
Model-Based Design of Program Organization

Units Using Synchronous Languages

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree
Doctor of Engineering (Dr.-Ing.)

to

Marcel Christian Werner

Date of Defense: July 4, 2025

Dean: Prof. Dr. Christoph Garth

Reviewer: Prof. Dr. Klaus Schneider

Reviewer: Prof. Dr. Reinhard von Hanxleden

DE-386

Abstract

Programmable Logic Controllers (PLCs) are typically applied in industrial en-
vironments with real-time requirements. In many cases, PLC development is
based on standards defined by the International Electrotechnical Commission
(IEC), in particular IEC 61131-3. This standard describes various languages
for developing Program Organization Units (POUs), including the textual lan-
guage Structured Text (ST) and graphical Function Block Diagrams (FBDs),
two languages that have become widely accepted and often used in real-world
applications. POUs are typically used over a long period of time and extended
incrementally. As a result, their structural complexity and the associated chal-
lenges such as maintainability and readability tend to increase. In addition,
safety-critical applications require formal verification, which can be achieved
by translating IEC 61131-3 POUs into formal models. This often results in
domain-specific models for verification purposes only. Furthermore, the transi-
tion to other development approaches, such as model-based design or changes
to hardware that is not IEC 61131-3 compliant, often requires that existing
IEC 61131-3 POUs be partially or completely designed from scratch.
In contrast, synchronous languages have proven to be efficient for the mod-

eling and formal verification of reactive real-time systems in both research
and industrial applications. Therefore, this thesis introduces several detailed
transformations to translate existing ST- and FBD-based POUs into seman-
tically equivalent synchronous models. These transformations allow POUs to
be reused in a model-based design approach that supports formal verifica-
tion. Furthermore, a formal methods-based optimization approach is intro-
duced, which significantly reduces (on average) the structural complexity of
real-world data-flow models such as FBDs. It is also shown how hierarchical
statecharts can be derived from ST- and FBD-based models to provide an al-
ternative graphical representation of the control flow. The correctness of these
approaches is analyzed both theoretically, based on the syntax and formal se-
mantics of the languages, and practically, based on appropriate IEC 61131-3
POUs, by integrating the transformation and optimization approaches into
PLCreX , an application developed as part of this research.

iii

Acknowledgement

I would like to thank all the people who have supported me in the challenge
of balancing research activities with personal commitments to family, friends,
teaching, and a full-time job. In particular, I would like to thank Prof. Dr.
Klaus Schneider, who supported me especially in hectic phases such as meeting
submission deadlines. I would also like to thank him for his valuable guidance
and constructive feedback on my research over the past four years. Further-
more, I would like to thank Prof. Dr. Reinhard von Hanxleden for serving
as my second assessor. I also want to thank Prof. Dr. Sebastian Michel for
chairing the doctoral committee and Prof. Dr. Christoph Grimm for being a
member of the doctoral committee. Additionally, I would like to acknowledge
Dr. Manuel Gesell for his valuable feedback during the final stages of my the-
sis. His willingness to review my thesis in his free time is exceptional, and I
am very grateful for his efforts. I would also like to thank Marita Stuppy and
Sabine Owens for their support in administrative topics. Finally, I would like
to express my deepest gratitude to my friends, and especially to my partner
and son, for their acceptance and support of my personal objectives, espe-
cially during the most challenging phases of this thesis. Their contributions,
whether large or small, have been invaluable and I am very grateful for their
support.

July 4, 2025, Marcel Christian Werner

v

Contents

1. Introduction 1
1.1. Contributions . 2

1.2. Related Work . 4

1.3. Outline . 7

2. Background 9
2.1. IEC 61131-3 Program Organization Units 9

2.2. The Averest-Framework . 11

2.3. The KIELER-Framework . 12

2.4. The PLCreX Project . 14

3. Syntax and Formal Semantics 17
3.1. Preliminary Definitions . 18

3.2. IEC 61131-3 FBDs and ST Models 21

3.3. Quartz Models . 27

3.4. SCL Models . 28

3.5. SCCharts . 29

4. Model Transformation of ST Models to Quartz Models 33
4.1. High-Level Design Flow – ST-to-Quartz 34

4.2. From ST Models to Quartz Models 35

4.3. Experimental Results . 62

4.4. Summary . 63

5. Model Transformation of ST Models to SCL Models 67
5.1. High-Level Design Flow – ST-to-SCL 68

5.2. From ST Models to SCL Models 69

5.3. Experimental Results . 86

5.4. Summary . 88

6. Model Transformation of FBDs to Quartz Models 91
6.1. High-Level Design Flow – FBD-to-Quartz 92

6.2. From FBDs to Quartz Models . 94

6.3. Experimental Results . 99

6.4. Summary . 100

vii

Contents

7. Model Transformation of FBDs to Data-Flow Oriented SCCharts 105
7.1. High-Level Design Flow – FBD-to-SCChart 106

7.2. From FBDs to Data-Flow Oriented SCCharts 107

7.3. Experimental Results . 128

7.4. Summary . 130

8. Formal Methods-Based Optimization of Data-Flow Models 133
8.1. High-Level Design Flow – Optimization 134

8.2. Optimization of Data-Flow Models 135

8.3. Experimental Results . 148

8.4. Summary . 150

9. Control-Flow Oriented SCCharts of POU-Based Quartz Models 153
9.1. High-Level Design Flow – Quartz-to-SCChart 154

9.2. Pattern-based Quartz Code Refactoring 156

9.3. From Quartz Models to SCCharts 160

9.4. SCChart Optimization . 183

9.5. Experimental Results . 185

9.6. Summary . 187

10.Conclusions 191

Bibliography 195

A. Detailed Syntax and Semantics 207
A.1. IEC 61131-3 FBDs and ST Models 208

A.2. Quartz Models . 217

A.3. SCL Models . 229

A.4. Data-Flow Oriented SCCharts . 237

A.5. Control-Flow Oriented SCCharts 239

B. ST Model Examples 249

C. Resulting ST-Based Quartz Models 259

D. Resulting SCL Models 275

E. FBD Examples 287

F. Resulting FBD-Based Quartz Models 311

G. Resulting Data-Flow Oriented SCCharts 329

H. Resulting Control-Flow Oriented SCCharts 355

I. ST-to-Quartz: Appendix 365

J. ST-to-SCL: Appendix 367

viii

Contents

K. FBD-to-SCChart: Appendix 369

L. Formal Methods-Based Optimization: Optimization Results 371

M. Quartz-to-SCChart: Appendix 379

N. Curriculum Vitae 381

ix

List of Figures

1.1. Contribution: ST-to-Quartz/SCL transformation 3

1.2. Contribution: FBD-to-Quartz/SCChart transformation 3

1.3. Contribution: Data-Flow Optimization 4

1.4. Contribution: Quartz -to-SCChart Transformation 4

2.1. FBD of a rising edge detector . 11

2.2. Control-flow oriented SCChart of a rising edge detector 13

2.3. Data-flow oriented SCChart of a rising edge detector 14

2.4. High-level architecture and design principles of PLCreX [WS24b] 14

4.1. High-level design flow of the ST-to-Quartz transformation . . . 34

4.2. ST-to-Quartz translation strategies: high-level runtime behav-
ior of the resulting Quartz models 36

4.3. Resulting Quartz model of example ST ALARM (without memory) 38

4.4. Resulting Quartz model of example ST ASS DEL (with memory) 38

4.5. High-level runtime behavior of a model with memory that in-
vokes two models (Approach: ST-to-Quartz) 50

4.6. Test strategy to evaluate the ST-to-Quartz transformation . . . 62

5.1. High-level design flow of the ST-to-SCL transformation 68

5.2. ST-to-SCL translation strategies: high-level runtime behavior
of the resulting SCL models . 70

5.3. Resulting SCL model of example ST ALARM (without memory) . 72

5.4. Resulting SCL model of example ST ASS DEL (with memory) . 72

5.5. Test strategy to evaluate the ST-to-SCL transformation 87

6.1. High-level design flow of the FBD-to-Quartz transformation . . 92

6.2. FBD-to-Quartz translation strategies: high-level runtime be-
havior of the initial FBD (top) and resulting Quartz model
(bottom) . 93

6.3. High-level runtime behavior of a model with memory that in-
vokes two models (Approach: FBD-to-Quartz) 96

6.4. Visualization of the processing sequence: get expr(RS0.RESET1) 98

6.5. Test strategy to evaluate the FBD-to-Quartz transformation . . 100

xi

List of Figures

7.1. High-level design flow of the FBD-to-SCChart transformation . 106
7.2. FBD-to-SCChart translation strategies: high-level runtime be-

havior of the initial FBD (top) and resulting SCChart (bottom) 108
7.3. Example SCChart illustrating a resulting model with reset . . . 110
7.4. Example SCChart illustrating the resulting model without reset 110
7.5. High-level runtime behavior of a model with memory invoking

two models (Approach: FBD-to-SCChart) 122
7.6. Graphical SCChart of the translated FBD DEBOUNCE model . . . 124
7.7. Views during simulation of the FBD SIMPLE PRG2 example . . . 125
7.8. Test strategy to evaluate the FBD-to-SCChart transformation 128

8.1. High-level design flow of the optimization process with focus on
the models and system architecture 134

8.2. High-level design flow of the optimization process with focus on
the optimization strategy [WS23] 135

8.3. Low-level design flow of the optimization process [WS23] 136
8.4. Visualization of the submodel identification using a simple SC-

Chart example [WS23] . 139
8.5. Simplification ofm2 of the FBD POLL example (with and without

pattern-based formula refactoring) 144
8.6. Comparison of two different simplification scenarios related to

m3 of the Cylinder Control System example 146
8.7. Experimental Results . 151

9.1. High-level design flow of the Quartz-to-SCChart transformation 154
9.2. Quartz-to-SCChart translation strategies: high-level view of the

initial Quartz model and the resulting SCChart 156
9.3. Illustration of the Quartz code pattern-based refactoring ap-

proach [WS22] . 159
9.4. SCChart of the ST ALARM example 161
9.5. SCChart of Quartz sequence {S1; nothing; S2;} [WS22] . . . 167
9.6. SCChart of Quartz sequence {S1; await(a); S2;} [WS22] . . 168
9.7. SCChart of Quartz sequence {S1; immediate await(a);

S2;} [WS22] . 168
9.8. SCChart of Quartz sequence {S1; await(true); S2;} [WS22] 169
9.9. SCChart of Quartz sequence {S1; pause; S2;} [WS22] 169
9.10. SCChart of Quartz sequence {S1; a=b; S2;} [WS22] 171
9.11. SCChart of Quartz sequence {S1; a=1; next(b)=a; pause;

a=2; S2;} [WS22] . 172
9.12. SCChart of Quartz sequence {S1; || S2; || S3; || Sn;}

[WS22] . 173
9.13. SCChart of Quartz sequence {while(a){S1;} S2;} [WS22] . . 176
9.14. SCChart of Quartz sequence {do S1; while(a); S2;} [WS22] 176
9.15. SCChart of Quartz sequence {loop S;} [WS22] 176
9.16. SCChart of Quartz sequence {loop{pause;}} [WS22] 177
9.17. SCChart of Quartz sequence {halt;} [WS22] 177
9.18. SCChart of Quartz sequence {abort S1; when(a); S2;} [WS22]179

xii

List of Figures

9.19. SCChart of Quartz sequence {immediate abort S1;

when(a); S2;} [WS22] . 179

9.20. SCChart of Quartz sequence {S1; if(a) S2; S3;} [WS24a] 181

9.21. SCChart of Quartz sequence {S1; if(a) S2; else S3; S4;}
[WS22] . 181

9.22. SCChart of Quartz sequence {S1; S2; S3; Sn;} [WS22] . . . 182

9.23. SCChart before hierarchy optimization (Pattern 2) 184

9.24. SCChart after hierarchy optimization (Pattern 2) 184

9.25. SCChart before state optimization 185

9.26. SCChart after state optimization 186

9.27. Test strategy to evaluate the Quartz-to-SCChart transforma-
tion including optimization and Quartz code refactoring 186

9.28. From Quartz to control-flow oriented SCChart [WS22] 190

10.1. Contribution Summary . 192

G.1. Visualized data-flow oriented SCChart: FBD TWO OF THREE . . . 329

G.2. Visualized data-flow oriented SCChart: FBD AIR COND CTRL . . 330

G.3. Visualized data-flow oriented SCChart: FBD ALARM 331

G.4. Visualized data-flow oriented SCChart: FBD ANTIVALENCE . . . 331

G.5. Visualized data-flow oriented SCChart: FBD OP ARITH 332

G.6. Visualized data-flow oriented SCChart: FBD BENDING 333

G.7. Visualized data-flow oriented SCChart: FBD OP BOOL 334

G.8. Visualized data-flow oriented SCChart: FBD CYLINDER 335

G.9. Visualized data-flow oriented SCChart: FBD DEBOUNCE 336

G.10.Visualized data-flow oriented SCChart: FBD DICE 337

G.11.Visualized data-flow oriented SCChart: FBD KV DIAG 338

G.12.Visualized data-flow oriented SCChart: FBD LEFT DET 338

G.13.Visualized data-flow oriented SCChart: FBD POLL 339

G.14.Visualized data-flow oriented SCChart: FBD RES CTRL1 340

G.15.Visualized data-flow oriented SCChart: FBD RES CTRL2 341

G.16.Visualized data-flow oriented SCChart: FBD ROLL DOWN 342

G.17.Visualized data-flow oriented SCChart: FBD CABLE WINCH . . . 343

G.18.Visualized data-flow oriented SCChart: FBD SEVEN SEG 344

G.19.Visualized data-flow oriented SCChart: FBD SHOP WINDOW . . . 345

G.20.Visualized data-flow oriented SCChart: FBD SILO VALVE 345

G.21.Visualized data-flow oriented SCChart: FBD SIMPLE FUN 346

G.22.Visualized data-flow oriented SCChart: FBD SIMPLE PRG1 . . . 347

G.23.Visualized data-flow oriented SCChart: FBD SIMPLE PRG2 . . . 347

G.24.Visualized data-flow oriented SCChart: FBD SMOKE DET 348

G.25.Visualized data-flow oriented SCChart: FBD SPORTS HALL . . . 349

G.26.Visualized data-flow oriented SCChart: FBD THER CODE 350

G.27.Visualized data-flow oriented SCChart: FBD TOGGLE SWITCH . . 351

G.28.Visualized data-flow oriented SCChart: FBD VENT CTRL 352

G.29.Visualized data-flow oriented SCChart: FBD WIND DIR 353

H.1. Visualized control-flow oriented SCChart: ST ALARM 355

xiii

List of Figures

H.2. Visualized control-flow oriented SCChart: ST LOOP FOOT 356
H.3. Visualized control-flow oriented SCChart: ST LOOP HEAD 357
H.4. Visualized control-flow oriented SCChart: ST OP ARITH 358
H.5. Visualized control-flow oriented SCChart: ST RS 358
H.6. Visualized control-flow oriented SCChart: ST TWO OF THREE . . 359
H.7. Visualized control-flow oriented SCChart: FBD OP BOOL 359
H.8. Visualized control-flow oriented SCChart: FBD DATATYPES . . . 360
H.9. Visualized control-flow oriented SCChart: FBD KV DIAG 361
H.10.Visualized control-flow oriented SCChart: FBD LEFT DET 361
H.11.Visualized control-flow oriented SCChart: FBD ROLL DOWN . . . 362
H.12.Visualized control-flow oriented SCChart: FBD THER CODE . . . 363
H.13.Visualized control-flow oriented SCChart: FBD TOGGLE SWITCH 363

xiv

List of Tables

3.1. Overview of software model syntax and semantics definitions . 20

4.1. Set of ST models and test results to evaluate the applicability
of the introduced ST-to-Quartz transformation 63

5.1. Set of ST models and test results to evaluate the applicability
of the introduced ST-to-SCL transformation 88

6.1. Set of FBDs and test results to evaluate the applicability of the
introduced FBD-to-Quartz transformation 101

7.1. Set of FBDs and test results to evaluate the applicability of the
introduced FBD-to-SCChart transformation 129

8.1. Overview of supported operators across the ST, SCChart,
Quartz , NuSMV , and Z3Py models [WS23] 137

8.2. Data-flow model overview, including number of submodels,
number of operators (without instances), and average runtime
for determining all four optimized submodels with code gener-
ation for the selected strategy (based on related work without
pattern-based formula refactoring [WS23]) 149

8.3. Experimental results of the case study with values in percent
relative to the non-optimized model ranging from -75% (better)
to 10.7% (worse) (based on experimental results of related work
without pattern-based formula refactoring [WS23]) 150

