL;

END_VAR
VAR_OUTPUT
PRG_OUT1 : BOOL;
PRG_OUT2 : REAL := 1.0;
PRG_ET_OFF : TIME;
END_VAR
VAR
DEBOUNCE_01 : ST_DEBOUNCE;
PRG_COUNT : INT := 4;
END_VAR
DEBOUNCE_01 (IN := PRG_IN, DB_TIME := T#2000MS, OUT => PRG_OUT1, ET_OFF
=> PRG_ET_OFF) ;
ST_SIMPLE_FUN(A1 := PRG_A + 2.0, B1 := PRG_B, C1 := PRG_C, COUNT :=

PRG_COUNT, ST_SIMPLE_FUN => PRG_0UT2);
END_PROGRAM

Listing B.27: ST Model: ST_SIMPLE_PRG1

PROGRAM ST_TANK_CTRL

VAR
S1 : BOOL;
B1 : BOOL;
B2 : BOOL;
P1 : BOOL;
M1 : BOOL;
M2 : BOOL;

END_VAR

P1 := S1;

IF NOT B1 THEN
M1 := TRUE;
M2 := TRUE;

END_IF;

IF B2 OR NOT S1 THEN
M1 := FALSE;
M2 := FALSE;

END_IF;

257

Appendix B: ST Model Examples

END_PROGRAM

Listing B.28: ST Model: ST_TANK_CTRL

1 PROGRAM ST_TRACK_CORR
2 VAR_INPUT

3 B1 : BOOL;

4 B2 : BOOL;

5 B3 : BOOL;

6 END_VAR

7 VAR_OUTPUT

8 P1_Alarm : BOOL;
9 K1_Left : BOOL;
10 K2_Right : BOOL;
11 END_VAR

12 VAR

13 Tmpl : BOOL;

14 Tmp2 : BOOL;

15 Tmp3 : BOOL;

16 END_VAR

18 ST_ALARM (xSENSOR_L

=> Tmpl);

19 P1_Alarm := Tmpl;
ST_LEFT1 (xSENSOR_L := B1, xSENSOR_R := B3, ST_LEFT1 => Tmp2);
Ki_Left := Tmp2;

ST_RIGHT1 (xSENSOR_L := B1, xSENSOR_R := B3, ST_RIGHT1 => Tmp3);
K2_Right := Tmp3;
END_PROGRAM

Bl, xSENSOR_M

B2, xSENSOR_R := B3, ST_ALARM

NN NN
= O

AW N

Listing B.29: ST Model: ST_-TRACK_CORR

PROGRAM ST_TWO_PCTRL

VAR
usiS : UINT := 150;
usiH : UINT := 200;

[N R

usiOn : UINT;
6 usiOff : UINT;
7 x0ut : BOOL;

8 END_VAR

9 END_PROGRAM

11 IF usiS > 200 OR usiS < 100 THEN

12 usiS := 150;

13 END_IF;

14 usiOn := usiS - 25;
15 usiOff := usiS + 25;
16 IF usiH > usiOff THEN
17 x0ut := FALSE;

18 END_IF;

19 IF usiH < usiOn THEN
20 x0ut := TRUE;

21 END_IF;

22 END_PROGRAM

Listing B.30: ST Model: ST_-TWO_PCTRL (USINT data type designed as UINT)

258

13

15

16

—

Appendix

C

Resulting ST-Based Quartz Models

module ST_TWO_OF_THREE (
event bool 7EI,
event bool !'EO0,
bool ?7xBl1_Temp,
bool ?xB2_Temp,
bool ?xB3_Temp,
bool !xP1_Temp){

loopA

immediate await (EI);

xP1_Temp = ((xB1_Temp&xB2_Temp) | (xB1_Temp&xB3_Temp) | (xB2_Temp&
xB3_Temp)) ;

emit (E0); pause;

Listing C.1: Quartz Model: ST_TWO_OF THREE

module ST_ALARM(
bool ?7xSENSOR_L,
bool ?xSENSOR_M,
bool ?7xSENSOR_R,
bool !ST_ALARM){

ST_ALARM

= (!(xSENSOR_L)&! (xSENSOR_M) &! (xSENSOR_R)) | (xSENSOR_L&

xSENSOR_R) ;

Listing C.2: Quartz Model: ST_ALARM

module ST_SCALE(
int {32768} 7iX,
real 7rY_MAX,
real ?7rY_MIN,
real !ST_SCALE){

ST_SCALE

= (rY_MAX - rY_MIN) / 32760.0 * iX + rY_MIN;

Listing C.3: Quartz Model: ST_SCALE

259

15
16
17
18

19

15

16

]

[T
W oR O © o -

© 0 N O U W

W W W W WNNNNNNNNN

RSO C R

Appendix C: Resulting ST-Based Quartz Models

import ST_SCALE.x*;

module ST_AVAL_PROC(

event bool 7EI,
event bool !E0){

real rPressure;

int {32768} iPressure_Per;
real ST_SCALE_11;

loopq
immediate await (EI);

ST_SCALE(iPressure_Per,
rPressure = ST_SCALE_11;

emit (E0); pause;

10.0,

6.0,

ST_SCALE_11);

Listing C.4: Quartz Model: ST_AVAL_PROC

module ST_OP_ARITH(

event bool 7EI,
event bool !'E0){

real x01;

real x02;

real x03;

real x04;

real x05;

real x06;

real x1;

real x2;

int {32768} x3;
int {32768} x4;

x1 = 1.0;

x2 = 2.0;

x3 = 1;

x4 = 2;

pause;

loopAi
immediate await (EI);
x01 = x1 + x2;
x02 = x1 - x2;
x03 = x1 * x2;
x04 = x1 / x2;
x05 = exp(xl, x2);
x06 = x3 % x4;
emit (E0); pause;

}

Listing C.5: Quartz Model: ST_-OP_ARITH

module ST_OP_BOOL (

event bool 7EI,
event bool !'E0){

bool x01;

260

Appendix C: Resulting ST-Based Quartz Models

6 bool x02;

7 bool x03;

8 bool x04;

9 bool x1;

10 bool x2;

11

12 x1l = true;

13 x2 = false;

14 pause;

15

16 loopAi

17 immediate await (EI);
18

19 x01 = ' (x1);
20 x02 = x1 & x2;
21 x03 = x1 | x2;
22 x04 = x1 ~ x2;
23
24 emit (E0); pause;
25 ¥
2

Listing C.6: Quartz Model: ST_OP_BOOL

1 module ST_COMPENS (
2 event bool 7EI,
3 event bool !'E0){

5 real rQ;

6 bool xQ1;

7 bool xQ2;

8 bool xQ3;

9

10 rQ = 1500.0;

11 pause;

12

13 loop{

14 immediate await (EI);
15

16 if (rQ < 1000.0){
7 xQ3 = false;
18 xQ2 = false;
19 xQ1 = false;
20 ¥

21

22 if (rQ >= 1000.0){
23 xQ3 = false;
24 xQ2 = false;
25 xQ1 = true;
26 }

27

28 if (rQ >= 2000.0){
29 xQ3 = false;
30 xQ2 = true;
31 xQ1 = true;
32 }

34 if (rQ > 3000.0){
35 xQ3 = true;
36 xQ2 = true;
37 xQ1 = true;
38 ¥

39

40 emit (E0); pause;

261

16

15
16
17
18
19

NN NN

Y R W N =

-~

NN N NN
0o =N

Appendix C: Resulting ST-Based Quartz Models

module ST_COND (
event bool 7EI,

Listing C.7: Quartz Model: ST_COMPENS

event bool !'E0){
bool x0;
bool x1;
bool x2;
x1 = true;
X2 = true;
pause;
loop{
immediate await (EI);
if (x1)4{
X2 = true;
¥
if (x1){
x0 = true;
Yelsed{
x0 = false;
}
emit (E0); pause;
}

Listing C.8: Quartz Model: ST_COND

module ST_DATATYPES(
event bool 7EI,

event bool

bool Al;
bool A2;
bv{16} A3;
bv{32} A4;
int {32768}
int {32768}

A5
A6 ;

int{2147483648%}
int {2147483648}

nat {65536} A9;

'E0){

nat {65536} A10;

nat {4294967296}
nat{4294967296}

real A13;

real Al14;

nat A15;

nat A16;
[3]1bool A1T;
[3]1bv{16} A18;
[31bv{32} A19;
[3]int {32768}

[3]1int{2147483648}

[3]1nat {65536}

[31nat{4294967296%}

[3]1real A24;
[3]nat A25;

A1l
A12;

A20;

A22;

262

A W N

36
37
38
39

ISV R

Appendix C: Resulting ST-Based Quartz Models

A2 = true;
A6 = 2;
A8 = 2;
A10 = 2;
A12 = 2;

A14 = 1.23;
A16 = 5000;
pause;

loopq{
immediate await (EI);
emit (E0); pause;

Listing C.9: Quartz Model: ST_-DATATYPES

import TON.*;
import SR.*;

module ST_DEBOUNCE (
event bool 7EI,
event bool !'EO0,
nat 7CLK,
bool 7IN,
nat ?DB_TIME,
bool !0UT,
nat 'ET_OFF){

event bool DB_ON_EI;
event bool DB_ON_EO;
event bool DB_OFF_EI;
event bool DB_OFF_EOQO;
event bool DB_FF_EI;
event bool DB_FF_EO;

bool DB_ON_Q;
bool DB_OFF_Q;
bool DB_FF_Q1;
nat DB_ON_ET;
nat DB_OFF_ET;

loopA
immediate await (EI);

emit (DB_ON_EI);
immediate await (DB_ON_EO);

emit (DB_OFF_EI);
immediate await (DB_OFF_EO0);

ET_OFF = DB_OFF_ET;

emit (DB_FF_EI);
immediate await (DB_FF_EO0) ;

0UT = DB_FF_Q1;

emit (EQ) ;
pause;

¥

|| DB_ON:TON(DB_ON_EI, DB_ON_EO, CLK,
IN, DB_TIME,
DB_ON_Q, DB_ON_ET);

|| DB_OFF:TON(DB_OFF_EI, DB_OFF_EO, CLK,
1(IN),

263

Appendix C: Resulting ST-Based Quartz Models

50 DB_TIME,
51 DB_OFF_Q, DB_OFF_ET);

52 || DB_FF:SR(DB_FF_EI, DB_FF_EO,
53 DB_ON_Q,

54 DB_OFF_Q, DB_FF_Q1);

>5

Listing C.10: Quartz Model: ST_DEBOUNCE

1 module ST_ASS_DEL(

2 event bool 7EI,
3 event bool !'E0){
1
5

int {32768} x0;
6 int {32768} yO0;

8 x0 = 2;

9 yo = 1;

10 pause;

11

12 loop{

13 immediate await (EI);
14

15 next (y0) = y0 + x0;
16 pause;

17

18 emit (E0); pause;

19 ¥
Listing C.11: Quartz Model: ST_ASS_DEL

1 module ST_OP_IN_EQ(
2 event bool 7EI,
3 event bool !'E0){
1

5 bool xO0;
6 bool x1;
7 bool x2;

9 x1l = true;
10 x2 = false;
11 pause;

13 loop{
14 immediate await (EI);

16 x0 = x1 == x2;
17 pause;

18 x0 = x1 !'= x2;

20 emit (E0); pause;

NN
N =
-

Listing C.12: Quartz Model: ST_-OP_IN_EQ

1 module ST_LOOP_FO0OT(
2 event bool 7EI,
3 event bool !EO,
4 int {32768} !'y){
5

6 int {32768} x0;
7 int {32768} x1;
8 int {32768} x2;

264

18

NN NN NN
(SO R

W oW oW N NN
2N = O © W N O C

© o -

NN NN NN
TR W N =

W oW N NN
= O © W N O

Appendix C: Resulting ST-Based Quartz Models

int {32768} ij;
int {32768} i0;
int {32768} i1;

x0 = 0;
xl = 1;
X2 = 2;
i0 = 0;
i1l = 10;
pause;
loopq
immediate await (EI);
i = 1i0;
do{
y = x0;
next (i) = i + x2;
pause;
}while (1 (i > i1));
y = x1;
emit (E0); pause;
}

Listing C.13: Quartz Model

module ST_LOOP_HEAD (
event bool 7EI,
event bool !EO,
int {32768} !y){

int {32768} x1;
int {32768} x2;
int {32768} ij;
int {32768} i0;
int {32768} iil;

xl = 1;
X2 = 2;
i0 = 0;
il = 10;
pause;
loopq{
immediate await (EI);
i = 1i0;
while(i <= i1){
yo= 1
next (i) = i + x2;
pause;
}
y = x1;
emit (E0); pause;
}

Listing C.14: Quartz Model

module ST_ASS_IMM1 (
event bool 7EI,
event bool !'E0){

: ST_LOOP_FOOT

: ST_LOOP_HEAD

265

Appendix C: Resulting ST-Based Quartz Models

int {32768}
int {32768}
int {32768}
int {32768}
int {32768}

X;
Yy

x0;
yo;
vi;

10 int {32768} x1;
12 X = 2;
13 y = 2;
14 x0 = 2;
15 pause;
16
loopq{
immediate await (EI);

_ =
© 0 =

SR I
<
|
el

emit (E0); pause;

[CENN]
Y R W N =

NN N

[}

Listing C.15: Quartz Model: ST_ASS_IMM1

1 module ST_ASS_IMM2(
2 event bool 7EI,
3 event bool !'E0){
1
5

; int {32768}
6 int {32768}
7 int {32768}
8 int {32768}
9 int {32768}
10 int {32768}

x0;
x1;
x2;
yo;
yi;
v2;

12 x0 =
13 x1l =
14 x2 =
15 y2 =
16 pause;

NN NN

18 loopAi
19 immediate await (EI);

%)

yO = x0;
yl = x1;
pause;

yo = x2;

NN
O

St

y2 = x0;
pause;
y2 = x1;

NN NN N
© 0w = C

yO = x0;
pause;
x0 = y0O + x1;

emit (E0); pause;

O W W W W w W
(ST SOVUR C Rt

(o)

Listing C.16: Quartz Model: ST_ASS_IMM2

266

CUA W N e

1

19
20
21

16

Appendix C: Resulting ST-Based Quartz Models

module ST_ASS_IMM_OUT(
int {32768} 7x,
int {32768} !y,
bool !ST_ASS_IMM_OUT){

y = x;
ST_ASS_IMM_OUT = true;

Listing C.17: Quartz Model: ST_ASS_IMM_OUT

import ST_ASS_IMM_OQUT.*;

module ST_ASS_IMMS3(
event bool 7EI,
event bool !'E0){

int {32768} yi;

bool y2;

int {32768} ST_ASS_IMM_OUT_y_11;
bool ST_ASS_IMM_OUT_11;

loop{
immediate await (EI);

ST_ASS_IMM_OUT (4, ST_ASS_IMM_OUT_y_11,

yl = ST_ASS_IMM_0OUT_y_11;
y2 ST_ASS_IMM_OUT_11;

emit (E0); pause;

Listing C.18: Quartz Model: ST_ASS_IMM3

module ST_LEFT1 (
bool ?7xSENSOR_L,
bool ?7xSENSOR_R,
bool !'!ST_LEFT1){

ST_LEFT1 = (xSENSOR_L & !(xSENSOR_R));

Listing C.19: Quartz Model: ST_LEFT1

module ST_OP_NUM_REL(
event bool 7EI,
event bool !'E0){

bool x0;
int {32768} x1;
int {32768} x2;

xl = 1;
x2 = 2;
pause;

loopAi
immediate await (EI);

x0 = x1 < x2;
pause;

x0 = x1 <= x2;
pause;

x0 = x1 > x2;

ST_ASS_IMM_OUT_11)

267

Appendix C: Resulting ST-Based Quartz Models

21 pause;

22 x0 = x1 >= x2;

23

24 emit (E0); pause;

25 }

26 }

Listing C.20: Quartz Model: ST_OP_NUM_REL

1 module ST_TOF(

2 event bool ?EI,

3 event bool !EO,

| nat ?7CLK,

5 bool 7IN,

6 nat 7?PT,

7 bool !Q1,

8 nat !ET)A{

9

10 nat ETTIME;

11 nat TSTART;

12 bool LASTIN;

13 bool Q1_Templ;

14

15 Q1 = false;

16 pause;

17

18 loop{

19 immediate await (EI);

2

21 if (IN != LASTIN)A{

22 next (LASTIN) = IN;
23 pause;

24 if (IN){

25 TSTART = CLK;

26 Yelseq{

27 TSTART = O;

28 }

29 Q1_Templ = true;
30 Q1 = Q1_Templ;
31 ET = 0;
32 }
33 elseq
34 if (1 (IN) & Q1_Templ){
35 ETTIME = CLK - TSTART;
36 if (ETTIME < PT){
37 ET = ETTIME;
38 }elseq
39 next (Q1_Templ) = false;
40 pause;

11 Q1 = Q1_Templ;
492 ET = PT;

13 }
44 }

15 }

16

47 emit (E0); pause;

18 }
49 }

Listing C.21: Quartz Model: ST_TOF

module ST_TON (
event bool 7EI,
event bool !EO,
nat ?CLK,

N I

268

Appendix C: Resulting ST-Based Quartz Models

5 bool 7IN,
6 nat ?PT,

7 bool !Q1,
8 nat !ET)A{

10 nat ETTIME;

11 nat TSTART;

12 bool LASTIN;

13 bool Q1_Templ;

14

15 Q1 = false;

16 pause;

17

18 loop{

19 immediate await (EI);

2

21 if (IN != LASTIN)A{

22 next (LASTIN) = IN;

23 pause;

24 if (IN){

25 TSTART = CLK;

26 Yelsed{

27 TSTART = O;

28 }

29 Q1_Templ = false;

30 Q1 = Q1_Templ;

31 ET = 0;

32 }

33 elseq

34 if (IN & !'(Q1_Temp1)){
35 ETTIME = CLK - TSTART;
36 if (ETTIME < PT){
37 ET = ETTIME;
38 Yelse{

39 next (Q1_Templ) = true;
10 pause;

11 Q1 = Q1_Templ;
42 ET = PT;

13 }

44 }

15 }

46

17 emit (E0); pause;

18 }

49 }

Listing C.22: Quartz Model: ST_TON

1 module ST_RS(

2 event bool ?EI,
3 event bool !EO,
1 bool ?7SET,

5 bool ?7RESET1,
6 bool !Q1){

8 bool Q1_Tmp;
9

10 loop{

11 immediate await (EI);

13 next (Q1_Tmp) = (SET | Q1_Tmp) & !(RESET1);
14 pause;

15 Q1 = Q1_Tmp;

16

17 emit (E0); pause;

18 }

269

19

[

[

ot

S N

— e e e
B W N = O © o

w

16
17
18

19

(S N R

—
= O © N o

Appendix C: Resulting ST-Based Quartz Models

Listing C.23: Quartz Model: ST_RS

module ST_RIGHT1 (
bool ?xSENSOR_L,
bool ?7xSENSOR_R,
bool !ST_RIGHT1){

ST_RIGHT1 = (!(xSENSOR_L) & xSENSOR_R);

Listing C.24: Quartz Model: ST_RIGHT1

module ST_SR(
event bool 7EI,
event bool !EO,
bool 7SETI1,
bool ?7RESET,
bool 'Q1){

bool Q1_Tmp;

loop{
immediate await (EI);

next (Q1_Tmp) = SET1 | (Q1_Tmp & !(RESET));
pause;
Q1 = Q1_Tmp;

emit (E0); pause;

Listing C.25: Quartz Model: ST_SR

module ST_SIMPLE_FUN (
real 7A1,
real 7B1,
real 7C1,
int {32768} COUNT,
real !ST_SIMPLE_FUN){

int {32768} COUNTP1;

COUNTP1 = COUNT+1;

pause;

COUNT = COUNTP1;
ST_SIMPLE_FUN = (A1%B1)/C1;

Listing C.26: Quartz Model: ST_SIMPLE_FUN

import ST_DEBOUNCE.*;
import ST_SIMPLE_FUN.x*;

module ST_SIMPLE_PRG1 (

event bool 7EI,
event bool !EO,
nat 7CLK,

bool ?7PRG_IN,

real ?7PRG_A,

real 7PRG_B,

real ?7PRG_C,

270

Appendix C: Resulting ST-Based Quartz Models

12 bool !PRG_OUT1,

13 nat !PRG_ET_OFF,

14 real !PRG_0UT2){

15

16 int {32768} PRG_COUNT;

17

18 event bool DEBOUNCE_O1_ETI;

19 event bool DEBOUNCE_O1_EO;

2(

21 bool DEBOUNCE_01_0UT;

22 nat DEBOUNCE_O1_ET_OFF;

23

24 real ST_SIMPLE_FUN_11;

95

26 PRG_COUNT = 4;

27 pause;

28

29 loop{
30 immediate await (EI);

3
32 emit (DEBOUNCE_O1_EI);

33 immediate await (DEBOUNCE_O1_EQ0);
34
35 PRG_0OUT1 = DEBOUNCE_01_0UT;
36 PRG_ET_OFF = DEBOUNCE_O01_ET_OFF;
38 ST_SIMPLE_FUN (
39 PRG_A + 2.0,
40 PRG_B, PRG_C,

11 PRG_COUNT, ST_SIMPLE_FUN_11);
42

13 PRG_0UT2 = ST_SIMPLE_FUN_11;
44

15 emit (EQ) ;

16 pause;

17 }

18 || DEBOUNCE_O1:ST_DEBOUNCE (DEBOUNCE_O1_EI, DEBOUNCE_O1_EO, CLK,
49 PRG_IN,

50 2000,

51 DEBOUNCE_01_0UT, DEBOUNCE_O1_ET_OFF);
52}

Listing C.27: Quartz Model: ST_SIMPLE_PRG1

1 module ST_TANK_CTRL (

2 event bool 7EI,

3 event bool !E0){

4

5 bool S1;

6 bool B1;

7 bool B2;

8 bool P1;

9 bool M1;

10 bool M2;

11

12 loop{

13 immediate await (EI);

14

15 P1 = S1;

16 if (1 (B1)){

17 M1 = true;

18 M2 = true;

19 ¥
20 if (B2 | '(S1)){
21 pause;
22 M1 = false;

271

TR W

~

NN N NN

[0

[N R

Appendix C: Resulting ST-Based Quartz Models

import
import
import

module

M2 = false;
}

emit (E0); pause;

Listing C.28: Quartz Model: ST_TANK_CTRL

ST_ALARM. *;
ST_LEFT1 .x%;
ST_RIGHT1 .x*;

ST_TRACK_CORR(

event bool 7EI,
event bool !'EO0,
bool 7B1,

bool 7B2,

bool 7B3,

bool !P1_Alarm,
bool !Kil_Left,
bool !K2_Right){

bool Tmpl;
bool Tmp2;
bool Tmp3;

bool ST_ALARM_11;
bool ST_LEFT1_11;
bool ST_RIGHT1_11;

loopq{

immediate await (EI);

ST_ALARM(B1, B2, B3,
ST_ALARM_11);

Tmpl = ST_ALARM_11;

P1_Alarm = Tmpl;

ST_LEFT1(B1, B3,
ST_LEFT1_11);
Tmp2 = ST_LEFT1_11;
Ki_Left = Tmp2;
ST_RIGHT1(B1, B3,
ST_RIGHT1_11);
Tmp3 = ST_RIGHT1_11;
K2_Right = Tmp3;

emit (E0); pause;

Listing C.29: Quartz Model: ST_-TRACK_CORR

module ST_TWO_PCTRL (
event bool 7EI,
event bool !'E0){

nat {65536} usiS;
nat {65536} usiH;
nat {65536} usiOn;
nat {65536} usiOff;
bool x0ut;

272

Appendix C: Resulting ST-Based Quartz Models

}

usis
usiH
paus

loop

150;
200;

€

{

immediate await (EI);

if ((usiS > 200) | (usis < 100)){
usiS = 150;

}

usiOn = usiS - 25;

usi0ff = usiS + 25;

if (usiH > usiOff){

x0ut = false;
¥
if (usiH < usiOn){
x0ut = true;
¥

emit (E0); pause;

Listing C.30: Quartz Model: ST_-TWO_PCTRL (USINT data type designed as UINT)

273

1
2
3

!
-

>

15

16

16

19

o 1)

Appendix

Resulting SCL Models

module ST_TWO_OF_THREE{
input bool EI;
output bool EO;
input bool xBl_Temp;
input bool xB2_Temp;
input bool xB3_Temp;
output bool xP1_Temp;

loop:
while (!EI){
pause;

}

xP1_Temp = ((xB1_Temp & xB2_Temp) | (xB1i_Temp & xB3_Temp) | (
xB2_Temp & xB3_Temp));

EQ0 = true;
pause;

EQ0 = false;
goto loop;

Listing D.1: SCL Model: ST_TWO_OF THREE

module ST_ALARM{
input bool EI;
output bool EO;
input bool xSENSOR_L;
input bool xSENSOR_M;
input bool xSENSOR_R;
output bool ST_ALARM;

loop:
while (1EI){
pause;
}
ST_ALARM = false;

ST_ALARM = (!(xSENSOR_L) & !(xSENSOR_M) & !(xSENSOR_R)) | (xSENSOR_L
& xSENSOR_R) ;

EQ0 = true;
pause;

E0 = false;
goto loop;

275

15

16

[P
S © 0

O

W oW NN NN NNNNNDN
S © ® N O w

Appendix D: Resulting SCL Models

module ST_SCALE{

input bool EI;
output bool EO;
input int iX;

Listing D.2: SCL Model: ST_ALARM

input float rY_MAX;
input float rY_MIN;
output bool ST_SCALE;

loop:
while ('EI){
pause;

}

ST_SCALE = false;

ST_SCALE = (rY_MAX - rY_MIN) / 32760.0 * iX + rY_MIN;

E0 = true;
pause;

E0 = false;
goto loop;

input bool EI;
output bool EO;
output int y;

float x01;
float x02;
float x03;
float x04;
float x05;
float x06;
float x1 =
float x2 =
int x3 = 1;
int x4 = 2

o O

N =

loop:
while (!EI){
pause;

}

x01 = x1 + x2;
x02 = x1 - x2;
x03 = x1 * x2;
x04 = x1 / x2;
x06 = x3 % x4;

EQ0 = true;
pause;

EQ0 = false;
goto loop;

module ST_OP_BOOL{

input bool EI;
output bool EO;

Listing D.3: SCL Model: ST_SCALE

module ST_OP_ARITH{

Listing D.4: SCL Model: ST_-OP_ARITH

276

15

16

_ =
S © ®»

RONNN NN N =
aR W N =

15
16
17
18
19
20

[

o

~

W OWw W W WNNNNNNNNN
9 =] 3

AW 0 o=

w
o

36

Appendix D: Resulting SCL Models

output int y;
bool x01;

bool x02;

bool x03;

bool x04;

bool x1 = true;
bool x2 = false;

loop:
while ('EI){
pause;

}

x01 = !1(x1);

x02 = x1 & x2;
x03 = x1 | x2;
x04 = x1 ~ x2;

E0 = true;
pause;

EQ0 = false;
goto loop;

module ST_COMPENSA{

input bool EI;
output bool EO;

float rQ = 1500.0;

Listing D.5: SCL Model: ST_OP_BOOL

bool xQ1;
bool xQ2;
bool xQ3;
loop:
while (1EI){
pause;
}
if (rQ < 1000.0){
xQ3 false;
xQ2 = false;
xQ1 = false;
}
if (rQ >= 1000.0){
xQ3 = false;
xQ2 = false;
xQ1 = true;
}
if (rQ >= 2000.0){
xQ3 false;
xQ2 true;
xQ1 = true;
}
if (rQ > 3000.0){
xQ3 true;
xQ2 = true;
xQ1 = true;
}
EQ0 = true;
pause;
E0 = false;
goto loop;

277

39

15

16

S © ®

NN NN N L
[STE VR R

19

%)
= O

A W ON

W OW NN NNNNNNN
S © ® N O

Appendix D: Resulting SCL Models

Listing D.6: SCL Model: ST_COMPENS

module ST_COND{
input bool EI;
output bool EO;

bool x0;
bool x1 = true;
bool x2 = true;
loop:
while (!EI){
pause;
}
if (x1){
X2 = true;
}
if (x1){
x0 = true;
}elseq{
x0 = true;
}
E0 = true;
pause;
EQ0 = false;
goto loop;

}

Listing D.7: SCL Model: ST_COND

module ST_DATATYPES{
input bool EI;
output bool EO;
bool A1l;
bool A2 =
int Ab5;
int A6 = 2;
int A7;
int A8 = 2;
int A9;
int A10 = 2;
float A13;
float Al14 =
int A15;
int A16 = 5000;
bool A17[3];
int A20[3];
int A21[3];
int A22[3];
float A24[3];
int A25[3];

true;

1.23;

loop:
while (1EI){
pause;

}

EQ0 = true;

pause;

E0 = false;
goto loop;

278

16

VRN

15
16

Appendix D: Resulting SCL Models

module ST_ASS_DEL{
input bool EI;
output bool EO;
int x0 = 2;
int yo ig

loop:
while (1EI){
pause;

}
yo = y0O + xO0;

E0 = true;
pause;
E0 = false;
goto loop;
}

module ST_OP_IN_EQ
input bool EI;
output bool EO;
output int y;
bool x0;
bool x1 = true;
bool x2 = false;

loop:
while (!EI){
pause;
}
x0 = x1 == x2;
x0 = x1 != x2;

E0 = true;
pause;

EQ0 = false;
goto loop;

module ST_LOOP_FO0O
input bool EI;
output bool EO;
output int y;
int x0 = 0;

int x1 = 1;
int x2 = 2;
int i;

int 10 = O0;
int i1 = 10;

loop:
while ('EI){
pause;

}

Listing D.8: SCL Model: ST_DATATYPES

Listing D.9: SCL Model: ST_ASS_DEL

{

Listing D.10: SCL Model: ST_OP_IN_EQ

T{

279

Appendix D: Resulting SCL Models

S

i0;

HM
© 0w =~
o ke
(o]
<. [[}

x0;
i=1i + x2;
pause;

if (1 (i > i1)){
goto do;

W N = O

=~

}
y

= x1;

-

E0 = true;
pause;

E0 = false;
goto loop;

W oW NN NN NNNNNDN
S © ® o >

w
ot
(o)

Listing D.11: SCL Model: ST_LOOP_FOOT

1 module ST_LOOP_HEAD{
2 input bool EI;

3 output bool EO;

1 output int y;

5 int x1 = 1;

6 int x2 = 2;

7 int i;

8 int i0 = O0;

9 int i1 = 10;

11 loop:
12 while (!EI){
13 pause;

14 T

16 i = 1i0;

17 while(i <= i1){
18 y = i

19 i =1i + x2;

0 pause;

}
y

= x1;

SRR

EQ0 = true;
pause;

E0 = false;
goto loop;

o

0 =1

NN NN NN NN
N

o
(]

Listing D.12: SCL Model: ST_LOOP_HEAD

1 module ST_ASS_IMM1{
2 input bool EI;

3 output bool EO;

4 int x = 2;

5 int y = 2;

6 int x0 = 2;

7 int yO0;

8 int yi;

9 int x1;

11 loop:
12 while ('EI){
13 pause;

15
16 y = Xx;

280

Appendix D: Resulting SCL Models

S

yoO = x0;
yl = x1;

[EIR
S © ®

EQ0 = true;
pause;
E0 = false;
goto loop;
}

NN NN
W N =

=0

Listing D.13: SCL Model: ST_ASS_TMM1

1 module ST_ASS_IMM2{
2 input bool EI;

3 output bool EO;

1 int x0 = 2;

5 int x1 = 2;

6 int x2 = 2;

7 int yO0;
8 int yi;
9 int y2

2;

11 loop:
12 while (1EI){
13 pause;

14 T

16 yO = x0;
17 y1l = x1;
18 yoO = x2;

0 y2 = x0;
y2 = x1;

W o=

yO = x0;
x0 = y0O + x1;

=~

E0 = true;
pause;
EQ0 = false;
goto loop;
}

W NN NNNNNNNN
© 0 = o

Listing D.14: SCL Model: ST_ASS_IMM2

1 module ST_ASS_IMM_OUT{

2 input bool EI;

3 output bool EO;

4 input int x;

5 output int y;

6 output bool ST_ASS_IMM_OUT;

8 loop:

9 while (1EI){

10 pause;

11 }

12 y = 0;

13 ST_ASS_IMM_OQUT = false;

15 y = X;
16 ST_ASS_IMM_OQUT = true;

18 EQ0 = true;
19 pause;

20 E0 = false;
21 goto loop;

281

N
N

15
16

S © ® N

NN NN
® N o=

Appendix D: Resulting SCL Models

Listing D.15: SCL Model: ST_ASS_IMM_OUT

module ST_LEFT1{
input bool EI;
output bool EO;
input bool xSENSOR_L;
input bool xSENSOR_R;
output bool ST_LEFT1;

loop:
while ('EI){
pause;
}
ST_LEFT1 = false;

ST_LEFT1 = ((xSENSOR_L) & (!(xSENSOR_R)));

E0 = true;
pause;
EQ0 = false;
goto loop;
}

Listing D.16: SCL Model: ST_LEFT1

module ST_OP_NUM_RELA{
input bool EI;
output bool EO;
output int y;
bool x0;
int x1 = 1;
int x2 = 2;

loop:
while (!EI){
pause;

}

x0 = x1 < x2;
x0 = x1 <= x2;
x0 = x1 > x2;
x0 = x1 >= x2;

EQ0 = true;
pause;

EQ0 = false;
goto loop;

Listing D.17: SCL Model: ST_OP_NUM_REL

module ST_TOF{
input bool EI;
output bool EO;
input int CLK;
input bool IN;
input int PT;
output bool Q1 = false;
output int ET;
int ETTIME;
int TSTART;
bool LASTIN;
bool Q1_Templ;

282

13
14
15
16

Appendix D: Resulting SCL Models

loop:
while (!EI){
pause;
}
if (IN != LASTIN){
LASTIN = IN;
if (IN){
TSTART = CLK;
Yelse{
TSTART = O0;
¥
Q1_Templ = true;
Q1 = Q1_Templ;
ET = 0;
Yelseq{

if (! (IN) & Q1_Templ){
ETTIME = CLK - TSTART;
if (ETTIME < PT){
ET = ETTIME;
Yelsed{
Q1_Templ = false;
Q1 = Q1_Tempil;
ET = PT;
}
}
}

E0 = true;
pause;

E0 = false;
goto loop;

Listing D.18: SCL Model: ST_TOF

module ST_TON{
input bool EI;
output bool EO;
input int CLK;
input bool IN;
input int PT;
output bool Q1 = false;
output int ET;
int ETTIME;
int TSTART;
bool LASTIN;
bool Q1_Templ;

loop:
while (!EI){
pause;
}
if (IN != LASTIN){
LASTIN = IN;
if (IN){
TSTART = CLK;
Yelsed{
TSTART = 0;
¥
Q1_Templ = false;
Q1 = Q1_Templ;
ET = 0;
Yelse{

283

16

19

16
17
18

19

N

Appendix D: Resulting SCL Models

if (IN & (!
ETTIME =

(Q1_Temp1))){
CLK - TSTART;

if (ETTIME < PT){
ET = ETTIME;

Yelseq{
Q1_Templ = true;
Q1 = Q1_Templ;
ET = PT;

}
}
}

E0 = true;
pause;

E0 = false;
goto loop;

module ST_RS{
input bool EI;
output bool EO
input bool SET

Listing D.19: SCL Model: ST-TON

H

input bool RESET1;

output bool Q1
bool Q1_Tmp;

loop:
while (1EI){
pause;

}

H

Q1_Tmp = (SET | Q1_Tmp) & (!(RESET1));

Q1 = Q1_Tmp;

EQ0 = true;
pause;

EQ0 = false;
goto loop;

module ST_RIGHT1
input bool EI;
output bool EO

Listing D.20: SCL Model: ST_RS

{

H

input bool xSENSOR_L;
input bool xSENSOR_R;
output bool ST_RIGHT1;

loop:
while (!EI){
pause;

}
ST_RIGHT1 =

ST_RIGHT1 =

EQ0 = true;
pause;
E0 = false;
goto loop;
}

false;

(! (xSENSOR_L) & (xSENSOR_R));

Listing D.21: SCL Model: ST_.RIGHT1

284

15
16

NN

Appendix D: Resulting SCL Models

module ST_SR{
input bool EI;
output bool EO;
input bool SET1;
input bool RESET;
output bool Q1;
bool Q1_Tmp;

loop:
while ('EI){
pause;

}

Q1_Tmp = SET1 | (Qi_Tmp &
Q1 = Q1_Tmp;

E0 = true;
pause;

E0 = false;
goto loop;

(' (RESET))) ;

Listing D.22: SCL Model: ST_SR

module ST_SIMPLE_FUN{
input bool EI;
output bool EO;
input float A1l;
input float B1;
input float C1 = 1.0;
input output int COUNT;
output float ST_SIMPLE_FUN;
int COUNTP1;

loop:
while (1EI){
pause;
}
ST_SIMPLE_FUN = false;

COUNTP1 = COUNT + 1;
COUNT = COUNTP1;

ST_SIMPLE_FUN = ((A1 % B1) / C1);

EQ0 = true;
pause;

EQ0 = false;
goto loop;

Listing D.23: SCL Model: ST_SIMPLE_FUN

module ST_TANK_CTRL{
input bool EI;
output bool EO;
bool S1;
bool B1;
bool B2;
bool P1;
bool Mi;
bool M2;

loop:
while ('EI){
pause;

285

Appendix D: Resulting SCL Models

}

-
'S

15

-

P1 = S1;

if (1(B1)){
M1 = true;
M2 = true;

© 0

¥

if (B2 | !1(s1)){
M1 = false;
M2 = false;

NN NN
0 = O

g A W ON

}

E0 = true;
pause;

E0 = false;
goto loop;

3

03

W N NN NN

(-]

Listing D.24: SCL Model: ST_TANK_CTRL

I module ST_TWO_PCTRL{
2 input bool EI;

3 output bool EO;

4 int usiS = 150;

5 int usiH= 200;

6 int usiOn;

7 int usiOff;

8 bool x0Out;

10 loop:
11 while ('EI){
12 pause;

13 }

15 if (CusiS > 200) | (usiS < 100)){
16 usiS = 150;
17 }
18 usiOn = usiS - 25;
19 usiOff = usiS + 25;
20 if (usiH > usiOff){
x0ut = false;
}
if (usiH < usiOn){
x0ut = true;

W N =

NN N
N

o

}

-~

E0 = true;

pause;

E0 = false;
goto loop;

W oW NN NN
S © ®

=

¥
Listing D.25: SCL Model: ST_TWO_PCTRL (USINT data type designed as UINT)

286

1
2

Appendix

FBD Examples

PROGRAM FBD_TWO_OF_THREE
VAR_INPUT
xB1_Temp : BOOL;
xB2_Temp : BOOL;
xB3_Temp : BOOL;
END_VAR
VAR_OUTPUT
xP1_Temp : BOOL;
END_VAR

xB1_Temp }—‘

xB2_Temp

AND

xB1_Temp }—‘

xB3_Temp

AND

OR

—(xP1_Temp

xB2_Temp }—‘

xB3_Temp

AND

END_PROGRAM

Listing E.1: FBD: FBD_TW0_OF_THREE

FUNCTION_BLOCK FBD_AIR_COND_CTRL

VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;
IN5: BOOL;
IN6: BOOL;
IN7: BOOL;
IN8: BOOL;
IN9: BOOL;

END_VAR

VAR_OQOUTPUT
0UT1: BOOL;
0UT2: BOOL;

END_VAR

17
18
19

20

[N T

~

8

[N T N

© w0

Appendix E: FBD Examples

VAR

RSO :

END_VAR

END_VAR

|

IN2

RS;

OR
IN3
IN4
RSO
RS
T a———{ oun |
[N5 — Notr 0—‘_ RESET1
[N6 +— NOT ——— 5
[N7 — Notr Q—,—
[N& — nor }—’7 n
N —— NnoT ——
[Nne — noT } ouT2
END_FUNCTION_BLOCK
Listing E.2: FBD: FBD_AIR COND_CTRL
FUNCTION FBD_ALARM : BOOL
VAR_INPUT
xSENSOR_L : BOOL;
xSENSOR_M : BOOL;
xSENSOR_R : BOOL;
[xSENSOR_L — NoT }—I_
| xSENSORM |—— NOT ——— AND
[xSENSORR |— NOT }—,_ FBD_ALARM

XSENSOR_L
XSENSOR_R

END_FUNCTION

Listing E.3: FBD: FBD_ALARM

FUNCTION_BLOCK FBD_ANTIVALENCE
VAR_INPUT

INO:
IN1:
IN2:

BOOL;
BOOL;
BOOL ;

END_VAR
VAR_OUTPUT

0UT1:

BOOL ;

END_VAR

288

Appendix E: FBD Examples

[N — NOT ——— AND
IN2
| N0 —— NoOT i { out
OR
[N2 |— NOT |———— AND
IN1
[N1 — Not i
10 [N2 |— NOT |—— AND

11 END_FUNCTION_BLOCK

Listing E.4: FBD: FBD_ANTIVALENCE

1 FUNCTION_BLOCK FBD_OP_ARITH
2 VAR

3 x01 : REAL;

A x02 : REAL;

5 x03 : REAL;

6 x04 : REAL;

7 x05 : REAL;

8 x06 : REAL;

9 x1 : REAL := 1.0;
10 x2 : REAL := 2.0;
11 x3 : INT := 1;

12 x4 : INT := 2;

13 END_VAR

289

Appendix E: FBD Examples

x1

- ADD x01
x1
- SUB x02
B/
,T'— MUL x03
S
o o]
x1
y = EXPT x5
x3

MOD ’—ILI
x4

15 END_FUNCTION_BLOCK

Listing E.5: FBD: FBD_OP_ARITH

1 FUNCTION_BLOCK FBD_BENDING
2 VAR_INPUT

3 IN1: BOOL;
4 IN2: BOOL;
5 IN3: BOOL;
6 END_VAR

7 VAR_OUTPUT

8 0UT1: BOOL;
9 0UT2: BOOL;
10 0UT3: BOOL;
11 END_VAR

12 VAR

13 PT5s: TIME;
14 PT05s: TIME;
15 PT1ls: TIME;
16 TONO: TON;
17 TON1: TON;
18 TON2: TON;
19 TON3: TON;
20 TOFO: TON;
21 RSO: RS;

22 END_VAR

290

Appendix E: FBD Examples

IN1
TON1
TON
IN Q|
PT1s PT ET
AND
TON2
N2 |—‘ TON
IN Q NOT ‘ NOT P out2
PT ET e
PT05s TOFO
TOF
Q
2 o
RSO
TON3 RS
T NOT TON - ET Qi ouT3
IN Q RESET1
PT ET

PT5s

24 END_FUNCTION_BLOCK

Listing E.6: FBD: FBD_BENDING

FUNCTION_BLOCK FBD_OP_BOOL

1
2 VAR
3 x01 : BOOL;
4 x02 : BOOL;
5 x03 : BOOL;
6 x04 : BOOL;
7 x1 : BOOL := TRUE;
8 x2 : BOOL := FALSE;
9 END_VAR
x1 NOT x01
[x| X02
[| AnD
x1 x03
10 X2 OR
x1 x04
[| XoR

11 END_FUNCTION_BLOCK

Listing E.7: FBD: FBD_0P_BOOL

1 FUNCTION_BLOCK FBD_CYLINDER
2 VAR_INPUT

3 INal: BOOL;
A INaO: BOOL;
5 INS: BOOL;
6 INbl: BOOL;
7 INcO: BOOL;
8 INc1: BOOL;
9 INbO: BOOL;
10 END_VAR

11 VAR_OUTPUT

291

12
13
14
15
16
17

19
20

N
¥

19

[CEN RN ENN]
B~ W N

Appendix E: FBD Examples

0UTBp:
0UTAp:
OUTAm:
0UTCp:

END_VAR

VAR
ME1:
ME2:

END_VAR

BOOL;
BOOL;
BOOL;
BOOL;

BOOL;
BOOL;

INa1

INa0

INS

=

{ outBp

NOT

OR

[OUTAp

ME1

INbO

AND

{ OUTAm

ME2

END_FUNCTION_BLOCK

| AND

Listing E.8: FBD: FBD_CYLINDER

FUNCTION_BLOCK FBD_DATATYPES

VAR
Al
A2
A3
A4
A5
A6
AT
A8
A9
A10
Al11
A12
A13
A14
A15
Al6
A17
A18
A19
A20
A21
A22

BOOL;
BOOL :=
BYTE;
WORD ;
INT;
INT :=
DINT;
DINT :=

: UINT;

UINT
UDINT;
UDINT
REAL ;
REAL

TIME;
TIME

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

T

2;

RUE;

T#5000MS;

.21
.2]
.21
.2]
.2]
.2]

OF
OF
OF
OF
OF
OF

BOOL;
BYTE;
WORD ;
INT;
DINT;
UINT;

OUTCp

292

[N I

[N I

16
17
18

Appendix E: FBD Examples

A23 : ARRAY [0..2] OF UDINT;
A24 : ARRAY [0..2] OF REAL;
A25 : ARRAY [0..2] OF TIME;
END_VAR
END_FUNCTION_BLOCK

Listing E.9: FBD: FBD_DATATYPES

FUNCTION_BLOCK FBD_DEBOUNCE
VAR_INPUT
IN: BOOL;
DB_TIME: TIME;
END_VAR
VAR_OUTPUT
0UT: BOOL;
ET_OFF: TIME;
END_VAR
VAR
DB_ON: TON;
DB_OFF: TON;
DB_FF: SR;
END_VAR

IN Q
DB_TIME PT ET—

DB_FF

SET1 Q1 ouT
RESET

N} NOT DB_OFF

DB_TIME PT ET ET_OFF

END_FUNCTION_BLOCK

Listing E.10: FBD: FBD_DEBOUNCE

FUNCTION_BLOCK FBD_DICE

VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;

END_VAR

VAR_OUTPUT
0UTa: BOOL;
0UTb: BOOL;
0UTc: BOOL;
0UTd: BOOL;
0UTe: BOOL;
0UTf: BOOL;
0UTg: BOOL;
0UTh: BOOL;
0UTi: BOOL;

END_VAR

293

19

20

© 0 N O GR W N

— =

Appendix E: FBD Examples

END_FUNCTION_BLOCK

FUNCTION_BLOCK
VAR_INPUT
INa: BOOL;
INb: BOOL;
INc: BOOL;
INd: BOOL;
END_VAR
VAR_OUTPUT
0UT1: BOOL;
0UT2: BOOL;
END_VAR

NOT

IN2

NOT

NOT

NOT

Listing E.11: FBD: FBD_DICE

FBD_KV_DIAG

o n

294

3

[S ISR GUR R

Appendix E: FBD Examples

AND

I NOT ——— AND

INa

EQ

INb

INc

H

AND

H

OR

F NOT — AND

[INd

OR OuT1

| out2 |
AND 0ouT2

H NoT }

END_FUNCTION_BLOCK

Listing E.12: FBD: FBD_KV_DIAG

FUNCTION FBD_LEFT_DET: BOOL

VAR_INPUT
xSENSOR_L BOOL ;
xSENSOR_R BOOL;
END_VAR

XSENSOR_L

[xSENSOR_R

- fwor

END_FUNCTION

FUNCTION_BLOCK

VAR_INPUT

IN1:
IN2:
IN3:

BOOL ;
BOOL;
BOOL ;

AND

{ FBD_LEFT_DET |

Listing E.13: FBD: FBD_LEFT DET

FBD_POLL

295

12

13

Appendix E: FBD Examples

OR

ouT1

OR

END_VAR
VAR_OQUTPUT
0UT1: BOOL;
0UT2: BOOL;
0UT3: BOOL;
END_VAR
[[(Nns] NOT
NOT AND
IN1
IN3 NOT
e D
INT NOT
e p———
NOT AND
IN1 NOT
[(Nna] NOT
e} AND
INT
IN3
NOT AND
INT
IN3
IN2 AND
INT NOT

IN1

OR

j

END_FUNCTION_BLOCK

ouT3

Listing E.14: FBD: FBD_POLL

FUNCTION_BLOCK FBD_RES_CTRL1
VAR_INPUT

INi: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;

END_VAR

VAR_OUTPUT

0UTP1: BOOL;
0UTP2: BOOL;
0UTP3: BOOL;
OUTH: BOOL;
END_VAR

ouT2

296

Appendix E: FBD Examples

AND

i ‘

14

ouTP3

AND

15 END_FUNCTION_BLOCK

Listing E.15: FBD: FBD_RES_CTRL1

1 FUNCTION_BLOCK FBD_RES_CTRL2
2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

OUTP1:
0UTP2:
OUTP3:

0UTQ:
END_VAR

BOOL ;
BOOL ;
BOOL ;
BOOL ;

297

Appendix E: FBD Examples

OUTP3

ouTP1

ot

5 END_FUNCTION_BLOCK

Listing E.16: 'BD: FBD_RES_CTRL2

1 FUNCTION_BLOCK FBD_ROLL_DOWN
2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 IN5: BOOL;

8 IN6: BOOL;

9 TIME14: BOOL;
10 TIME4: BOOL;
11 END_VAR

12 VAR_OUTPUT

13 0UT1: BOOL;

14 0UT2: BOOL;
15 END_VAR

= ﬂ

. — P ouT1
(MNOTHE | anp _‘

IN.