8.4. Average number of edges, operators, and variable accesses after
optimization . 150

9.1. Set of examples and test results to evaluate the applicability of
the introduced Quartz-to-SCChart transformation 187

xv

Listings

2.1. ST model of a rising edge detector 10

2.2. Quartz model of a rising edge detector 11

2.3. SCL model of a rising edge detector 12

B.1. ST Model: ST TWO OF THREE . 249

B.2. ST Model: ST ALARM . 249

B.3. ST Model: ST SCALE . 249

B.4. ST Model: ST AVAL PROC . 249

B.5. ST Model: ST OP ARITH . 250

B.6. ST Model: ST OP BOOL . 250

B.7. ST Model: ST COMPENS . 250

B.8. ST Model: ST COND . 251

B.9. ST Model: ST DATATYPES . 251

B.10.ST Model: ST DEBOUNCE . 252

B.11.ST Model: ST ASS DEL . 252

B.12.ST Model: ST OP IN EQ . 252

B.13.ST Model: ST LOOP FOOT . 252

B.14.ST Model: ST LOOP HEAD . 253

B.15.ST Model: ST ASS IMM1 . 253

B.16.ST Model: ST ASS IMM2 . 253

B.17.ST Model: ST ASS IMM OUT . 254

B.18.ST Model: ST ASS IMM3 . 254

B.19.ST Model: ST LEFT1 . 254

B.20.ST Model: ST OP NUM REL . 254

B.21.ST Model: ST TOF . 254

B.22.ST Model: ST TON . 255

B.23.ST Model: ST RS . 256

B.24.ST Model: ST RIGHT1 . 256

B.25.ST Model: ST SR . 256

B.26.ST Model: ST SIMPLE FUN . 257

B.27.ST Model: ST SIMPLE PRG1 . 257

B.28.ST Model: ST TANK CTRL . 257

B.29.ST Model: ST TRACK CORR . 258

B.30.ST Model: ST TWO PCTRL (USINT data type designed as UINT) . 258

xvii

Listings

C.1. Quartz Model: ST TWO OF THREE 259

C.2. Quartz Model: ST ALARM . 259

C.3. Quartz Model: ST SCALE . 259

C.4. Quartz Model: ST AVAL PROC . 260

C.5. Quartz Model: ST OP ARITH . 260

C.6. Quartz Model: ST OP BOOL . 260

C.7. Quartz Model: ST COMPENS . 261

C.8. Quartz Model: ST COND . 262

C.9. Quartz Model: ST DATATYPES . 262

C.10.Quartz Model: ST DEBOUNCE . 263

C.11.Quartz Model: ST ASS DEL . 264

C.12.Quartz Model: ST OP IN EQ . 264

C.13.Quartz Model: ST LOOP FOOT . 264

C.14.Quartz Model: ST LOOP HEAD . 265

C.15.Quartz Model: ST ASS IMM1 . 265

C.16.Quartz Model: ST ASS IMM2 . 266

C.17.Quartz Model: ST ASS IMM OUT 267

C.18.Quartz Model: ST ASS IMM3 . 267

C.19.Quartz Model: ST LEFT1 . 267

C.20.Quartz Model: ST OP NUM REL . 267

C.21.Quartz Model: ST TOF . 268

C.22.Quartz Model: ST TON . 268

C.23.Quartz Model: ST RS . 269

C.24.Quartz Model: ST RIGHT1 . 270

C.25.Quartz Model: ST SR . 270

C.26.Quartz Model: ST SIMPLE FUN . 270

C.27.Quartz Model: ST SIMPLE PRG1 270

C.28.Quartz Model: ST TANK CTRL . 271

C.29.Quartz Model: ST TRACK CORR . 272

C.30.Quartz Model: ST TWO PCTRL (USINT data type designed as UINT)272

D.1. SCL Model: ST TWO OF THREE . 275

D.2. SCL Model: ST ALARM . 275

D.3. SCL Model: ST SCALE . 276

D.4. SCL Model: ST OP ARITH . 276

D.5. SCL Model: ST OP BOOL . 276

D.6. SCL Model: ST COMPENS . 277

D.7. SCL Model: ST COND . 278

D.8. SCL Model: ST DATATYPES . 278

D.9. SCL Model: ST ASS DEL . 279

D.10.SCL Model: ST OP IN EQ . 279

D.11.SCL Model: ST LOOP FOOT . 279

D.12.SCL Model: ST LOOP HEAD . 280

D.13.SCL Model: ST ASS IMM1 . 280

D.14.SCL Model: ST ASS IMM2 . 281

D.15.SCL Model: ST ASS IMM OUT . 281

xviii

Listings

D.16.SCL Model: ST LEFT1 . 282
D.17.SCL Model: ST OP NUM REL . 282
D.18.SCL Model: ST TOF . 282
D.19.SCL Model: ST TON . 283
D.20.SCL Model: ST RS . 284
D.21.SCL Model: ST RIGHT1 . 284
D.22.SCL Model: ST SR . 285
D.23.SCL Model: ST SIMPLE FUN . 285
D.24.SCL Model: ST TANK CTRL . 285
D.25.SCL Model: ST TWO PCTRL (USINT data type designed as UINT) 286

E.1. FBD: FBD TWO OF THREE . 287
E.2. FBD: FBD AIR COND CTRL . 287
E.3. FBD: FBD ALARM . 288
E.4. FBD: FBD ANTIVALENCE . 288
E.5. FBD: FBD OP ARITH . 289
E.6. FBD: FBD BENDING . 290
E.7. FBD: FBD OP BOOL . 291
E.8. FBD: FBD CYLINDER . 291
E.9. FBD: FBD DATATYPES . 292
E.10.FBD: FBD DEBOUNCE . 293
E.11.FBD: FBD DICE . 293
E.12.FBD: FBD KV DIAG . 294
E.13.FBD: FBD LEFT DET . 295
E.14.FBD: FBD POLL . 295
E.15.FBD: FBD RES CTRL1 . 296
E.16.FBD: FBD RES CTRL2 . 297
E.17.FBD: FBD ROLL DOWN . 298
E.18.FBD: FBD CABLE WINCH . 298
E.19.FBD: FBD SEVEN SEG . 299
E.20.FBD: FBD SHOP WINDOW . 300
E.21.FBD: FBD SILO VALVE . 301
E.22.FBD: FBD SIMPLE FUN . 302
E.23.FBD: FBD SIMPLE PRG1 . 302
E.24.FBD: FBD SIMPLE PRG2 . 303
E.25.FBD: FBD SMOKE DET . 303
E.26.FBD: FBD SPORTS HALL . 304
E.27.FBD: FBD THER CODE . 305
E.28.FBD: FBD TOGGLE SWITCH . 306
E.29.FBD: FBD VENT CTRL . 307
E.30.FBD: FBD WIND DIR . 308

F.1. Quartz Model: FBD TWO OF THREE 311
F.2. Quartz Model: FBD AIR COND CTRL 311
F.3. Quartz Model: FBD ALARM . 312
F.4. Quartz Model: FBD ANTIVALENCE 312
F.5. Quartz Model: FBD OP ARITH . 312

xix

Listings

F.6. Quartz Model: FBD BENDING . 313

F.7. Quartz Model: FBD OP BOOL . 314

F.8. Quartz Model: FBD CYLINDER . 315

F.9. Quartz Model: FBD DATATYPES . 315

F.10.Quartz Model: FBD DEBOUNCE . 316

F.11.Quartz Model: FBD DICE . 317

F.12.Quartz Model: FBD KV DIAG . 318

F.13.Quartz Model: FBD LEFT DET . 318

F.14.Quartz Model: FBD POLL . 318

F.15.Quartz Model: FBD RES CTRL1 . 318

F.16.Quartz Model: FBD RES CTRL2 . 319

F.17.Quartz Model: FBD ROLL DOWN . 319

F.18.Quartz Model: FBD CABLE WINCH 320

F.19.Quartz Model: FBD SEVEN SEG . 320

F.20.Quartz Model: FBD SHOP WINDOW 321

F.21.Quartz Model: FBD SILO VALVE 322

F.22.Quartz Model: FBD SIMPLE FUN 322

F.23.Quartz Model: FBD SIMPLE PRG1 322

F.24.Quartz Model: FBD SIMPLE PRG2 323

F.25.Quartz Model: FBD SMOKE DET . 323

F.26.Quartz Model: FBD SPORTS HALL 324

F.27.Quartz Model: FBD THER CODE . 325

F.28.Quartz Model: FBD TOGGLE SWITCH 325

F.29.Quartz Model: FBD VENT CTRL . 326

F.30.Quartz Model: FBD WIND DIR . 326

G.1. SCChart: FBD TWO OF THREE . 329

G.2. SCChart: FBD AIR COND CTRL . 329

G.3. SCChart: FBD ALARM . 330

G.4. SCChart: FBD ANTIVALENCE . 330

G.5. SCChart: FBD OP ARITH . 331

G.6. SCChart: FBD BENDING . 332

G.7. SCChart: FBD OP BOOL . 333

G.8. SCChart: FBD CYLINDER . 334

G.9. SCChart: FBD DATATYPES . 334

G.10.SCChart: FBD DEBOUNCE . 335

G.11.SCChart: FBD DICE . 335

G.12.SCChart: FBD KV DIAG . 337

G.13.SCChart: FBD LEFT DET . 337

G.14.SCChart: FBD POLL . 338

G.15.SCChart: FBD RES CTRL1 . 339

G.16.SCChart: FBD RES CTRL2 . 339

G.17.SCChart: FBD ROLL DOWN . 340

G.18.SCChart: FBD CABLE WINCH . 341

G.19.SCChart: FBD SEVEN SEG . 342

G.20.SCChart: FBD SHOP WINDOW . 343

xx

Listings

G.21.SCChart: FBD SILO VALVE . 345
G.22.SCChart: FBD SIMPLE FUN . 345
G.23.SCChart: FBD SIMPLE PRG1 . 346
G.24.SCChart: FBD SIMPLE PRG2 . 347
G.25.SCChart: FBD SMOKE DET . 347
G.26.SCChart: FBD SPORTS HALL . 348
G.27.SCChart: FBD THER CODE . 349
G.28.SCChart: FBD TOGGLE SWITCH . 350
G.29.SCChart: FBD VENT CTRL . 351
G.30.SCChart: FBD WIND DIR . 352

H.1. SCChart: ST ALARM . 355
H.2. SCChart: ST LOOP FOOT . 355
H.3. SCChart: ST LOOP HEAD . 356
H.4. SCChart: ST OP ARITH . 357
H.5. SCChart: ST RS . 357
H.6. SCChart: ST TWO OF THREE . 358
H.7. SCChart: FBD OP BOOL . 359
H.8. SCChart: FBD DATATYPES . 359
H.9. SCChart: FBD KV DIAG . 360
H.10.SCChart: FBD LEFT DET . 361
H.11.SCChart: FBD ROLL DOWN . 361
H.12.SCChart: FBD THER CODE . 362
H.13.SCChart: FBD TOGGLE SWITCH . 362

K.1. MOVE bool function derived from IEC 61131-3 [GDV14] 369
K.2. MOVE float function derived from IEC 61131-3 [GDV14] 369
K.3. MOVE int function derived from IEC 61131-3 [GDV14] 370

xxi

Chapter 1
Introduction

International standards, such as those set by the International Electrotechnical
Commission (IEC), in particular IEC 61131-3 [GDV14], describe the develop-
ment of software applications for industrial control systems with real-time
requirements, such as Programmable Logic Controllers (PLCs). IEC 61131-3
describes a set of languages for the development of PLC software applica-
tions, which are organized in so-called Program Organization Units (POUs).
In addition to common bitwise and arithmetic operators, in many cases POUs
contain predefined functions and function blocks from external libraries whose
internal behavior is unknown. In real-world applications, graphical Function
Block Diagrams (FBDs) and textual Structured Text (ST) models are widely
accepted and used languages for developing POUs. FBDs are characterized
by a graphical data flow notation, typically executed from left to right. They
often allow manual positioning and graphical linking of components such as
blocks and variables on a POU worksheet using visual edges. In contrast,
ST models allow the development of POUs in a textual, imperative language
derived from Pascal [Wir71]. Over the past two decades, in addition to these
traditional approaches, further methods have been explored with the goal of
streamlining the development of POUs through the use of modeling techniques
such as the Unified Modeling Language1 (UML) [WV04]. This extended mod-
eling approach is reflected in modern PLC development environments, such as
provided by CODESYS [WV09]. Another trend in modern engineering tools
is code generation for POUs as part of a model-based design approach, such
as provided by Simulink [BAV08].

The use of UML and integration with model-based design approaches pro-
vide advanced methods for simplifying the development process for new POUs.
However, rather than developing POUs from scratch, it is more common in
real-world applications to extend existing POUs with additional functionality
or logic during their lifecycle. These incremental extensions typically tend to
increase the structural complexity of the POUs. While text-based ST models
result in more lines of source code, graphical FBDs result in a greater number

1https://www.uml.org/

1

https://www.uml.org/

Chapter 1: Introduction

of graphical components. The readability of FBDs can be affected by this
increased complexity, as the number of components and connecting edges can
be perceived as chaotic, making it more difficult to understand. Another chal-
lenge is that formal verification techniques for POUs are essential, especially
in safety-critical applications. This requires the translation of existing POUs
into formal models, which is the bulk of research in the area of IEC 61131-3
applications. Since the goal is verification rather than functional reuse, in
most approaches the translations of existing POUs into formal models result
in domain-specific models. Overall, changes to industrial POUs can be very
time consuming and costly. These changes also require that the IEC 61131-3
engineering approach be maintained. In real-world applications, this means
that a change in hardware that is not IEC 61131-3 compliant, or a change
in engineering approach, often results in scenarios where existing engineering
efforts cannot be reused (or only partially reused) and software applications
have to be developed from scratch.

In contrast, synchronous languages [BB91; Ben+03] have proven effective
for the design and formal verification of reactive real-time systems in research
and in isolated commercial model-based development environments, such as
SCADE [Le +11]. Two publicly available frameworks, which have estab-
lished a reputation in academia for model-based design and formal verifica-
tion are Averest2 [SS06] and the KIELER3 [Kas+24] project. Averest uses as
an input model the imperative synchronous language Quartz [SB16], which
is derived from Esterel [BG92]. KIELER uses several input models, includ-
ing the Sequentially Constructive Language (SCL) and the Sequentially Con-
structive Statecharts (SCCharts) [Han+14], where sequentially constructive
concurrency is a conservative extension of the classical Synchronous Model of
Computation (SMoC) [Han+13].

1.1. Contributions

Based on the challenges in real-world applications and the established reputa-
tion of synchronous languages, the following hypotheses H1, H2, and H3 are
formulated:

H1: ST-based and FBD-based POUs can be translated into synchronous
models without losing the original runtime behavior or level of abstrac-
tion (in terms of variables and structure). This translation enables reuse
in model-based design, supports formal verification, and allows intuitive
post-translation modification.

H2: The structural complexity of data-flow models in real-world applications
is often greater than the logic requires (in terms of variable accesses,
operators, and edges). This complexity can be reduced while preserving
the original functionality.

2http://www.averest.org/
3https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

2

http://www.averest.org/
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

1.1. Contributions

H3: ST-based and FBD-based Quartz models can be synthesized into graph-
ical, control-flow oriented SCCharts. Specifically, applying a pattern-
based transformation process to FBD-based Quartz models yields hier-
archical, control-flow oriented SCCharts (if matching patterns are avail-
able), providing an alternative control-flow view for system analysis.

To answer these hypotheses, this thesis contributes to the field of reuse of ex-
isting IEC 61131-3 POUs in model-based design using synchronous languages
and their optimization within the synchronous paradigm. The contributions
can be divided into the following three categories derived from the hypotheses:

1. H1: Model-Based Design of Program Organization Units

The first contribution of this thesis focuses on a possible reuse of tex-
tual ST models Ωφ

st in model-based design using synchronous models by
introducing a detailed model transformation from ωφ

st ∈ Ω
φ
st to a cor-

responding Quartz model ωqrz ∈ Ωqrz and SCL model ωscl ∈ Ωscl, as
shown in Figure 1.1. The correctness of the transformations is proved
by theoretical reasoning, and the theoretical results are evaluated with
real-world and self-defined ST models.

IEC 61131-3Averest KIELER

Figure 1.1.: Contribution: ST-to-Quartz/SCL transformation

The second contribution focuses on a possible reuse of graphical FBDs
Ωφ
fbd in model-based design using synchronous models by introducing a

detailed model transformation from ωφ
fbd ∈ Ω

φ
fbd to a corresponding data-

flow oriented Quartz model ωqrz ∈ Ωqrz and data-flow oriented SCChart
ωscd ∈ Ωscd, as shown in Figure 1.2. The correctness of the transforma-
tions is proved by theoretical reasoning, and the theoretical results are
evaluated with real-world and self-defined FBDs.

Averest KIELERIEC 61131-3

Figure 1.2.: Contribution: FBD-to-Quartz/SCChart transformation

2. H2: Formal Methods-Based Optimization of Data-Flow Models

The third contribution focuses on a formal methods-based optimization
of data-flow models by introducing a configurable optimization process
of ωd ∈ Ωd, as shown in Figure 1.3. The correctness of the optimization
process is proved by theoretical reasoning and ensured by integrated
equivalence checking. The optimization potential in real-world applica-
tions is evaluated by experimental results.

3

Chapter 1: Introduction

KIELERAverest PLCreX

IEC 61131-3

Figure 1.3.: Contribution: Data-Flow Optimization

3. H3: Control-Flow Oriented SCCharts of Quartz Models

The fourth contribution focuses on the synthesis of Quartz models Ωqrz

into control-flow oriented SCCharts Ωscc by introducing a pattern-based
Quartz code refactoring intended for data-flow oriented Quartz models,
and a subsequent model transformation from ωqrz ∈ Ωqrz to ωscc ∈ Ωscc,
as shown in Figure 1.4. The correctness of the transformation is proved
by theoretical reasoning, and the theoretical results are evaluated with
real-world and self-defined Quartz models.

KIELERAverest

Figure 1.4.: Contribution: Quartz-to-SCChart Transformation

These approaches have motivated the development of PLCreX 4, a project for
simplification, transformation, analysis and validation of PLCs, which repre-
sents a further contribution of this thesis.