IN-

LT

ouT2

' [= |
16 I — ’

AND
TIME14 NOT

IN3

NoT | LD
NOT

17 END_FUNCTION_BLOCK

Listing E.17: FBD: FBD_ROLL_DOWN

1 FUNCTION_BLOCK FBD_CABLE_WINCH

298

SNV N]

-~

10
11
12
13
14

16

oA W N =

N o

w0

10
11
12

14
15

16

~

Appendix E: FBD Examples

VAR_INPUT
INS1: BOOL;
INB1: BOOL;
INB2: BOOL;

END_VAR

VAR_OUTPUT
0UT1: BOOL;
0UT2: BOOL;

END_VAR

VAR
ME1: BOOL;
ME2: BOOL;

END_VAR

NOT

OR

FUNCTION_BLOCK

VAR_INPUT
INO: BOOL;
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;

END_VAR

VAR_OUTPUT
0UTa: BOOL;
0UTb: BOOL;
0UTc: BOOL;
0UTd: BOOL;
0UTe: BOOL;
0UTf: BOOL;
0UTg: BOOL;

END_VAR

ME2

OR

END_FUNCTION_BLOCK

0ouT2

NOT

Listing E.18: FBD: FBD_CABLE_WINCH

FBD_SEVEN_SEG

299

18

20

Appendix E: FBD Examples

f

z
S

0

0

z
El

0

=

NOT

AND

NOT

oo]
NOT LL— or LL— or
NOT
e} NOT W2 NOT
[W}—{Wor
o3 | 0 o |
[z —{wor (B
. o o} o
[}—{wor [
e} AND { W NOT
AND
t OR IN2
[CW}—{Wor ot
o3 o | L or
[}—{ Nor n
e}
N2
I:‘MD
[N} {NOT }
[}
W]
L %}
(-
N2 OR AND
[}—{Wor}
[(mo '} {NOT |
[N} N3
e
AND
[
e
W L or
i S — s 7] [}—{wor}
[N}
OuTg
W} or
- [|

END_FUNCTION_BLOCK

Listing E.19: FBD: FBD_SEVEN_SEG

FUNCTION_BLOCK FBD_SHOP_WINDOW

VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;
TIME3: BOOL;

END_VAR

VAR_QUTPUT
0UT1: BOOL;
0UT2: BOOL;
0UT3: BOOL;
0UT4: BOOL;

300

14
15
16
17
18
19

20

21

Appendix E: FBD Examples

END_VAR
VAR
TOFO: TOF;
TOF1: TOF;
PTim: TIME;
END_VAR
TIME3 [or [anp ouTi
IN3 TOFO
TOF
IN Q
PT ET
PTim
[| or | AnD o2
— ‘
Wi AND
IN2
AND 1 OR AND (o]
NOT
o8 — 1
TOF d [on o ouT4
PT ET

END_FUNCTION_BLOCK

FUNCTION_BLOCK
VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;
END_VAR
VAR_OUTPUT
0UT1: BOOL;
END_VAR

Listing E.20: FBD: FBD_SHOP_WINDOW

FBD_SILO_VALVE

301

Appendix E: FBD Examples

e} wor
IN2 NOT —| OouUT1
I— AND
OR
IN1
[iNa - Not
IN2
I— AND
[T Nor
IN2 NOT
I— AND
[T} Nor
11
IN2 —
AND

IN1

12 END_FUNCTION_BLOCK
Listing E.21: FBD: FBD_SILO_VALVE

1 FUNCTION FBD_SIMPLE_FUN: REAL
2 VAR_INPUT

3 A1: REAL;

4 B1: REAL;

5 Cl: REAL := 1.0;
6 END_VAR

7 VAR_IN_OQUT

8 COUNT: INT;

9 END_VAR

10 VAR

11 COUNTP1: INT;

12 END_VAR

[CoUNTPT 1 COUNT]

13

FBD_SIMPLE_FUN

14 END_FUNCTION
Listing E.22: FBD: FBD_SIMPLE_FUN

1 PROGRAM FBD_SIMPLE_PRG1
2 VAR_INPUT

3 PRG_IN : BOOL;

4 PRG_A : REAL;

5 PRG_B : REAL;

6 PRG_C : REAL;

302

I N U R

-

IS SR R

10
11
12

Appendix E: FBD Examples

END_VAR
VAR_OUTPUT

PRG_OUT1: BOOL;
PRG_OUT2: REAL;

PRG_ET_OFF:
END_VAR
VAR
PRG_COUNT:
DEBOUNCE_O1
END_VAR

PRG_IN

TIME;

INT := 4;
: FBD_DEBOUNCE;

DEBOUNCE_01

FBD_DEBOUNCE ,—{ PRG_OUT1 \
IN out

DB_TIME ET_OFF
T#2000ms \—Q PRG_ET_OFF

PRG_COUNT

END_PROGRAM

FBD_SIMPLE_FUN
Al PRG_OUT2
B1
c1

Listing E.23: FBD: FBD_SIMPLE_PRG1

PROGRAM FBD_SIMPLE_PRG2

VAR
OUT: REAL;

ST_LOOP_HEADO: ST_LOOP_HEAD

END_VAR

ST_LOOP_HEADO

>

ST_LOOP_HEAD

END_PROGRAM

FUNCTION_BLOCK
VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;
END_VAR
VAR_OUTPUT
0UT1: BOOL;
0UT2: BOOL;
0UT3: BOOL;
END_VAR

Listing E.24: FBD: FBD_SIMPLE_PRG2

FBD_SMOKE_DET

303

14

Appendix E: FBD Examples

:

IN1 NOT

NOT

NOT

|
I

ik
I

:

NOT

z
=i

9

9

[
OR E
NoT o]

IN:

/e Bl
TR]
|

O

\—g’—l

]

T | Ao |
IN3 NOT

o |

e}

T RoT AND

NoT

T NoT o |

END_FUNCTION_BLOCK

INT [NOT |
L

IN3 { NOT |

N4 [NOT |

0ouT2

Listing E.25: FBD: FBD_SMOKE_DET

FUNCTION_BLOCK FBD_SPORTS_HALL

VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;

TIME4: BOOL;
TIME9: BOOL;
TIME14: BOOL;
TIME18: BOOL;

END_VAR

VAR_OQOUTPUT
0UT1: BOOL;
0UT2: BOOL;
0UT3: BOOL;
0UT4: BOOL;

END_VAR

VAR
PTim: TIME;
RSO: RS;
RS1: RS;
RS2: RS;
TONO: TON;

END_VAR

AND

0ouT3

304

Appendix E: FBD Examples

IN1 RSO
RS
SET Qi
TIME4 | —RESET1
[mNe] { NOT | AND
or ouT1
IN3
N1 Rs1
RS
SET Qi
TIMES | RESET1
| | f) bt
N} ["NoT |
ouT2
IN3 o8
L ouT4
AND
1
TIME18 —
TONO
TON
N Q
PTim PT ETH
RS2
25 IN2 RS
SET Qi
TIME14 RESET1
AND
IN4 ["NoT | |
ouT3
IN3 OR

26 END_FUNCTION_BLOCK

Listing E.26: FBD: FBD_SPORTS_HALL

FUNCTION_BLOCK FBD_THER_CODE

1
2 VAR_INPUT

3 IN1: BOOL;
4 IN2: BOOL;
5 IN3: BOOL;
6 IN4: BOOL;
7 END_VAR

8 VAR_OUTPUT

9 0UT1: BOOL;
10 0UT2: BOOL;
11 0UT3: BOOL;
12 END_VAR

305

13

14

Appendix E: FBD Examples

IN1
IN2
I— OR
IN3
IN1
IN2
; AND
NoT

IN1

ouT1

[N }——/ NoT }—_ D
IN3

[N }—{wor

[f I

[}

[N} E—

[

OR

END_FUNCTION_BLOCK

FUNCTION_BLOCK
VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;
END_VAR
VAR_OUTPUT
0UT1: BOOL;
END_VAR

0ouT2

0ouT3

Listing E.27: FBD: FBD_THER_CODE

FBD_TOGGLE_SWITCH

306

11

12

1
2
3
4
5

6
7
8
9
10
11
12

Appendix E: FBD Examples

e
s} AND
W] I
INT [NOT }
—
s] AND
] —
INT [NOT _
Coe H{wor— — |
T e i
.
e} |
III AND
(]
(]
(e —
(W] AND
mr—
I——
s] AND
—
IN1
e I
T
e —7—F
IN1 [NOT }
[————————— AW
e +—1 ——

END_FUNCTION_BLOCK

FUNCTION_BLOCK
VAR_INPUT
IN1: BOOL;
IN2: BOOL;
IN3: BOOL;
IN4: BOOL;
END_VAR
VAR_OUTPUT
0UT1: BOOL;
0UT2: BOOL;
0UT3: BOOL;
END_VAR

Listing E.28: FBD: FBD_TOGGLE_SWITCH

FBD_VENT_CTRL

307

14

1
2
3
4
5

6
7
8
9
10
11
12

Appendix E: FBD Examples

0ouT2

ouT1

OR

END_FUNCTION_BLOCK

FUNCTION_

BLOCK

VAR_INPUT

IN1:
IN2:
IN3:
END_VAR
VAR_OUT
0UT1:
0UT2:
0UT3:
0UT4:
END_VAR

BOOL;
BOOL;
BOOL;

PUT
BOOL ;
BOOL ;
BOOL ;
BOOL ;

Listing E.29: FBD: FBD_VENT_CTRL

FBD_WIND_DIR

308

14

Appendix E: FBD Examples

END_FUNCTION_BLOCK

0ouT2

ouT1

OR

Listing E.30: FBD: FBD_WIND_DIR

309

1
2
3
3
1
5

-

Appendix

Resulting FBD-Based Quartz
Models

module FBD_TWO_OF_THREE(
event bool 7EI,
event bool !EO,
bool ?xBl1_Temp,
bool ?7xB2_Temp,
bool ?xB3_Temp,
bool !xP1_Temp){

loopq{
immediate await (EI);

xP1_Temp = ((xB1_Temp&xB2_Temp) | (xB1_Temp&xB3_Temp) | (xB2_Temp&
xB3_Temp)) ;

emit (E0); pause;

Listing F.1: Quartz Model: FBD_TWO_OF_THREE

import RS.*;

module FBD_AIR_COND_CTRL (

event bool 7EI,
event bool !EO,
bool 7IN1,

bool ?7IN2,

bool ?7IN3,

bool 7IN4,

bool ?7IN5,

bool 7IN6,

bool ?7IN7,

bool 7INS,

bool 7IN9,

bool !0UT1,
bool !'0UT2){

event bool RSO_EI;
event bool RSO_EO;
bool RSO0_Q1;

loopAi

311

Appendix F: Resulting FBD-Based Quartz Models

immediate await (EI);

emit (RSO_EI);
6 immediate await (RSO_EQ0);

)

28 0UT2 = RSO_Q1;

29 emit (E0); pause;

30 }

31 || RSO:RS(RSO_EI, RSO_EO,

32 (IN1|IN2|IN3|IN4),

3 (CV(CINB) [P CINB) |V CIN7) ' (CINS))|'(INS)),
34 RS0_Q1) ;

35}

Listing F.2: Quartz Model: FBD_ATR_COND_CTRL

I module FBD_ALARM(

2 bool ?xSENSOR_L,
3 bool ?xSENSOR_M,
4 bool ?7xSENSOR_R,
5 bool !'FBD_ALARM)A{

7 FBD_ALARM = (! (xSENSOR_L)&!(xSENSOR_M)&! (xSENSOR_R)) | (xSENSOR_L&
xSENSOR_R) ;

Listing F.3: Quartz Model: FBD_ALARM

1 module FBD_ANTIVALENCE (
2 event bool 7EI,

3 event bool !EOQ,

A bool 7INO,

5 bool 7IN1,

6 bool ?7IN2,

7 bool !'0UT1){

9 loop{

10 immediate await (EI);

11 0UT1 = ((!'(INO)&!(IN1)&IN2)|(!(INO)&! (IN2)&IN1) | (!'(IN1)&!(IN2)&
INO));

12 emit (E0); pause;

Listing F.4: Quartz Model: FBD_ANTIVALENCE

module FBD_OP_ARITH(
event bool ?EI,
event bool 'E0){

real x01;

6 real x02;

7 real x03;

8 real x04;

9 real x05;

10 real x06;

11 real x1;

12 real x2;

13 int {32768} x3;
14 int {32768} x4;
16 x1 = 1.0;
17 x2 = 2.0
1 .
2

H
18 x3 =
19 x4 =

>

>

312

STV C R

[SINEN BeN

WD N NN NNNN

Appendix F: Resulting FBD-Based Quartz Models

pause;

loopq{
immediate await (EI);

x01 = x1 + x2;
x02 = x1 - x2;
x03 = x1 * x2;
x04 = x1 / x2;
x05 = exp(xl, x2);
x06 = x3 % x4;

emit (E0); pause;

Listing F.5: Quartz Model: FBD_OP_ARITH

import TON.*;
import TOF.*;
import RS.*;

module FBD_BENDING (
event bool 7EI,
event bool !'EO0,
nat 7CLK,
bool 7IN1,
bool 7IN2,
bool ?7IN3,
bool !0UT1,
bool !0UT2,
bool !'0UT3){

nat PTb5s;
nat PTO5s;
nat PT1ls;

event bool TONO_EI;
event bool TONO_EO;
event bool TON1_ET;
event bool TON1_EO;
event bool TON2_EI;
event bool TON2_EO;
event bool TOFO_EI;
event bool TOFO_EO;
event bool TON3_EI;
event bool TON3_EOQO;
event bool RSO_EI;
event bool RSO_EO;

bool TONO_Q;
nat TONO_ET;
bool TON1_Q;
nat TON1_ET;
bool TON2_Q;
nat TON2_ET;
bool TOFO_Q;
nat TOFO_ET;
bool TON3_Q;
nat TON3_ET;
bool RSO0_Q1;

loopA{
immediate await (EI);

313

62
63
64
65
66

67

69
70

1

N

® 00 00 00 N N ~ N~~~
W= O OO U W N

o]

85

92
93
94
95
96
97

98

Appendix F: Resulting FBD-Based Quartz Models

emit (TONO_EI);
immediate await (TONO_EO);

emit (TON1_EI);
immediate await (TON1_EQ) ;

emit (TON2_EI) ;
immediate await (TON2_EO0);

emit (TOFO_EI);
immediate await (TOFO_EOD);

0UT1 = (IN1&TONO_Q)&!((TON1_Q&TON2_Q))&!(((!(TON2_Q)&TOF0_Q)&IN3
0UT2 = (! (((C!'(TON2_Q)&TOFO_Q)&IN3))&(!(TON2_Q)&TOF0_Q));

emit (TON3_EI);
immediate await (TON3_EO);

emit (RSO_EI);
immediate await (RSO_EO0) ;

0UT3 = RSO_Q1;
emit (E0); pause;

TONO: TON(TONO_EI, TONO_EO, CLK,
IN1,

PT1s,

TONO_Q, TONO_ET);
TON1:TON(TON1_EI, TON1_EO, CLK,
(IN1&TONO_Q),

PT1s,

TON1_Q, TON1_ET);
TON2:TON(TON2_EI, TON2_EO, CLK,
IN2,

PTO5s,

TON2_Q, TON2_ET);
TOFO:TOF (TOFO_EI, TOFO_EO, CLK,
(IN1&TONO_Q),

PTis,

TOFO_Q, TOFO_ET);
TON3:TON(TON3_EI, TON3_EO, CLK,
' (IN1),

PT5s,

TON3_Q, TON3_ET);
RSO:RS(RSO_EI, RSO_EO,
((IN1&TONO_Q) | TON3_Q),
(TON1_Q&TON2_Q),

RS0_Q1);

Listing F.6: Quartz Model: FBD_BENDING

module FBD_0P_BOOL (
event bool 7EI,
event bool 'E0){

bool x01;
bool x02;
bool x03;
bool x04;
bool x1;
bool x2;

x1

= true;

314

13
14
15
16
17
18
19

NN NN

(ST VR e

NN N

16

NN

w w w
[

Appendix F: Resulting FBD-Based Quartz Models

x2 = false;
pause;
loopAi
immediate await (EI);
x01 = !(x1);
x02 = x1 & x2;
x03 = x1 | x2;
x04 = x1 ~ x2;
emit (E0); pause;
}

Listing F.7: Quartz Model: FBD_OP_BOOL

module FBD_CYLINDER (
event bool 7EI,
event bool !'EO0,

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool

bool
bool

loop

?INat,
?7INa0,
7INS,
?INb1,
?7INcO,
?INct,
?7INbO,
10UTBp,
10UTAp,
10UTAm,
10UTCp) {

ME1;
ME2;

{

immediate await (EI);

OUTAp = ((ME1|(INaO&INS))&!(INb1));

pause;

ME1 = ((ME1|(INaO&INS))&!(INb1));

OUTBp = (INal&((ME1]|(INaO&INS))&!(INb1)));

ME2 = ((ME2|INb1)&!(INc1));

OUTAm = (!(((ME1]|(INaO&INS))&!(INb1)))&INcO&! (((ME2|INb1)&! (INc1
1))

OUTCp = (((ME2|INb1)&!(INc1))&INbO);

emit (E0); pause;

Listing F.8: Quartz Model: FBD_CYLINDER

module FBD_DATATYPES (
event bool 7EI,
event bool 'E0){

bool
bool
bv{1l
bv{3
int{

Al

A2;

6} A3;

2} A4;
32768} A5;

int {32768} A6;
int{2147483648} AT;
int{2147483648} A8;

315

16

15
16
17
18
19

%)

[SL S VI R

W OW NN NNNNNNN
S © ® N O

Appendix F: Resulting FBD-Based Quartz Models

nat {65536} A9;

nat {65536} A10;
nat{4294967296} A11l;
nat{4294967296} A12;
real A13;

real Al14;

nat A15;

nat A16;

[3]1bool A1T;

[3]1bv{16} A18;
[31bv{32} A19;

[3]1int {32768} A20;
[3]1int{2147483648} A21;
[3]1nat {65536} A22;
[3]1nat{4294967296} A23;
[3]1real A24;

[3]nat A25;
A2 = true;
A6 = 2;

A8 = 2;

A10 = 2;
A12 = 2;
A14 = 1.23;
A16 = 5000;
pause;
loopq{

immediate await (EI);
emit (E0); pause;

Listing F.9: Quartz Model: FBD_DATATYPES

import TON.*;
import SR.*;

module FBD_DEBOUNCE (
event bool 7EI,
event bool !'EO0,
nat 7CLK,
bool 7IN,
nat 7?DB_TIME,
bool !0UT,
nat 'ET_OFF){

event bool DB_ON_EI;
event bool DB_ON_EO;
event bool DB_OFF_EI;
event bool DB_OFF_EOQO;
event bool DB_FF_EI;
event bool DB_FF_EO;

bool DB_ON_Q;
bool DB_OFF_Q;
bool DB_FF_Q1;
nat DB_ON_ET;
nat DB_OFF_ET;

loop{
immediate await (EI);

emit (DB_ON_EI);
immediate await (DB_ON_EO) ;

316

Appendix F: Resulting FBD-Based Quartz Models

emit (DB_OFF_EI);
immediate await (DB_OFF_EO0);

ET_OFF = DB_OFF_ET;

emit (DB_FF_EI);
immediate await (DB_FF_EO0);

0UT = DB_FF_Q1;

emit (EO) ;
pause;

DB_ON:TON(DB_ON_EI, DB_ON_EO, CLK,
IN, DB_TIME,

DB_ON_Q, DB_ON_ET);
DB_OFF : TON(DB_OFF_EI, DB_OFF_EO0, CLK,
1(IN),

DB_TIME,

DB_OFF_Q, DB_OFF_ET);
DB_FF:SR(DB_FF_EI, DB_FF_EO,

DB_ON_Q,

DB_OFF_Q, DB_FF_Q1);

Listing F.10: Quartz Model: FBD_DEBOUNCE

module FBD_DICE (
event bool 7EI,
event bool !'EQ0,
bool 7IN1,
bool ?7IN2,

bool 7IN3,
bool ?7IN4,
bool !0UTa,
bool !0UTD,
bool !0UTc,
bool !0UTAd,
bool !0UTe,
bool !0UTE,
bool !0UTg,
bool !0UTh,

bool !'0UTi){

loop{

immediate await (EI);

0UTa = ((IN3&!'(IN4)&'(IN2))|(IN2&!'(IN4)&!'(IN1))|(IN4&! (IN2)&!(

IN3)));
0UTb = ((IN2&IN3&!(IN4))|(IN4&!(IN2)&!(IN3)));

0UTc = ((IN3&!(IN4))|(IN4&!(IN2)&!(IN3))|(IN1&IN2&! (IN4)));

0UTd = ((IN4&!(IN2)&!(IN3))|(IN1&IN2&IN3&! (IN4)));
0UTe = ((IN1&!(IN4))|(IN1&!(IN3)&!(IN2)));

OUTf = ((IN4&!(IN2)&!(IN3))|(IN1&IN2&IN3&! (IN4)));
0UTh = ((IN2&IN3&!(IN4))|(IN4&!(IN2)&!(IN3)));

0UTg = ((IN3&!(IN4))|(IN4&!(IN2)&!(IN3))|(IN1&IN2&! (IN4)));

QUTi = ((IN3&!'(IN4)&!'!'(IN2))|(IN2&!'(IN4)&! (IN1)&!'(IN3)) | (IN4&! (

IN2)&! (IN3)));

emit (E0); pause;

Listing F.11: Quartz Model: FBD_DICE

317

15
16
17
18

19

S I N

15

Appendix F: Resulting FBD-Based Quartz Models

module FBD_KV_DIAG(

event bool 7EI,
event bool !EO,
bool ?7INa,

bool ?7INDb,

bool 7?INc,

bool ?7INd,

bool !0UT1,
bool !'0UT2){

loopAi
immediate await (EI);

0UT1
0UT2

((!'(INa)&INDb) | (INa&! (INb)&INc));
(((INa==INb&INc) | (!(INa)&!(INc)&INb))&! (INd));

emit (E0); pause;

Listing F.12: Quartz Model: FBD_KV_DIAG

module FBD_LEFT_DET (

bool ?xSENSOR_L,
bool ?xSENSOR_R,
bool !FBD_LEFT_DET){

FBD_LEFT_DET = (xSENSOR_L & !'(xSENSOR_R));

Listing F.13: Quartz Model: FBD_LEFT_DET

module FBD_POLL (

event bool 7EI,
event bool !EO,
bool ?7IN1,

bool 7IN2,

bool 7IN3,

bool !0UT1,
bool !0UT2,
bool !0UT3){

loopAi
immediate await (EI);

0UT1 = (('(IN3)&!(IN2)&IN1) | (! (IN3)&IN2&!(IN1)) | (IN3&!(IN2)&!(
IN1)));

0UT2 = ((!'(IN3)&IN2&IN1)|(IN3&!(IN2)&IN1) | (IN3&IN2&! (IN1)));

0UT3 = (IN1&IN2&IN3);

emit (E0); pause;

Listing F.14: Quartz Model: FBD_POLL

module FBD_RES_CTRL1 (

event bool 7EI,
event bool !'EO0,
bool ?7IN1,

bool 7IN2,

bool 7IN3,

bool 7IN4,

bool !0UTP1,
bool !0UTP2,

318

10

12
13
14
15
16
17

16

17

18

Appendix F: Resulting FBD-Based Quartz Models

bool !0UTP3,
bool !0UTH){

loopAi
immediate await (EI);

0UTP1 = ((!'(IN4)&!'(IN3))|(!'(IN4)&! (IN2)&IN1));

OUTP2 = (((!(IN4)&!(IN3))|(!'(IN4)&!(IN2)&IN1)) | (! (IN3)&IN2&! (IN1
)));

OUTP3 = ((!'(IN4)&!(IN3)&!(IN2))|(IN4&!(IN3)&IN2) | (! (IN3)&IN2&!(
IN1)) | (' (IN4)&IN3&IN2&IN2)) ;

OUTH = ((IN3&!(IN1))|(IN4&!'(IN2)));

emit (E0); pause;

Listing F.15: Quartz Model: FBD_RES_CTRL1

module FBD_RES_CTRL2(

event bool 7?EI,
event bool !'EO0,
bool 7IN1,

bool ?7IN2,

bool 7IN3,

bool ?7IN4,

bool !0UTP1,
bool !0UTP2,
bool !0UTP3,
bool !'0UTQ){

loopq{
immediate await (EI);

OUTP3 = ((!'(IN4)&!'(IN3))|(!'(IN4)&! (IN2)&IN1));
OUTP2 = ((('(IN4)&!(IN3))|(!'(IN4)&!(IN2)&IN1)) | (' (IN3)&IN2&! (IN1
)))

O0UTP1 = ((!'(IN4)&!(IN3)&!(IN2))|(IN4&!(IN3)&IN2&IN1) | (! (IN3)&IN2
&! (IN1)) | (' (IN4)&IN3&IN2&IN1)) ;
0UTQ = ((IN3&!(IN1))|(IN4&!(IN2)));

emit (E0); pause;

Listing F.16: Quartz Model: FBD_RES_CTRL2

module FBD_ROLL_DOWN (

event bool 7EI,
event bool !EO,
bool 7IN1,

bool 7IN2,

bool 7IN3,

bool 7IN4,

bool 7INS5,

bool 7IN6,

bool ?TIME14,
bool ?TIME4,
bool !0UT1,
bool !0UT2){

loop{
immediate await (EI);

0UT1 = (((TIME4&IN6) | (!(IN6)&IN2))&IN4);

319

19

NN
N =

16

19

Appendix F: Resulting FBD-Based Quartz Models

0UT2 = ((((TIME4&IN6) | (!(IN6)&IN2))&IN4)==(INS&((INB&IN1&! (
TIME14)) | (IN3&'!(IN6))))&(IN5&((IN6&IN1&! (TIME14)) | (IN3&! (ING
1))

emit (E0); pause;

Listing F.17: Quartz Model: FBD_ROLL_DOWN

module FBD_CABLE_WINCH (
event bool 7EI,
event bool !'EO0,

bool
bool
bool
bool
bool

bool
bool

loop

?INS1,
?INB1,
?INB2,
10UT1,
10UT2) {

ME1;
ME2;

{

immediate await (EI);

0UT1 = ((ME1|INS1|!(INB2))&!((!(INB1)|!(INS1)|ME2)));
pause;

ME1 = ((ME1|INS1|!(INB2))&!'((!(INB1)|!(INS1)|ME2)));
0UT2 = ((ME2|!(INB1))&!((!(INB2)|!(INS1)|ME1)));
pause;

ME2 = ((ME2|!(INB1))&!((!(INB2) |!(INS1)|ME1)));

emit (E0); pause;

Listing F.18: Quartz Model: FBD_CABLE_WINCH

module FBD_SEVEN_SEG (
event bool 7EI,
event bool !EO,

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool

loop

?1INO,
?IN1,
?IN2,
?IN3,
?IN4,
10UTa,
10UTD,
10UTc,
10UTd,
10UTe,
10UTE,
10UTg) {

{

immediate await (EI);

0UTa = (('(IN3)&IN1)|(IN2&IN1)|(!(IN2)&'(IN1)&IN3) | (!(IN3)&! (IN2
Y&!' (INO)) | (' (IN3)&IN1&INO)) ;

0UTb = ((!'(IN3)&!(IN2)) | (' (IN2)&!(IN1)) | (!'(IN3)&IN1&INO) | (IN3&!(
IN1)&INO) | (! (IN3)&! (IN1)&!(INO)));

0UTc = ((!'(IN3)&!(IN1)) | (!'(IN3)&INO) | (!(IN2)&IN3) | (! (IN3)&IN2)
| (Y (IN1)&INO));

0UTd = ((!(IN2)&IN1)|(!(IN2)&!(INO))|(IN1&!(INO)) | (IN3&!(IN1)&
IN2) | (IN2&! (IN1)&INO)) ;

320

[CENN]
o

16

VRN

ISR
Y R W N =

S
@ R =

Appendix F: Resulting FBD-Based Quartz Models

0UTe = ((!'(IN2)&!'(INO))|(IN3&IN1)|(IN3&IN2) |(IN2&!(INO)&IN1));