1.2. Related Work

There are various approaches to integrate model-based design concepts into
the IEC 61131 development process. For example, Thramboulidis and Frey
[TF11] explored the use of IEC 61499, UML5, and SysML6 to increase the
effectiveness of the IEC 61131 development processes. This extended mod-
eling approach is reflected in modern PLC development environments, such
as provided by CODESYS [WV09]. Furthermore, automatic translation of
UML models into IEC 61131-3 models has been proposed in [WV04] and the
translation of Matlab/Simulink/Stateflow models into IEC 61131-3 models in
[BAV08].
In the context of model-based testing, an application of model-based design

[ZSM11], Rösch et al. [Rös+15] stated that most of the transformations of ST-
based and FBD-based POUs to formal models are performed for verification

4https://github.com/marwern/PLCreX
5https://www.uml.org/
6https://sysml.org/

4

https://github.com/marwern/PLCreX
https://www.uml.org/
https://sysml.org/

1.2. Related Work

purposes. This focus of research continues to this day. Various methods have
been developed to enable the application of formal verification techniques such
as model checking [CGP01] and theorem proving [Har08]. For example, the
translation of FBDs into the Prototype Verification System [ORS92] has been
addressed in [New+16] and [New+18]. Transformation rules for converting
IEC 61131-3 FBDs to UPPAAL models [BDL04] were introduced in [STF12].
The application of UPPAL for the verification of Continuous Function Charts
(CFCs), which can be interpreted as extended FBDs [Bia16], was introduced
in [WFV09]. A mutation-based test generation using UPPAAL was explored
in [Eno+16]. Furthermore, Pavlovic et al. [PE10] outlined a process for ver-
ifying FBDs using the NuSMV model checker [Cim+00]. The translation of
POUs to an intermediate model compatible with the nuXmv model checker
[Cav+14] was introduced in [Fer+15]. A regression verification technique by
translating POUs into the SMV language was proposed in [Bec+15]. Barbosa
and Déharbe [BD12] have focused on the B Method [CM03] and presented an
approach to automatically translate IEC 61131-3 POUs into B machines. Ad-
ditionally, a theorem-prover supported verification was suggested in [VK02].
The formalization of POUs has also been addressed using proof assistants.
For example, Blech and Biha [BB13] have formalized the semantics of the
IEC 61131-3 languages in the formal proof management system Coq [Ber16].
Yanhong et al. [Hua+19] have defined the operational semantics of ST models
within the K framework7. Apart from this, Darvas et al. [DMB16] stated that
the ST language can efficiently and conveniently represent all PLC languages
for formal verification purposes. In summary, these approaches highlight the
importance of translating IEC 61131-3 POUs into formal models to apply
advanced verification techniques.

There are further approaches that have been developed to enhance the test-
ing and verification of IEC 61131-3 POUs. For example, Jee et al. [Jee+09]
have introduced a data-flow-based structural testing technique for FBDs.
Xiong et al. [Xio+20] have presented a specification-mining-based verification
method tailored for IEC 61131-3 POUs. Apart from this, several frameworks
and tools have been developed to enhance the automation, verification, and
analysis processes. For example, PLCAutoTester [Shi+24] represents an unit
test case generation framework for ST models utilizing dynamic symbolic
execution. Furthermore, PyLC [Ebr+23; Sal+23] represents a Python8-based
framework that transforms ST-based and FBD-based POUs into Python. It
simplifies test creation through integration with the Pynguin [LF22] test gen-
erator. PLCverif [DBF15] represents a user-friendly tool for model checking
of ST models, and Arcade.PLC [BBK12] offering a comprehensive verification
platform that supports static analysis and various model checking techniques
across multiple industrial programming languages. Research initiatives
like PLCreX [WS24b] further contribute to the ecosystem by enabling the
simplification, transformation, analysis, and validation of IEC 61131-3 POUs,
promoting reuse in model-based design and formal verification. A further

7https://kframework.org/
8https://www.python.org/

5

https://kframework.org/
https://www.python.org/

Chapter 1: Introduction

tool for static code analysis was introduced in [Pra+17]. Furthermore, the
integration of modern concepts that utilize Large Language Models (LLMs)
for automated test case generation was investigated in [Koz+24] and has been
integrated, among others, into the Agents4PLC [Liu+24] framework. It com-
bines LLM-based agents with retrieval-augmented generation and advanced
prompt engineering to automate PLC code generation and verification.

In contrast to the verification within IEC 61131-3, the functional reuse
of IEC 61131-3 projects within IEC 61499 projects has been explored by
various transformation approaches [Sun+08; Wen+09b; Wen+09a; DV12].
Among others, specific methods for encapsulating IEC 61131-3 ST models into
IEC 61499 function blocks have been developed in [WZ12]. Semantic correct-
ness is addressed by implementing auxiliary transformations that resolve dif-
ferences between the two standards in [Wen+09a]. Furthermore, synchronous
semantics for IEC 61499 function blocks have been proposed by Yoong et
al. [Yoo+07] that allows the application of verification techniques developed
for synchronous models. Overall, these efforts demonstrate a number of ap-
proaches for reusing and transforming IEC 61131-3 models into IEC 61499
models. However, Thramboulidis and Frey [TF11] stated that ”IEC 61499
does not provide any valuable benefit in enhancing the IEC 61131 development
process.”. Furthermore, according to Thramboulidis [Thr13], ”[...] 61499 can-
not be considered as the effective successor of 61131 not even provide, at least
with the current version, a reliable alternative for the development of indus-
trial automation systems. ”. Cruz Salazar and Rojas Alvarado [CR14] rec-
ommended in 2014 that IEC 61499 should be applied in practice to existing
processes to get accepted by the industry. In 2020, a literature review by Lyu
and Brennan in the context towards IEC 61499-based distributed intelligent
automation [LB21] concluded: ”[...] the first and foremost challenge for IEC
61499 industrial adoption is the widely adopted IEC 61131-3 systems, wide
ranges of IEC 61131-3 software/hardware products, and proven IEC 61131-3
practices and guidelines. Research on system transformation or coexistence in
the future is suggested to focus not only on the system redesign methodologies
but also on the approaches to reuse or integrate existing proven practices and
guidelines.”. According to the research published so far with reference to in-
dustrial applications, projects based on IEC 61131-3 still dominate industrial
automation systems and will probably continue to motivate further research,
especially in the context of reusability.

In addition to that, formal verification of real-time and reactive systems has
significantly benefited from the adoption of synchronous programming lan-
guages [BB91]. Over the past decades, synchronous languages have evolved
into a preferred technology for modeling, specifying, validating, and imple-
menting real-time embedded applications [Ben+03]. Notable languages in
this domain include the imperative synchronous language Esterel [BG92] and
Quartz [SB16] that is derived from Esterel. SIGNAL, another synchronous
language, emphasizes real-time system programming through a mathemati-
cal model of multiple-clocked data and event flows using an equational ap-
proach [Le +91]. Lustre [Hal+91] represents a data-flow oriented synchronous

6

1.3. Outline

language. In contrast, graphical representations such as Statecharts extend
traditional state machines with hierarchical, concurrent, and communicative
elements, offering a description language that supports modularity and com-
prehensibility for complex systems [Har87]. SyncCharts [And95] based on the
synchronous paradigm and are syntactically close to Statecharts have further
enhanced the usability and expressiveness of synchronous paradigms. Further-
more, SCCharts [Han+14] were designed for reactive systems and are based
on a Sequentially Constructive Model of Computation (SCMoC) [Han+13]. In
summary, synchronous languages are proven models for the formal verification
and of real-time and reactive systems. Most of these languages are integrated
into model-based design frameworks or engineering tools, such as Quartz in
Averest , Esterel and Lustre in SCADE , and SCCharts in KIELER.

As a consequence, few works have investigated the translation of IEC 61131-
3 POUs into synchronous languages. For example, Jimenez-Fraustro and Rut-
ten [JR01] have introduced a synchronous model for ST models and FBDs
based on SIGNAL. Werner and Schneider [WS20] have outlined the suitabil-
ity of synchronous languages like Quartz for modeling existing POUs com-
pared to traditional FBDs. A translation process of CFCs to Quartz modules
for reuse purposes was introduced in [WS21]. Additionally, a translation from
FBDs to SCCharts was introduced in [WS22], which enhances functional reuse
and provides an alternative model view through code refactoring within the
synchronous paradigm. Furthermore, the translation of ST models into syn-
chronous Quartz models and models that follow the SCMoC was introduced
in [WS24a].

Optimization of data-flow models, especially in terms of minimizing hard-
ware implementation, is a broad and well researched area [Gom+09]. Further-
more, code optimization is a crucial part of software development, and various
techniques have been introduced to improve the performance, resources, and
readability of source code, such as simplifying Boolean logic using Karnaugh
maps [Kar53]. One of the challenges in optimizing code for industrial data-
flow models such as IEC 61131-3 FBDs is the lack of information of blocks
provided by external libraries. For this reason, Werner and Schneider [WS23]
have introduced an optimization process considering potentially optimizable
submodels and non-modifiable components of a data-flow graph.

1.3. Outline

The thesis starts with an introduction to IEC 61131-3 POUs and model-based
design using the Averest and KIELER frameworks in Chapter 2.

The formal syntax and semantics of the relevant software models are defined
in Chapter 3. For this purpose, the definitions from existing descriptions and
specifications of the different software models are summarized and extended by
further aspects. The goal is to provide a formal specification of the individual
language constructs, which will be referenced in the following chapters.

Hypothesis H1 will be a direct result of Chapter 4, 5, 6, and 7. Specifically,
Chapter 4 defines a detailed model transformation from ωφ

st to ωqrz and Chap-

7

Chapter 1: Introduction

ter 5 defines a detailed model transformation from ωφ
st to ωscl. Both model

transformations are evaluated with appropriate ST model examples. Simi-
larly, Chapter 6 defines a detailed model transformation from ωφ

fbd to ωqrz and

Chapter 7 defines a detailed model transformation from ωφ
fbd to ωscd. These

model transformations are also evaluated with appropriate examples.
The outcome of Chapter 8 will confirm hypothesis H2. This chapter intro-

duces a configurable formal methods-based optimization approach of data-flow
models using NuSMV , SMT Z3Py , and PLCreX , and analyzes the average
optimization potential of real-world applications.
Finally, Chapter 9 will cover hypothesis H3. With the goal of synthesizing

Quartz models ωqrz into control-flow oriented SCCharts ωscc, Chapter 9 intro-
duces a pattern-based Quartz code refactoring intended for data-flow oriented
Quartz models, followed by a detailed model transformation from ωqrz to ωscc.
In addition to the summaries in the different chapters, a short summary of

the main results is given in Chapter 10.

8

Chapter 2
Background

Contents

2.1. IEC 61131-3 Program Organization Units 9

2.1.1. Textual Structured Text Models 10

2.1.2. Graphical Function Block Diagrams 10

2.2. The Averest-Framework . 11

2.2.1. Synchronous Quartz Models 11

2.3. The KIELER-Framework . 12

2.3.1. Sequentially Constructive Language Models 12

2.3.2. Control-Flow Oriented Sequentially Constructive State-
charts . 13

2.3.3. Data-Flow Oriented Sequentially Constructive Statecharts 13

2.4. The PLCreX Project . 14

This chapter introduces the main software models and frameworks used in
the following chapters. The first section provides an overview of IEC 61131-3
POUs, including both textual ST models and graphical FBDs. The second sec-
tion presents a model-based design approach using the Averest framework and
the Quartz language. Then, a text-first design approach using the KIELER
framework together with SCL, data-flow oriented and control-flow oriented
SCCharts is presented. Finally, the chapter introduces the PLCreX project,
which is used to evaluate the theoretical concepts in the following chapters.

2.1. IEC 61131-3 Program Organization Units

This thesis focuses on time-triggered applications, which are widely used in
IEC 61131-based PLCs [Thr13] and described as reactive systems with cyclic
data processing behavior [Bec+15]. In this model of computation, in each
cycle a process image of the input variables is first created. Then, during the
POU scan, the new values for the output variables (as determined by the POU

9

Chapter 2: Background

logic) are written to a dedicated buffer. Finally, the output values stored in this
buffer are transferred by the system to the output variables [Lew98; VK02].
This work focuses on the modeling of POUs, thus neglecting the process images
of the physical IEC 61131-3 system, but taking into account how instances
process interfaces. POUs are organized in POUs and implemented in one
of the two textual or one of the three graphical languages described in the
IEC 61131-3 standard [GDV14], where this thesis focuses on textual ST models
and graphical FBDs.

2.1.1. Textual Structured Text Models

The imperative sequential language ST is derived from Pascal and comes with
constructs typical for the implementation of sequential algorithms [GDV14].
Unlike in Pascal , recursion is not allowed1 in traditional ST-based POU vari-
ants Program, Function, and Function Block [Lew98; JT10]. A simple ST
example is shown in Listing 2.1 using a rising edge detector [GDV14]. Basi-

1 FUNCTION_BLOCK R_TRIG

2 VAR_INPUT CLK: BOOL; END_VAR

3 VAR_OUTPUT Q: BOOL; END_VAR

4 VAR M: BOOL; END_VAR

5

6 Q := CLK AND NOT M;

7 M := CLK;

8 END_FUNCTION_BLOCK

Listing 2.1: ST model of a rising edge detector

cally, statements in ST models are executed sequentially, depending on their
order within the POU. In contrast to the SMoC and SCMoC, every statement
basically consumes time greater than zero, which is a crucial aspect of the
transition from ST to synchronous models and will be addressed in more de-
tail in the following chapters. The formal syntax and semantics of the relevant
ST constructs in this thesis are specified in Section 3.2.

2.1.2. Graphical Function Block Diagrams

Graphical FBDs are implemented by dragging and dropping predefined
or user-defined functions, function blocks, constants, or variables onto a
workspace. The visual connection of these elements represents the flow of
data from left to right [Lew98; GDV14], where functions and function blocks
are executed according to their individual execution order identifiers. CFCs
provide a less structured approach with more flexible placement and connec-
tion of blocks and variables [Lew98], and are thus interpreted in research as
extended FBDs [Bia16]. Some PLC development environments imply the
flexibility of CFCs in IEC 61131-3 FBDs, such as Beremiz 2 and SafetyProg3.

1Recursion is possible in the context of object-oriented IEC 61131-3 features [GDV14].
2https://beremiz.org/
3https://www.phoenixcontact.com/de-de/produkte/software/sps-programmierung

10

https://beremiz.org/
https://www.phoenixcontact.com/de-de/produkte/software/sps-programmierung

2.2. The Averest-Framework

For this reason, FBDs will be treated with the flexibility of CFCs in the
further course of this thesis, and CFCs will simply be referred to as FBDs.
A simple FBD example is shown in Figure 2.1 using the rising edge detector
[GDV14]. Similar to statements in ST models, functions, function blocks, and

0

1
2

3

Figure 2.1.: FBD of a rising edge detector

assignments in FBDs are executed sequentially according to their individual
execution order identifiers (such as the order labeled with red numbers in
the example). Consequently, the consumption of time greater than zero is
again a crucial aspect of the transition from FBDs to synchronous models
and will therefore be addressed in more detail in the following chapters. The
formal syntax and semantics of the relevant FBD constructs in this thesis are
specified in Section 3.2.

2.2. The Averest-Framework

Averest is a framework for model-based design of embedded systems that
includes a set of tools for simulation, synthesis, verification, synthesis, and
other purposes [SS06]. In particular, it includes a compiler that translates
models implemented in the imperative synchronous Quartz language into a
symbolically represented transition system in Averest ’s interchange format.
This enables the use of Quartz models in a model-based design approach and
formal verification. Therefore, the transformation of IEC 61131-3 POUs to
Quartz is a key objective of this thesis.

2.2.1. Synchronous Quartz Models

Quartz models are organized in modules and can include user-defined functions
via preprocessor directives and instantiate other Quartz modules [Sch09]. A
simple example is shown in Listing 2.2 using the rising edge detector [GDV14].

1 module R_TRIG(bool ?CLK, bool !Q){

2 bool M;

3

4 Q = CLK & !M;

5 next(M) = CLK;

6 pause;

7 }

Listing 2.2: Quartz model of a rising edge detector

11

Chapter 2: Background

Quartz follows the classical SMoC [Hal98; Ben+03; Sch09], i.e., a model is
partitioned into macro steps, which correspond to interactions between the
reactive system and its environment, and micro steps, which are executed
in zero time. The macro steps can be separated in Quartz with the special
statement pause [Sch09], which stops the control flow at this statement. The
control flow will resume at this point in the next macro step, assuming there
is no surrounding suspension or abortion. In each macro step, first all input
variables are read, then all output variables are computed with respect to
the internal state. At the end of each macro step, the internal state will be
updated. This is a crucial aspect of the transformations and will be addressed
in more detail in the following chapters. The formal syntax and semantics of
the relevant Quartz constructs in this thesis are specified in Section 3.3.

2.3. The KIELER-Framework

The KIELER framework is a text-first approach for the automatic diagram-
ming of complex systems. It is designed to combine textual and diagrammatic
representations by automatically synthesizing text-based models into visual
diagrams [Kas+24]. KIELER supports multiple languages in model design
and can synthesize models written in different domain-specific languages. For
example, it includes SCCharts [Han+14] and the imperative SCL language
[Han+13]. In the further course of this thesis, SCCharts will be distinguished
between control-flow oriented and data-flow oriented [Gri+20]. As a result,
another key objective of this thesis is to transform IEC 61131-3 POUs into
SCL models and SCCharts.

2.3.1. Sequentially Constructive Language Models

The SCL language was introduced to illustrate the SCMoC [Han+13] and
similar to Quartz , they are organized in modules. A simple example is shown
in Listing 2.3 using the rising edge detector [GDV14]. Unlike the traditional

1 module R_TRIG{

2 input bool CLK;

3 output bool Q;

4 bool M;

5

6 Q = CLK & !M;

7 M = CLK;

8 }

Listing 2.3: SCL model of a rising edge detector

SMoC, the SCMoC allows variables to be read and written in the same macro
step, as long as program sequentiality provides sufficient scheduling informa-
tion to prevent race conditions [Han+13]. As a result, this language style is
close to the style of traditional imperative languages such as ST, which is de-
rived from Pascal. SCL programs also work in macro steps, where in each step
first all inputs are read, and then all active (currently instantiated) threads are

12

2.3. The KIELER-Framework

executed until they either terminate or reach a pause statement, and at the
end output variables are written to the environment [Han+13]. The formal
syntax and semantics of the relevant SCL constructs in this thesis are specified
in Section 3.4.

2.3.2. Control-Flow Oriented Sequentially Constructive State-
charts

SCCharts were introduced in the context of safety-critical reactive systems
[Han+14] and are described in this thesis as control-flow oriented SCCharts
to distinguish them from data-flow oriented SCCharts [Gri+20]. A simple
example is shown in Figure 2.2 using the rising edge detector [GDV14] and
both representations, the textual SCChart on the left and the resulting graph
on the right. SCCharts are based on the SCMoC, which ensures deterministic

1 scchart R_TRIG {

2 input bool CLK

3 output bool Q

4 bool M

5

6 region:

7 initial state S0

8 immediate do Q = CLK & !

M; M = CLK go to S1

9 final state S1

10 }

Figure 2.2.: Control-flow oriented SCChart of a rising edge detector

concurrency and that accesses to shared variables are sequenced to avoid con-
flicts despite concurrency [Han+14]. The formal syntax and semantics of the
relevant control-flow oriented SCChart constructs in this thesis are specified
in Section 3.5.

2.3.3. Data-Flow Oriented Sequentially Constructive State-
charts

Data-flow oriented SCCharts are an extension of the traditional control-flow
oriented SCCharts and were introduced as part of a transformation approach
from Lustre to SCCharts [Gri+20]. A simple example is shown in Figure 2.3
using the rising edge detector [GDV14], forced sequential scheduling, and both
representations, the textual SCChart on the left and the resulting graph on
the right. The data-flow extension is based on the SCMoC, which supports
deterministic programming with sequential scheduling information [Gri+20].
Although this adaptation provides a framework where data-flow models can be
seamlessly combined with control flow structures, this thesis distinguishes be-
tween control-flow oriented SCCharts and data-flow oriented SCCharts. The
formal syntax and semantics of the relevant data-flow oriented SCChart con-
structs in this thesis are specified in Section 3.5.

13

Chapter 2: Background

1 scchart R_TRIG{

2 input bool CLK

3 output bool Q

4 bool M

5

6 dataflow:

7 Q = CLK & !M;

8 M = CLK;

9 }

Figure 2.3.: Data-flow oriented SCChart of a rising edge detector

2.4. The PLCreX Project

PLCreX [WS24b] is a modular command line interface application tailored for
IEC 61131-3 ST models, FBDs, and beyond. The project was initially moti-
vated by research related to this thesis and is designed with a focus on issues
such as verification, reuse, and reliability, among others. The high-level archi-
tecture, design principles, and interfaces to external frameworks are shown in
Figure 2.4. PLCreX is being developed in Python and is intended to be used

Synchronous
Models

PLCreX

Validation

Transformation

Simplification

fbdopt

 FBD-Optimizer

Analysis

xmlval

 XML-Validator

stp

 ST-Parser

ieccheck

 IEC-Checker

fbdia

 I/O-Impact Analysis

tcgen

 Test-Case-Generator

SMT Z3

IEC-Checker

NuSMV

.st

.st

.java
.vhd

.pml

Static Analysis
Results

Test Cases

Validation
Results

Abstract
Syntax Tree

I/O-Impact
Analysis

 console

 console

 console

 .dot/.txt

 .dot

.qrz/.scl/

.sctx

.smv

...

.c

...

Averest

KIELER

source-to-source

 FBD-to-ST
 FBD-to-SCCharts (Data-Flow)
 ST-to-Quartz
 ST-to-SCL
 ST-to-SCCharts (Control-Flow)
 ...

External

SCCharts

ST

FBD

SCL

Quartz

Internal

Z3Py

SMV

PIM

console

.xml

FBD

ST

Design
Specification

Figure 2.4.: High-level architecture and design principles of PLCreX [WS24b]

as an interface between traditional IEC 61131-3 POUs and the Averest and
KIELER frameworks, or as a stand-alone analysis tool for real-world POUs

14

2.4. The PLCreX Project

and their challenges. Although the detailed design flow depends on the indi-
vidual feature, the basic concept of PLCreX is to process the models internally
as an abstract syntax tree-like model, which is called PLCreX Intermediate
Model (PIM) [WS24b]. The core features can be divided into four categories.

1. Simplification: This feature simplifies data-flow models following the
optimization process introduced in Chapter 8.

2. Transformation: This category combines various model-to-model
transformations that can be linked together.

3. Analysis: This category combines solutions for real-world challenges.
As an example, it includes test case generation considering statement
coverage, decision coverage, modified condition/decision coverage, and
multiple condition coverage [Kel+01].

4. Validation: This feature is intended to validate POUs that are pro-
cessed as PLCopen xml format [PLC09].

15

Chapter 3
Syntax and Formal Semantics

Contents

3.1. Preliminary Definitions . 18

3.2. IEC 61131-3 FBDs and ST Models 21

3.2.1. POU Variants and Declaration 21

3.2.2. POU Interfaces . 21

3.2.3. Local Variables in POUs 22

3.2.4. Elementary IEC 61131-3 Data Types and Fields 22

3.2.5. Expressions in POUs . 23

3.2.6. POU Invocations in POUs 24

3.2.7. Assignments in POUs . 25

3.2.8. Conditions in ST Models 25

3.2.9. Loops in ST Models . 26

3.2.10. Sequences in POUs . 26

3.3. Quartz Models . 27

3.4. SCL Models . 28

3.5. SCCharts . 29

This chapter introduces the syntax and formal semantics of the considered
software models. For this purpose, the definitions from existing descriptions
and specifications of the various software models are summarized and extended
with additional aspects. The goal is to provide a formal specification of the
individual language constructs that will be referenced in the following chapters.
The methodology is demonstrated in detail using IEC 61131-3 ST models and
FBDs as examples (with isolated list items moved to the appendix). For the
sake of readability, the other software models are summarized with references
to the definitions in the appendix.

To this end, the first section provides an overview of the notations and state-
ments. The second section defines the syntax and semantics of IEC 61131-3

17

Chapter 3: Syntax and Formal Semantics

ST models and FBDs. Then the syntax and semantics of Quartz are summa-
rized. The last two sections summarize the syntax and semantics of SCL and
SCCharts.

3.1. Preliminary Definitions

This section introduces the symbols and notations that will be used through-
out the following chapters. These notations are essential for a complete un-
derstanding of the content of the subsequent chapters. As a first notation, the
structural operational semantics (SOS) transition rules [Plo04] are defined as
follows:

• f : denotes an instantaneous flag, which represents a micro step or cur-
rent PLC cycle if true, macro step otherwise, but still the same PLC
cycle [WS24a]

• ξ: denotes the environment of a current PLC cycle or macro step in
synchronous models

• Σ: denotes a set of statements to be executed

• φ1 ∧⋯ ∧ φn: denotes assumptions

• J⊡Kξ: denotes the evaluation of ⊡ in environment ξ

• Σ′: denotes the residual set of statements for the next micro step or
macro step (depending on f)

• D: denotes the set of actions that are executed in the current step

Equation 3.1 represents SOS transition rules with assumptions and Equa-
tion 3.2 SOS transition rules that are always true, i.e., φ1 ∧⋯ ∧ φn ∶= true.

φ1 ∧⋯ ∧ φn

⟨ξ,Σ⟩ TÐ↠ ⟨Σ′,D, f⟩
(3.1)

⟨ξ,Σ⟩ TÐ↠ ⟨Σ′,D, f⟩ (3.2)

Furthermore, the type system of expressions is defined using the following
notation:

• π1 ∶ α1 ⋯ πn ∶ αn: denotes the set of arguments

• τ : denotes an expression instance

• β: denotes the resulting data type

Equation 3.3 represents the full notation for type system definitions.

π1 ∶ α1 ⋯ πn ∶ αn

τ ∶ β (3.3)

The PLCopen related symbols [PLC09] are defined as follows and will be used
frequently in the following chapters:

18

3.1. Preliminary Definitions

• an: denotes the name attribute (name)

• aiN : denotes the instance name attribute (instanceName)

• atN : denotes the type name attribute (typeName)

• aeOI : denotes the execution order identifier attribute (executionOrderId)

• arLI : denotes the reference local identifier attribute (refLocalId)

• alI : denotes the local identifier attribute (localId)

• afP : denotes the formal parameter attribute (formalParameter)

• ee: denotes an expression element (expression)

• ebinst : denotes a block instance identifier (block)

• ebfun′ : denotes a user-defined function block identifier (block)

• ebfun : denotes a function identifier (block)

• ed: denotes a derived identifier element (derived)

• ei: denotes an interface element (interface)

• erT : denotes a return type element (returnType)

• elV s: denotes a local variable element (localVars)

• eiV s: denotes an input variable element (inputVars)

• eoV s: denotes an output variable element (outputVars)

• eiOV s: denotes an inout variable element (inOutVariables)

• eiV : denotes an block input variable element (inVariable)

• eoV : denotes an block output variable element (outVariable)

• eiOV : denotes an block inout variable element (inOutVariable)

There are also generic notations used in the specifications and algorithms,
which are defined as follows:

• [⊡]: denotes an optional element ⊡
• rhs(⊡) denotes the right-hand side of ⊡
• lhs(⊡) denotes the left-hand side of ⊡
• ηi: denotes an integer expression

• ηr: denotes a floating-point expression

• λ: denotes a bit vector expression

• λb: denotes a boolean expression

• π, k, x, y,w: denotes a variable or compile-time constant expression

• I: denotes the set of input variables

• O: denotes the set of output variables

19

Chapter 3: Syntax and Formal Semantics

Overall, Table 3.1 provides a comprehensive overview of the considered lan-
guage constructs and definitions of the various software models, where control-
flow oriented SCCharts denoted as SCChartc and data-flow oriented SCCharts
denoted as SCChartd. It is worth noting that the overview does not show all
supported instruction sets of the languages, but only those (and specific in-
struction set combinations) that are relevant for the approaches in this thesis.

Table 3.1.: Overview of software model syntax and semantics definitions

Construct

S
T

F
B
D

Q
u
a
rt
z

S
C
L

S
C
C
h
a
rt

c

S
C
C
h
a
rt

d

Description

Ω
[φ]
ϑ

φ 1 1 - - - - POU variant
δω 1 1 1 1 1 1 declaration

∆imports - - 1 - - 1 imports

∆idcl

∆in 1 1 1 1 1 1 input variables
∆out 1 1 1 1 1 1 output vars.
∆inout 1 1 1 1 1 1 inout variables

∆vdcl
∆local 1 1 1 1 1 1 local variables
∆inst 1 1 - - 1 1 instance vars.

A

Abv 1 1 1 1 1 1 bit vector vars.
Adur 1 1 1 1 1 1 duration vars.
Ai 1 1 1 1 1 1 integer vars.
Ar 1 1 1 1 1 1 float variables
A+ 1 1 1 1 1 1 data type fields

T

Tarith 1-3 1-3 1-3 1-3 1-3 1-3 arithmetic expr.
Tbv 1-3 1-3 1-3 1-3 1-3 1-3 bitwise expr.
Tcomp 1-3 1-3 1-3 1-3 1-3 1-3 comparison expr.
Tcond 1-3 1-3 1-3 1-3 1-3 1-3 conditional expr.
Tmisc 1-3 1-3 1-3 1-3 1-3 1-3 misc. expr.

Σ

Σabort - - 2 - 2 - abortions
Σass 2 2 2 2 2 2 assignments
Σawait - - 2 - 2 - wait stats.
Σconc - - 2 - 2 2 parallel stats.
Σcond 2 - 2 2 2 - conditions
Σhalt - - 2 - 2 - halt stats.
Σinv 2 2 2 - - 2 invocations
Σloop 2 - 2 2 2 - loops

Σnothing - - 2 - 2 - nothing stats.
Σpause - - 2 2 2 - pause stats.
Σseq 2 2 2 2 2 2 sequences

Notes: syntax and semantics defined (1), syntax and SOS transition rules
defined (2), type system defined (3), no definitions (-)

20

3.2. IEC 61131-3 FBDs and ST Models

3.2. IEC 61131-3 FBDs and ST Models

This section provides an overview of the syntax and semantics of an FBD
ωφ
fbd ∈ Ω

φ
fbd and an ST model ωφ

st ∈ Ω
φ
st, where ωφ

pou ∈ {ωφ
fbd, ω

φ
st}. The def-

initions of syntax and semantics are based on IEC 61131-3 [GDV14] and a
transformation from ST to synchronous models [WS24a]. It is worth not-
ing that the definitions are limited to the constructs that are relevant in the
following chapters.

3.2.1. POU Variants and Declaration

There are different POU variants φ, where this thesis considers the variants
program (φ = prg), function block (φ = fb), and function (φ = fun), which are
defined as follows:

Definition 3.1 (Syntax of POU elements). The syntax of ωφ
pou is declared

as follows, assuming fixed order of ∆idcl(ωφ
pou), ∆vdcl(ωφ

pou), and Σ(ωφ
pou) (see

Appendix A.1.1 for the full list):

• δω(ωfb
pou)

def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FUNCTION_BLOCK an(ωfb
pou)

[∆idcl(ωfb
pou)] [∆vdcl(ωfb

pou)] [Σ(ωfb
pou)]

END_FUNCTION_BLOCK

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Definition 3.2 (Semantics of POU elements). The semantics of ωφ
pou

are defined as follows (see Appendix A.1.1 for the full list):

• Jδω(ωfb
pou)Kξ

def= { defines a POU element ωfb
pou with Σ(ωfb

pou), started at

time t with initial conditions set by ∆idcl(ωfb
pou) and ∆vdcl(ωfb

pou) when
invoked, terminating at time t + θ and preserving internal state across
invocations by another POU element, i.e., ωfb

pou has memory }

3.2.2. POU Interfaces

POUs may be equipped with interfaces ∆idcl(ωφ
pou), where this thesis considers

input variables ∆in(ωφ
pou), output variables ∆out(ωφ

pou), and inout variables
∆inout(ωφ

pou), which are defined as follows:

Definition 3.3 (Syntax of POU interfaces). The syntax of ∆in(ωφ
pou),

∆out(ωφ
pou), and ∆inout(ωφ

pou) is defined as follows (see Appendix A.1.2 for
the full list):

• ∆out(ωφ
pou)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VAR_OUTPUT

x1 : α
[+]

1 [:=w1];

⋮
xn : α

[+]

n [:=wn];

END_VAR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

21

Chapter 3: Syntax and Formal Semantics

Definition 3.4 (Semantics of POU interfaces). The semantics of
∆in(ωφ

pou), ∆out(ωφ
pou), and ∆inout(ωφ

pou) are defined as follows, noting that
field elements can only be used as input variables, output variables, and
inout variables of function elements, and as inout variables of function block
elements (see Appendix A.1.2 for the full list):

• J∆out(ωφ
pou)Kξ

def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to op-
tional predefined default values Jw1Kξ, . . . , JwnKξ at time t when ωφ

pou is
invoked, and passed to invoking element with final computed values when
ωφ
pou terminates at time t+θ, i.e., all instructions of ωφ

pou have been pro-
cessed in the current PLC cycle. }

3.2.3. Local Variables in POUs

POUs may contain local variables ∆vdcl(ωφ
pou), where variables are dis-

tinguished between standard variables ∆local(ωφ
pou) and instance variables

∆inst(ωφ
pou), which are defined as follows:

Definition 3.5 (Syntax of local variables in POUs). The syntax of
∆local(ωφ

pou) and ∆inst(ωφ
pou) is defined as follows (see Appendix A.1.3 for

the full list):

• ∆local(ωφ
pou)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VAR

x1 : α
[+]

1 [:=w1];

⋮
xn : α

[+]

n [:=wn];

END_VAR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.6 (Semantics of local variables in POUs). The semantics
of ∆local(ωφ

pou) and ∆inst(ωφ
pou) are defined as follows (see Appendix A.1.3 for

the full list):

• J∆local(ωφ
pou)Kξ

def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. Depending on the POU variant, the
variables keep their values from previous invocation or are assigned to
optional predefined default values Jw1Kξ, . . . , JwnKξ at time t when ωφ

pou is
invoked. These variables can be modified and processed locally until ωφ

pou

terminates at time t+θ, i.e., all instructions of ωφ
pou have been processed

in the current PLC cycle. }

3.2.4. Elementary IEC 61131-3 Data Types and Fields

IEC 61131-3 POUs are capable of processing a variety of elementary data types
A(ωφ

pou) and fields A+(ωφ
pou), where this thesis considers bit vector data types

Abv(ωφ
pou), integer data types Ai(ωφ

pou), floating-point data types Ar(ωφ
pou),

22

3.2. IEC 61131-3 FBDs and ST Models

numeric data types Ai(ωφ
pou)⋃Ar(ωφ

pou), and duration data types Adur(ωφ
pou).

Furthermore, it is assumed, that array indices start at index 0 by default.
A(ωφ

pou) and A+(ωφ
pou) are defined as follows, where the semantics are defined

as a tuple ⟨<MIN>,<MAX>,<DEFAULT>⟩:

Definition 3.7 (Syntax of elementary IEC 61131-3 data types and
fields). The syntax of α(ωφ

pou) ∈ A(ωφ
pou) and α+(ωφ

pou) ∈ A+(ωφ
pou) is defined

as follows (see Appendix A.1.4 for the full list):

Syntax of bit vector data types αbv(ωφ
pou) ∈ Abv(ωφ

pou):

• αbool
bv (ω

φ
pou)

def= {BOOL} denotes boolean values

• αbyte
bv (ω

φ
pou)

def= {BYTE} denotes single byte bit masks

• αword
bv (ωφ

pou)
def= {WORD} denotes two byte bit masks

Definition 3.8 (Semantics of elementary IEC 61131-3 data types and
fields). In accordance with IEC 61131-3 and assuming the limitation of the
duration data type αtime

dur (ω
φ
pou) to 32 Bit, the semantics of α(ωφ

pou) ∈ A(ωφ
pou)

and α+(ωφ
pou) ∈ A+(ωφ

pou) are defined as follows (see Appendix A.1.4 for the
full list):

Semantics of bit vector data types αbv(ωφ
pou) ∈ Abv(ωφ

pou):

• Jαbool
bv (ω

φ
pou)Kξ

def= ⟨{false, true}, false⟩

• Jαbyte
bv (ω

φ
pou)Kξ

def= ⟨{00hex,ffhex},00hex⟩

• Jαword
bv (ωφ

pou)Kξ
def= ⟨{0000hex,ffffhex},0000hex⟩

3.2.5. Expressions in POUs

IEC 61131-3 POUs are capable of processing a wide range of expres-
sions T (ωφ

pou), where this thesis considers constants and general expres-
sions Tmisc(ωφ

pou), comparison operators Tcomp(ωφ
pou), arithmetic opera-

tors Tarith(ωφ
pou), bitwise operators Tbv(ωφ

pou), and conditional operators
Tcond(ωφ

pou), which are defined as follows1:

Definition 3.9 (Syntax of expressions in POUs). The syntax of
Tmisc(ωφ

pou), Tcomp(ωφ
pou), Tarith(ωφ

pou), Tbv(ωφ
pou), and Tcond(ωφ

pou) is defined
as follows (see Appendix A.1.5 for the full list):

Syntax of comparison operators τcomp(ωφ
pou) ∈ Tcomp(ωφ

pou):

• τ eqcomp(ωφ
pou)

def=
⎧⎪⎪⎨⎪⎪⎩

{π1 = π2} , if φ = st
{EQ(π1,π2)} , if φ ∈ {st, fbd}

denotes equality

1For ST models, it is possible to use the operators as equivalent function calls [GDV14].