OUTf = ((IN3&IN2&IN1) | (!(IN3)&IN2&!(IN1)) | (! (IN3)&IN2&! (INO)) |(
IN3&! (IN2)&INO) | (' (IN2)&! (IN1)&! (INO)));

0UTg = (IN3|(!(INO)&IN2) | (!(IN2)&INO)|(!(IN1)&IN2));

emit (E0); pause;

Listing F.19: Quartz Model: FBD_SEVEN_SEG

import TOF.*;

module FBD_SHOP_WINDOW (
event bool 7EI,
event bool !'EO0,
nat 7CLK,
bool 7IN1,
bool 7IN2,
bool ?7IN3,
bool 7IN4,
bool ?TIMES3,
bool !0UT1,
bool !0UT2,
bool !0UT3,
bool !0UT4){

nat PTim;

event bool TOFO_EI;
event bool TOFO_EOQO;
event bool TOF1_EI;
event bool TOF1_EOQO;

bool TOFO_Q;
nat TOFO_ET;
bool TOF1_Q;
nat TOF1_ET;

loop{

immediate await (EI);

emit (TOFO_EI);
immediate await (TOFO_EO0);

0UT1 = ((TIME3|TOF0_Q)&IN2);
0UT2 = (IN2&((((TIME3|TOFO_Q)&IN2)&IN1)|TOFO0_Q));
QUT3 = (IN2&((IN1&!(((TIME3|TOFO0_Q)&IN2)))|TOF0_Q));

emit (TOF1_EI);
immediate await (TOF1_EQ);

0UT4 = (IN2&(TOFO_QITOF1_Q));
emit (E0); pause;

TOFO:TOF(TOFO_EI, TOFO_EO, CLK,
IN3,

PTim,

TOFO_Q, TOFO_ET);
TOF1:TOF(TOF1_EI, TOF1_EO, CLK,
IN4,

PTim,

TOF1_Q, TOF1_ET);

321

54

15
16

NN NN
W N =

Appendix F: Resulting FBD-Based Quartz Models

Listing F.20: Quartz Model: FBD_SHOP_WINDOW

module FBD_SILO_VALVE(

event bool 7EI,
event bool !EOQ,
bool 7IN1,

bool 7IN2,

bool 7IN3,

bool 7IN4,

bool !0UT1){

loop{
immediate await (EI);

0UT1 = ((!'(IN3)&!(IN2)&IN1) | (!(IN3)&IN2&! (IN1)) | (IN3&! (IN2)&!(
IN1)) | (IN3&IN2&IN1)) ;

emit (E0); pause;

Listing F.21: Quartz Model: FBD_SILO_VALVE

module FBD_SIMPLE_FUN (

real 7A1,

real 7B1,

real 7C1,

int {32768} COUNT,

real !FBD_SIMPLE_FUN){

int {32768} COUNTP{;
COUNTP1 = COUNT+1;
pause;

COUNT = COUNTP1;
FBD_SIMPLE_FUN = (A1%B1)/C1;

Listing F.22: Quartz Model: FBD_SIMPLE_FUN

import FBD_DEBOUNCE.x*;
import FBD_SIMPLE_FUN.x*;

module FBD_SIMPLE_PRG1 (

event bool 7EI,
event bool !EO,
nat 7CLK,

bool ?PRG_IN,

real 7PRG_A,

real ?7PRG_B,
real ?7PRG_C,
bool !'PRG_OUT1,
nat !PRG_ET_OFF,
real !'PRG_0UT2){

int {32768} PRG_COUNT;

event bool DEBOUNCE_O1_EI;
event bool DEBOUNCE_O1_EO;

bool DEBOUNCE_01_0UT;
nat DEBOUNCE_O1_ET_OFF;

322

Appendix F: Resulting FBD-Based Quartz Models

real FBD_SIMPLE_FUN_11;

PRG_COUNT = 4;
pause;

loop{

}

immediate await (EI);

emit (DEBOUNCE_O1_EI);
immediate await (DEBOUNCE_O1_EO0);

PRG_0UT1 = DEBOUNCE_01_0UT;
PRG_ET_OFF = DEBOUNCE_O1_ET_OFF;

FBD_SIMPLE_FUN (
PRG_A + 2.0,
PRG_B, PRG_C,
PRG_COUNT, FBD_SIMPLE_FUN_11);

PRG_0UT2 = FBD_SIMPLE_FUN_11;

emit (EO0) ;
pause;

DEBOUNCE_O1: FBD_DEBOUNCE (DEBOUNCE_O1_EI,

PRG_IN,
2000,
DEBOUNCE_01_0UT, DEBOUNCE_O1_ET_OFF);

DEBOUNCE_O1_EO, CLK,

Listing F.23: Quartz Model: FBD_SIMPLE_PRG1

import ST_LOOP_HEAD.*;

module FBD_SIMPLE_PRG2(
event bool 7EI,
event bool !'E0){

event bool ST_LOOP_HEADO_EI;
event bool ST_LOOP_HEADO_EO;

int {32768} ST_LOOP_HEADO_y;
int {32768} 0UT;

loopAi

}

immediate await (EI);

emit (ST_LOOP_HEADO_EI);
immediate await (ST_LOOP_HEADO_EO) ;

0UT = ST_LOOP_HEADO_y;

emit (E0); pause;

ST_LOOP_HEADO:ST_LOOP_HEAD (ST_LOOP_HEADO_EI, ST_LOOP_HEADO_EO,
ST_LOOP_HEADO_y) ;

Listing F.24: Quartz Model: FBD_SIMPLE_PRG2

module FBD_SMOKE_DET (
event bool 7EI,
event bool !'EO0,
bool 7IN1,
bool ?7IN2,

323

16

16

NN NN

Y LR W N =

~

NN N NN

Appendix F: Resulting FBD-Based Quartz Models

bool 7IN3,

bool 7IN4,
bool !0UT1,
bool !0UT2,

bool !'0UT3){

loop{
immediate await (EI);

0UT1 = (!'(IN1)|!(IN2)|!(IN3)|!(IN4));

0UT2 = ((('(IN1)&!(IN2)) | (' (IN1)&!(IN3))) | (! (IN1)&!'(IN4)& (! (IN3)
&' (IN2))&(!' (IN2)&! (IN4))& (! (IN3)&! (IN4))));

0UT3 = (! (IN1)&!(IN2)&!(IN3)&!(IN4));

emit (E0); pause;

Listing F.25: Quartz Model: FBD_SMOKE_DET

import RS.*;
import TON.*;

module FBD_SPORTS_HALL(

event bool 7EI,
event bool !EO,
nat 7CLK,

bool 7IN1,

bool ?7IN2,

bool 7IN3,

bool 7IN4,

bool ?TIME4,
bool ?TIME9,
bool ?TIME14,
bool ?7TIME1S8,

bool !0UT1,
bool !0UT2,
bool !0UT3,

bool !'0UT4){
nat PTim;

event bool RSO_EI;
event bool RSO_EO;
event bool RS1_EI;
event bool RS1_EO;
event bool RS2_EI;
event bool RS2_EO;
event bool TONO_EI;
event bool TONO_EO;

bool RSO_Q1;
bool RS1_Q1;
bool RS2_Q1;
bool TONO_Q;
nat TONO_ET;

loop{
immediate await (EI);

emit (RSO_EI);
immediate await (RSO_EQ0);

0UT1 = ((RSO_Q1&!'(IN4))|IN3);

emit (RS1_EI);

324

ot

2%

W N =

Sy

®

S RN RN BRSPS RIS B IR N |

Appendix F: Resulting FBD-Based Quartz Models

immediate await (RS1_E0);
0UT2 = ((RS1_Q1&!'(IN4))|IN3);

emit (TONO_EI) ;
immediate await (TONO_EO);

0UT4 = (TIME18==TONO_Q&((RSO_Q1&!(IN4)) |IN3)&((RS1_Q1&!'(IN4)) |
IN3));

emit (RS2_EI);
immediate await (RS2_EO0);

0UT3 = ((RS2_Q1&!(IN4))|IN3);

emit (E0); pause;

|l RSO:RS(RSO_EI, RSO_EO,

IN1,
TIME4,
RSO_Q1);

|l RS1:RS(RS1_EI, RS1_EO,

IN1,
TIME9,
RS1_Q1);

|| TONO:TON(TONO_EI, TONO_EO, CLK,

TIME18,
PTim,
TONO_Q, TONO_ET);

|l RS2:RS(RS2_EI, RS2_EO,

IN2,
TIME14,
RS2_Q1);

Listing F.26: Quartz Model: FBD_SPORTS_HALL

module FBD_THER_CODE (
event bool 7EI,
event bool !EO,

bool
bool
bool
bool
bool
bool
bool

loop

?IN1,
?IN2,
?IN3,
?IN4,
10UT1,
10UT2,
10UT3) {

{

immediate await (EI);

0UT1 = (IN1|IN2|IN3);

0UT2 = ((IN1&IN2&!(IN3))|(IN1&!(IN2)&IN3) | (!(IN1)&IN2&IN3) |(IN1&
IN2&IN3));

0UT3 = (IN1&IN2&IN3);

emit (E0); pause;

Listing F.27: Quartz Model: FBD_THER_CODE

module FBD_TOGGLE_SWITCH (
event bool 7EI,
event bool !EOQ,

325

14
15
16

17

15

16

Appendix F: Resulting FBD-Based Quartz Models

bool 7IN1,
bool 7IN2,
bool 7IN3,
bool 7IN4,
bool !'0UT1){

loop{
immediate await (EI);

0UT1 = (((IN1&!(IN2)&!'(IN3)&!(IN4)) | (' (IN1)&IN2&!' (IN3)&! (IN4))
| (Y (IN1)&! (IN2)&IN3&! (IN4)) | (IN1&IN2&IN3&! (IN4))) | ((!(IN1)
&' (IN2)&! (IN3)&IN4) | (IN1&IN2&! (IN3)&IN4) | (IN1&! (IN2)&IN3&IN4
Y1 (' (IN1)&IN2&IN3&IN4)));

emit (E0); pause;

Listing F.28: Quartz Model: FBD_TOGGLE_SWITCH

module FBD_VENT_CTRL (

event bool 7EI,
event bool !EO,
bool 7IN1,

bool 7IN2,

bool 7IN3,

bool 7IN4,

bool !0UT1,
bool !0UT2,
bool !0UT3){

loopq{
immediate await (EI);

0UT1 (' (IN1)&IN2&IN3&IN4) ;

0UT2 = ((IN2&!(IN4)&'!'(IN1))|(IN4&!(IN3)&!(IN1)) | (! (IN3)&IN2&! (
IN4)) | (' (IN1)&IN3&!'(IN2)) | (! (IN4)&IN1&! (IN2)) | (' (IN3)&IN1&! (
IN2)));

OUT3 = ((IN1&IN3&IN4)|(IN1&IN2&IN3) |(IN1&IN2&IN4)) ;

emit (E0); pause;

Listing F.29: Quartz Model: FBD_VENT_CTRL

module FBD_WIND_DIR(

event bool ?EI,
event bool !'EO0,
bool 7IN1,

bool ?7IN2,

bool 7IN3,

bool ?7IN4,

bool !0UT1,
bool !0UT2,
bool !0UT3,
bool !0UT4){

loopq{
immediate await (EI);

0UT1 = ((IN1&!'(IN2)&!(IN3)) | (!'(IN1)&!'(IN2)&!(IN3)) | (!'(IN1)&! (IN2
Y&IN3));

0UT2 = (('(IN1)&!(IN2)&IN3) | (IN1&!'(IN2)&IN3) | (IN1&IN2&IN3));

0UT3 = ((IN1&IN2&IN3) |(!(IN1)&IN2&IN3) | (!'(IN1)&IN2&! (IN3)));

326

19

NN

Appendix F: Resulting FBD-Based Quartz Models

0UT4 = ((!'(IN1)&IN2&!(IN3)) | (IN1&IN2&!'(IN3)) | (IN1&!' (IN2)&! (IN3))
)8

emit (E0); pause;

Listing F.30: Quartz Model: FBD_WIND_DIR

327

15

16

[N I

Appendix

Resulting Data-Flow Oriented
SCCharts

import "MOVE_bool.sctx"

scchart FBD_TWO_OF_THREE{
input bool EI
output bool EO
input bool xB1l_Temp
input bool xB2_Temp
input bool xB3_Temp
output bool xP1_Temp
ref MOVE_bool MOVE_O1

dataflow:
MOVE_01 = {EI, ((xB1_Temp&xB2_Temp) |(xB1l_Temp&xB3_Temp) | (xB2_Temp&
xB3_Temp)) };

xP1_Temp = MOVE_01.0UT;
E0 = MOVE_O1.EOQ;

Listing G.1: SCChart: FBD_TWO_OF _THREE

FBD_TWO_OF THREE

xB1_Temp 1 El—! MOVE 02— xP1_Temp
xB2_Temp & — | EO EO
xB3_Temp

Figure G.1.: Visualized data-flow oriented SCChart: FBD_TW0_OF THREE

import "RS.sctx'
import "MOVE_bool.sctx"

scchart FBD_AIR_COND_CTRL{

input bool EI
output bool EO

329

Appendix G: Resulting Data-Flow Oriented SCCharts

7 input bool IN1
8 input bool IN2
9 input bool IN3
10 input bool IN4
11 input bool IN5

12 input bool IN6
13 input bool IN7
14 input bool INS8
15 input bool IN9

-

output bool 0UT1
output bool 0UT2

ref RS RSO

ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02

-

© w

N
= O

dataflow:
RSO={EI, (IN1|IN2|IN3|IN4),((!'(IN5)|!(IN6)|!'(IN7)|!'(IN8))I|!'(IN9))};
MOVE_01 = {RSO.EDO, RSO0.Q1};
0UT1=MOVE_01.0UT;
MOVE_02 = {MOVE_O01.E0, !(IN9)};
0UT2=MOVE_02.0UT;
E0 = MOVE_02.EOQ;

VRN RN RN

TR W N

NN N
© N O

[}

Listing G.2: SCChart: FBD_AIR_COND_CTRL

FBD_AIR_COND_CTRL

IN1
IN2 El
IN5— 1 |N3_L | _L
IN6— | IN4-J g 2 e our
st RSO MOVE_01 CUit
IN7 — | — | | S— | | I Qi IN EO

R El out
IN§ — ! f ! f MOVE_02 ouT2
: j : N TL £0
IN9

Figure G.2.: Visualized data-flow oriented SCChart: FBD_AIR_COND_CTRL

import "MOVE_bool.sctx"

1

2

3 scchart FBD_ALARM{

4 input bool EI

5 output bool EO

6 input bool xSENSOR_L

7 input bool xSENSOR_M

8 input bool xSENSOR_R

9 output bool FBD_ALARM

10 ref MOVE_bool MOVE_O1

11

12 dataflow:

13 MOVE_01 = {EI, (!(xSENSOR_L)&!(xSENSOR_M)&!(xSENSOR_R)) |(xSENSOR_L&
xSENSOR_R) };

14 FBD_ALARM = MOVE_01.0UT;

15 E0 = MOVE_O1.EO0;

Listing G.3: SCChart: FBD_ALARM

1 import "MOVE_bool.sctx"

N

330

>

16

1
2

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_ALARM

xSENSOR_M— !

ouT
XSENSOR_| L MOVE 01 FBD_ALARM

ES EO
xSENSOR RT:

Figure G.3.: Visualized data-flow oriented SCChart: FBD_ALARM

scchart FBD_ANTIVALENCE{
input bool EI
output bool EO
input bool INO
input bool IN1
input bool IN2
output bool 0UT1
ref MOVE_bool MOVE_O1

dataflow:
MOVE_01 = {EI, ((!(INO)&'!'(IN1)&IN2)|(!(INO)&!'(IN2)&IN1) | (! (IN1)&!(
IN2)&INO))};
0UT1 = MOVE_O1.EOQ;
E0 = MOVE_O1.EQ;

Listing G.4: SCChart: FBD_ANTIVALENCE

FBD_ANTIVALENCE

INO-«
El ——
|N2—— I_ | _l_ MOVE 0$§TI: EO

— & — | OUT1

IN1 L! _j_

I

Figure G.4.: Visualized data-flow oriented SCChart: FBD_ANTIVALENCE

import "MOVE_float.sctx"
import "MOVE_int.sctx"

scchart FBD_OP_ARITH{
input bool EI
output bool EO
float x01
float x02
float x03
float x04
float =x05
float x06
float x1
float x2

N =
o o

331

15
16

|

18

SR

W oW NN NN NNNNNDN
H O © 0 N o0 gk W

A DN

W W W w ¢

18

TR W N =

NN NN NN

Appendix G: Resulting Data-Flow Oriented SCCharts

int x3 = 1

int x4 = 2

ref MOVE_float MOVE_O1
ref MOVE_float MOVE_02
ref MOVE_float MOVE_O03
ref MOVE_float MOVE_04
ref MOVE_int MOVE_O05

dataflow:
MOVE_01 = {EI, x1 + x2};
x01 = MOVE_01.0UT;
MOVE_02 = {MOVE_O1.EO0, x1 - x2};
x02 = MOVE_02.0UT;
MOVE_03 = {MOVE_02.E0, x1 * x2%};
x03 = MOVE_03.0UT;
MOVE_04 = {MOVE_03.E0, x1 / x2};
x04 = MOVE_04.0UT;
MOVE_05 = {MOVE_O4.E0, x3 % x4};
x06 = MOVE_O05.0UT;
E0 = MOVE_05.EO0;

Listing G.5: SCChart: FBD_OP_ARITH

FBD_OP_ARITH

El
B our
. MOVE_01 01
W B3
B our
x1 . MOVE_02 &2
/i F
B our
x2 . MOVE_03 YU
™ £ El ouT X04
7 MOVE_04
B £] ouT 06
x3 MOVE_05 X
e % ——— W - TL
x4 — EO

Figure G.5.: Visualized data-flow oriented SCChart: FBD_OP_ARITH

import "MOVE_bool.sctx"
import "TON.sctx"
import "TOF.sctx"
import "RS.sctx"

scchart FBD_BENDING{
input bool EI
output bool EO
input int CLK
input bool IN1
input bool IN2
input bool IN3
output bool 0UT1
output bool 0UT2
output bool 0UT3
int PTbs
int PTObs
int PTl1s
ref TON TONO
ref TON TON1
ref TON TON2
ref TOF TOFO
ref TON TON3
ref RS RSO
ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02

332

37

39
10
41

w N

1
2
3
1
5

19

NN N NN
(S VU C R

N
-~

Appendix G: Resulting Data-Flow

Oriented SCCharts

import

ref MOVE_bool MOVE_03

dataflow:
TONO = {EI,CLK,IN1,PTi1s};
TON1 = {TONO.EO,CLK,(IN1&TONO.Q) ,PT1s};
TON2 = {TON1.EO,CLK, IN2,PTO5s};
TOFO = {TON2.EO,CLK, (IN1&TONO.Q),PT1s};
MOVE_01 = {TOFO.EO,(IN1&TONO.Q)&!'((TON1.Q&TON2.Q))&!'(((!'(TON2.Q)&

TOFO0.Q)&IN3))1};

0UT1 = MOVE_01.0UT;

MOVE_02 = {MOVE_O01.EQ0, (!(((!(TON2.Q)&TOF0.Q)&IN3))&(!(TON2.Q)&TOFO.
Q};

0UT2 = MOVE_02.0UT;

TON3 = {MOVE_02.E0, CLK,!(IN1),PT5s};

RSO = {TON3.EO, ((IN1&TONO.Q)|TON3.Q),(TON1.Q&TON2.Q)};

MOVE_03 = {RSO.EO0, RS0.Q1};

0UT3 = MOVE_03.0UT;

E0 = MOVE_03.EO0;

Listing G.6: SCChart: FBD_BENDING

FBD_BENDING

|
=

: J__[&_mmcvs_mm _MOVE 0z mrw L
& Pigiag=t] PTSs i
8 ourt ourz|

iNg—

Tono]L

Figure G.6.: Visualized data-flow oriented SCChart: FBD_BENDING

"MOVE_bool.sctx"

scchart FBD_OP_BOOL{

W

input bool EI
output bool EO
bool x01

bool x02

bool x03

bool x04

bool x1 = true

MOVE 03

outs
EO!

bool

x2 =

false

ref
ref
ref
ref

MOVE_bool
MOVE_bool
MOVE_bool
MOVE_bool

dataflow:

MOVE_01 =
x01 =
MOVE_02 =
x02 =
MOVE_03 =
x03 =
MOVE_04 =
x04 =
E0 =

{EI,
MOVE_O01.0UT;
{MOVE_O1.
MOVE_02.0UT;
{MOVE_02.
MOVE_03.0UT;
{MOVE_03.
MOVE_04.0UT;
MOVE_04 .E0;

MOVE_O1
MOVE_02
MOVE_03
MOVE_04

EO,

EO,

EO,

1(x1)};

x1 & x2%};
x1 | x2};

x1 ~ x2};

Listing G.7: SCChart: FBD_OP_BOOL

333

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_OP_BOOL

El
El ouT
| MOVE_01 &
IN EO
El ouT
= 3 MOVE_02 02
IN EO
El ouT
MOVE_03 x03
X2 | N EO
El ouT
A MOVE_04 04
IN EO

EO

Figure G.7.: Visualized data-flow oriented SCChart: FBD_OP_BOOL

1
2
3
3

1
5

import "MOVE_bool.sctx"

scchart FBD_CYLINDER{
input bool EI
output bool EO
input bool INal
input bool INaO
input bool INS
input bool INb1
input bool INcO
input bool INc1l
input bool INbLO
output bool O0UTBp
output bool O0UTAp
output bool O0UTAm
output bool O0UTCp
bool ME1
bool ME2
ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02
ref MOVE_bool MOVE_03
ref MOVE_bool MOVE_04
ref MOVE_bool MOVE_O05
ref MOVE_bool MOVE_06

dataflow:
MOVE_01 = {EI,((ME1|(INaO&INS))&!(INb1))};
OUTAp=MOVE_01.0UT;
MOVE_02 = {MOVE_01.E0,((ME1|(INaO&INS))&!(INb1))};
ME1=MOVE_02.0UT;

MOVE_03 = {MOVE_02.E0, (INal&((ME1|(INaO&INS))&!(INb1)))};

0UTBp=MOVE_03.0UT;
MOVE_04 = {MOVE_03.EO0,((ME2|INb1)&!(INc1))};
ME2=MOVE_04.0UT;

MOVE_05 = {MOVE_04.E0, (!(((ME1]|(INaO&INS))&! (INb1)))&INcO&! (((ME2]|

INb1)&! (INc1))))3};
0UTAm=MOVE_05.0UT;
MOVE_06 = {MOVE_05.E0,(((ME2|INb1)&!(INc1))&INbO)};
OUTCp=MOVE_06.0UT;
E0 = MOVE_06.EQ;

Listing G.8: SCChart: FBD_CYLINDER

scchart FBD_DATATYPES{
input bool EI
output bool EO
input bool INS1
bool A1l
bool A2 = true

334

0 =

10
11
12
14
15

16

—_ e
S © ®

SRS}

gR W N =

NN NN

W N =

NN N NNN
N O Ok W

©

1

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_CYLINDER

onr_—OUTAp
iNao—, "' | L] Move ot — -
e P o sf — "
™ 3 A 2T OUTAm
o our MOVE 05’
= L & & —_MOvE 03— __ouTsp iNoO - &=
! INa1
C " o on | ez :
r: ez J [_,_,—__ OV - I
INb1 | —& 3 _MOVE 05_

(e "_rE . [_\Nhﬂ I

Figure G.8.: Visualized data-flow oriented SCChart: FBD_CYLINDER

int A5
int A6
int A7
int A8
int A9
int A10 = 2
float A13

float A14 = 1.23
int A15

int A16 = 5000
bool A17[3]

int A20([3]

int A21[3]

int A22[3]

float A24([3]

int A25[3]

1]
N

]
N

dataflow:
Listing G.9: SCChart: FBD_DATATYPES

import "MOVE_int.sctx"
import "TON.sctx"
import "SR.sctx'

scchart FBD_DEBOUNCE{
input bool EI
output bool EO
input int CLK
input bool IN
input int DB_TIME = 2
output bool O0UT
output int ET_OFF
ref TON DB_ON
ref TON DB_OFF
ref SR DB_FF
ref MOVE_int MOVE_O1
ref MOVE_int MOVE_02

dataflow:
DB_ON = {EI, CLK, IN, DB_TIME};
DB_OFF = {DB_ON.EO, CLK, !'(IN), DB_TIME};
MOVE_01 = {DB_OFF.EO0, DB_OFF.ET};
ET_OFF = MOVE_01.0UT;
DB_FF = {MOVE_O1.E0, DB_ON.Q, DB_OFF.Q};
MOVE_02 = {DB_FF.EO, DB_FF.Q1};
0UT = MOVE_02.0UT;
E0 = MOVE_02.E0;

Listing G.10: SCChart: FBD_DEBOUNCE

import "MOVE_bool.sctx"

ouTcp

335

47

18

Appendix G:

Resulting Data-Flow Oriented SCCharts

FBD_DEBOUNCE

G

CLK i our
= MOVE_01 EISCES
DB—OFF ET IN - o
El T -
ko = e
a a ous
IN °* DB_ON & PCS‘ DB_FF 1M0VE_02 oun
N Q - at IN) Eo
w
|
DB_TIME

Figure G.9.:

scchart FBD_DICE{
input bool EI
output bool EO
input bool IN1
input bool IN2
input bool IN3
input bool IN4

Visualized data-flow oriented SCChart: FBD_DEBOUNCE

output
output
output
output
output
output
output
output
output

bool
bool
bool
bool
bool
bool
bool
bool
bool

0UTa
0UTDb
0UTc
0UTd
0UTe
OUTf
0UTg
0UTh
0UTi

ref
ref
ref
ref
ref
ref
ref
ref
ref

MOVE_bool
MOVE_bool
MOVE_bool
MOVE_bool
MOVE_bool
MOVE_bool
MOVE_bool
MOVE_bool
MOVE_bool