23

Chapter 3: Syntax and Formal Semantics

• τnecomp(ω
φ
pou)

def=
⎧⎪⎪⎨⎪⎪⎩

{π1 <> π2} , if φ = st
{NE(π1,π2)} , if φ ∈ {st, fbd}

denotes inequality

Definition 3.10 (Type system of expressions in POUs). The type
system of τ(ωφ

pou) is defined as follows (see Appendix A.1.5 for the full list):

Type system of comparison operators τγcomp(ωφ
pou) ∈ Tcomp(ωφ

pou), where γ ∈ {eq,
ne, gt, ge, lt, le}:

•
π1 ∶ α(ωφ

pou) π2 ∶ α(ωφ
pou)

τγcomp(ωφ
pou) ∶ αbool

bv (ω
φ
pou)

Definition 3.11 (Semantics of expressions in POUs). The semantics of
τ(ωφ

pou) ∈ T (ωφ
pou) are defined as follows (see Appendix A.1.5 for the full list):

Semantics of comparison operators τcomp(ωφ
pou) ∈ Tcomp(ωφ

pou):

• Jτ eqcomp(ωφ
pou)Kξ

def= Jπ1Kξ = Jπ2Kξ

• Jτnecomp(ω
φ
pou)Kξ

def= Jπ1Kξ ≠ Jπ2Kξ

Definition 3.12 (SOS transition rules of expressions in POUs). The
SOS transition rules of τ(ωφ

pou) ∈ T (ωφ
pou) are defined as follows:

• ⟨ξ, τ(ωφ
pou)⟩

TÐ↠ ⟨nothing,{Jτ(ωφ
pou)Kξ}, true⟩

3.2.6. POU Invocations in POUs

It is possible for POUs to invoke user-defined functions Σf ′

inv(ω
φ
pou) and func-

tion blocks Σfb
inv(ω

φ
pou). During the execution of these invoked models, the

execution of the invoking POU is paused and resumed when the instance ter-
minates. As mentioned in Section 3.2.1, only function blocks have memory.
However, both functions and function blocks terminate within the same PLC
cycle.

Definition 3.13 (Syntax of POU invocations in POUs). The syntax

of σf ′

inv(ω
φ
pou) ∈ Σf ′

inv(ω
φ
pou) and σfb

inv(ω
φ
pou) ∈ Σfb

inv(ω
φ
pou) is defined as follows,

where elements of graphical FBDs can be derived from PLCopen export:

• σf ′

inv(ω
φ
pou)

def= {k(I(σf ′

inv(ω
φ
pou)),O(σf ′

inv(ω
φ
pou)))[;]}

• σfb
inv(ω

φ
pou)

def= {k(I(σfb
inv(ω

φ
pou)))[;]}

Definition 3.14 (SOS transition rules of POU invocations in

POUs). The SOS transition rules of σf ′

inv(ω
φ
pou) ∈ Σf ′

inv(ω
φ
pou) and

σfb
inv(ω

φ
pou) ∈ Σfb

inv(ω
φ
pou) are defined as follows:

• ⟨ξ, σinv⟩
TÐ↠ ⟨nothing,{JkKξ}, true⟩

24

3.2. IEC 61131-3 FBDs and ST Models

3.2.7. Assignments in POUs

POUs can be classified into two categories with regard to their assignments.
In this thesis, they are called (1) immediate assignments Σimm

ass (ω
φ
pou), where

the evaluation of the expressions is independent of the variable which shall be
assigned, and (2) delayed assignments Σdel

ass(ω
φ
pou) if not. For this reason, a

sequential dependency between evaluation of the expressions and assignment
must be considered.

Definition 3.15 (Syntax of assignments in POUs). The syntax of
σimm
ass (ω

φ
pou) ∈ Σimm

ass (ω
φ
pou) and σdel

ass(ω
φ
pou) ∈ Σdel

ass(ω
φ
pou) is defined as follows,

where assignments in graphical FBDs can be derived from PLCopen export:

• σimm
ass (ω

φ
pou)

def= { x ∶= τ ; }

• σdel
ass(ω

φ
pou)

def= { x ∶= τ(x); }

Definition 3.16 (SOS transition rules of assignments in POUs). The
SOS transition rules of σimm

ass (ω
φ
pou) ∈ Σimm

ass (ω
φ
pou) and σdel

ass(ω
φ
pou) ∈ Σdel

ass(ω
φ
pou)

are defined as follows:

• ⟨ξ, σimm
ass ⟩

TÐ↠ ⟨nothing,{x = JτKξ}, true⟩

• ⟨ξ, σdel
ass⟩

TÐ↠ ⟨nothing,{x = Jτ(x)Kξ}, true⟩

3.2.8. Conditions in ST Models

ST models are capable of processing different variants of condition statements,
where this thesis considers if-then conditions Σit

cond(ω
φ
st) and if-then-else con-

ditions Σite
cond(ω

φ
st).

Definition 3.17 (Syntax of conditions in ST models). The syntax of
σit
cond(ω

φ
st) ∈ Σit

cond(ω
φ
st) and σite

cond(ω
φ
st) ∈ Σite

cond(ω
φ
st) is defined as follows (see

Appendix A.1.6 for the full list):

• σite
cond(ω

φ
st)

def= { IF λb(σite
cond(ω

φ
st)) THEN Σ1(σite

cond(ω
φ
st))

ELSE Σ2(σite
cond(ω

φ
st)) END_IF

}

Definition 3.18 (SOS transition rules of conditions in ST
models). The SOS transition rules of σit

cond(ω
φ
st) ∈ Σit

cond(ω
φ
st) and

σite
cond(ω

φ
st) ∈ Σite

cond(ω
φ
st) are defined as follows (see Appendix A.1.6 for

the full list):

SOS transition rules of σite
cond(ω

φ
st) ∈ Σite

cond(ω
φ
st):

25

Chapter 3: Syntax and Formal Semantics

•
JλbKξ = true ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨nothing,D1, true⟩

⟨ξ,{ IF λb THEN Σ1

ELSE Σ2 END IF
}⟩ TÐ↠ ⟨nothing,D1, true⟩

•
JλbKξ = false ∧ ⟨ξ,Σ2⟩

TÐ↠ ⟨nothing,D2, true⟩

⟨ξ,{ IF λb THEN Σ1

ELSE Σ2 END IF
}⟩ TÐ↠ ⟨nothing,D2, true⟩

3.2.9. Loops in ST Models

ST models are capable of processing different variants of loop statements,
where this thesis considers bounded foot-controlled loops Σfoot

loop (ω
φ
st) and

bounded head-controlled loops Σhead
loop (ω

φ
st).

Definition 3.19 (Syntax of loops in ST models). The syntax of
σfoot
loop (ω

φ
st) ∈ Σ

foot
loop (ω

φ
st) and σhead

loop (ω
φ
st) ∈ Σhead

loop (ω
φ
st) is defined as follows (see

Appendix A.1.7 for the full list):

• σhead
loop (ω

φ
st)

def= { WHILE λb(σhead
loop (ω

φ
st)) DO

Σ(σhead
loop (ω

φ
st)) END WHILE

}

Definition 3.20 (SOS transition rules of loops in ST models). The
SOS transition rules of σfoot

loop (ω
φ
st) ∈ Σ

foot
loop (ω

φ
st) and σhead

loop (ω
φ
st) ∈ Σhead

loop (ω
φ
st)

are defined as follows (see Appendix A.1.7 for the full list):

SOS transition rules of σhead
loop (ω

φ
st) ∈ Σhead

loop (ω
φ
st):

•

JλbKξ = true ∧ ⟨ξ,Σ⟩
TÐ↠ ⟨nothing,D, true⟩

⟨ξ,{ WHILE λb DO

Σ END WHILE
}⟩ TÐ↠

⟨nothing,{D;{ WHILE λb DO

D END WHILE
}}, true⟩

•
JλbKξ = false

⟨ξ,{ WHILE λb DO

Σ END WHILE
}⟩ TÐ↠ ⟨nothing,{}, true⟩

3.2.10. Sequences in POUs

A set of the aforementioned statements is called a sequence Σseq(ωφ
pou). By

default, the statements are executed sequentially, and the sequence terminates
when the last statement is terminated. This is true for both ST models and
FBDs.

Definition 3.21 (Syntax of sequences in POUs). The syntax of a sequence
Σseq(ωφ

pou) is defined as follows, where sequences in graphical FBDs can be
derived from PLCopen export:

26

3.3. Quartz Models

• Σseq(ωφ
pou)

def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1(ωφ
pou);

σ2(ωφ
pou);
⋮

σn(ωφ
pou);

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Definition 3.22 (SOS transition rules of sequences in POUs). The
SOS transition rules of a sequence Σseq(ωφ

pou) are defined as follows, where ξ′

represents the updated environment:

•
⟨ξ, σ1⟩

TÐ↠ ⟨nothing,D1, true⟩ ∧ ⟨ξ′, σ2⟩
TÐ↠ ⟨nothing,D2, true⟩

⟨ξ,{σ1;σ2;}⟩
TÐ↠ ⟨nothing,{D1;D2}, true⟩

3.3. Quartz Models

The following summary of syntax and semantics of a Quartz model ωqrz ∈ Ωqrz

is based on [Sch09; SB16; WS24a] and it is worth noting that the definitions
are limited to the constructs that are relevant in the following chapters.

There is one variant of Quartz model elements called module (see Ap-
pendix A.2.1), which can be imported and instantiated by other Quartz mod-
ules. The imported Quartz models are grouped as a set ∆imports(ωqrz) (see
Appendix A.2.2).

Furthermore, Quartz models may be equipped with interfaces ∆idcl(ωqrz).
More specifically, these are input variables ∆in(ωqrz), output variables
∆out(ωqrz), and inout variables ∆inout(ωqrz). There are two categories of
storage classes: (1) event variables are reset to their default values when
they are not assigned in the current macro step, and (2) memorized variables
retain the values of the previous macro step, unless assigned to new values
in the current macro step (see Appendix A.2.3) [Sch09]. Quartz models may
also contain local variables ∆vdcl(ωqrz) (see Appendix A.2.4).

Quartz models are capable of processing a variety of elementary data types
A(ωqrz) and fields A+(ωqrz), where this thesis considers the variants intro-
duced in Section 3.2.4 (see Appendix A.2.5).

In addition, Quartz models are capable of processing a wide range of ex-
pressions T (ωqrz), where this thesis considers the variants introduced in Sec-
tion 3.2.5 (see Appendix A.2.6).

Quartz comes with different variants of abort statements Σabort(ωqrz), where
this thesis considers regular abort statements Σreg

abort(ωqrz) and immediate abort
statements Σimm

abort(ωqrz) (see Appendix A.2.7). In general, these statements are
used to evaluate a condition in each step, which controls the execution of inner
statements.

Moreover, Quartz models can be classified into two principal categories with
regard to their assignments Σass(ωqrz), where this thesis considers the vari-
ants introduced in Section 3.2.7. Consequently, it is necessary to consider
the sequential dependency between evaluation and assignment. Due to the
SMoC, an assignment to the left-hand side using delayed assignments is only
permitted in the subsequent macro step (see Appendix A.2.8).

27

Chapter 3: Syntax and Formal Semantics

There are statements in Quartz models where sequential execution stops un-
til a Boolean condition becomes true. These statements are await statements
Σawait(ωqrz), where this thesis considers regular await statements Σreg

await(ωqrz)
and immediate await statements Σimm

await(ωqrz) (see Appendix A.2.9).

In addition to Quartz sequences, there are statements for parallel execu-
tion, where this thesis considers synchronous concurrency Σconc(ωqrz) (see
Appendix A.2.10). It is worth noting that as long as the statements do not
terminate, they execute theirmacro steps synchronously in lockstep, i.e., state-
ments may interact during concurrent execution.

Quartz models are capable of processing different variants of conditions
Σcond(ωqrz), where this thesis considers the variants introduced in Section 3.2.8
(see Appendix A.2.11).

There are a statements in Quartz models to stop the sequential execution,
which are called halt statements Σhalt(ωqrz) (see Appendix A.2.12).

It is possible in Quartz models to invoke other Quartz models through the
use of statements Σinv(ωqrz) (see Appendix A.2.13). It is worth noting that
there is a significant dependency on whether the invoked instances are executed
sequentially or in parallel, because due to the SMoC, statements may interact
during concurrent execution.

Quartz models are capable of processing different variants of loops
Σloop(ωφ

st), where this thesis considers the variants introduced in Section 3.2.9
(see Appendix A.2.14). It is worth noting that body statement must not be
instantaneous.

There are nothing statements in Quartz models Σnothing(ωqrz) (see Ap-
pendix A.2.15) that are introduced at this point for isolated transformations
in the following chapters.

The consumption of time within Quartz models can be explicitly pro-
grammed with statements called pause Σpause(ωqrz) (see Appendix A.2.16).
In general, the execution of a pause statement consumes one logical unit of
time and separates two macro steps.

Finally, a set of Quartz statements is called a sequence Σseq(ωqrz) (see
Appendix A.2.17). It is worth noting that the statements are executed in a
sequential manner considering the SMoC, where the sequence terminates upon
the termination of the final statement, i.e., the sequence is instantaneous if all
statements are instantaneous.

3.4. SCL Models

The following summary of syntax and semantics of an SCL model ωscl ∈ Ωscl

is based on [Han+13; Han+14; WS24a] and manual studies of the latest stan-
dalone version of the KIELER project. It is worth noting that the definitions
are limited to the constructs that are relevant in the following chapters.

Like in Quartz models, there is one variant of SCL model elements called
module (see Appendix A.3.1). These models are not intended to be imported
and instantiated by other SCL models due to their minimal instruction set,
but can be synthesized into SCCharts by KIELER and then reused [WS24a].

28

3.5. SCCharts

SCL models can also be equipped with interfaces ∆idcl(ωscl). Possible inter-
faces are input variables ∆in(ωscl), output variables ∆out(ωscl), and inout vari-
ables ∆inout(ωscl). There are also different kinds of storage classes [Han+13;
Sch+18], where this thesis focuses on variables that retain the values of the
previous macro step unless they are assigned new values in the current macro
step (as memorized variables in Quartz) to ensure consistency between the dif-
ferent models, although this requires an additional reset if they are intended to
behave like event variables in Quartz (see Appendix A.3.2). However, Chap-
ter 9 considers signals [Sch+18] to mimic event-driven execution without the
need to reset interfaces, as this approach is restricted to control-flow oriented
SCCharts (see Appendix A.3.2).

Additionally, SCL models may contain local variables ∆vdcl(ωscl) (see Ap-
pendix A.3.3).

Furthermore, SCL models are also capable of processing a variety of ele-
mentary data types A(ωscl) and fields A+(ωscl), where this thesis considers
the variants introduced in Section 3.2.4 (see Appendix A.3.4).

Moreover, SCL models are capable of processing a wide range of expressions
T (ωscl), where this thesis considers the variants introduced in Section 3.2.5
(see Appendix A.3.5).

Like Quartz models, SCL models can be classified into two principal cate-
gories with regard to their assignments Σass(ωscl), where this thesis considers
the variants introduced in Section 3.2.7. Due to the SCMoC, in both variants
left-hand side is updated instantaneous, because sequential order is considered
by default (see Appendix A.3.6).

SCL models are capable of processing different variants of conditions
Σcond(ωscl), where this thesis considers the variants introduced in Sec-
tion 3.2.8 (see Appendix A.3.7).

Additionally, SCL models are capable of processing different variants of
loops Σloop(ωscl), where this thesis considers the variants introduced in Sec-
tion 3.2.9. Due to the limited instruction set of SCL models, loop constructs
are defined using a combination of a goto statement and a condition (see Ap-
pendix A.3.8) [WS24a]. It is worth noting that body statements of loops in
SCL models are assumed not to be instantaneous by default.

A set of SCL statements is called a sequence Σseq(ωscl) (see Ap-
pendix A.3.10). It is worth noting that the statements in the SCMoC are
executed in a sequential manner.

3.5. SCCharts

The following summary of syntax and semantics of a control-flow oriented
SCCharts ωscc ∈ Ωscc and a data-flow oriented SCCharts ωscd ∈ Ωscd is based on
[Han+14; Gri+20; WS23], syntax specifications on the KIELER homepage2,
and manual studies of the latest standalone version of the KIELER project.
It is worth noting that the definitions are limited to the constructs that are

2https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Syntax

29

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Syntax

Chapter 3: Syntax and Formal Semantics

relevant in the following chapters.

This thesis distinguishes between both variants Ωscc (see Appendix A.5.1)
and Ωscd (see Appendix A.4.1) and considers that data-flow oriented SCCha-
rts are able to import data-flow and control-flow oriented SCCharts. The
SCCharts imported by a data-flow oriented SCChart are grouped as a set
∆imports(ωscd) (see Appendix A.2.2).

Local variables of both control-flow oriented and data-flow oriented SC-
Charts are defined equivalent to those of SCL models (see Section 3.4), with
those of data-flow oriented SCCharts are extended by instances of imported
SCCharts (see Appendix A.4.2).

Defined interfaces, elementary data types and fields, and assignments al-
most equivalent to those of SCL models (see Section 3.4). The difference is
that how these constructs are placed within the models. In particular, unlike
in SCL models, declarations in SCCharts don’t end with a semicolon. Fur-
thermore, synthesizing data-flow oriented SCCharts to control-flow oriented
SCCharts using KIELER shows that placing a semicolon at the end of assign-
ments enforces sequential execution of synchronous concurrent threads, which
is assumed in the further course of this thesis. This replaces the seq state-
ment introduced in related work using data-flow oriented SCCharts [WS23].
Additionally, assignments in control-flow oriented SCCharts are indicated by
the prefix do.