MOVE_O1
MOVE_02
MOVE_03
MOVE_04
MOVE_05
MOVE_06
MOVE_O7
MOVE_08
MOVE_09

dataflow:
MOVE_01 =
&' (IN3)))};
0UTa = MOVE_O1.0UT;
MOVE_02 =
0UTb = MOVE_02.0UT;
MOVE_03 =
IN4)))};
0UTc = MOVE_03.0UT;
MOVE_04 =
OUTd = MOVE_04.0UT;
MOVE_05 =
0UTe = MOVE_05.0UT;
MOVE_06 =
OUTf = MOVE_06.0UT;
MOVE_07 =
0UTh =
MOVE_08 =
IN4)))};
0UTg = MOVE_08.0UT;
MOVE_09 =
)| (IN4&! (IN2)&! (IN3)))};
0UTi = MOVE_09.0UT;
E0 = MOVE_09.EO0;

MOVE_07.0UT;

{EI,((IN3&!(IN4)&!(IN2)) | (IN2&! (IN4)&! (IN1)) | (IN4&! (IN2)

{MOVE_O1.E0, ((IN2&IN3&!(IN4)) | (IN4&! (IN2)&! (IN3)))};

{MOVE_02.E0, ((IN3&!(IN4)) | (IN4&!(IN2)&! (IN3)) | (IN1&IN2&! (

{MOVE_03.E0, ((IN4&'(IN2)&!(IN3)) | (IN1&IN2&IN3&! (IN4)))};
{MOVE_04 .E0, ((IN1&!(IN4)) | (IN1&!(IN3)&!(IN2)))};
{MOVE_05.E0, ((IN4&! (IN2)&!' (IN3)) | (IN1&IN2&IN3&!' (IN4)))};
{MOVE_06.E0, ((IN2&IN3&!(IN4)) | (IN4&! (IN2)&!(IN3)))};

{MOVE_07 .E0, ((IN3&!(IN4)) | (IN4&!' (IN2)&!(IN3)) | (IN1&IN2&!(

{MOVE_08.E0, ((IN3&! (IN4)&! (IN2)) | (IN2&!'(IN4)&! (IN1)&! (IN3)

336

49

16
17

18

19
20
21

Appendix G: Resulting Data-Flow Oriented SCCharts

MOVE_08-—EO| MOVE_085:—OUTi

« a
MOVE_075—OUTh| MOVE_085:—OUTg

Listing G.11: SCChart: FBD_DICE

FBD_DICE
- MOVE_0657—OUTf| MOVE_0357-—OUTc, MOVE_0157—OUTa] MOVE_055—OUTe
N1 1. N2 1
INg— | —— & | MOVE 04— youe o5 N —=8&~ _
N7 n | INg—| | f WMOVE_ Ot ovE o2

IN2

IN3— &
ING—| | f W MOVE_065—povE o7
ING—— ¢
iN2— 1
IN3—| |
N3
INg— | —— &
NG W MOVE_025—wove 03
N2— 1 ——a—| J
IN3—| 1|
IND—— ¢

T

o ﬁ

IN4

IN2— | L &
IN3— 1 f o .
MOVE_035—,
N W — T __MOVE_04
IN2 —L & | J
IN3
INg— 1
IN3
3 MOV 07z “vove_os
IN2— 1 —L = J
IN3— |
IND—— ¢

INZﬁ

.Nz,!ﬁ

INd—— ¢ |

IN4

iN2— 1 L&
IN3— | f u
G hf’““ﬁ MOVE_06
IN2L = |
IN3
iNg— 1
N3
Ng— 1 =&
iN2— 1
N2 .
ING— | 1 . MQVE*UB*O*:MOVE,OQ
INT— 1 L a—1
IN3— 1 f f
ING—— ¢
IN2— | ﬁ
IN3—| 1

MOVE_045:—OUTd

IN3

INg— 1 1
INZ—!L&

'NZL 15' JMOVE_(M
Ng— 1 ==
INT— 1

INg—— ¢
INZ—'f
IN3— 1

Figure G.10.: Visualized data-flow oriented SCChart: FBD_DICE

import

scchart

"MOVE_bool.sctx"

FBD_KV_DIAG{

input bool EI
output bool EO
input bool INa
input bool IND
input bool INc
input bool INd
output bool 0UT1
output bool 0UT2

ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02

dataflow:
MOVE_01 =
0UT1 =
MOVE_02 =
} .

{EI,

0UT2

E0 = MOVE_02.EO0;

I
= MOVE_02.0UT;

(('(INa)&INb) | (INa&! (INb)&INc))};
MOVE_01.0UT;
{MOVE_01.EO,

Listing G.12: SCChart: FBD_KV_DIAG

import "MOVE_bool.sctx"
scchart FBD_LEFT_DET{
input bool EI

output bool EO

(((INa==INb&INc) | (!(INa)&'(INc)&INb))&! (INd))

337

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_KV_DIAG

__/—%&1

INa — ! —— & — |
El out ouT2
INC———+¢ INd 1 & ——~ MOVE_02
. EO

-

INb

El ouT
MOVE_01 QU1

(— & El
! —xl::::& :1: |—J—N m
S

[-

Figure G.11.: Visualized data-flow oriented SCChart: FBD_KV_DIAG

6 input bool xSENSOR_L

7 input bool xSENSOR_R

8 output bool FBD_LEFT_DET
9 ref MOVE_bool MOVE_O1

11 dataflow:
12 MOVE_01 = {EI, (xSENSOR_L & !(xSENSOR_R))};
13 FBD_LEFT_DET = MOVE_01.0UT;

14 E0 = MOVE_O1.EOQ;
15 }

Listing G.13: SCChart: FBD_LEFT_DET

FBD_LEFT_DET

XSENSOR_Ll El—2 ove or—FBD_LEFT_DET
N - Eo
XSENSOR_R——— | & EO

Figure G.12.: Visualized data-flow oriented SCChart: FBD_LEFT_DET
import "MOVE_bool.sctx"

input bool EI

; output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 output bool 0UT1

10 output bool 0UT2

11 output bool 0UT3

12 ref MOVE_bool MOVE_O1

13 ref MOVE_bool MOVE_02

14 ref MOVE_bool MOVE_03

15

16 dataflow:

17 MOVE_01 = {EI,((!(IN3)&!(IN2)&IN1)|(!(IN3)&IN2&! (IN1)) |(IN3&! (IN2)
&' (IN1)))};

18 0UT1 = MOVE_01.0UT;

19 MOVE_02 = {MOVE_01.E0, ((!(IN3)&IN2&IN1)|(IN3&!(IN2)&IN1)|(IN3&IN2
&! (IN1)))};

0 0UT2 = MOVE_02.0UT;

MOVE_03 = {MOVE_02.E0, (IN1&IN2&IN3)};

0UT3 = MOVE_03.0UT;

1
2
3 scchart FBD_POLLA{
|
5

NN W
[

338

NN

(S N

15

NN
o=

VRN

NN NN N
® N O

W N =

o

Appendix G: Resulting Data-Flow Oriented SCCharts

scchart FBD_RES_CTRL1{

input bool EI
output bool EO
input bool IN1
input bool IN2
input bool IN3
input bool IN4
output bool O0UTP1
output bool O0UTP2
output bool O0UTP3
output bool OUTH

ref MOVE_bool
ref MOVE_bool
ref MOVE_bool
ref MOVE_bool

MOVE_O1
MOVE_02
MOVE_03
MOVE_04

E0 = MOVE_03.EQ;
}
Listing G.14: SCChart: FBD_POLL
FBD_POLL
—fEs E
—1 \
- __L | “MOVE 01— ouTt
RS S— IN EO
— ! L“__&-J_
!
INT— — &
J El out
IN3 = __L i _MOVE_02_ QU2
IN2 | _I_
— & El ouT OUT3
e _MOVE 03_
EO
Figure G.13.: Visualized data-flow oriented SCChart: FBD_POLL
import "MOVE_bool.sctx"

dataflow:

MOVE_01 = {EI, ((!'(IN4)&!'(IN3))|('(IN4)&'(IN2)&IN1))};

0UTP1 = MOVE_O1.0UT;

MOVE_02 = {MOVE_O1.EO,
YEIN2&! (IN1)))};

0UTP2 = MOVE_02.0UT;

MOVE_03 = {MOVE_02.EOQO,
IN3)&IN2&! (IN1)) | (! (IN4)&IN3&IN2&IN2)) };

0UTP3 = MOVE_03.0UT;

MOVE_04 = {MOVE_03.EO,

OUTH = MOVE_04.0UT;

E0 = MOVE_04.EQ;

(CIN3&! (IN1)) | (IN4&! (IN2)))};

Listing G.15: SCChart: FBD_RES_CTRL1

import "MOVE_bool.sctx"
scchart FBD_RES_CTRL2{
input bool EI
output bool EO

(CC'(IN4)&!(IN3)) | (! (IN4)&! (IN2)&IN1)) | (! (IN3

(('(IN4)&!(IN3)&! (IN2)) | (IN4&! (IN3)&IN2) | (! (

339

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_RES_CTRL1

El El El El El
MOVE_04zs— EO MOVE_0455-— OUTH MOVE_01557—OUTP1 MOVE_0255— OUTP2 MOVE_0355— OUTP3
IN IN IN IN IN
IN3 " INg— 1
MOVE_03; 2
INtT— | — & N €0 WMOVE_OA IN3— |1 & - o
MOVE_01
INd— g | ING— 1 o= N
IN2— |
IN2— |
IN1
IN4— | _L IN4— 1 —L
IN3— 1 — & IN3— | —— & —
INd— 1 IN2— !
o
El
No— 1) | MOVE_01z5 MOVE 02 IN4
jr: — w — _ 7
IN3— | —— & —
m1_J_! —z | —r_
IN3 N2 IN2 @
MOVE 025—=6ve 03
INT—— | IN3— ! N - (
WZJ:Z&—:EE I————J
INT— 1
m4—-!—L_
IN3— g J
IN2
IN2

Figure G.14.: Visualized data-flow oriented SCChart: FBD_RES_CTRL1

6 input bool IN1
7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool O0UTP1

11 output bool O0UTP2

12 output bool O0UTP3

13 output bool 0UTQ

14 ref MOVE_bool MOVE_O1

15 ref MOVE_bool MOVE_02

16 ref MOVE_bool MOVE_03

17 ref MOVE_bool MOVE_04

18

19 dataflow:

20 MOVE_01 = {EI, ((!(IN4)&!'(IN3))|(!'(IN4)&!(IN2)&IN1))};

21 0UTP3 = MOVE_01.0UT;

22 MOVE_02 = {MOVE_O01.E0, (((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1)) | (! (IN3
J&IN2&! (IN1))) };

VRN

3 0UTP2 = MOVE_02.0UT;

1 MOVE_03 = {MOVE_02.E0, ((!(IN4)&!(IN3)&!(IN2))|(IN4&!(IN3)&IN2&IN1)
| (! (IN3)&IN2&! (IN1)) | (! (IN4)&IN3&IN2&IN1)) };

0UTP1 = MOVE_03.0UT;

MOVE_04 = {MOVE_03.EO0, ((IN3&!(IN1))]|(IN4&!(IN2)))1};

0UTQ = MOVE_04.0UT;

E0 = MOVE_04.EO0;

o

=

0N NN

0

[SEEN]
(o)

Listing G.16: SCChart: FBD_RES_CTRL2

1 import "MOVE_bool.sctx"

N

340

3

1
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

NN

[

VRN
3L N X

1

2

Appendix G: Resulting Data-Flow Oriented SCCharts

El

MOVE_04z—EO
IN

lel

INt— | — &
INg —

IN2— !

IN4— 1

IN3— | —— &

IN4— |

IN2— | L

IN1 f

INSJ

INT—— !

IN2

FBD_RES_CTRL2

:Move_mm ouTta :Move_mm OUTP3 :MOVE_OZDUT outez| " MOVE_035— OUTP1
. IN4— 1
| MOVE_03z—* - “MOVE_ 04 I -y I
MOVE_01
&l |N4—!—&l|ﬂ
IN2— 1
IN1
IN4— |
IN3— | L & —
IN2— 1
— | MOVE 015 MOVE 02 IN4
B _L IN3— | 1
f IN2——= & —
J INA .
NG — | WMOVE025__;MOVE03
INZL & —= | J
INT— 1
INg— |
INSL &
IN2
INA

Figure G.15.: Visualized data-flow oriented SCChart: FBD_RES_CTRL2

scchart FBD_ROLL_DOWN{
input bool EI
output bool EO

input
input
input
input
input
input
input
input

bool
bool
bool
bool
bool
bool
bool
bool

IN1
IN2
IN3
IN4
INS
IN6
TIME14
TIME4

output bool 0UT1
output bool 0UT2
ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02

dataflow:
MOVE_O01 {EI, (((TIME4&IN6)|(!(IN6)&IN2))&IN4)};
0UT1 = MOVE_O1.0UT;
MOVE_02 {MOVE_01.E0, ((((TIME4&IN6)|(!(IN6)&IN2))&IN4)==(IN5&((ING
&IN1&! (TIME14)) | (IN3&! (IN6))))&(IN5&((IN6&IN1&! (TIME14)) | (IN3&! (
IN6)))))};

0UT2 = MOVE_02.0UT;

EO

import

MOVE_02.EO;

Listing G.17: SCChart: FBD_ROLL_DOWN

"MOVE_bool.sctx"

341

NN NN
ST NI

N O C

NN
o3

15

16

18
19

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_ROLL_DOWN

TIME4—— &
EI ouT
& — | El ——MOVE 0T ouT1
N2 N " N— & QT OUT2
NG —— & _MOVE_02_
IN6 = 2 = Leo
— ! IN5— g
INT— & — |
TIME14 —— |
IN3— g

Figure G.16.: Visualized data-flow oriented SCChart: FBD_ROLL_DOWN

scchart FBD_CABLE_WINCH{
input bool EI
output bool EO
input bool INS1
input bool INB1
input bool INB2
output bool 0UT1
output bool 0UT2
bool ME1
bool ME2
ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02
ref MOVE_bool MOVE_03
ref MOVE_bool MOVE_04

dataflow:
MOVE_01 = {EI, ((ME1]|INS1|!(INB2))&!((!(INB1)|!(INS1)|ME2)))};
0UT1 = MOVE_01.0UT;

MOVE_02 = {MOVE_01.E0, ((ME1|INS1|!(INB2))&!'((!(INB1)]|!(INS1)I|ME2)))

};
ME1 = MOVE_02.0UT;

MOVE_03 = {MOVE_02.E0, ((ME2|!(INB1))&!'!'((!(INB2)|!(INS1)I|ME1)))};
0UT2 = MOVE_03.0UT;

MOVE_04 = {MOVE_03.E0, ((ME2]|!(INB1))&!'((!'(INB2)|!'(INS1)I|ME1)))};
ME2 = MOVE_04.0UT;

E0 = MOVE_04.EQ;

Listing G.18: SCChart: FBD_CABLE_WINCH

import "MOVE_bool.sctx"

scchart FBD_SEVEN_SEG{
input bool EI
output bool EO
input bool INO
input bool IN1
input bool IN2
input bool IN3
input bool IN4
output bool 0UTa
output bool 0UTDbL
output bool 0UTc
output bool 0UTd
output bool 0UTe
output bool 0UTE
output bool 0UTg
ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02

342

W N o=

NN NN
=~

o

1

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_CABLE_WINCH

El El El El El
MOVE_04zs— EO MOVE_0255— ME1 MOVE_0455— ME2 MOVE_01557—OUT1 MOVE_0355r— 0UT2
IN IN IN IN IN
&l ME2
ME1 El MOVE_01 _L € —— Y
INB2 N INBl— | | —— | N —"4E0 MOVE_03

INB1— 1 _ENT1—T|—& INB2— | ——— _,j:&_,[w
INS1—!L|—! |Ns1—!~J|t| -

ME2 ME1
ME2 o }
INBT | = | o O 0% MoVE o4
INB2— | —— | L[| _——&
INST— ! ~J|T
ME1
u 1) MOVE_01es—=
INB2 INST— | w —F __MOVE_02
INBT— ! _L ! _r L & _J
INST— ! L | — r
ME2

Figure G.17.: Visualized data-flow oriented SCChart: FBD_CABLE_WINCH

ref MOVE_bool MOVE_03
ref MOVE_bool MOVE_04
ref MOVE_bool MOVE_O05
ref MOVE_bool MOVE_06
ref MOVE_bool MOVE_O07

dataflow:

MOVE_01 = {EI, ((!'(IN3)&IN1)|(IN2&IN1)|(!'(IN2)&!(IN1)&IN3) | (! (IN3)
&! (IN2) &' (INO)) | (! (IN3)&IN1&INO))3};

0UTa = MOVE_O1.0UT;

MOVE_02 = {MOVE_O1.E0, ((!'(IN3)&!(IN2))|('(IN2)&!(IN1))|(!'(IN3)&IN1&
INO) | (IN3&! (IN1)&INO) | (! (IN3)&! (IN1)&!(INO)))};

0UTb = MOVE_02.0UT;

MOVE_03 = {MOVE_02.E0, ((!'(IN3)&!(IN1))|(!'(IN3)&INO)|(!'(IN2)&IN3)
| (' (IN3)&IN2) | (! (IN1)&INO))};

0UTc = MOVE_03.0UT;

MOVE_04 = {MOVE_03.E0, ((!(IN2)&IN1)|(!(IN2)&!(INO))|(IN1&!(INO)) |(
IN3&! (IN1)&IN2) | (IN2&! (IN1)&INO))};

0UTd = MOVE_04.0UT;

MOVE_05 = {MOVE_04.E0, ((!(IN2)&!(INO))|(IN3&IN1)|(IN3&IN2) |(IN2&!(
INO)&IN1))3};

0UTe = MOVE_05.0UT;

MOVE_06 = {MOVE_05.E0, ((IN3&IN2&IN1)|(!(IN3)&IN2&!'(IN1))|(!'(IN3)&
IN2&! (INO)) | (IN3&! (IN2)&INO) | (' (IN2)&! (IN1)&! (INO)))};

OUTf = MOVE_06.0UT;

MOVE_07 = {MOVE_06.E0, (IN3|(!(INO)&IN2)|(!(IN2)&INO) | (!(IN1)&IN2))
};

0UTg = MOVE_O7.0UT;

E0 = MOVE_O7.EOQ;

Listing G.19: SCChart: FBD_SEVEN_SEG

import "MOVE_bool.sctx"

343

15

16

—_ e e
S © ®

NN NN
Y R W N =

Appendix G: Resulting Data-Flow Oriented SCCharts

FBD_SEVEN_SEG

MOVE_07—EO| MOVE_06577—OUTf| MOVE_03z7—OUTc, MOVE_Otsr—OUTa| MOVE_0557—OUTe| MOVE_025:7—OUTb] MOVE_04z7—OUTd MOVE_0755—OUTg

INO— | IN3 o IN2— !
|N2__L& T\A""Vgﬁsﬁmovam INO— 1 — &
IN2— | — g L | IN3 o
INO INT—— & wlOVEgm—]
INT— 1 —g INg—— g L —= |
IN2 IN2
N2— o
INO— 1 ﬁ
N1
IN2— | _L IN3— |
INt—— & IN2— | —— & —
IN2— | _L N2— 1
INO— | —— & o . INW—\L&
- n UOVUJTMOVEM T DOVUMU o
INO— | —— & I—J_ ML& —
|NaL Jﬁ woJ_ r
INT— | —— & IN3
IN2 INT—| 1 L &
IN2—— ¢ \NOJ_
|N1—!Jj INg— 1 —— g]
ING INT—| 1
INO— !

Figure G.18.:

import "TOF.sctx"
scchart FBD_SHOP_WINDOW{

input bool EI

output bool EO

input int CLK

input bool IN1

input bool IN2

input bool IN3

input bool IN4

input bool TIME3

output bool 0UT1

output bool 0UT2

output bool 0UT3

output bool 0UT4

int PTim

ref TOF TOFO

ref TOF TOF1

ref MOVE_bool MOVE_O1

ref MOVE_bool MOVE_02

ref MOVE_bool MOVE_03

ref MOVE_bool MOVE_04

dataflow:
TOFO = {EI, CLK, IN3, PTim};
MOVE_01 = {TOF0.EO,
0UT1 = MOVE_01.0UT;
MOVE_02 = {MOVE_O1.EO,
0UT2 = MOVE_02.0UT;
MOVE_03 = {MOVE_02.EO,

}s

0UT3 = MOVE_03.0UT;
TOF1 = {MOVE_03.EO0, CLK, IN4,
MOVE_04 = {TOF1.EO,

MOVE_05

MOVE_02

IN3— |

INT— | — &
IN3— | _L

INO— & of
MOVE_025:—,
IN2— 1 W _MOVE 03

IN3— & |

IN3— 1 —g

IN2

H
5

INT— 1 —g

INO

IN3 L

IN2— & —
INT

IN3— 1

INZL &
INT— 1 J_ 1
IN3— | _L w

IN2——= & —=

I

|
INO— 1

IN3
IN2— 1 L &

INO

IN2— | —— g1
INT— 1

INO— 1

((TIME3|TOFO.Q)&IN2)};

PTim};

(IN2&(TOFO.QITOF1.Q))3};

MOVE_055—=10ve 0g

IN3— 1
IN1L &—
IN2
INt—— &

IN2— ! &
EL MOVE_01

INT— | — & —= |

INJ-J_ F
IN3— | — g
IN2— | _J_

INO— !

INg— | ——g

Visualized data-flow oriented SCChart: FBD_SEVEN_SEG

(IN2&((((TIME3|TOFO0.Q)&IN2)&IN1) | TOF0.Q))1};

(IN2&((IN1&! (((TIME3|TOFO0.Q)&IN2))) |TOF0.Q))

344

35

15

N =

Appendix G: Resulting Data-Flow Oriented SCCharts

0UT4 = MOVE_04.0UT;
E0 = MOVE_O4.EO0;

Listing G.20: SCChart: FBD_SHOP_WINDOW

FBD_SHOP_WINDOW

o o OUTA
i ad p— CLENTY))

2
W

&
MOVE_0:

——— —sw
o ouT3

o
— | o MOVE_03
&1 — w c3
= o ’7 —Ja 5‘:\\ =X
T® IN1 L— r
" TOFO r
W - | =s
T E
o o our
CLK | 1oF1 _MOVE 04_ QuT4
INg—— . " * Leo

Figure G.19.: Visualized data-flow oriented SCChart: FBD_SHOP_WINDOW

import "MOVE_bool.sctx"

scchart FBD_SILO_VALVE{
input bool EI
output bool EO
input bool IN1
input bool IN2
input bool IN3
input bool IN4
output bool 0UT1
ref MOVE_bool MOVE_O1

dataflow:
MOVE_01 = {EI, ((!'(IN3)&!(IN2)&IN1)|(!(IN3)&IN2&!(IN1))|(IN3&!(IN2)
&!(IN1)) | (IN3&IN2&IN1)) };
0UT1 = MOVE_O01.0UT;
E0 = MOVE_O1.EOQ;

Listing G.21: SCChart: FBD_SILO_VALVE

FBD_SILO_VALVE

- e &
IN3—— |
IN2 — & El E'MOVE 01—0“ OUT1
L Ll e

IN1 — | EO

Figure G.20.: Visualized data-flow oriented SCChart: FBD_SILO_VALVE

import "MOVE_int.sctx"
import "MOVE_float.sctx"

345

15

16

_ =
S © ®»

NN NN e

STV R

15

16

1

=
S © ® =

NN NN
N R R

N

6

Appendix G: Resulting Data-Flow Oriented SCCharts

scchart FBD_SIMPLE_FUN{
input bool EI
output bool EO
input float Al
input float B1
input float C1 = 1.0
input output int COUNT
output float FBD_SIMPLE_FUN
int COUNTP1
ref MOVE_float MOVE_O1
ref MOVE_int MOVE_02
ref MOVE_float MOVE_03

dataflow:
MOVE_01 = {EI, COUNT+1};
COUNTP1 = MOVE_O01.0UT;
MOVE_02 = {MOVE_O1.EO,
COUNT = MOVE_02.0UT
MOVE_03 = {MOVE_02.EO,
FBD_SIMPLE_FUN =
E0 = MOVE_03.EO0;

COUNTP1};

(A1%B1)/C1};
MOVE_03.0UT

Listing G.22: SCChart: FBD_SIMPLE_FUN

COUNT oor
1 MOVE 01

COUNTP1 ;
o

A1l

C1

FBD_SIMPLE_FUN

uT
MOVE 02 COUND

N

MOVE 03— FBD_SIMPLE_FUN
EO

EO

Figure G.21.: Visualized data-flow oriented SCChart: FBD_SIMPLE_FUN

"MOVE_bool.sctx"
"MOVE_int .sctx"
"MOVE_float.sctx"
"FBD_DEBOUNCE.sctx"
"FBD_SIMPLE_FUN.sctx"

import
import
import
import
import

scchart FBD_SIMPLE_PRG1{
input bool EI
output bool EO
input bool PRG_IN
output bool PRG_O0UT1
output float PRG_0UT2
output int PRG_ET_OFF
int PRG_COUNT = 4
float PRG_A
float PRG_B
float PRG_C

ref
ref
ref
ref
ref

MOVE_bool MOVE_O1
MOVE_int MOVE_O02
MOVE_float MOVE_03

dataflow:
DEBOUNCE_01 =
MOVE_01 =
PRG_0OUT1 =

{EI,

MOVE_01.0UT;

PRG_IN,
{DEBOUNCE_01.EO,

FBD_DEBOUNCE DEBOUNCE_O1
FBD_SIMPLE_FUN FBD_SIMPLE_FUN_11

2000} ;

DEBOUNCE_01.0UT};