Similar to await statements in Quartz , there are await transitions in
control-flow oriented SCCharts Σawait(ωscc), considering regular await
transitions Σreg

await(ωscc) and immediate await transitions Σimm
await(ωscc) (See

Appendix A.2.9).

Each assignment of a data-flow oriented SCCharts is basically executed in
a separate thread concurrently to the others [Gri+20; WS22]. Although se-
quential dependency is enforced as mentioned earlier, this will be interpreted
as synchronous concurrency Σconc(ωscd) (see Appendix A.4.4) in the further
course of this thesis. In contrast, regions in control-flow oriented SCCharts
are also being executed concurrently and are interpreted as synchronous con-
currency Σconc(ωscc) (see Appendix A.5.4). As in Quartz , it is worth noting
that they execute their macro steps synchronously in lockstep, i.e., statements
can interact during concurrent execution.

Moreover, states in control-flow oriented SCCharts can be aborted and
called in this context abort transitions Σabort(ωscc′), where this thesis consid-
ers regular abortions Σreg

abort(ωscc) and immediate abortions Σimm
abort(ωscc) (see

Appendix A.5.2).

Control-flow oriented SCCharts are able to express different variants of con-
ditions Σcond(ωscc) (see Appendix A.5.5) and loop variants Σloop(ωscc) (see
Appendix A.5.7) by reconstructing the control flow using states and transi-
tions [SLH16], where this thesis considers the condition variants introduced in
Section 3.2.8 and loop variants introduced in Section 3.2.9.

Furthermore, there are final states in control-flow oriented models that stop
the sequential execution, which are called halt statements Σhalt(ωscc) in this
thesis (see Appendix A.5.6).

30

3.5. SCCharts

This thesis focuses on data-flow oriented SCCharts that are able to invoke
data-flow and control-flow oriented SCCharts. This is possible through the
use of Σinv(ωscd) statements (see Appendix A.4.5).
Additionally, in control-flow oriented SCCharts, there are transitions that

don’t perform any action and consume no time when switching between states.
These transitions are called immediate transitions Σnothing(ωscc) in this the-
sis (see Appendix A.5.8) to simplify readability and comparability with the
constructs in the other models.
The consumption of time, as in SCL and Quartz models, can be explicitly

programmed in control-flow oriented SCCharts by a transition between two
states that consumes one unit of time. These constructs are called pause
transitions Σpause(ωscc) in this thesis (see Appendix A.5.9).
Finally, a set of data-flow oriented SCChart statements is called a sequence

Σseq(ωscd), where each statement ends with a semicolon as explained in the
context of assignments (see Appendix A.3.10). In contrast, in control-flow
oriented SCCharts, a set of states represents a sequence Σseq(ωscc) (see
Appendix A.3.10). By enforcing a sequential execution of synchronous
threads in data-flow oriented SCCharts and a sequential order of states in
control-flow oriented SCCharts, both sequences are executed in a sequential
manner.

The syntax and semantics defined (or referenced) in this chapter are used
in the following chapters to present various approaches to transforming and
optimizing the software models under consideration. In particular, they are
often used to prove correctness.

31

Chapter 4
Model Transformation of ST Models
to Quartz Models

Contents

4.1. High-Level Design Flow – ST-to-Quartz 34
4.2. From ST Models to Quartz Models 35

4.2.1. Model Declaration . 36
4.2.2. Interfaces . 39
4.2.3. Variables . 42
4.2.4. Data Types and Fields . 46
4.2.5. POU Imports . 47
4.2.6. Expressions . 48
4.2.7. POU Invocations . 49
4.2.8. Assignments . 53
4.2.9. Conditions . 56
4.2.10. Loops . 57
4.2.11. Sequences . 60

4.3. Experimental Results . 62
4.4. Summary . 63

As a first approach to reusing existing POUs in model-based design is the
transformation of ST models into Quartz models, where the goal is to create
a robust set of translation functions that ensure semantic preservation during
the transition. In addition to the approaches presented in [WS21; WS22;
WS24a; WS24b], it considers the following additional issues:

• Model Declaration: Mimicking the termination behavior of the initial
model, i.e., distinguishing between models with and without memory

• Interfaces and Variables: Additional interfaces for event-driven ex-
ecution control and an external controlled time (provided as an un-
bounded integer)

33

Chapter 4: Model Transformation of ST Models to Quartz Models

• Data Types and Fields: Additional IEC 61131-3 data types

• POU invocations: Instantiation and invocation of user-defined models,
taking into account their individual termination behavior

The correctness of the translation functions is proved by theoretical reason-
ing, which includes a detailed analysis of the resulting syntax and semantics
compared to the syntax rules and semantics specified in Chapter 3. In addi-
tion, the theoretical results are evaluated with real-world and self-defined ST
models.

This chapter is structured as follows: Section 4.1 introduces the high-level
design flow and translation strategy. Section 4.2 defines the translation func-
tions and theoretical analysis. Section 4.3 presents an evaluation of the theo-
retical results, and Section 4.4 summarizes the transformation.

4.1. High-Level Design Flow – ST-to-Quartz

The high-level design flow for transforming an ST model ωφ
st ∈ Ωφ

st of the
variant function block (φ = fb), function (φ = fun), or program (φ = prg) to a
Quartz model ωqrz ∈ Ωqrz is shown in Figure 4.1.

IEC 61131-3 Averest

Figure 4.1.: High-level design flow of the ST-to-Quartz transformation

The ST-to-Quartz transformation Tst↦qrz(ωφ
st) includes the following transfor-

mation steps:

1. tδωst↦qrz(δω(ω
φ
st)): Model declaration (see Section 4.2.1)

2. t∆idcl
st↦qrz(ω

φ
st): Interfaces (see Section 4.2.2)

3. t∆vdcl
st↦qrz(ω

φ
st): Variables (see Section 4.2.3)

4. tαst↦qrz(α[+](ω
φ
st)): Data types and fields (see Section 4.2.4)

5. t
∆imports

st↦qrz (ω
φ
st): POU imports (see Section 4.2.5)

6. tτst↦qrz(τ (ω
φ
st)): Expressions (see Section 4.2.6)

7. tΣinv
st↦qrz(σϑ

inv(ω
φ
st)): POU invocations (see Section 4.2.7)

8. t
Σass
st↦qrz(σϑ

ass(ω
φ
st)): Assignments (see Section 4.2.8)

9. tΣcond
st↦qrz(σϑ

cond(ω
φ
st)): Conditions (see Section 4.2.9)

10. t
Σloop

st↦qrz(σϑ
loop(ω

φ
st)): Loops (see Section 4.2.10)

11. t
Σseq

st↦qrz(Σseq(ωqrz′)): Sequences (see Section 4.2.11)

34

4.2. From ST Models to Quartz Models

Translation Strategy:

This chapter introduces two translation strategies illustrated in Figure 4.2:
The ST model is either transformed into a Quartz model that (1) terminates
after a finite number of macro steps n ≥ 0 to mimic a POU without mem-
ory, or (2) runs in an infinite loop to mimic a POU with memory, where an
iteration contains a finite number of macro steps n ≥ 11. Figure 4.2a shows
the high-level runtime behavior of the resulting Quartz model that follows
the first translation strategy, where the set of input variables IN is read when
the Quartz model is invoked in macro step Si. In the following macro steps
during execution, the interfaces are synchronized, where only CLK may be up-
dated externally and is read. Neither input variables IN are allowed to be
updated nor output variables OUT are allowed to be processed externally until
the Quartz model is terminated. In the final macro step Sm, OUT is returned
to the invoking model for external processing. In contrast, Figure 4.2b shows
the high-level runtime behavior of the resulting Quartz model that follows the
second translation strategy, where the model is initialized in the first macro
step S0 and then waits until an iteration is triggered externally via the event
input variable EI. When an iteration is triggered in macro step Si, the set
of input variables IN and an external clock variable CLK are read and can
be processed. In the following macro steps during execution, the interfaces
are synchronized, where only CLK may be updated externally. Neither input
variables IN are allowed to be updated nor output variables OUT are allowed
to be processed externally until the iteration reaches the macro step Sm. In
this macro step, OUT and EO are returned to the invoking model for external
processing. The subsequent final macro step is used to switch to the next
iteration (triggered in the next PLC cycle).

Challenges:

From this, the following challenges for translating ST models to Quartz models
can be derived:

1. Cyclic execution of Quartz models (with and without memory)

2. Event-driven execution of synchronous parallel threads

3. Sequential execution of synchronous parallel threads

4. Dynamic system time

5. Translation of ST language constructs

4.2. From ST Models to Quartz Models

This section defines the individual translation functions for translating an ST
model ωφ

st ∈ Ω
φ
st to a Quartz model ωqrz′ ∈ Ωqrz and analyzes the theoretical

correctness.

1n ≥ 1, because the pause statement between two iterations is considered in this context

35

Chapter 4: Model Transformation of ST Models to Quartz Models

Sj

S
ta

te
m

en
ts

entry

Si

IN

pause

Sm

Sl

OUT

pause

In
it.

CLKj

CLKm

CLKl

exit

...

(a) Model of a POU without memory

 Si

Sj

emit(EO)

pause

...

W
ai

t
S

ta
te

m
en

ts

entry

S0

IN

pause

Sm

Sk

OUT

immediate
await(EI)

pause

In
it.

CLKi

CLKj

CLKm

CLKk

(b) Model of a POU with memory

Figure 4.2.: ST-to-Quartz translation strategies: high-level runtime behavior of
the resulting Quartz models

4.2.1. Model Declaration

This step covers the translation function for translating an ST model dec-
laration δω(ωφ

st) to a Quartz model declaration δω(ωqrz′). According to the
introduced translation strategies, the resulting Quartz model of an ST model,
variant φ ∈ {fb, prg}, is executed in an infinite loop, reflecting the memory
behavior of the original ST model. For this, in each PLC cycle, the Quartz
model waits until a loop iteration is triggered by an event-driven input, where
the termination of the iteration is returned by an event-driven output. In con-
trast, the resulting Quartz model of an ST model, variant φ = fun, is invoked
and executed sequentially without a surrounding loop, mimicking an ST-based
POU without memory.

Definition 4.1 (Model Declaration – ST-to-Quartz). Let
Ωφ
st = {ω

φ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model ele-

ments. δω(ωφ
st) is translated to δω(ωqrz′) using the translation function

tδωst↦qrz(δω(ω
φ
st)), which is described by Algorithm 1.

Correctness

To check the correctness of Definition 4.1, the following lemma is used.

36

4.2. From ST Models to Quartz Models

Algorithm 1 Translate model declaration – ST-to-Quartz

Input: δω(ωφ
st)

Output: δω(ωqrz′)
Translation Function tδωst↦qrz(δω(ω

φ
st)):

switch φ do
case fun do

δω(ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
∆imports

st↦qrz (ω
φ
st)

module an(ωφ
st)(t

∆idcl
st↦qrz(ω

φ
st)){

t∆vdcl
st↦qrz(ω

φ
st)

tΣst↦qrz(ω
φ
st)

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end
case fb ∨ prg do

δω(ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
∆imports

st↦qrz (ω
φ
st)

module an(ωφ
st)(t

∆idcl
st↦qrz(ω

φ
st)){

t∆vdcl
st↦qrz(ω

φ
st)

loop{
immediate await(EI);

tΣst↦qrz(ω
φ
st)

emit(EO); pause;

}
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end

end

Lemma 4.1. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, fun, prg}.

Then, tδωst↦qrz(δω(ω
φ
st)) translates δω(ωφ

st) to δω(ωqrz′) as specified in Def-
inition 4.1. δω(ωqrz′) conforms to the syntax rules of δω(ωqrz) and pre-
serves the semantics of δω(ωφ

st) regarding its termination behavior.

Proof The validity of Lemma 4.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of δω(ωqrz′) with the
syntax rules of δω(ωqrz) as specified in Section 3.3. While the equivalence
for φ = fun is given by the specification, the correctness for φ ∈ {fb, prg}
follows from the syntactical correct sequence of σinf

loop(ωqrz′), σimm
await(ωqrz′),

σimm
ass (ωqrz′), and σpause(ωqrz′). Second, there are two cases to distinguish

in order to check semantic correctness:

• Case 1 (φ = fun): δω(ωqrz′) does not have a surrounding sequence
of an additional loop with event-driven constructs. Thus, Jδω(ωqrz)Kξ
preserves Jδω(ωφ

st)Kξ regarding its termination behavior (see Section 3.2
and 3.3).

37

Chapter 4: Model Transformation of ST Models to Quartz Models

• Case 2 (φ ∈ {fb, prg}): Given the SOS transition rules of σinf
loop(ωqrz),

σimm
await(ωqrz), and σpause(ωqrz), δω(ωqrz) results in an infinite loop whose

iteration is executed immediately when the event EI becomes true and
triggers EO at the end of an iteration. Iterations are separated by
σpause(ωqrz). Consequently, Jδω(ωqrz)Kξ preserves Jδω(ωφ

st)Kξ regarding
its termination behavior (see Section 3.2 and 3.3).

Illustrative Example for Lemma 4.1

Usage examples are shown below using snippets of the resulting Quartz mod-
els2 in combination with a visualization of the high-level runtime behav-
ior. The resulting Quartz model of example ST ALARM in Figure 4.3 repre-
sents a model without memory, and the resulting Quartz model of example
ST ASS DEL in Figure 4.4 represents a model that preserves the state of the
last macro step of the current PLC cycle for the next iteration (i.e., for the
next PLC cycle).

1 module ST_ALARM(

2 bool ?xSENSOR_L, . . .){
3

4 ST_ALARM = . . . ;

5 }

S
ta

te
m

en
ts

entry

exit

ST_ALARM

ST_ALARM =
...

C
LK

i

xSENSOR_L,
xSENSOR_M,
xSENSOR_R

Figure 4.3.: Resulting Quartz model of example ST ALARM (without memory)

1 module ST_ASS_DEL(

2 event bool ?EI,

3 event bool !EO){

4

5 int x0; . . .
6 pause;

7

8 loop{

9 immediate await(EI);

10 next(y0) = y0 + x0;

11 pause;

12 emit(EO); pause;

13 }

14 } emit(EO)

pause

Init.

W
ai

t
S

ta
te

m
en

ts

entry

x0 = 2; ...

immediate
await(EI)

pause

pause

next(y0) = y0 + x0

CLKi

CLKi+1

Figure 4.4.: Resulting Quartz model of example ST ASS DEL (with memory)

2Both Quartz models are included in Appendix C.2 and C.11.

38

4.2. From ST Models to Quartz Models

4.2.2. Interfaces

This step covers the translation function for translating ST model in-
terfaces ∆idcl(ωφ

st) to Quartz model interfaces ∆idcl(ωqrz′), where
∆idcl(ωφ

st) =∆in(ωφ
st) ∪∆out(ωφ

st) ∪∆inout(ωφ
st).

Definition 4.2 (Interfaces – ST-to-Quartz). Let Ωφ
st = {ω

φ
st ∣ φ ∈ {fb,

fun, prg}} be the set of possible ST model elements. ∆idcl(ωqrz′) is derived
from ωφ

st and extended by event-driven variables and by an optional system

time, using the translation function t∆idcl
st↦qrz(ω

φ
st), which is described by Algo-

rithm 2.

Correctness

To check the correctness of Definition 4.2, the following lemmas are used.

Lemma 4.2. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg}, and

ωqrz always be invoked with connected ∆in(ωqrz). Then, for each interface

ei ∈ Ei(ωφ
st), t

∆idcl
st↦qrz(ω

φ
st) extends ∆in(ωqrz′), ∆out(ωqrz′), or ∆inout(ωqrz′),

and adds possible assignments to defaults to Σseq(ωqrz′) as specified in
Definition 4.2. ∆in(ωqrz′), ∆out(ωqrz′), and ∆inout(ωqrz′) conform to
the syntax rules of ∆in(ωqrz), ∆out(ωqrz), and ∆inout(ωqrz) regarding the
storage class, data type, and name. Σseq(ωqrz′) conforms to the syntax
rules of Σseq(ωqrz). With and without assignments to defaults, ∆in(ωqrz′),
∆out(ωqrz′), and ∆inout(ωqrz′) in combination with Σseq(ωqrz′) preserves
the semantics of ∆in(ωφ

st), ∆out(ωφ
st), and ∆inout(ωφ

st) regarding informa-
tion flow, modifiability, and initialization.

Proof The validity of Lemma 4.2 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of ∆in(ωqrz′),
∆out(ωqrz′), ∆inout(ωqrz′), and Σseq(ωqrz′) with the syntax rules of ∆in(ωqrz),
∆out(ωqrz), ∆inout(ωqrz), and Σseq(ωqrz) as specified in Section 3.3 using in-
duction on the number of added interfaces Ei(ωφ

st):

1. Base Case: When Ei(ωφ
st) = ∅, there are no input variables, output vari-

ables with possible initialization, and inout variables, and thus no state-
ments to add, which trivially conforms to the syntax rules of ∆in(ωqrz),
∆out(ωqrz), ∆inout(ωqrz), Σimm

ass (ωqrz), and Σpause(ωqrz), since these sets
remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables with possible initialization, and inout variables.