346

35

[N I

Appendix G: Resulting Data-Flow Oriented SCCharts

MOVE_02 = {MOVE_O1.EO0, DEBOUNCE_O1.ET_OFF};

PRG_ET_OFF = MOVE_02.0UT;

FBD_SIMPLE_FUN_11 = {MOVE_02.E0, PRG_A + 2, PRG_B, PRG_C, PRG_COUNT
>

MOVE_03 = {FBD_SIMPLE_FUN_11.E0, FBD_SIMPLE_FUN_11.FBD_SIMPLE_FUN};

PRG_OUT2 = MOVE_03.0UT;

E0 = MOVE_03.EO0;

Listing G.23: SCChart: FBD_SIMPLE_PRG1

FBD_SIMPLE_PRGH1

ED~
5 T \E out
PRG_IN—— N MOVE 01 PRG_OUT1
DEBOUNCE 05— =) . o
2000w Movekod PRG_ET_OFF
DB_TIME ET_OFF
PROA— _
IS S B S o
PRG_B FBD_SIMPLE_FUN_I1 El out
- i O —hoveos PRG_OUT2
PRG_C— & FEO_SWPLEFUN N =9 -

PRG_COUNTJ """
Figure G.22.: Visualized data-flow oriented SCChart: FBD_SIMPLE_PRG1

import "MOVE_int.sctx"
import "ST_LOOP_HEAD_SCL.sctx"

scchart FBD_SIMPLE_PRG2{
input bool EI
output bool EO
int OUT
ref ST_LOOP_HEAD_SCL ST_LOOP_HEADO
ref MOVE_int MOVE_O1

dataflow:
ST_LOOP_HEADO = {EI}
MOVE_01 = {ST_LOOP_HEADO.EO, ST_LOOP_HEADO.y}
OUT = MOVE_O01.0UT
E0 = MOVE_O01.EOD

Listing G.24: SCChart: FBD_SIMPLE_PRG2

FBD_SIMPLE_PRG2

EO El ouT
El —ST_LOOP_HEADO MOVE_01 il

y N EO

EO

Figure G.23.: Visualized data-flow oriented SCChart: FBD_SIMPLE_PRG2

import "MOVE_bool.sctx"

scchart FBD_SMOKE_DET{
input bool EI
output bool EO
input bool IN1

347

Appendix G: Resulting Data-Flow Oriented SCCharts

7 input bool IN2
8 input bool IN3
9 input bool IN4
10 output bool 0UT1
11 output bool 0UT2

12 output bool 0UT3

13 ref MOVE_bool MOVE_O1

14 ref MOVE_bool MOVE_02

15 ref MOVE_bool MOVE_03

16

17 dataflow:

18 MOVE_01 = {EI, (!(IN1)|!(IN2)|!(IN3)]|!(IN4))};

19 OUT1 = MOVE_O1.0UT;

20 MOVE_02 = {MOVE_O01.E0, (((!(IN1)&!(IN2))|(!(IN1)&! (IN3))) | (1 (IN1)&!(
IN4)&(!'(IN3)&! (IN2))&(!' (IN2)&! (IN4))&(!' (IN3)&!(IN4))))};

0UT2 = MOVE_02.0UT;

MOVE_03 = {MOVE_02.E0, (!(IN1)&!(IN2)&!'(IN3)&!(IN4))};

OUT3 = MOVE_03.0UT;

E0 = MOVE_03.EQ;

NN N

ISR e

[CENN]

Listing G.25: SCChart: FBD_SMOKE_DET

FBD_SMOKE_DET

E
El ouT
= | MOVE_01 QUL
IN EO
El ouT
L+ & MOVE_02 QU2

| —=

——{— -
INT— ! &
IN2— !) N —

I

IN3— | 3 +— &
IN4— ! — &
&
El ouT
=g —_MOVE 03 CUIE
— IN EO
EO

Figure G.24.: Visualized data-flow oriented SCChart: FBD_SMOKE_DET

1 import "MOVE_bool.sctx"
2 import "RS.sctx'
3 import "TON.sctx"

5 scchart FBD_SPORTS_HALL{
6 input bool EI
7 output bool EO

8 input int CLK

9 input bool IN1

10 input bool IN2

11 input bool IN3

12 input bool IN4

13 input bool TIME4

14 input bool TIME9

15 input bool TIME14
16 input bool TIME18
17 output bool 0UT1

18 output bool 0UT2

348

-
R W N R O ©

3 o

W oW oW W wWNNNNNNNDNNN
? 3 & N b

Y R L N~

N

Appendix G: Resulting Data-Flow Oriented SCCharts

output bool 0UT3
output bool 0UT4

int PTim
ref RS RSO
ref RS RS1
ref RS RS2
ref TON TONO
ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02
ref MOVE_bool MOVE_03
ref MOVE_bool MOVE_04
dataflow:
RSO = {EI, IN1, TIME4};
MOVE_01 = {RSO.ED, ((RSO.Q1&!(IN4))|IN3)};
0UT1 = MOVE_01.0UT;
RS1 = {MOVE_01.E0, IN1,TIME9};
MOVE_02 = {RS1.E0, ((RS1.Q1&!(IN4))|IN3)};
0UT2 = MOVE_02.0UT;
TONO = {MOVE_O02.EO0, CLK, TIME18,PTim};
MOVE_03 = {TONO.EO, (TIME18==TONO.Q&((RSO.Q1&!(IN4))|IN3)&((RS1.Q1
&! (IN4)) | IN3))};
0UT4 = MOVE_03.0UT;
RS2 = {MOVE_03.E0, IN2,TIME14};
MOVE_04 = {RS2.EO0, ((RS2.Q1&!(IN4))|IN3)};
0UT3 = MOVE_04.0UT;
E0 = MOVE_04.EO0;
}
Listing G.26: SCChart: FBD_SPORTS_HALL
FBD_SPORTS_HALL
“MOVE_04-—EO| ' MOVE_0tor—OUT1 ' MOVE_025-—OUT2| MOVE_035—OUT4| MOVE_04s—OUT3 B~
w W I w w IND—| Rso
TIME4 — 77
:Move_owm :MOVE_OSrWlT iMOVE_Om . : RSO EO—E‘MOVE_M
IN1 = Rs1 IN2 = RS2 CLK — s RSO m— g "
TIME9 — 7. TIME14— 77 TIME1§— " TONO mi N3 |
PTIm— ™ INg—— 1
“ o RST = 0ve 02 @ o RS2 m—0vE 04
s R8T & &j " " s RS2 o &j " "
“ INg—— | " INg—— |
INg—— | INg— 1
TIME1B\L
&l SKOTONO e— == ax
s RSO & N ~ TONO = EIMOVE_OS
INg—— 1 &ﬁ_ a
IN3— | &
s RS1 & — |J
" |N3—»[_
INg—— 1
Figure G.25.: Visualized data-flow oriented SCChart: FBD_SPORTS_HALL
import "MOVE_bool.sctx"

349

Appendix G: Resulting Data-Flow Oriented SCCharts

3 scchart FBD_THER_CODE{
1 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3
9 input bool IN4
10 output bool 0UT1
11 output bool 0UT2
12 output bool 0UT3

13 ref MOVE_bool MOVE_O1
14 ref MOVE_bool MOVE_02

15 ref MOVE_bool MOVE_03

1€

17 dataflow:

18 MOVE_01 = {EI, (IN1|IN2|IN3)};

19 0UT1 = MOVE_O01.0UT;

20 MOVE_02 = {MOVE_O1.EO0, ((IN1&IN2&!'(IN3))|(IN1&!'(IN2)&IN3)|(!(IN1)&

IN2&IN3) | (IN1&IN2&IN3))};
1 0UT2 = MOVE_02.0UT;
2 MOVE_03 = {MOVE_02.E0, (IN1&IN2&IN3)};
3 O0UT3 = MOVE_03.0UT;
1 E0 = MOVE_03.EO0;
5

NN NN N

Listing G.27: SCChart: FBD_THER_CODE

FBD_THER_CODE

E
El ouT
— MOVE_01 allil
| —x o)
|
&
! —J
IN1 4
T - T OUT2
IN2] & —] | _lNMOVE_OZEO
IN3— J
=
— 23
El ouT
e MOVE_03 s
N IN EO
EO

Figure G.26.: Visualized data-flow oriented SCChart: FBD_THER CODE

import "MOVE_bool.sctx"

input bool EI
output bool EO
6 input bool IN1
7 input bool IN2
8 input bool IN3
9 input bool IN4
10 output bool 0UT1
11 ref MOVE_bool MOVE_O1

1

Y

3 scchart FBD_TOGGLE_SWITCH{
1

5

13 dataflow:

350

14

15

16

17

16

Appendix G: Resulting Data-Flow Oriented SCCharts

MOVE_01 = {EI, (((IN1&!'(IN2)&!(IN3)&!'(IN4))|(!'(IN1)&IN2&!(IN3)&! (IN4
)) I (P (INL)&! (IN2)&IN3&! (IN4)) | (IN1&IN2&IN3&! (IN4))) | ((! (IN1)&!(
IN2)&! (IN3)&IN4) | (IN1&IN2&! (IN3)&IN4) | (IN1&! (IN2)&IN3&IN4) | (! (
IN1)&IN2&IN3&IN4)))};

OUT1 = MOVE_O1.0UT;

E0 = MOVE_O1.EOQ;

Listing G.28: SCChart: FBD_TOGGLE_SWITCH

FBD_TOGGLE_SWITCH

| — &
— &
B 1L
l & — —
INT—HH] =
IN2
|N3 El OouT
Bl —= v of2—OUT!
- IN EO
=== EO
IN4 T
b jj
—
—_————— &
- J

Figure G.27.: Visualized data-flow oriented SCChart: FBD_TOGGLE_SWITCH

import "MOVE_bool.sctx"

scchart FBD_VENT_CTRLA{
input bool EI
output bool EO
input bool IN1
input bool IN2
input bool IN3
input bool IN4
output bool 0UT1
output bool 0UT2
output bool 0UT3
ref MOVE_bool MOVE_O1
ref MOVE_bool MOVE_02
ref MOVE_bool MOVE_03

dataflow:

MOVE_01 = {EI, (!(IN1)&IN2&IN3&IN4)7Z};

0UT1 = MOVE_O1.0UT;

MOVE_02 = {MOVE_O01.E0, ((IN2&!'(IN4)&'(IN1))|(IN4&!(IN3)&!'(IN1))|(!(
IN3)&IN2&! (IN4)) | (' (IN1)&IN3&! (IN2)) | (' (IN4)&IN1&! (IN2)) | (! (IN3)
&IN1&! (IN2)))};

0UT2 = MOVE_02.0UT;

MOVE_03 = {MOVE_02.E0, ((IN1&IN3&IN4)|(IN1&IN2&IN3)|(IN1&IN2&IN4))};

0UT3 = MOVE_03.0UT;

351

Appendix G: Resulting Data-Flow Oriented SCCharts

=~

E0 = MOVE_03.EQ;

NN
&
-

Listing G.29: SCChart: FBD_VENT_CTRL

FBD_VENT_CTRL

E
El ouT
—_:1: MOVE_01 Qi
— IN EO
IN2—4 | T l"&
IN4 — s
! El ouT
& L | MOVE_02 QL2
IN EO
—— | — — & I
IN3 [
—— &
!
—F— &
IN1 J
=
El ouT
— & L | —_MOVE_03 GlS
— IN EO
EO
—— &

Figure G.28.: Visualized data-flow oriented SCChart: FBD_VENT_-CTRL

import "MOVE_bool.sctx"

input bool EI
output bool EO
6 input bool IN1
7 input bool IN2
8 input bool IN3
9 output bool 0UT1
10 output bool 0UT2
11 output bool 0UT3

1
2
3 scchart FBD_WIND_DIR{
|
5

12 output bool 0UT4

13 ref MOVE_bool MOVE_O1
14 ref MOVE_bool MOVE_02
15 ref MOVE_bool MOVE_03

16 ref MOVE_bool MOVE_04

17

18 dataflow:

19 MOVE_01 = {EI, ((IN1&!(IN2)&'(IN3))|(!'(IN1)&!(IN2)&!(IN3)) | (! (IN1)
&! (IN2)&IN3))};

0 0UT1 = MOVE_O01.0UT;

MOVE_02 = {MOVE_O1.E0, ((!'(IN1)&!(IN2)&IN3)|(IN1&!'(IN2)&IN3)|(IN1&

IN2&IN3))};
0UT2 = MOVE_02.0UT;
MOVE_03 = {MOVE_02.E0, ((IN1&IN2&IN3)|(!(IN1)&IN2&IN3) |(!(IN1)&IN2

VRN

N
w N

&' (IN3)))};
24 0UT3 = MOVE_03.0UT;
25 MOVE_04 = {MOVE_03.E0, ((!'(IN1)&IN2&'(IN3))|(IN1&IN2&! (IN3)) | (IN1&!(

IN2)&!(IN3)))1};
26 0UT4 = MOVE_04.0UT;
27 E0 = MOVE_04.EQ;

352

Appendix G: Resulting Data-Flow Oriented SCCharts

Listing G.30: SCChart: FBD_WIND_DIR

FBD_WIND_DIR

MOVE_04z5

@ @ @
EO MOVE_01557— OUT1 MOVE_0255— OUT2 MOVE_035—OUT3
N

N N "

INT—] 1 _L
1 N2— 1 —&
IN3— | — & IN3 J .
“
INT— 1 g o IN1 W MOVEOTES _MOVE _02
MOVE_01
2 o -

IN2— | ——= & —= | ND>—.L s—=1

IN3— | INS-
INT—— ¢
INT— | ——
& IN2
IN2—| 1 -
IN3
INT— 1 l
IN2—— &
IN3— 1 —J— B
“
|N1 WMOVE_ 035510V 04
1 w
IN2— & — | —J
IN3— 1 —J—
INT——
&
IN2— 1 —J—
IN3— 1

@
MOVE_045-—OUT4
w

Ut

IN1
IN2— &
IN3—J .
@
INT— 1 L ™ MOVE 02z MOVE_03
W
IN2— & — | J
IN3
INT— | ——
IN2

IN3— !

Figure G.29.: Visualized data-flow oriented SCChart: FBD_WIND_DIR

353

15

Appendix

Resulting Control-Flow Oriented

SCCharts

scchart ST_ALARM{

input bool xSENSOR_L
input bool xSENSOR_M
input bool xSENSOR_R
output bool ST_ALARM

region:

initial state SO
immediate do ST_ALARM

final state S1

(! (xSENSOR_L) &
(xSENSOR_L & xSENSOR_R) go to S1

! (xSENSOR_M) &

Listing H.1: SCChart: ST_ALARM

ST_ALARM

/ ST_ALARM = IXSENSOR_L & IxSENSOR_M &

IXSENSOR_R | xSENSOR_L & xSENSOR_R

Figure H.1.: Visualized control-flow oriented SCChart: ST_ALARM

scchart ST_LOOP_FOOT{

input signal bool EI

output signal bool EO
output int y

int
int
int
int
int
int

region:

x0
x1
x2
i

i0
il

initial state S1

do xO0

0; x1 = 1; x2

10 abort to S2

! (xSENSOR_R))

355

Appendix H: Resulting Control-Flow Oriented SCCharts

state S2{
initial state S1
immediate if EI do i = i0 abort to S2

= =
© 0w N o

state S2 {
initial state S1
immediate do y = x0 go to S2

state S2
do i = pre(i) + pre(x2) abort to S3

TR W N =

-~

final state S3
immediate if !(i > il) go to S1

NN N NNNN N
[0

9 }
30 immediate if (i > i1) do y = x1; EO join to S3

31
32 final state S3
3: abort to S1

Listing H.2: SCChart: ST_LOOP_FOOT

ST_LOOP_FOOT

1x0=0; S2

x1=1;

x2=2; s2 i>i
i0=0; El ly=x1;

i1=10 i=i /y =x0 /i = pre(i) + pre(x2
GDe—it=t0s iz, @ YZX0 . 5y o Lizpre+ pre(B0

\

o O] o

Figure H.2.: Visualized control-flow oriented SCChart: ST_LOOP_FOOT

1 scchart ST_LOOP_HEAD{
2 input signal bool EI
3 output signal bool EO
4 output int y

5 int x1

6 int x2

7 int i

8 int i0

9 int il

11 region:
12 initial state S1
13 do x1 = 1; x2 = 2; i0 = 0; i1 = 10 abort to S2

15 state S2{
16 initial state S1
7 immediate if EI do i = i0 abort to S2

-
08

state S2 {
initial final state S1
immediate if (i <= il) go to S2

state S2
do i = pre(i) + pre(x2) abort to S3

N R R

state S3
immediate go to S1

N

NN NN NN NN

0%
(o)

356

Appendix H: Resulting Control-Flow Oriented SCCharts

immediate if !(i <= il1) do y = x1; EO join to S3

state S3
abort to S1

2RIt

W
()

34 }
Listing H.3: SCChart: ST_LOOP_HEAD

ST_LOOP_HEAD

S2
Ix1=1;
x2=2; Cem s
aliiol s2 (i <=i1)
i0 =0; El

i1=10 g
= i=i0 . L .
@—> /_/_I__I__, 1 s2 /i = pre(i) + pre(x2) |>__§9___\

‘ : ’ A}

Figure H.3.: Visualized control-flow oriented SCChart: ST_LOOP_HEAD

1 scchart ST_OP_ARITH{
2 input signal bool EI
3 output signal bool EO
1 float xO1

5 float x02

6 float x03

7 float x04

8 float x05

9 float x06

10 float x1

11 float x2

12 int x3

13 int x4

15 region:
16 initial state S1
17 immediate do x1 = 1.0; x2 = 2.0; x3 = 1; x4 = 2 abort to S2

19 state S2{

20 initial state S1

21 immediate if EI do x01
x04 = x1 / x2; x06

x1 + x2; x02 = x1 - x2; x03 = x1 *x x2;
x3 % x4; EO abort to S2

22
23 state S2

24 abort to S1
25

2

Listing H.4: SCChart: ST_OP_ARITH

1 scchart ST_RS{

2 input signal bool EI
3 output signal bool EO
4 input bool SET

5 input bool RESETI1

6 output bool Q1

7 bool Q1_Tmp

9 region:

10 initial state S1{

11 initial state S1

12 immediate if EI abort to S2

357

16

17

Appendix H: Resulting Control-Flow Oriented SCCharts

ST_OP_ARITH
S2
Ix1=1.0
_) El

:g;z.o, /%01 = x1 +x2;

x4=2, x02 = x1 - x2;

@ """"" > x03 = x1 * x2;
x04 = x1/ x2;
x06 = x3 % x4;

--EO_ ________ >

S2

Figure H.4.: Visualized control-flow oriented SCChart: ST_OP_ARITH

state S2
do Q1_Tmp = (pre(SET) | pre(Qi_Tmp)) & !(pre(RESET1)); Q1 = Q1_Tmp
; E0 abort to S3

state S3
abort to S1

Listing H.5: SCChart: ST_RS

ST_RS

S1

/1 Q1_Tmp = (pre(SET) | pre(Q1_Tmp)) &
!pre(RESET1);

Q1 =Q1_Tmp;

EO

LB s2 e —
@ oS3

Figure H.5.: Visualized control-flow oriented SCChart: ST_RS

scchart ST_TWO_OF_THREE{
input signal bool EI
output signal bool EO
input bool xB1l_Temp
input bool xB2_Temp
input bool xB3_Temp
output bool xP1_Temp

region:
initial state S1{
initial state S1
immediate if EI do xP1_Temp = ((xB1l_Temp&xB2_Temp) |(xB1l_Temp&
xB3_Temp) | (xB2_Temp&xB3_Temp)); EO abort to S2

state S2
abort to S1

Listing H.6: SCChart: ST_TWO_OF_THREE

358

NN
[

SR

Appendix H: Resulting Control-Flow Oriented SCCharts

ST_TWO_OF_THREE

S1

El
I xP1_Temp = xB1_Temp & xB2_Temp | xB1_Temp
& xB3_Temp | xB2_Temp & xB3_Temp;

Figure H.6.: Visualized control-flow oriented SCChart: ST_TWO_OF_THREE

scchart FBD_OP_BOOL{
input signal bool EI
output signal bool EO

bool
bool
bool
bool
bool
bool
bool
bool

x01
x02
x03
x04
x05
x06
x1

x2

region:
initial state S1

do

x1

true; x2 = false abort to S2

state S2{

initial state S1

immediate if EI do x01 = !(x1); x02 = x1 & x2; x03 = x1 | x2; x04
= x1 - x2; EO abort to S2

state S2

abort to S1

Listing H.7: SCChart: FBD_OP_BOOL

FBD_OP_BOOL
S2
El
I x1 = true; / x01 = Ix1;
@ x2 = false x02 = x1 & x2;
x03 = x1 | x2;
x04 = x1 A x2;
EO
1) -sinisininininieininininis ® S2

Figure H.7.: Visualized control-flow oriented SCChart: FBD_OP_BOOL

scchart FBD_DATATYPES{
input signal bool EI

output signal bool EO
bool A1l

359

Appendix H: Resulting Control-Flow Oriented SCCharts

bool A2

int A5

int A6

int A7

int A8

int A9

int A10
float A13
float Al14
int A15

int A16
bool A17[3]
int A20[3]
int A21[3]
int A22[3]
float A24[3]
int A25[3]

region:
initial state S1
do A2 = true; A6 = 2; A8 = 2; A10 = 2; A14 = 1.23; A16 = 5000 abort
to S2

state S2{
initial state S1
immediate if EI do EO abort to S2
state S2
abort to S1

Listing H.8: SCChart: FBD_DATATYPES

FBD_DATATYPES

| A2 = true;
A6 = 2;
A8 = 2;
A10 =2; S2
A14 =1.23;

A16 = 5000 El

Figure H.8.: Visualized control-flow oriented SCChart: FBD_DATATYPES

scchart FBD_KV_DIAG{
input signal bool EI
output signal bool EO
input bool INa

input bool IND

input bool INc

input bool INd

output bool 0UT1
output bool 0UT2

region:
initial state S1{
initial state S1
immediate if EI do O0UT1 = ((!(INa)&INb)|(INa&!(INb)&INc)); 0UT2 =
(((INa==INb&INc) | (! (INa)&!(INc)&INb))&!(INd)); EO abort to S2
state S2

360

Appendix H: Resulting Control-Flow Oriented SCCharts

16 abort to S1
17 }
18}

Listing H.9: SCChart: FBD_KV_DIAG

FBD_KV_DIAG
-
S1

El

/ OUT1 =!INa & INb | INa & !INb & INc;

OUT2 = (INa==INb & INc | !INa & !INc & INb) &

'INd;

EO

(1) -l ® S2

Figure H.9.: Visualized control-flow oriented SCChart: FBD_KV_DIAG

1 scchart FBD_LEFT_DET{
2 input signal bool EI

3 output signal bool EO

1 input bool xSENSOR_L

5 input bool xSENSOR_R

6 output bool FBD_LEFT_DET

8 region:

9 initial state S1{

10 initial state S1

11 immediate if EI do FBD_LEFT_DET = (xSENSOR_L & !(xSENSOR_R)); EO
abort to S2

2 state S2

abort to S1

Listing H.10: SCChart: FBD_LEFT DET

FBD_LEFT_DET

S1

El
| FBD_LEFT_DET = xSENSOR_L & IXSENSOR_R;

Figure H.10.: Visualized control-flow oriented SCChart: FBD_LEFT_DET

1 scchart FBD_ROLL_DOWN{
2 input signal bool EI
3 output signal bool EO
A input bool IN1

5 input bool IN2

6 input bool IN3

7 input bool IN4

361

15
16

17

18

19

NN
o=

16
17
18
19

N

Appendix H: Resulting Control-Flow Oriented SCCharts

input bool INS
input bool IN6
input bool TIME14
input bool TIME4
output bool 0UT1
output bool 0UT2

region:
initial state S1{
initial state S1
immediate if EI do OUT1 = (((TIME4&IN6)|(!(IN6)&IN2))&IN4); OUT2 =
((((TIME4&IN6) | (! (IN6)&IN2))&IN4)==(IN5&((IN6&IN1&! (TIME14))
| (IN3&! (IN6))))&(IN5&((IN6&IN1&! (TIME14)) | (IN3&!(IN6))))); EO
abort to S2

state S2
abort to S1
}
}
Listing H.11: SCChart: FBD_ROLL_DOWN
FBD_ROLL_DOWN
4 D
S1
El
/ OUT1 = (TIME4 & IN6 | !IN6 & IN2) & IN4;
OUT2 = ((TIME4 & IN6 | !IN6 & IN2) & IN4) == (IN5
& (IN6 & IN1 & ITIME14 | IN3 & !IN6)) & IN5 & (IN6 &
IN1 & ITIME14 | IN3 & !IN6);
--EO >
s1 @ ® S2

Figure H.11.: Visualized control-flow oriented SCChart: FBD_ROLL_DOWN

scchart FBD_THER_CODE{
input signal bool EI
output signal bool EO
input bool IN1

input bool IN2

input bool IN3

input bool IN4

output bool 0UT1
output bool 0UT2
output bool 0UT3

region:
initial state S1{

initial state S1

immediate if EI do O0UT1 = (IN1|IN2|IN3); 0UT2 = ((IN1&IN2&!(IN3))
| (IN1&! (IN2)&IN3) | (' (IN1)&IN2&IN3) | (IN1&IN2&IN3)); 0OUT3 = (IN1
&IN2&IN3); EO abort to S2

state S2

abort to S1

Listing H.12: SCChart: FBD_THER CODE

scchart FBD_TOGGLE_SWITCH{
input signal bool EI

362

15
16

17

Appendix H: Resulting Control-Flow Oriented SCCharts

FBD_THER_CODE

S1

El
/ OUT1 =1IN1|IN2 | IN3;

OUT2=IN1 & IN2 & !IN3 | IN1 & !IN2 & IN3 | !IN1 &
IN2 & IN3 | IN1 & IN2 & IN3;

OUT3 =IN1 & IN2 & IN3;

Figure H.12.: Visualized control-flow oriented SCChart: FBD_THER_CODE

output signal bool EO
input bool IN1

input bool IN2

input bool IN3

input bool IN4

output bool 0UT1

region:
initial state S1{

initial state S1

immediate if EI do O0UT1 = (((IN1&!(IN2)&!(IN3)&!'(IN4))|(!'(IN1)&IN2
&!' (IN3)&! (IN4)) | (' (IN1)&!(IN2)&IN3&! (IN4)) | (IN1&IN2&IN3&! (IN4)
D) I CCP(IN1)&! (IN2)&! (IN3)&IN4) | (IN1&IN2&! (IN3)&IN4) | (IN1&! (IN2
)&IN3&IN4) | (! (IN1)&IN2&IN3&IN4))); EO abort to S2

final state S2

abort to S1

Listing H.13: SCChart: FBD_TOGGLE_SWITCH

FBD_TOGGLE_SWITCH

S1

El

/OUT1 =IN1 & !IN2 & !IN3 & !IN4 | lIN1 & IN2 & !IN3
& !IN4 [!IN1 & !IN2 & IN3 & !IN4 | IN1 & IN2 & IN3 &
1IN4 | !IN1 & 'IN2 & !'IN3 & IN4 | IN1 & IN2 & !IN3 &
IN4 | IN1 & !IN2 & IN3 & IN4 | 'IN1 & IN2 & IN3 & IN4;

Figure H.13.: Visualized control-flow oriented SCChart: FBD_TOGGLE_SWITCH

363

|Appendix I

ST-to-Quartz: Appendix

1.0.1. Data Types and Fields

Algorithm 37 Translate data type and field — ST-to-Quartz

Input: al*1(w?)

Output: al*l(wy.)
Translation Function t?thrZ(a[+](w£)):

alt] (wqm,) -

bool

bv{16}

bv{32}
int{32768}
int{2147483648}
nat{65536}
nat{4294967296}
real

nat

[n(al*] @Un))+1]

st»—>q7z(a (Uﬁo))

if ol*1(wf) = apo (wh)
if (¥[+](°Ust) Clbyte(bust)
if a[+](wst) a;)wrd(‘*’st)
if ol*1(wf) = ol (wf)
if ol (W) = af™ (W)
if all(wh) = o (wf)
if al)(wf) = afim (W)
if ol*1(w%) e A.(w%)

if ol*1(w%) € Agur (w%)

T(wh) e A" (wh)

365

Appendix I: ST-to-Quartz: Appendix

1.0.2. Expressions

Algorithm 38 Translate expression — ST-to-Quartz

Input: 7(w?)
Output: 7(wgr.)
Translation Function tJ, .. (7(w5)):

value(T(wg)) if 7(wf) = Tise (W)
id(1(wg)) if 7(wf) = T (Wh)
(tgthrz(T(wft))) if T(Wst) mzsc(wst)
true if 7(w$) = Zﬁsec(wst)
false if 7(w?) = TTJ:Z?CE(I
x [n] if 7(wgp) = Tise (W)
Xy if 7(wh) = T (W5,)
(m == m2) if 7(wg) = Teomp(Wi)
(m = m2) if 7(w3) = Toomp(Wé)
(my > m) if T(Wst) Tcomp(wst)
(1 >= 79) if 7(w5) = Teomp(ws)
(m < m2) if 7(wh) = Thhmp(wh)
T(wqrz’) <« (m <= m) lfT(wgt) comp(wst)
(m * n2) if 7(wi;) = T (wh)
(m /12 if 7(wf) = 7o (W5)
(m + m) if 7(wi;) = T (Vi)
(m = n2) if 7(wi) = 7o (wh)
exp (1, 712) if 7(wg) = 7o (W5)
i % n3) if 7(wg) = g;ft%(w;ﬁf)
=(m) if 7(wg) = amth(wst)
Norom o om i T (wh) =T a(wh)
A & ..o &N i T(w5) = (wh), () = ag,
1o 1A M (wh) =720 (wh), aX) = auy
1 ™ A2) if 7(wf) = Thoot (w5
() if 7(w?) = 7% (w5), a(N) = ap,

366

Appendix

ST-to-SCL: Appendix

J.0.1. Data Types and Fields

Algorithm 39 Translate data type and field — ST-to-SCL

Input: al*1(w?)

Output: a[+](wscy)
Translation Function t?tHSCl(a[Jr] (wh)):

05[+] (wscl’) e

bool

extern

extern

int

int

int

extern

float

int

i (01(25)

[n(a (wst))"'l]

if * (wst)
if ot (w?) =
if ot (wf) =
if al*](w%) =
if ol (w?) =

(wst)

if ol

abool(wst)
byt
o (wiy)

all;uord (wst)

i (ws)

ofit (wiy)
g (Wg)
o™ (W)

if ol* (wst) € Ar(wst)
if "N (w?) € Agur(w?)

[+]
[+]
[+]
[+]
if al*l(w%) =
[+]
[+]
[+]
[+]

if olt] (wh) e A (wi)

367

Appendix J: ST-to-SCL: Appendix

J.0.2. Expressions

Algorithm 40 Translate expression — ST-to-SCL

Input: 7(w?)
Output: 7(wser)
Translation Function ¢, . (7(w)):

value(t (wg;)) if 7(wi) = Tise (W)
id(1(wy)) if 7(wfy) = Tytise(Wir)
Gsa(T@5) (W5 =N wh)
s (T i T(wh) = T (Wh)
true if 7(wi) = Tise(W5)
false if 7(w?) = ggls‘ze(w;’;)
x [n] if 7(wg) = Tee (W)
extern if 7(wh) =7 (w7)
(m == m2) if T(Wst) Tcomp(wst)
(my = m2) if 7(wh) = Thmp(Wé)
(my > mo) if T(Wst) = TCOmp(wgt)
(1 >= m) if 7(w?) = Tomp(wh)
o) TS if 7(w5)) = Teomp(w5)
(m <= m2) if 7(wf) = Teomp(wh)
(m * n2) if 7(wi) = 7ok, (wh)
(m /7 m2) if 7(wy) = grzfth(wﬁt)
(e + 12) if 7(w5) = Tarn (Wir)
(m = n2) if 7(wg) = 7ot (Wh)
extern if 7(w?) = ngz
(i % n3) if 7(wy) = ZL?'L'Otdh(wft)
=) if 7(ws) = Torin (We)
N2 if 7(w%) =75 (w%)
M\ & ... & N\, if T(wfbd) = Tglfocll(wfbd),a()\) =y,
(G N D VO B | § T(wfbd) = Tbool(w?bd)’a()\) = oy,
(A1 7 A2) if T(wfbd) gooog(w?bd)
(A1) if T(wfbd) ggl(wfbd),a()\) =

368

1
2
3
1
5

16

19

16

17

18

4

Appendix

FBD-to-SCChart: Appendix

MOVE Selections Functions

scchart MOVE_bool {
input bool EI
output bool EO
input bool IN
output bool O0UT

region region0O {
initial state statel
immediate go to stateéd

state state3
go to state4d

state state4d
immediate if !EI go to state3
immediate do OUT = IN; EO = true go to state6

state state6
do E0 = false go to state4

Listing K.1: MOVE_bool function derived from IEC 61131-3 [GDV14]

scchart MOVE_float {
input bool EI
output bool EO
input float IN
output float O0OUT

region regionO {
initial state statel
immediate go to state4

state state3
go to state4d

state state4
immediate if !EI go to state3
immediate do OUT = IN; EO = true go to state6

state state6

369

15
16
17
18
19

VRN

Appendix K: FBD-to-SCChart: Appendix

do E0O = false go to state4

Listing K.2: MOVE_float function derived from IEC 61131-3 [GDV14]

scchart MOVE_int {

input bool EI
output bool EO
input int IN
output int O0OUT

region region0O {
initial state statel
immediate go to state4

state state3
go to state4d

state state4d
immediate if !'EI go to state3
immediate do OUT = IN; EO = true go to state6

state stateb
do E0O = false go to state4

Listing K.3: MOVE_int function derived from IEC 61131-3 [GDV14]

370

Appendix

Formal Methods-Based
Optimization: Optimization Results

The optimization results include the optimization trace with the following
mapping:

0: Myt

1 f3(fi(Msmo))

2: f3(fa(fi(Msmu)) smt)
3: f3s(Magme)

Air Condition Control

no-opt, var-opt [0, O, O, O]

RSO (S=0R(IN1,IN2,IN3,IN4),R1=0R(0OR(NOT(IN5),NOT(IN6),NOT(IN7),NOT(IN8))
,NOT (IN9)))

0UT1=RSO0__Q1

QUT2=-NOT (IN9)

op-opt, edge-opt [0, 2, 0, O]

RSO (S=0R(IN1,IN2,IN3,IN4),R1=0R(NOT(IN5),NOT(IN6),NOT(IN7),NOT(IN8),NOT
(IN9)))

0UT1=RSO__Q1

0UT2=NOT (IN9)

Antivalence 3x

no-opt [0]
OUT1=-0R (AND (NOT (INO) ,NOT (IN1),IN2),AND(NOT(INO),NOT(IN2),IN1),AND(NOT(
IN1),NOT(IN2),INO))

op-opt, edge-opt, var-opt [1]
OUT1=SEL (INO,AND(NOT(IN1),NOT(IN2)),X0R(IN1,IN2))

371

NONONN N NN

BN|

N =

W N =

16
17
18
19

Appendix L: Formal Methods-Based Optimization: Optimization Results

Bending Machine Control

no-opt [O, O, O, O, O, O, O, O, O, O, O, O, O, O, O]

TONO (IN=IN1,PT=PT1s)

TON1 (IN=-AND (IN1,TONO__Q) ,PT=PT1s)

TON2 (IN=IN2,PT=PTO5s)

TOFO (IN=-AND (IN1,TONO__Q) ,PT=PT1s)

TON3 (IN=NOT (IN1) ,PT=PT5s)

RSO (S=0R (AND (IN1,TONO__Q),TON3__Q),R1=AND(TON1__Q,TON2__Q))

QUT1=-AND (AND (IN1,TONO__Q) ,NOT (AND(TON1__Q,TON2__Q)),NOT (AND (AND (NOT (
TON2__Q),TOFO0__Q),IN3)))

QUT2=-AND (NOT (AND (AND (NOT (TON2__Q) ,TOFO__Q),IN3)),AND(NOT(TON2__Q),
TOF0__Q))

0UT3=RSO0__Q1

op-opt, edge-opt [O, O, O, O, O, O, O, O, O, O, O, O, 3, 2, 0]

TONO (IN=IN1,PT=PTl1s)

TON1 (IN=AND (IN1,TONO__Q),PT=PTl1s)

TON2 (IN=IN2,PT=PTO05s)

TOFO (IN=AND (IN1,TONO__Q),PT=PTl1s)

TON3 (IN=NOT(IN1),PT=PT5s)

RSO (S=0R(AND(IN1,TONO__Q),TON3__Q),R1=AND(TON1__Q,TON2__Q))

0UT1=AND (IN1,TONO__Q,NOT (AND(TON1__Q,TON2__Q)),NOT(AND(NOT(TON2__Q),
TOFO__Q,IN3)))

0UT2=AND (NOT (IN3) ,NOT(TON2__Q) ,TOF0__Q)

0UT3=RSO__Q1

var-opt [0, O, O, O, O, O, O, O, O, O, O, O, O, 1, O]

TONO (IN=IN1,PT=PT1s)

TON1 (IN=-AND (IN1,TONO__Q) ,PT=PT1s)

TON2 (IN=IN2,PT=PTO5s)

TOFO (IN=-AND (IN1,TONO__Q) ,PT=PT1s)

TON3 (IN=NOT (IN1) ,PT=PT5s)

RSO (S=0R (AND (IN1,TONO__Q),TON3__Q),R1=AND(TON1__Q,TON2__Q))

OUT1=-AND (AND (IN1,TONO__Q) ,NOT (AND (TON1__Q,TON2__Q)),NOT (AND (AND (NOT (
TON2__Q),TOFO0__Q),IN3)))

O0UT2=>AND (AND (NOT (IN3) ,NOT(TON2__Q)),TOFO0__Q)

0UT3=RSO__Q1

Cylinder Control System

no-opt, var-opt [0, O, O, O, O, O]
OUTBp=>AND (INal, AND (OR (ME1, AND (INaO, INS)),NOT (INb1)))
0UTAp=AND (OR (ME1, AND (INaO, INS)) ,NOT (INb1))

OUTAm=>AND (NOT (AND (OR (ME1,AND (INaO,INS)),NOT(INb1))),INcO,NOT (AND (OR(ME2

,INb1) ,NOT(INc1))))
QUTCp=>AND (AND (OR (ME2, INb1) ,NOT (INc1)),INbO)
ME2=-AND (OR (ME2, INb1) ,NOT (INc1))
ME1=>AND (OR (ME1, AND (INaO,INS)),NOT (INb1))

op-opt

[2, 0, 2, 2, 0, 0]

OUTBp=-AND (INal,NOT (INb1),SEL(INaO,OR(INS,ME1),ME1))

OUTAp=AND (OR (ME1, AND (INaO, INS)) ,NOT (INb1))

OUTAm=>AND (INcO,SEL (AND (INaO,INS),AND(INb1l,INc1),SEL(INb1,INc1,AND(NOT(
ME1),0R(INc1,NOT (ME2))))))

OUTCp=-AND (NOT (INc1),INbO,OR(INb1,ME2))

ME2=-AND (OR (ME2, INb1) ,NOT (INc1))

ME1=>AND (OR (ME1, AND (INaO,INS)),NOT (INb1))

edge-opt [3, 0, 0, 2, 0, 0]
OUTBp=AND (INal,OR(ME1, AND (INaO,INS)),NOT (INb1))

372

0N NN

NN
®oo

¥)

Appendix L: Formal Methods-Based Optimization: Optimization Results

OUTAp=AND (OR (ME1, AND (INaO, INS)) ,NOT (INb1))

OUTAm=>AND (NOT (AND (OR (ME1, AND (INaO,INS)),NOT(INb1))),INcO,NOT (AND (OR(ME2
, INDb1) ,NOT (INc1))))

OUTCp=-AND (NOT (INc1),INbO,OR(INb1,ME2))

ME2=-AND (OR (ME2, INb1) ,NOT (INc1))

ME1=>AND (OR (ME1, AND (INaO,INS)),NOT (INb1))

Dice Numbers Indicator

no-opt [0, O, O, O, O, O, O, O, O]

0UTa=>0R (AND (IN3,NOT (IN4),NOT (IN2)),AND(IN2,NOT(IN4),NOT(IN1)),AND(IN4,
NOT (IN2) ,NOT(IN3)))

0UTb=0R (AND (IN2,IN3,NOT(IN4)) ,AND(IN4,NOT(IN2),NOT(IN3)))

0UTc=0R (AND (IN3,NOT (IN4)),AND (IN4,NOT (IN2),NOT(IN3)),AND(IN1,IN2,NOT(
IN4)))

QUTd=0R (AND (IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

0UTe=>0R (AND (IN1,NOT(IN4)),AND(IN1,NOT(IN3),NOT(IN2)))

QUTf=0R (AND (IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

0UTh=-0R (AND (IN2,IN3,NOT (IN4)),AND (IN4,NOT(IN2),NOT(IN3)))

Q0UTg=-0R (AND (IN3,NOT (IN4)),AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,NOT (
IN4)))

QUTi=0R (AND (IN3,NOT(IN4),NOT(IN2)),AND(IN2,NOT (IN4),NOT(IN1),NOT(IN3)),
AND (IN4,NOT (IN2),NOT (IN3)))

op-opt [1, 1, 1, O, O, O, 1, 1, 1]

0UTa=-SEL (IN1,AND(NOT (IN2),X0R(IN3,IN4)),X0R(OR(IN2,IN3),IN4))

0UTb=-SEL (IN2, AND (IN3,NOT (IN4)),AND(NOT (IN3),IN4))

0UTc=SEL (IN1, XOR(OR(IN2,IN3),IN4),SEL(IN2,AND(IN3,NOT (IN4)),X0R(IN3,IN4
)))

0UTd=-0R (AND (IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

0UTe=>0R (AND (IN1,NOT(IN4)),AND(IN1,NOT(IN3),NOT(IN2)))

QUTf=0R (AND (IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

0UTh=SEL (IN2, AND (IN3,NOT (IN4)),AND (NOT (IN3),IN4))

0UTg=-SEL (IN1,XOR(OR(IN2,IN3),IN4),SEL(IN2,AND(IN3,NOT (IN4)),X0R(IN3,IN4
)))

QUTi=SEL (IN1,AND(NOT(IN2),X0OR(IN3,IN4)),SEL(IN2,AND(NOT(IN3),NOT(IN4)),
XOR (IN3,IN4)))

edge-opt, var-opt [1, 1, O, O, O, O, 1, O, 1]

0UTa=SEL (IN1, AND (NOT (IN2),X0R(IN3,IN4)),X0R(OR(IN2,IN3),IN4))

O0UTb=-SEL (IN2, AND (IN3,NOT (IN4)),AND(NOT (IN3),IN4))

0UTc=0R (AND (IN3,NOT (IN4)),AND (IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,NOT(
IN4)))

0UTd=-0R (AND (IN4,NOT (IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

0UTe=>0R (AND (IN1,NOT(IN4)),AND(IN1,NOT(IN3),NOT(IN2)))

QUTf=0R (AND (IN4,NOT (IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

OUTh=SEL (IN2,AND (IN3,NOT(IN4)),AND(NOT(IN3),IN4))

0UTg=-0R (AND (IN3,NOT (IN4)),AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,NOT (
IN4)))

OUTi=SEL (IN1,AND(NOT(IN2),X0R(IN3,IN4)),SEL(IN2,AND(NOT(IN3),NOT(IN4)),
XOR (IN3,IN4)))

KV Diagram optimized Chart

no-opt [0, 0]
0UT1=0R (AND(NOT(INa),INb),AND(INa,NOT(INb),INc))
0UT2=AND (OR (AND (EQ(INa,INb),INc),AND(NOT (INa) ,NOT(INc),INb)),NOT(INd))

op-opt, edge-opt, var-opt [1, 1]
0UT1=SEL (INa, AND (NOT (INb), INc), INb)
0UT2=AND (NOT (INd) , SEL(INa, AND (INb, INc),XOR(INb,INc)))

373

N

Appendix L: Formal Methods-Based Optimization: Optimization Results

Pollutant Indicator

no-opt [0, 0, O]

OUT1=-0R (AND (NOT (IN3) ,NOT (IN2),IN1),AND(NOT(IN3),IN2,NOT(IN1)),AND(IN3,
NOT (IN2) ,NOT (IN1)))

0UT2=-0R (AND (NOT (IN3),IN2,IN1),AND(IN3,NOT(IN2),IN1),AND(IN3,IN2,NOT(IN1
)))

QUT3=-AND (IN1,IN2,IN3)

op-opt, edge-opt, var-opt [1, 1, 0]

0UT1=SEL (IN1,AND(NOT (IN2) ,NOT(IN3)),X0R(IN2,IN3))
O0UT2=>SEL (IN1,XOR(IN2, IN3),AND(IN2,IN3))

0UT3=AND (IN1,IN2,IN3)

Reservoirs Control System 1

no-opt [0, O, O, O]

OUTP1=>0R (AND (NOT (IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

QUTP2=-0R (OR (AND (NOT (IN4) ,NOT (IN3)),AND(NOT (IN4),NOT(IN2),IN1)),AND (NOT(
IN3),IN2,NOT(IN1)))

QUTP3=-0R (AND (NOT (IN4),NOT(IN3),NOT(IN2)),AND(IN4,NOT (IN3),IN2),AND(NOT(
IN3),IN2,NOT(IN1)),AND(NOT (IN4),IN3,IN2,IN2))

OUTH=-0R (AND (IN3,NOT (IN1)),AND (IN4,NOT(IN2)))

op-opt [0, 1, 0, O]

0UTP1=-0R (AND (NOT (IN4) ,NOT(IN3)),AND(NOT (IN4),NOT (IN2),IN1))

QUTP2=SEL (IN1,AND (NOT (IN4),0R(NOT(IN2),NOT(IN3))),AND(NOT(IN3),0R(IN2,
NOT (IN4))))

QUTP3=-0R (AND (NOT (IN4),NOT(IN3),NOT(IN2)),AND(IN4,NOT (IN3),IN2),AND(NOT(
IN3),IN2,NOT(IN1)),AND(NOT(IN4),IN3,IN2,IN2))

OUTH=-0R (AND (IN3,NOT (IN1)),AND (IN4,NOT(IN2)))

edge-opt, var-opt [0, 1, 1, O]

QUTP1=>0R (AND (NOT (IN4) ,NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

QUTP2=-SEL (IN1,AND (NOT(IN4),0R(NOT (IN2),NOT(IN3))),AND(NOT(IN3),0R(IN2,
NOT (IN4))))

QUTP3=SEL (IN1,SEL (IN2,X0R(IN3,IN4),AND(NOT(IN3),NOT(IN4))),SEL(IN2,0R(
NOT (IN3),NOT (IN4)),AND(NOT (IN3),NOT(IN4))))

OUTH=-0R (AND (IN3,NOT (IN1)),AND (IN4,NOT(IN2)))

Reservoirs Control System 2

no-opt [0, O, O, O]

QUTP3=-0R (AND (NOT (IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

QUTP2=-0R (OR (AND (NOT (IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1)),AND(NOT(
IN3),IN2,NOT(IN1)))

QUTP1=-0R (AND (NOT (IN4) ,NOT(IN3),NOT(IN2)),AND(IN4,NOT(IN3),IN2,IN1),AND(
NOT (IN3),IN2,NOT(IN1)),AND(NOT(IN4),IN3,IN2,IN1))

OUTQ=0R (AND (IN3,NOT (IN1)),AND (IN4,NOT(IN2)))

op-opt, edge-opt, var-opt [0, 1, 1, 0]

0UTP3=-0R (AND (NOT (IN4) ,NOT(IN3)),AND(NOT (IN4),NOT (IN2),IN1))

QUTP2=SEL (IN1,AND(NOT (IN4),0R(NOT(IN2),NOT(IN3))),AND(NOT(IN3),0R(IN2,
NOT (IN4))))

OUTP1=SEL (IN1,SEL(IN2,X0R(IN3,IN4),AND(NOT(IN3),NOT(IN4))),AND(NOT(IN3)
,O0R(IN2,NOT(IN4))))

OUTQ=0R (AND (IN3,NOT (IN1)),AND (IN4,NOT(IN2)))

374

w N =

16

14

15

Appendix L: Formal Methods-Based Optimization: Optimization Results

Roll Down Shutters

no-opt [0, O]

OUT1=>AND (OR (AND (TIME4,IN6) ,AND(NOT(IN6),IN2)),IN4)

0UT2=>AND (EQ (AND (OR (AND (TIME4,IN6) ,AND(NOT(IN6),IN2)),IN4),AND(IN5,OR(
AND (IN6,IN1,NOT(TIME14)),AND(IN3,NOT(IN6))))),AND(IN5,0R (AND (IN6,IN1
,NOT(TIME14)),AND (IN3,NOT (IN6)))))

op-opt, edge-opt, var-opt [0, 2]

0UT1=AND (OR (AND (TIME4, IN6) , AND (NOT (IN6),IN2)),IN4)

0UT2=AND (IN4, IN5,SEL (IN1,SEL (AND (IN2,IN3),0R(NOT(IN6),AND(NOT(TIME14),
TIME4)) ,AND(IN6,NOT(TIME14),TIME4)),AND(IN2,IN3,NOT(IN6))))

Cable winch

no-opt [0, O, 0, O]

0UT1=-AND (OR(ME1,INS1,NOT (INB2)),NOT (OR(NOT(INB1),NOT (INS1),ME2)))
0UT2=-AND (OR (ME2,NOT (INB1)),NOT (OR(NOT (INB2) ,NOT (INS1),ME1)))
ME1=-AND (OR (ME1, INS1,NOT (INB2)),NOT (OR(NOT(INB1),NOT (INS1),ME2)))
ME2=-AND (OR (ME2,NOT (INB1)) ,NOT (OR(NOT (INB2) ,NOT (INS1),ME1)))

op-opt, edge-opt [2, 2, 2, 2]

0UT1=AND (INS1,INB1,NOT(ME2))

0UT2=>AND (INS1, INB2,NOT(ME1) ,OR(ME2,NOT (INB1)))
ME1=AND (INS1,INB1,NOT (ME2))

ME2=-AND (INS1, INB2,NOT (ME1) , OR (ME2,NOT (INB1)))

var-opt [1, 0, 1, 0]

0UT1=AND (AND (INS1,INB1),NOT (ME2))

0UT2=AND (OR (ME2,NOT (INB1)) ,NOT (OR (NOT (INB2) ,NOT (INS1),ME1)))
ME1=-AND (AND (INS1,INB1),NOT (ME2))

ME2=-AND (OR (ME2,NOT (INB1)),NOT (OR(NOT (INB2) ,NOT (INS1),ME1)))

Seven Segment Display

no-opt [0, O, O, O, O, O, O]

0UTa=-0R (AND (NOT (IN3) ,IN1),AND (IN2,IN1),AND(NOT (IN2),NOT (IN1),IN3),AND(
NOT (IN3) ,NOT(IN2),NOT(INO)),AND(NOT(IN3),IN1,INO))

0UTb=-0R (AND (NOT (IN3) ,NOT (IN2)) ,AND(NOT (IN2) ,NOT (IN1)),AND(NOT (IN3),IN1,
INO) ,AND (IN3,NOT(IN1),INO),AND(NOT (IN3),NOT(IN1),NOT(INO)))

OUTc=-0R (AND (NOT (IN3) ,NOT(IN1)),AND(NOT (IN3),INO),AND(NOT(IN2),IN3),AND(
NOT (IN3),IN2),AND(NOT(IN1),INO))