3. Inductive Step: Adding an element to input variables, output
variables with initialization, and inout variables results in an additional
element in ∆in(ωqrz′), ∆out(ωqrz′), ∆inout(ωqrz′), Σimm

ass (ωqrz′), and

39

Chapter 4: Model Transformation of ST Models to Quartz Models

Algorithm 2 Translate interfaces – ST-to-Quartz

Input: ωφ
st

Output: ∆in(ωqrz′), ∆out(ωqrz′), ∆inout(ωqrz′), Σseq(ωqrz′)
Translation Function t∆idcl

st↦qrz(ω
φ
st):

if φ ∈ {fb, prg} then
∆in(ωqrz′) ← add event bool ?EI;

▷ add Boolean event input variable
∆out(ωqrz′) ← add event bool !EO;

▷ add Boolean event output variable
end
if ωφ

st contains time-based logic then
∆in(ωqrz′) ← add nat ?CLK;

▷ add memorized input variable
end
if φ = fun ∧ erT ≠ ∅, where erT ∈ ErT (ωφ

st),ErT (ω
φ
st) ⊂ Ei(ω

φ
st) then

∆out(ωqrz′) ← add tαst↦qrz(α(erT)) !an(ωφ
st);

▷ add memorized output variable
end
forall ei ∈ Ei(ωφ

st) do
if ei = eiV s, where eiV s ∈ EiV s(ωφ

st),EiV s(ωφ
st) ⊂ Ei(ω

φ
st) then

∆in(ωqrz′) ← add tαst↦qrz(α(ei)) ?an(ei);
▷ add memorized input variable

end
if ei = eoV s, where eoV s ∈ EoV s(ωφ

st),EoV s(ωφ
st) ⊂ Ei(ω

φ
st) then

∆out(ωqrz′) ← add tαst↦qrz(α(ei)) !an(ei);
▷ add memorized output variable

Σseq(ωqrz′) ← add an(ei) = tτmisc
st↦qrz(π);

▷ add assignment to default value (if specified)
end
if ei = eiOV s, where eiOV s ∈ EiOV s(ωφ

st),EiOV s(ωφ
st) ⊂ Ei(ω

φ
st) then

∆inout(ωqrz′) ← add tαst↦qrz(α(ei)) an(ei);
▷ add memorized inout variable

end

end
if Σseq(ωqrz′) ≠ ∅ then

Σseq(ωqrz′) ← add pause;
▷ add pause if at least one variable is initialized

end

Σpause(ωqrz′). Their syntax still conforms to the syntax rules of
∆out(ωqrz), ∆inout(ωqrz), Σimm

ass (ωqrz), and Σpause(ωqrz).

Second, the semantic correctness is checked by comparing J∆in(ωqrz)Kξ,
J∆out(ωqrz)Kξ, and J∆inout(ωqrz)Kξ in combination with the SOS transition
rules of Σimm

ass (ωqrz) and Σpause(ωqrz) (see Section 3.3) with J∆in(ωφ
st)Kξ,

J∆out(ωφ
st)Kξ, and J∆inout(ωφ

st)Kξ (see Section 3.2).

40

4.2. From ST Models to Quartz Models

Illustrative Example for Lemma 4.2

As an example, below are some derived interfaces of the ST SIMPLE PRG1

model3:

1 real ?PRG_C // added to ∆in(ωqrz′)

2 real !PRG_OUT2 // added to ∆out(ωqrz′)

Lemma 4.3. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, prg}. Then,

t∆idcl
st↦qrz(ω

φ
st) adds the additional event input EI to ∆in(ωqrz′) and the

additional event output EO to ∆out(ωqrz′) as specified in Definition 4.2.
∆in(ωqrz′) and ∆out(ωqrz′) conform to the syntax rules of ∆in(ωqrz) and
∆out(ωqrz).

Proof The validity of Lemma 4.3 is proved by comparing the resulting syn-
tax of ∆in(ωqrz′) and ∆out(ωqrz′) with the syntax rules of ∆in(ωqrz) and
∆out(ωqrz) as specified in Section 3.3.

Illustrative Example for Lemma 4.3

As an example, below are the derived interfaces of the ST SIMPLE PRG1model4:

1 event bool ?EI // added to ∆in(ωqrz′)

2 event bool !EO // added to ∆out(ωqrz′)

Lemma 4.4. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg}, and

ωφ
st contains time-based logic, where time is a readable variable and is

synchronized externally. Then, t∆idcl
st↦qrz(ω

φ
st) adds an additional memorized

input to ∆in(ωqrz′) as specified in Definition 4.2. ∆in(ωqrz′) conforms to
the syntax rules of ∆in(ωqrz).

Proof The validity of Lemma 4.4 is proved by comparing the resulting syntax
of ∆in(ωqrz′) with the syntax rules of ∆in(ωqrz) as specified in Section 3.3.

Illustrative Example for Lemma 4.4

As an example, below is the derived input of the ST SIMPLE PRG1 model5:

1 nat ?CLK // added to ∆in(ωqrz′)

3Both models, ST and Quartz , are included in Appendix B.27 and C.27.
4Both models, ST and Quartz , are included in Appendix B.27 and C.27.
5Both models, ST and Quartz , are included in Appendix B.27 and C.27.

41

Chapter 4: Model Transformation of ST Models to Quartz Models

Lemma 4.5. Let ωfun
st be translated to ωqrz′ and ωfun

st has a specified

return type, which is processed by ωfun
st . Then, t∆idcl

st↦qrz(ω
φ
st) adds an ad-

ditional memorized output for the specified return type to ∆out(ωqrz′) as
specified in Definition 4.2. ∆out(ωqrz′) conforms to the syntax rules of
∆out(ωqrz).

Proof The validity of Lemma 4.5 is proved by comparing the resulting syntax
of ∆out(ωqrz′) with the syntax rules of ∆out(ωqrz) as specified in Section 3.3.

Illustrative Example for Lemma 4.5

As an example, below is the derived output of the ST SIMPLE FUN function in
ST SIMPLE PRG1 model6:

1 real !ST_SIMPLE_FUN // added to ∆out(ωqrz′)

4.2.3. Variables

This step covers the translation function for translating local ST model
variables ∆vdcl(ωφ

st) to local Quartz model variables ∆vdcl(ωqrz′), where
∆vdcl(ωφ

st) =∆local(ωφ
st).

Definition 4.3 (Variables – ST-to-Quartz). Let Ωφ
st = {ω

φ
st ∣ φ ∈ {fb, fun,

prg}} be the set of possible ST model elements. ∆vdcl(ωqrz′) is derived from
ωφ
st and extended by event-driven interfaces of instances as well as additional

instance output variables using the translation function t∆vdcl
st↦qrz(ω

φ
st), which is

described by Algorithm 3.

Correctness

To check the correctness of Definition 4.3, the following lemmas are used.

Lemma 4.6. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, fun, prg}. Then,

for each local variable elV s ∈ Ei(ωφ
st) that is not derived from standard func-

tion blocks ed(elV s) = ∅), t∆vdcl
st↦qrz(ω

φ
st) adds a local variable to ∆local(ωqrz′)

and a possible initialization to Σseq(ωqrz′) as specified in Definition 4.3.
∆local(ωqrz′) conforms to the syntax rules of ∆local(ωqrz) regarding the
storage class, data type, and name, and Σseq(ωqrz′) conforms to the syntax
rules of Σseq(ωqrz). With and without initialization, ∆local(ωqrz′) in com-
bination with Σseq(ωqrz′) preserves the semantics of ∆local(ωφ

st) regarding
modifiability and initialization.

6Both models, ST and Quartz , are included in Appendix B.27 and C.27.

42

4.2. From ST Models to Quartz Models

Algorithm 3 Translate variables – ST-to-Quartz

Input: ωφ
st

Output: ∆local(ωqrz′),Σseq(ωqrz′)
Translation Function t∆vdcl

st↦qrz(ω
φ
st):

forall ebinst ∈ Ebinst(ωφ
st) do

∆local(ωqrz′) ← add event bool an(aiN(ebinst)) EI;
▷ add Boolean event input variable

∆local(ωqrz′) ← add event bool an(aiN(ebinst)) EO;
▷ add Boolean event output variable

forall eoV s ∈ EoV s(ebinst) do
∆local(ωqrz′) ← add tαst↦qrz(α(eoV s)) an(aiN(ebinst)) an(eoV s);

▷ add memorized variable for output variable
end

end
forall ebfun′ (derived from ωφ

st) do
∆local(ωqrz′) ← add tαst↦qrz(erT (ebfun′)) an(ebfun′) li′(ebfun′);

▷ add memorized variable for return type of ebfun′ , where i′

represents the index of occurrence
forall eoV s ∈ EoV s(ebfun′) do

∆local(ωqrz′) ← add
tαst↦qrz(α(eoV s)) an(ebfun′) an(eoV s) li′(ebfun′);

▷ add memorized variable for output variable
end

end
forall elV s ∈ Ei(ωφ

st) do
if ed(elV s) = ∅ then

∆local(ωqrz′) ← add tαst↦qrz(α(elV s)) an(elV s);
▷ add memorized variable

Σseq(ωqrz′) ← add an(elV s) = tτmisc
st↦qrz(π);

▷ add assignment to default value (if specified)
end

end
if Σseq(ωqrz′) ≠ ∅ then

Σseq(ωqrz′) ← add pause (and remove pause added for initialized in-
terfaces);

▷ add pause if at least one variable is initialized
end

Proof The validity of Lemma 4.6 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ∆local(ωqrz′) and
Σseq(ωqrz′) with the syntax rules of ∆local(ωqrz) and Σseq(ωqrz) as specified
in Section 3.3 using induction on the number of added variables Ei(ωφ

st):

1. Base Case: When Ei(ωφ
st) = ∅, there are no local variables and thus

no statements to add, which trivially conforms to the syntax rules of
∆local(ωqrz), Σimm

ass (ωqrz), and Σpause(ωqrz), since these sets remain un-

43

Chapter 4: Model Transformation of ST Models to Quartz Models

changed and are optional.

2. Induction Hypothesis: The lemma holds for any set of local variables
with possible initialization.

3. Inductive Step: Adding an element to local variables with initial-
ization results in an additional element in ∆local(ωqrz′), Σimm

ass (ωqrz′),
and Σpause(ωqrz′). Their syntax still conforms to the syntax rules of
∆local(ωqrz), Σimm

ass (ωqrz), and Σpause(ωqrz).

Second, the semantic correctness is checked by comparing J∆local(ωqrz)Kξ (in
combination with the SOS transition rules of Σimm

ass (ωqrz) and Σpause(ωqrz))
with J∆local(ωφ

st)Kξ (see Section 3.2 and 3.3).

Illustrative Example for Lemma 4.6

As an example, below is the derived local variable of the ST SIMPLE PRG1

model7:

1 int PRG_COUNT; // added to ∆local(ωqrz′)

2 PRG_COUNT = 4; // added to Σseq(ωqrz′)

3 pause; // added to Σseq(ωqrz′)

Lemma 4.7. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, prg}. Then,

for each instance ebinst ∈ Ebinst(ωφ
st), t

∆vdcl
st↦qrz(ω

φ
st) adds the additional event

variables for event-driven execution control to ∆local(ωqrz′) as specified in
Definition 4.3. ∆local(ωqrz′) conforms to the syntax rules of ∆local(ωqrz)
regarding the storage class, data type, and name that is consistently derived
from the instance name.

Proof The validity of Lemma 4.7 is checked by comparing the resulting syntax
of ∆local(ωqrz′) with the syntax rules of ∆local(ωqrz) as specified in Section 3.3
using induction on the number of instances Ebinst(ωφ

st):

1. Base Case: When Ebinst(ωφ
st) = ∅, there are no local variables to add,

which trivially conforms to the syntax rules of ∆local(ωqrz), since this
set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances
Ebinst(ωφ

st).

3. Inductive Step: Adding an instance to Ebinst(ωφ
st) results in an addi-

tional element in ∆local(ωqrz′). Its syntax still conforms to the syntax
rules of ∆local(ωqrz).

7Both models, ST and Quartz , are included in Appendix B.27 and C.27.

44

4.2. From ST Models to Quartz Models

Illustrative Example for Lemma 4.7

As an example, below are the derived local variables of the ST SIMPLE PRG1

model8:

1 event bool DEBOUNCE_01_EI; // added to ∆local(ωqrz′)

2 event bool DEBOUNCE_01_EO; // added to ∆local(ωqrz′)

Lemma 4.8. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, fun, prg}.

Then, for each output eoV s(ebinst) ∈ EoV s(ebinst) of each instance ebinst ∈
Ebinst(ωφ

st), t
∆vdcl
st↦qrz(ω

φ
st) adds a local variable to ∆local(ωqrz′) as specified in

Definition 4.3. ∆local(ωqrz′) conforms to the syntax rules of ∆local(ωqrz)
regarding the storage class, data type, and name that is consistently derived
from the instance name.

Proof The validity of Lemma 4.8 is checked by comparing the resulting syntax
of ∆local(ωqrz′) with the syntax rules of ∆local(ωqrz) as specified in Section 3.3
using induction on the number of instances Ebinst(ωφ

st) with output variables
EoV s(ebinst):

1. Base Case: When Ebinst(ωφ
st) = ∅ and EoV s(ebinst) = ∅, there are no

local variables to add, which trivially conforms to the syntax rules of
∆local(ωqrz), since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances with
any set of output variables.

3. Inductive Step: Adding an instance to Ebinst(ωφ
st) with an output vari-

able to EoV s(ebinst) results in an additional element in ∆local(ωqrz′). Its
syntax still conforms to the syntax rules of ∆local(ωqrz).

Illustrative Example for Lemma 4.8

As an example, below are the derived local variables of the ST SIMPLE PRG1

model9:

1 bool DEBOUNCE_01_OUT; // added to ∆local(ωqrz′)

2 nat DEBOUNCE_01_ET_OFF; // added to ∆local(ωqrz′)

Lemma 4.9. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, fun, prg}. Then,

for the return type erT (ebfun′) and each output eoV s(ebfun′) ∈ EoV s(ebfun′)
of each user-defined function ebfun′ ∈ Ebfun′ (ω

φ
st), t

∆vdcl
st↦qrz(ω

φ
st) adds an addi-

tional variable to ∆local(ωqrz′) as specified in Definition 4.3. ∆local(ωqrz′)
conforms to the syntax rules of ∆local(ωqrz) regarding the storage class,

8Both models, ST and Quartz , are included in Appendix B.27 and C.27.
9Both models, ST and Quartz , are included in Appendix B.27 and C.27.

45

Chapter 4: Model Transformation of ST Models to Quartz Models

data type, and name that is consistently derived from the instance name
and index of occurrence.

Proof The validity of Lemma 4.9 is checked by comparing the resulting syntax
of ∆local(ωqrz′) with the syntax rules of ∆local(ωqrz) as specified in Section 3.3
using induction on the number of user-defined functions Ebfun′ (ω

φ
st) with return

type and output variables EoV s(ebfun′):

1. Base Case: When Ebfun′ (ω
φ
st) = ∅ and EoV s(ebfun′) = ∅, there are no

local variables to add, which trivially conforms to the syntax rules of
∆local(ωqrz), since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of user-defined
functions with any set of output variables.

3. Inductive Step: Adding a user-defined function with return type to
Ebfun′ (ω

φ
st) and an output variable to EoV s(ebfun′) results in two addi-

tional elements in ∆local(ωqrz′) (one for the return type and one for the
output). Its syntax still conforms to the syntax rules of ∆local(ωqrz).

Illustrative Example for Lemma 4.9

As an example, below are the derived local variables of the ST ASS IMM3

model10:

1 int {32768} ST_ASS_IMM_OUT_y_l1; // added to ∆local(ωqrz′)

2 bool ST_ASS_IMM_OUT_l1; // added to ∆local(ωqrz′)

4.2.4. Data Types and Fields

This step covers the translation function for translating ST data types and
fields A[+](ωφ

st) to Quartz data types and fields A[+](ωqrz′).

Definition 4.4 (Data types and fields – ST-to-Quartz). Let α(ωφ
st) be

a considered ST data type and α+(ωφ
st) be an ST data type field. ST data types

and fields A[+](ωφ
st) are translated to Quartz data types and fields A[+](ωqrz′)

using the translation function tαst↦qrz(α[+](ω
φ
st)), which is described by Algo-

rithm 37 in Appendix I.0.111.

Correctness

To check the correctness of Definition 4.4, the following lemma is used.

10Both models, ST and Quartz , are included in Appendix B.18 and C.18.
11This algorithm describes an intuitive mapping, which is moved to the appendix for the

sake of readability, but is not necessary for understanding the following lemma.

46

4.2. From ST Models to Quartz Models

Lemma 4.10. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg},

and bit vector, integer, floating point, and duration be the consid-
ered data type categories A[+](ωφ

st) as specified in Section 3.2. Then,
tαst↦qrz(α[+](ω

φ
st)) translates α[+](ωφ

st) to α[+](ωqrz′) as specified in Def-

inition 4.4. α[+](ωqrz′) conforms to the syntax rules of α[+](ωqrz) and
preserves the semantics of α[+](ωφ

st) regarding boundaries, precision, res-
olution, and defaults (if applicable).

Proof The validity of Lemma 4.10 is checked as follows: First, the syn-
tactic correctness is proved by comparing all resulting data types and fields
α[+](ωqrz′) with syntax rules α[+](ωqrz) as specified in Section 3.3. Second, the
semantic correctness is checked by comparing Jα[+](ωqrz)Kξ with Jα[+](ωφ

st)Kξ
(see Section 3.2 and 3.3), taking into account that the resolution of the dura-
tion data type is restricted to milliseconds.

Illustrative Example for Lemma 4.10

Usage examples are given by illustrative examples of previous lemmas, such
as Lemma 4.9.

4.2.5. POU Imports

This step covers the translation function for translating instantiated and in-
voked POU imports in ST models to Quartz model imports ∆imports(ωqrz′).

Definition 4.5 (POU imports – ST-to-Quartz). Let Ωφ
st = {ω

φ
st ∣ φ ∈ {fb,

fun, prg}} be the set of possible ST model elements. Instantiated and invoked
POUs in ST models are derived from external blocks elV s ∈ E(ωφ

st), ed(elV s) ≠ ∅
and user-defined blocks ebfun′ ∈ F ′(ω

φ
st). These blocks are translated to Quartz

model imports ∆imports(ωqrz′) using the translation function t
∆imports

st↦qrz (ω
φ
st),

which is described by Algorithm 4.

Algorithm 4 Translate POU imports – ST-to-Quartz

Input: ωφ
st

Output: ∆imports(ωqrz′)
Translation Function t

∆imports

st↦qrz (ω
φ
st):

forall elV s ∈ E(ωφ
st), ed(elV s) ≠ ∅ do

∆imports(ωqrz′) ← add import (ed(elV s)).*;
end
forall ebfun′ ∈ F ′(ω

φ
st) (derived from ωφ

st) do
∆imports(ωqrz′) ← add import an(ebfun′)).*;

end

47

Chapter 4: Model Transformation of ST Models to Quartz Models

Correctness

To check the correctness of Definition 4.5, the following lemma is used.