QUTd=>0R (AND (NOT (IN2),IN1) ,AND (NOT (IN2),NOT(INO)),AND(IN1,NOT(INO)),bAND(
IN3,NOT (IN1),IN2),AND(IN2,NOT(IN1),INO))

0UTe=-0R (AND (NOT (IN2) ,NOT (INO)) ,AND(IN3,IN1),AND(IN3,IN2),AND(IN2,NOT(
INO),IN1))

QUTf=-0R (AND (IN3,IN2,IN1),AND(NOT(IN3),IN2,NOT(IN1)),AND(NOT(IN3),IN2,
NOT (INO)) ,AND(IN3,NOT (IN2),INO),AND(NOT(IN2),NOT(IN1),NOT(INO)))

OUTg=-0R (IN3,AND (NOT (INO),IN2),AND(NOT(IN2),INO),AND(NOT (IN1),IN2))

op-opt, edge-opt [1, 1, 2, 2, 2, 1, 2]

0UTa=SEL (INO,SEL(IN1,0R(IN2,NOT(IN3)),AND(NOT(IN2),IN3)),SEL(IN1,OR(IN2
,NOT (IN3)),NOT(IN2)))

0UTb=SEL (INO,SEL (IN1,NOT(IN3),0R(NOT(IN2),IN3)),SEL(IN1,AND(NOT(IN2),
NOT (IN3)),0R(NOT (IN2),NOT(IN3))))

0UTc=SEL (INO,OR(NOT(IN3),NOT (IN2),NOT(IN1)),SEL(IN1,XOR(IN3,IN2),0R(NOT
(IN2),NOT(IN3))))

0UTd=SEL (INO,XOR(IN2,IN1),0R(IN1,IN3,NOT(IN2)))

0UTe=SEL (INO,AND(IN3,0R(IN1,IN2)),0R(IN1,IN3,NOT(IN2)))

375

15

W N

Appendix L: Formal Methods-Based Optimization: Optimization Results

OUTf=SEL (INO,SEL(IN1,IN3,X0R(IN2,IN3)),SEL(IN1,IN2,0R(NOT(IN2),NOT(IN3)
)))
0UTg=SEL (INO,OR(IN3,NOT (IN2),NOT(IN1)),0R(IN2,IN3))

var-opt [1, 1, 1, 1, 1, 1, 1]

0UTa=SEL (INO,SEL(IN1,0R(IN2,NOT(IN3)),AND(NOT(IN2),IN3)),SEL(IN1,O0R(IN2
,NOT (IN3)),NOT(IN2)))

0UTb=SEL (INO,SEL(IN1,NOT(IN3),0R(NOT(IN2),IN3)),SEL(IN1,AND(NOT(IN2),
NOT (IN3)),0R(NOT (IN2),NOT(IN3))))

0UTc=SEL (INO,OR(NOT (IN1),0R(NOT(IN2),NOT(IN3))),SEL(IN1,X0R(IN2,IN3),0R
(NOT (IN2),NOT(IN3))))

0UTd=SEL (INO,XOR(IN1,IN2),0R(IN1,O0R(NOT(IN2),IN3)))

0UTe=SEL (INO,AND (IN3,0R(IN1,IN2)),0R(IN1,OR(NOT(IN2),IN3)))

QUTf=SEL (INO,SEL(IN1,IN3,X0R(IN2,IN3)),SEL(IN1,IN2,0R(NOT(IN2),NOT(IN3)
)))

0UTg=-SEL (INO,OR(NOT(IN1) ,0R(NOT(IN2),IN3)),0R(IN2,IN3))

Shop Window Lighting

no-opt [0, O, O, O, O, O, O, O]

TOFO(IN=IN3,PT=PTim)

TOF1 (IN=IN4,PT=PT1im)

ODUT1=>AND (OR (TIME3,TOFO__Q),IN2)

0UT2=AND (IN2,0R (AND (AND (OR(TIME3,TOFO__Q),IN2),IN1),TOF0__Q))
OUT3=>AND (IN2,0R (AND (IN1,NOT (AND (OR(TIME3,TOFO__Q),IN2))),TOF0__Q))
0UT4=AND (IN2,0R(TOFO__Q,TOF1__Q))

op-opt, edge-opt, var-opt [0, O, O, O, O, 1, 1, 0]
TOFO (IN=IN3,PT=PT1im)

TOF1 (IN=IN4,PT=PTim)

0UT1=AND (OR(TIME3,TOFO__Q), IN2)

0UT2=>AND (IN2,SEL (IN1,O0R(TIME3,TOFO__Q),TOFO__Q))
0UT3=AND (IN2,SEL (IN1,0R(NOT(TIME3),TOFO__Q),TOF0__Q))
0UT4=AND (IN2,0R(TOFO__Q,TOF1__Q))

Silo Valve Control System

no-opt [0]
OUT1=-0R (AND (NOT (IN3) ,NOT (IN2),IN1),AND(NOT(IN3),IN2,NOT(IN1)),AND(IN3,
NOT (IN2),NOT(IN1)),AND(IN3,IN2,IN1))

op-opt, edge-opt, var-opt [2]
OUT1=>SEL (IN1,EQ(IN2,IN3),X0R(IN3,IN2))

Smoke Detection System

no-opt [0, O, O]

0UT1=0R(NOT(IN1),NOT(IN2),NOT(IN3),NOT(IN4))

0UT2=0R (OR (AND (NOT (IN1) ,NOT(IN2)),AND(NOT(IN1),NOT(IN3))),AND(NOT(IN1),
NOT (IN4) ,AND (NOT (IN3),NOT(IN2)),AND(NOT (IN2),NOT(IN4)),AND(NOT (IN3),
NOT (IN4))))

0UT3=AND(NOT (IN1),NOT(IN2),NOT(IN3),NOT(IN4))

op-opt, edge-opt, var-opt [0, 1, O]

OUT1=>0R (NOT (IN1),NOT (IN2) ,NOT (IN3),NOT (IN4))
0UT2=AND (NOT (IN1),0R(NOT(IN2),NOT(IN3)))
0UT3=-AND (NOT (IN1) ,NOT (IN2) ,NOT (IN3) ,NOT (IN4))

376

15

16

18

19

w N

Appendix L: Formal Methods-Based Optimization: Optimization Results

Sports Hall Lighting

no-opt, var-opt [O, O, O, O, O, O, O, O, O, O, O, O]

RSO (S=1IN1,R1=TIME4)

RS1(S=1IN1,R1=TIME9)

RS2(S=IN2,R1=TIME14)

TONO (IN=TIME18,PT=PT1im)

0UT1=0R (AND(RSO__Q1,NOT(IN4)),IN3)

QUT2=0R (AND(RS1__Q1,NOT(IN4)),IN3)

0UT3=0R (AND (RS2__Q1,NOT(IN4)),IN3)

0UT4=AND (EQ(TIME18,TONO__Q),OR(AND(RSO__Q1,NOT(IN4)),IN3),0R(AND(
RS1__Q1,NOT(IN4)),IN3))

op-opt, edge-opt [0, O, O, O, O, O, O, O, O, O, O, 2]

RSO (S=1IN1,R1=TIME4)

RS1(S=1IN1,R1=TIME9)

RS2(S=IN2,R1=TIME14)

TONO (IN=TIME18,PT=PT1im)

0UT1=0R (AND (RSO__Q1,NOT(IN4)),IN3)

0UT2=0R (AND(RS1__Q1,NOT(IN4)),IN3)

0UT3=-0R (AND(RS2__Q1,NOT (IN4)),IN3)

0UT4=SEL (IN3,EQ(TIME18,TONO__Q) ,AND(NOT(IN4),RSO__Q1,RS1__Q1,EQ(TIME18,
TONO__Q)))

Thermometer Code System

no-opt [0, 0, O]

OUT1=0R(IN1,IN2,IN3)

0UT2=>0R (AND (IN1,IN2,NOT (IN3)),AND (IN1,NOT(IN2),IN3),AND(NOT(IN1),IN2,
IN3),AND(IN1,IN2,IN3))

0UT3=AND (IN1,IN2,IN3)

op-opt, edge-opt, var-opt [0, 1, O]
0UT1=0R(IN1,IN2,IN3)

ODUT2=SEL (IN1,0R(IN2,IN3),AND(IN2,IN3))
OUT3=-AND (IN1,IN2,IN3)

Toggle Switch 4x

no-opt [0]

OUT1=0R (OR (AND (IN1,NOT (IN2),NOT(IN3),NOT(IN4)),AND(NOT (IN1),IN2,NOT(IN3
),NOT(IN4)),AND(NOT(IN1),NOT(IN2),IN3,NOT(IN4)),AND(IN1,IN2,IN3,NOT(
IN4))),0R(AND (NOT(IN1),NOT(IN2),NOT(IN3),IN4),AND(IN1,IN2,NOT(IN3),
IN4),AND(IN1,NOT(IN2),IN3,IN4),AND(NOT(IN1),IN2,IN3,IN4)))

op-opt, edge-opt, var-opt [2]
OUT1=SEL (OR (AND (IN1,IN2),AND(NOT (IN1),NOT (IN2))),XOR(IN4,IN3),EQ(IN3,
IN4))

Ventilation Control System

no-opt [0, O, O]

QUT1=AND (NOT (IN1),IN2,IN3,IN4)

0UT2=-0R (AND (IN2,NOT (IN4),NOT(IN1)) ,AND(IN4,NOT (IN3),NOT(IN1)),AND(NOT(
IN3),IN2,NOT(IN4)),AND(NOT(IN1),IN3,NOT (IN2)),AND(NOT(IN4),IN1,NOT(
IN2)),AND(NOT (IN3),IN1,NOT(IN2)))

377

Appendix L: Formal Methods-Based Optimization: Optimization Results

0UT3=0R (AND (IN1,IN3,IN4),AND(IN1,IN2,IN3),AND(IN1,IN2,IN4))

op-opt [0, 1, O]

QUT1=AND (NOT (IN1),IN2,IN3,IN4)

OUT2=SEL (IN1,SEL(IN2,AND(NOT (IN3),NOT(IN4)),0R(NOT(IN3),NOT (IN4))),SEL(
IN2,0R(NOT(IN3),NOT(IN4)),0R(IN3,IN4)))

OUT3=-0R (AND (IN1,IN3,IN4),AND(IN1,IN2,IN3),AND(IN1,IN2,IN4))

edge-opt, var-opt [0, 1, 1]

OUT1=AND (NOT (IN1),IN2,IN3,IN4)

0UT2=SEL (IN1,SEL (IN2,AND (NOT(IN3),NOT(IN4)),0R(NOT(IN3),NOT(IN4))),SEL(
IN2,0R(NOT(IN3),NOT(IN4)),0R(IN3,IN4)))

OUT3=AND(IN1,SEL(IN2,0R(IN3,IN4),AND(IN3,IN4)))

Wind Direction Indicator

no-opt [0, 0, 0, O]

OUT1=-0R (AND (IN1,NOT(IN2) ,NOT (IN3)),AND(NOT(IN1),NOT (IN2),NOT(IN3)),AND (
NOT (IN1),NOT(IN2),IN3))

0UT2=0R (AND (NOT (IN1) ,NOT (IN2),IN3),AND (IN1,NOT(IN2),IN3),AND(IN1,IN2,
IN3))

OUT3=0R (AND (IN1,IN2,IN3),AND(NOT(IN1),IN2,IN3),AND(NOT (IN1),IN2,NOT(IN3
)))

O0UT4=-0R (AND (NOT (IN1),IN2,NOT (IN3)),AND(IN1,IN2,NOT (IN3)),AND(IN1,NOT (
IN2),NOT (IN3)))

op-opt, edge-opt, var-opt [1, 1, 1, 1]
0UT1=AND (NOT (IN2) ,0R(NOT (IN1) ,NOT (IN3)))
DUT2=>AND (IN3,0R(IN1,NOT (IN2)))
0UT3=AND (IN2,0R(NOT(IN1),IN3))
0UT4=AND (NOT (IN3),0R(IN1,IN2))

378

Appendix M

Quartz-to-SCChart: Appendix

M.0.1. Data Types and Fields

Algorithm 41 Translate data type and field — Quartz-to-SCChart
Input: al*! (wgrz)

Output: a[+](wsccr)

Translation Function tZ‘mHscc(a[*] (wgrz)):
bool if a

(wqrz) _ abool(wqm)
(wqrz) abv (wqm)
(Wgrz) = O‘iuvord(quZ)
(wgr>) = int {32768}

[+]
extern if ol*]
[+]
[+]
int if al*1(w,,.) = int{2147483648}
[+]
[+]
[+]
[+]

extern if o
int if o

+

Nwsew) < {int if ol*](w,») = nat {65536}

(wqr>) = nat{4294967296}
(wgrz) € Ap(wgrz)
(wqrz) € Adur(wq’/‘z)

extern if «
float if a
int if o
[n(a + (qu))"l]

qrz»—>scc (Oé (qu‘Z))

if olt] (wgrz) € A (wgrz)

379

Appendix M: Quartz-to-SCChart: Appendix

M.0.2. Expressions

Algorithm 42 Translate expression — Quartz-to-SCChart

Input: 7(wgrz)

Output: 7(wsee)
Translation Function t7,, ...(7(wg2)):

T (Wscc’) <«

value(T (wgrz))
value(T (wgrz))
id(7 (wgrz))
t;rszcc(T (wgr=))

(tgrz»—wcc (1 (wqrz)))

true
false
x[n]
extern
(m ==
(my !
(m
(m
(m
(mq
(m
(m
(m
(m

(i % nb)

—(771)

N2 m
A & ... &)
(M| [An)
(A1~ A2)

(A1)

if emit ()
if 7(wgrz) =
if 7(wgrz) =
if 7(wgrz) =
if 7(wgrz) =
if 7(wgrz) =
if T(wgrz) =
if 7(wgrz) =

if 7(wgrz) =

mzsc (quZ)

mzsc (quZ)

ZZZL’C (wgr2)

mzsc (wqrz)

Tonise(Warz)
l

e)

mzsc (qu‘Z)

Tnise(Warz)

if 7 (wqrz) = Tcamp (wqrz)

if 7(wgrz) =

comp (quz)

if 7(wer2) = 7'comp (Wqrz)

if 7 (wgr)
if 7(wgrz) =
if 7(wgrz) =
if 7(wgrz) =
if 7(wgrz) =
if 7(wgrz) =
if T(wgrz) =
if 7(wgrz) =

if 7(wgrz) =

= 7—cgoemp (wqrz)

comp (wqrz)
comp (wgr=)
amth (WqTZ)
amth (wr2)
amth (war2)
;rzth (wgrz)
Torith (Warz)
Taneth (Wgr)

if T(quZ) - amth(quZ)

if 7(wgrz) =
if T(wfbd)
if T(wfbd)

cond (quZ)
and

Thool (wfbd)

ool(wfbd)

if T(Wfbd) Tg;oz(wfbd)

if T(wfbd)

not

380

Thool (Wipa) @(A) = e

Appendix

Curriculum Vitae

Berufserfahrung
seit 2023 Software & Control Engineer Team Leader
ALSTOM Transportation Germany GmbH, Mannheim
seit 2019 Lehrbeauftragter
Duale Hochschule Baden-Wiirttemberg, Mannheim
2017-2023 Software Development & Test Engineer,
Software Verification & Test Leader
ALSTOM Transportation Germany GmbH (ehemals
Bombardier Transportation GmbH), Mannheim
20152017 Projektingenieur
Vision Machine Technic Bildverarbeitungssysteme GmbH,
Mannheim
20112012 Energieberater

Technische Werke Ludwigshafen AG, Ludwigshafen am Rhein

Akademische Ausbildung

2016-2019

2012-2015

Master of Science, Praktische Informatik (Note 1,4)
FernUniversitat in Hagen, Hagen
Masterarbeit: Reengineering von IEC 61131-3-basierten Applikationslésungen

Bachelor of Engineering, Elektrotechnik (Note 2,1)

Duale Hochschule Baden-Wiirttemberg, Mannheim | ABB Training
Center GmbH & Co. KG, Heidelberg

Bachelorarbeit: Modeling and Hardware-in-the-Loop Simulation of Automation

Solutions

Berufliche Ausbildung

2007-2011

Elektroniker fiir Betriebstechnik
Technische Werke Ludwigshafen AG, Ludwigshafen am Rhein

381

Appendix N: Curriculum Vitae

Schulausbildung
2009-2010 Fachhochschulreife
Berufsbildende Schule Technik I, Ludwigshafen am Rhein

2001-2007 Mittlere Reife
Wilhelm-von-Humboldt Gymnasium, Ludwigshafen am Rhein

382

	Abstract
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Outline

	2 Background
	2.1 IEC 61131-3 Program Organization Units
	2.1.1 Textual Structured Text Models
	2.1.2 Graphical Function Block Diagrams

	2.2 The Averest-Framework
	2.2.1 Synchronous Quartz Models

	2.3 The KIELER-Framework
	2.3.1 Sequentially Constructive Language Models
	2.3.2 Control-Flow Oriented Sequentially Constructive Statecharts
	2.3.3 Data-Flow Oriented Sequentially Constructive Statecharts

	2.4 The PLCreX Project

	3 Syntax and Formal Semantics
	3.1 Preliminary Definitions
	3.2 IEC 61131-3 FBDs and ST Models
	3.2.1 POU Variants and Declaration
	3.2.2 POU Interfaces
	3.2.3 Local Variables in POUs
	3.2.4 Elementary IEC 61131-3 Data Types and Fields
	3.2.5 Expressions in POUs
	3.2.6 POU Invocations in POUs
	3.2.7 Assignments in POUs
	3.2.8 Conditions in ST Models
	3.2.9 Loops in ST Models
	3.2.10 Sequences in POUs

	3.3 Quartz Models
	3.4 SCL Models
	3.5 SCCharts

	4 Model Transformation of ST Models to Quartz Models
	4.1 High-Level Design Flow – ST-to-Quartz
	4.2 From ST Models to Quartz Models
	4.2.1 Model Declaration
	4.2.2 Interfaces
	4.2.3 Variables
	4.2.4 Data Types and Fields
	4.2.5 POU Imports
	4.2.6 Expressions
	4.2.7 POU Invocations
	4.2.8 Assignments
	4.2.9 Conditions
	4.2.10 Loops
	4.2.11 Sequences

	4.3 Experimental Results
	4.4 Summary

	5 Model Transformation of ST Models to SCL Models
	5.1 High-Level Design Flow – ST-to-SCL
	5.2 From ST Models to SCL Models
	5.2.1 Model Declaration
	5.2.2 Interfaces
	5.2.3 Variables
	5.2.4 Data Types and Fields
	5.2.5 Expressions
	5.2.6 Assignments
	5.2.7 Conditions
	5.2.8 Loops
	5.2.9 Sequences

	5.3 Experimental Results
	5.4 Summary

	6 Model Transformation of FBDs to Quartz Models
	6.1 High-Level Design Flow – FBD-to-Quartz
	6.2 From FBDs to Quartz Models
	6.2.1 Model Declaration
	6.2.2 Interfaces
	6.2.3 Variables
	6.2.4 Data Types and Fields
	6.2.5 POU Imports
	6.2.6 Expressions
	6.2.7 POU Invocations
	6.2.8 Assignments
	6.2.9 Sequences

	6.3 Experimental Results
	6.4 Summary

	7 Model Transformation of FBDs to Data-Flow Oriented SCCharts
	7.1 High-Level Design Flow – FBD-to-SCChart
	7.2 From FBDs to Data-Flow Oriented SCCharts
	7.2.1 Model Declaration
	7.2.2 Interfaces
	7.2.3 Variables
	7.2.4 Data Types and Fields
	7.2.5 POU Imports
	7.2.6 Expressions
	7.2.7 POU Invocations
	7.2.8 Assignments
	7.2.9 Sequences

	7.3 Experimental Results
	7.4 Summary

	8 Formal Methods-Based Optimization of Data-Flow Models
	8.1 High-Level Design Flow – Optimization
	8.2 Optimization of Data-Flow Models
	8.2.1 Operators
	8.2.2 From Graphical Data-Flow Models to Textual Models
	8.2.3 Identification of Submodels
	8.2.4 From Submodels M to SMV Formulas Msmv
	8.2.5 f1-Simplification of Msmv
	8.2.6 From f1(Msmv)' to SMV Formulas f1(Msmv)
	8.2.7 Equivalence Check of Msmv and f1(Msmv)
	8.2.8 From Submodels M to SMT Formulas Msmt
	8.2.9 f2-Simplification of Msmt
	8.2.10 From f1(Msmv) to SMT Formulas (f1(Msmv))smt
	8.2.11 f2-Simplification of (f1(Msmv))smt
	8.2.12 Pattern-Based Formula Refactoring
	8.2.13 Selection of Optimized SMT Formulas
	8.2.14 Equivalence Check of Msmt and smt
	8.2.15 From smt to Initial Submodels M'
	8.2.16 Reconstruct Software Model

	8.3 Experimental Results
	8.4 Summary

	9 Control-Flow Oriented SCCharts of POU-Based Quartz Models
	9.1 High-Level Design Flow – Quartz-to-SCChart
	9.2 Pattern-based Quartz Code Refactoring
	9.3 From Quartz Models to SCCharts
	9.3.1 Model Declaration
	9.3.2 Interfaces
	9.3.3 Variables
	9.3.4 Data Types and Fields
	9.3.5 Expressions
	9.3.6 Immediate Transitions
	9.3.7 Await
	9.3.8 Pause
	9.3.9 Assignments
	9.3.10 Synchronous Concurrency
	9.3.11 Loops
	9.3.12 Halt
	9.3.13 Abort
	9.3.14 Conditions
	9.3.15 Sequences

	9.4 SCChart Optimization
	9.4.1 Flattening Hierarchy
	9.4.2 Removing States

	9.5 Experimental Results
	9.6 Summary

	10 Conclusions
	Bibliography
	A Detailed Syntax and Semantics
	A.1 IEC 61131-3 FBDs and ST Models
	A.1.1 POU Variants and Declaration
	Syntax of POU elements
	Semantics of POU elements

	A.1.2 POU Interfaces
	Syntax of POU interfaces
	Semantics of POU interfaces

	A.1.3 Local Variables in POUs
	Syntax of local variables in POUs
	Semantics of local variables in POUs

	A.1.4 Elementary IEC 61131-3 Data Types and Fields
	Syntax of elementary IEC 61131-3 data types and fields
	Semantics of elementary IEC 61131-3 data types and fields

	A.1.5 Expressions in POUs
	Syntax of expressions in POUs
	Type system of expressions in POUs
	Semantics of expressions in POUs
	SOS transition rules of expressions in POUs

	A.1.6 Conditions in ST Models
	Syntax of conditions in ST models
	SOS transition rules of conditions in ST models

	A.1.7 Loops in ST Models
	Syntax of loops in ST models
	SOS transition rules of loops in ST models

	A.2 Quartz Models
	A.2.1 Quartz Variants and Declaration
	A.2.2 Module Imports
	A.2.3 Quartz Interfaces
	A.2.4 Local Variables in Quartz Models
	A.2.5 Elementary Quartz Data Types and Fields
	A.2.6 Expressions in Quartz Models
	A.2.7 Abortions in Quartz Models
	A.2.8 Assignments in Quartz Models
	A.2.9 Await Statements in Quartz Models
	A.2.10 Synchronous Concurrency in Quartz Models
	A.2.11 Conditions in Quartz Models
	A.2.12 Halt Statements in Quartz Models
	A.2.13 Module Invocations in Quartz Models
	A.2.14 Loops in Quartz Models
	A.2.15 Nothing Statements in Quartz Models
	A.2.16 Pause Statements in Quartz Models
	A.2.17 Sequences in Quartz Models

	A.3 SCL Models
	A.3.1 SCL Variants and Declaration
	A.3.2 SCL Interfaces
	A.3.3 Local Variables in SCL Models
	A.3.4 Elementary SCL Data Types and Fields
	A.3.5 Expressions in SCL Models
	A.3.6 Assignments in SCL Models
	A.3.7 Conditions in SCL Models
	A.3.8 Loops in SCL Models
	A.3.9 Pause Statements in SCL Models
	A.3.10 Sequences in SCL Models

	A.4 Data-Flow Oriented SCCharts
	A.4.1 Data-Flow Oriented SCCharts Declaration
	A.4.2 Local Variables in SCCharts
	A.4.3 SCChart Imports
	A.4.4 Synchronous Concurrency in Data-Flow Oriented SCCharts
	A.4.5 Module Invocations in Data-Flow Oriented SCCharts
	A.4.6 Sequences in Data-Flow Oriented SCCharts

	A.5 Control-Flow Oriented SCCharts
	A.5.1 Control-Flow Oriented SCCharts Declaration
	A.5.2 Abortions in control-flow oriented SCCharts
	A.5.3 Await Transitions in control-flow oriented SCCharts
	A.5.4 Synchronous Concurrency in control-flow oriented SCCharts
	A.5.5 Conditions in control-flow oriented SCCharts
	A.5.6 Halt Statements in control-flow oriented SCCharts
	A.5.7 Loops in control-flow oriented SCCharts
	A.5.8 Immediate Transitions in control-flow oriented SCCharts
	A.5.9 Pause Statements in control-flow oriented SCCharts
	A.5.10 Sequences in control-flow oriented SCCharts

	B ST Model Examples
	C Resulting ST-Based Quartz Models
	D Resulting SCL Models
	E FBD Examples
	F Resulting FBD-Based Quartz Models
	G Resulting Data-Flow Oriented SCCharts
	H Resulting Control-Flow Oriented SCCharts
	I ST-to-Quartz: Appendix
	I.0.1 Data Types and Fields
	I.0.2 Expressions

	J ST-to-SCL: Appendix
	J.0.1 Data Types and Fields
	J.0.2 Expressions

	K FBD-to-SCChart: Appendix
	L Formal Methods-Based Optimization: Optimization Results
	M Quartz-to-SCChart: Appendix
	M.0.1 Data Types and Fields
	M.0.2 Expressions

	N Curriculum Vitae