Lemma 4.11. Let the IEC 61131-3 standard function blocks (RS, SR,
TOF, TON) [GDV14] be available as semantically and syntactically correct
Quartz models. Then, for each instance elV s ∈ E(ωφ

st), ed(elV s) ≠ ∅ and

user-defined function ebfun′ ∈ F ′(ω
φ
st), t

∆imports

st↦qrz (ω
φ
st) adds the correspond-

ing import to ∆imports(ωqrz′) (if not already imported) as specified in Defi-
nition 4.5. ∆imports(ωqrz′) conforms to the syntax rules of ∆imports(ωqrz).

Proof The validity of Lemma 4.11 is checked by comparing the resulting
syntax of ∆imports(ωqrz′) with the syntax rules of ∆imports(ωqrz) as spec-
ified in Section 3.3 using induction on the number of instances E(ωφ

st) =
{elV s ∣ ed(elV s) ≠ ∅} and user-defined functions F ′(ωφ

st):

1. Base Case: When E(ωφ
st) = ∅ and F ′(ωφ

st) = ∅, there are no modules to
import, which trivially conforms to the syntax rules of ∆imports(ωqrz),
since this set is optional.

2. Induction Hypothesis: The lemma holds for any set of instances and
any set of user-defined functions.

3. Inductive Step: Adding an instance and user-defined function to
E(ωφ

st) and F ′(ωφ
st) results in two additional elements in ∆imports(ωqrz′)

(one for the instance and one for the user-defined function). Its syntax
still conforms to the syntax rules of ∆imports(ωqrz).

Illustrative Example for Lemma 4.11

As an example, below are the derived imports of the ST SIMPLE PRG1 model12:

1 import ST_DEBOUNCE .*; // added to ∆imports(ωqrz′)

2 import ST_SIMPLE_FUN .* // added to ∆imports(ωqrz′)

4.2.6. Expressions

This step covers the translation function for translating expressions in ST
models T (ωφ

st) to expressions in Quartz models T (ωqrz′).

Definition 4.6 (Expressions – ST-to-Quartz). Let Ωφ
st = {ω

φ
st ∣ φ ∈ {fb,

fun, prg}} be the set of possible ST model elements. An expression in ST mod-
els τ (ωφ

st) ∈ T (ω
φ
st) is translated to an expression in Quartz models τ (ωqrz′) ∈

T (ωqrz′) using the translation function tτst↦qrz(τ (ω
φ
st)), which is described by

Algorithm 38 in Appendix I.0.213.
12Both models, ST and Quartz , are included in Appendix B.27 and C.27.
13This algorithm describes an intuitive mapping, which is moved to the appendix for the

sake of readability, but is not necessary for understanding the following lemma.

48

4.2. From ST Models to Quartz Models

Correctness

To check the correctness of Definition 4.6, the following lemma is used.

Lemma 4.12. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg}, and

miscellaneous, compare operators, arithmetic operators, conditional oper-
ator, and boolean operators be the considered expression categories T (ωφ

st)
as specified in Section 3.2. Then, for each τ(ωφ

st) ∈ T (ω
φ
st), tτst↦qrz(τ(ω

φ
st))

translates τ(ωφ
st) to τ(ωqrz′) as specified in Definition 4.6. τ(ωqrz′) con-

forms to the syntax rules of τ(ωqrz) and preserves the semantics of τ(ωφ
st)

regarding the type system and SOS transition rules.

Proof The validity of Lemma 4.12 is proved as follows: First, the syntactic
correctness is checked by comparing all resulting expressions τ(ωqrz′) with syn-
tax rules τ(ωqrz) as specified in Section 3.3. Second, the semantic correctness
is checked by comparing Jτ(ωqrz)Kξ with Jτ(ωφ

st)Kξ, their type system, and SOS
transition rules as specified in Section 3.2 and 3.3. As a result, each considered
ST expression can be mapped to a corresponding Quartz expression.

Illustrative Example for Lemma 4.12

As an example, below are two derived expressions of the ST SIMPLE FUN

model14:

1 (COUNT +1) // result of tτst↦qrz(COUNT+1)

2 ((A1*B1)/C1) // result of tτst↦qrz((A1*B1)/C1)

4.2.7. POU Invocations

This step covers the translation function for translating POU invocations in ST
models Σϑ

inv(ω
φ
st) to Quartz model invocations in Quartz models Σϑ

inv(ωqrz′).
The high-level runtime behavior of an ST model with memory translated to
a Quartz model mimicking memory behavior is illustrated in Figure 4.5. Fig-
ure 4.5a shows the runtime behavior of an example ST model that is triggered
in each PLC cycle (red) and invokes a POU with memory and a POU without
memory depending on their execution order (blue). In contrast, Figure 4.5b
shows the runtime behavior of the resulting Quartz model, whose model with
memory is triggered by an additional event-driven variable (red) and the model
without memory without an additional event-driven variable, depending on its
execution order (blue).

Definition 4.7 (POU Invocations – ST-to-Quartz). Let Ωφ
st = {ω

φ
st ∣ φ ∈

{fb, fun, prg}} be the set of possible ST model elements and POU invocations
in ST models Σinv(ωφ

st) are given as complete formal function call [GDV14]. A

14Both models, ST and Quartz , are included in Appendix B.26 and C.26.

49

Chapter 4: Model Transformation of ST Models to Quartz Models

entry

PLC
Cycle

with memorywith memory without memory

entry

entry

exit

ti

tj

tk

tl

tm

tj

tk

t0 t0

FBD,
ST, ...

FBD,
ST, ...

(a) Initial ST model

entry

EI

with memorywith memory without memory

entry

entry

EI

EO

exit

EO

Si

Sj

Sk

Sl

Sm

Sj

Sk

S0 S0

Quartz,
...

Quartz,
...

(b) Resulting Quartz model

Figure 4.5.: High-level runtime behavior of a model with memory that invokes two
models (Approach: ST-to-Quartz)

POU invocation σϑ
inv(ω

φ
st) ∈ Σϑ

inv(ω
φ
st) is translated to a Quartz model invoca-

tion σϑ
inv(ωqrz′) ∈ Σϑ

inv(ωqrz′) using the translation function tΣinv
st↦qrz(σϑ

inv(ω
φ
st)),

which is described by Algorithm 5.

Correctness

To check the correctness of Definition 4.7, the following lemmas are used.

Lemma 4.13. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, prg}. Then,

for an invoked instance σfb
inv(ω

φ
st), t

Σinv
st↦qrz(σ

fb
inv(ω

φ
st)) adds an event-driven

control sequence to Σseq(ωqrz′) as specified in Definition 4.7. Furthermore,

tΣinv
st↦qrz(σ

fb
inv(ω

φ
st)) adds a synchronous concurrent thread to invoke instance

with related arguments including event-driven interfaces and synchronized
clock (if specified) as specified in Definition 4.7. Σseq(ωqrz′) conforms

to the syntax rules of Σseq(ωqrz) and σfb
inv(ωqrz′) to the syntax rules of

σfb
inv(ωqrz). The combination of Σseq(ωqrz) and σfb

inv(ωqrz) preserves the

SOS transition rules of σfb
inv(ω

φ
st) regarding termination behavior.

Proof The validity of Lemma 4.13 is proved by comparing the resulting syn-
tax of ∆seq(ωqrz′) with the syntax rules of ∆seq(ωqrz), and σfb

inv(ωqrz′) with

50

4.2. From ST Models to Quartz Models

Algorithm 5 Invoke POU – ST-to-Quartz

Input: σϑ
inv(ω

φ
st)

Output: Σseq(ωqrz′), σfb
inv(ωqrz′), σf ′

inv(ωqrz′)
Translation Function tΣinv

st↦qrz(σϑ
inv(ω

φ
st)):

switch ϑ do
case fb do

Σseq(ωqrz′) ← add { emit((aiN(σfb
inv(ω

φ
st))) EI);

immediate await((aiN(σfb
inv(ω

φ
st))) EO);

}

▷ add event-driven control sequence
σfb
inv(ωqrz′) ←|| (aiN(σfb

inv(ω
φ
st))):

(atN(σfb
inv(ω

φ
st)))((aiN(σ

fb
inv(ω

φ
st))) EI, (aiN(σ

fb
inv(ω

φ
st))) EO,

[CLK,] I, O);
▷ add thread with event-driven interfaces and system time (if

specified)
end
case f ′ do

σf ′

inv(ωqrz′) ← (atN(σf ′

inv(ω
φ
st)))([CLK,] I, O);
▷ add invocation with clock (if specified)

end

forall i ∈ I,I = EiV s(aiN(σϑ
inv(ω

φ
st))) ∪ EiOV s(aiN(σϑ

inv(ω
φ
st))) do

i↦ tτst↦qrz(i);
▷ add translated input or inout argument

end

forall o ∈ O,O = EoV s(aiN(σϑ
inv(ω

φ
st))) do

o← o(aiN(σϑ
inv(ω

φ
st))));

▷ add translated output argument
end

end

the syntax rules of σfb
inv(ωqrz) as specified in Section 3.3 using induction on

the number of input variables including inout variables EiV s(aiN(σϑ
inv(ω

φ
st)))∪

EiOV s(aiN(σϑ
inv(ω

φ
st))) and output variables EoV s(aiN(σϑ

inv(ω
φ
st))) of an in-

voked instance σfb
inv(ω

φ
st) with system time:

1. Base Case: When σfb
inv(ω

φ
st) ≠ ∅, EiV s(aiN(σϑ

inv(ω
φ
st))) = ∅,

EiOV s(aiN(σϑ
inv(ω

φ
st))) = ∅ and EoV s(aiN(σϑ

inv(ω
φ
st))) = ∅, there

are no existing interfaces to add, but added sequence σimm
ass (ωqrz′),

σimm
await(ωqrz′), and σfb

inv(ωqrz′), which conforms to the syntax rules of

σimm
ass (ωqrz), σimm

await(ωqrz), and σfb
inv(ωqrz).

2. Induction Hypothesis: The lemma holds for any set of input variables
including inout variables and any set of output variables of an invoked
instance.

3. Inductive Step: Adding an input, inout variable, and out-
put variable to EiV s(aiN(σϑ

inv(ω
φ
st))), EiOV s(aiN(σϑ

inv(ω
φ
st))), and

51

Chapter 4: Model Transformation of ST Models to Quartz Models

EoV s(aiN(σϑ
inv(ω

φ
st))) results in three additional interfaces and sequence

σimm
ass (ωqrz′), σimm

await(ωqrz′), and σfb
inv(ωqrz′), which still conforms to the

syntax rules of σimm
ass (ωqrz), σimm

await(ωqrz), and σfb
inv(ωqrz).

Second, the semantic correctness is checked by comparing the SOS transition
rules of the sequence σimm

ass (ωqrz), σimm
await(ωqrz), and σfb

inv(ωqrz) with the SOS

transition rules of σfb
inv(ω

φ
st). Triggering EI and waiting for EO mimics a block

invocation in ST models.

Illustrative Example for Lemma 4.13

As an example, below is a derived event-driven sequence and model invocation
including arguments in the ST SIMPLE PRG1 model15:

1 loop{ . . .
2 emit(DEBOUNCE_01_EI); // event input

3 immediate await(DEBOUNCE_01_EO); // event output

4 . . . }

5 || DEBOUNCE_01:DEBOUNCE(// add. thread

6 DEBOUNCE_01_EI, // event input

7 DEBOUNCE_01_EO, // event output

8 CLK, // clock

9 PRG_IN, 2000, // in(out) arg.

10 DEBOUNCE_01_OUT, // output arg.

11 DEBOUNCE_01_ET_OFF); // output arg.

Lemma 4.14. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg}, and

user-defined function calls are designed as complete formal function call.
Then, tΣinv

st↦qrz(σ
f ′

inv(ω
φ
st)) translates a user-defined function call σf ′

inv(ω
φ
st)

to a Quartz model invocation σf ′

inv(ωqrz′) with related arguments including

synchronized clock (if specified) as specified in Definition 4.7. σf ′

inv(ωqrz′)
conforms to the syntax rules of σf ′

inv(ωqrz) and preserves the SOS transition

rules of σf ′

inv(ω
φ
st) regarding termination behavior.

Proof The validity of Lemma 4.14 is checked by comparing the resulting
syntax of σf ′

inv(ωqrz′) with the syntax rules of σf ′

inv(ωqrz) as specified in Sec-
tion 3.3 using induction on the number of input variables including inout
variables EiV s(aiN(σϑ

inv(ω
φ
st))) ∪ EiOV s(aiN(σϑ

inv(ω
φ
st))) and output variables

EoV s(aiN(σϑ
inv(ω

φ
st))) of an invoked user-defined function σf ′

inv(ω
φ
st) with sys-

tem time:

1. Base Case: When σf ′

inv(ω
φ
st) ≠ ∅, EiV s(aiN(σϑ

inv(ω
φ
st))) = ∅,

EiOV s(aiN(σϑ
inv(ω

φ
st))) = ∅ and EoV s(aiN(σϑ

inv(ω
φ
st))) = ∅, there

are no existing interfaces to add, which conforms to the syntax rules of
σf ′

inv(ωqrz).
15Both models, ST and Quartz , are included in Appendix B.27 and C.27.

52

4.2. From ST Models to Quartz Models

2. Induction Hypothesis: The lemma holds for any set of input variables
including inout variables and any set of output variables of an invoked
user-defined function.

3. Inductive Step: Adding an input, inout variable, and out-
put variable to EiV s(aiN(σϑ

inv(ω
φ
st))), EiOV s(aiN(σϑ

inv(ω
φ
st))), and

EoV s(aiN(σϑ
inv(ω

φ
st))) results in three additional interfaces, which still

conforms to the syntax rules σf ′

inv(ωqrz).

Second, the semantic correctness is checked by comparing the SOS transi-
tion rules of σf ′

inv(ωqrz) with the SOS transition rules of σf ′

inv(ω
φ
st). An inline

invocation mimics a block invocation in ST models, which can contain multiple
macro steps.

Illustrative Example for Lemma 4.14

As an example, below is a derived model invocation including arguments in
the ST SIMPLE PRG1 model16:

1 loop{ . . .
2 ST_SIMPLE_FUN(// invocation

3 (PRG_A + 2.0), // in(out) arg.

4 PRG_B, PRG_C, PRG_COUNT, // in(out) arg.

5 ST_SIMPLE_FUN_l1); // output arg.

6 . . . }

4.2.8. Assignments

This step covers the translation function for translating assignments in ST
models Σϑ

ass(ω
φ
st) to assignments in Quartz models Σϑ

ass(ωqrz′).

Definition 4.8 (Translation of assignments – ST-to-Quartz).
Let Ωφ

st = {ω
φ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model el-

ements and Σϑ
ass(ω

φ
st) be the set of assigned variables. An immediate

assignment σimm
ass (ω

φ
st) ∈ Σimm

ass (ω
φ
st) (i.e., rhs(σimm

ass (ω
φ
st)) does not depend

on lhs(σimm
ass (ω

φ
st)) and a delayed assignment σdel

ass(ω
φ
st) ∈ Σdel

ass(ω
φ
st) (i.e.,

rhs(σdel
ass(ω

φ
st)) does depend on lhs(σdel

ass(ω
φ
st)) in ST models is translated

to a sequence Σseq(ωqrz′) in Quartz models using the translation function

t
Σass
st↦qrz(σϑ

ass(ω
φ
st)), which is described by Algorithm 6.

Correctness

To check the correctness of Definition 4.8, the following lemmas are used.

Lemma 4.15. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg}, and

ϑ = imm. Then, t
Σass
st↦qrz(σimm

ass (ω
φ
st)) translates σimm

ass (ω
φ
st) to a sequence

Σseq(ωqrz′) of σpause(ωqrz′) and σimm
ass (ωqrz′) as specified in Definition 4.8,

16Both models, ST and Quartz , are included in Appendix B.27 and C.27.

53

Chapter 4: Model Transformation of ST Models to Quartz Models

Algorithm 6 Translate assignment – ST-to-Quartz

Input: σϑ
ass(ω

φ
st)

Output: Σseq(ωqrz′)
Translation Function t

Σass
st↦qrz(σϑ

ass(ω
φ
st)):

switch ϑ do
case imm do

Σseq(ωqrz′) ← add

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pause;(if lhs(σimm
ass (ω

φ
st)) was updated

or read earlier in the current macro step)
lhs(σimm

ass (ω
φ
st)) = tτst↦qrz(rhs(σimm

ass (ω
φ
st)));

⎫⎪⎪⎪⎬⎪⎪⎪⎭
end
case del do

Σseq(ωqrz′) ← add

⎧⎪⎪⎪⎨⎪⎪⎪⎩

next(lhs(σdel
ass(ω

φ
st))) =

tτst↦qrz(rhs(σdel
ass(ω

φ
st)));

pause;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
end

end

considering the last update and read of lhs(σimm
ass (ω

φ
st)). Σseq(ωqrz′) con-

forms to the syntax rules of Σseq(ωqrz), preserves the SOS transition rules
of σimm

ass (ω
φ
st), and respects the single assignment per macro step constraint

in Quartz.

Proof The validity of Lemma 4.15 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σseq(ωqrz′) with
the syntax rules of Σseq(ωqrz) as specified in Section 3.3, where there are two
cases to distinguish:

• Case 1 (lhs(σimm
ass (ω

φ
st)) was updated or read earlier in the cur-

rent macro step): Σseq(ωqrz′) = {σpause(ωqrz′);σimm
ass (ωqrz′)}, which

conforms to the syntax rules of σpause(ωqrz) and σimm
ass (ωqrz).

• Case 2 (lhs(σimm
ass (ω

φ
st)) was neither updated nor read earlier

in the current macro step)): Σseq(ωqrz′) = {σimm
ass (ωqrz′)}, which

conforms to the syntax rules of σimm
ass (ωqrz).

Second, the semantic correctness is checked by comparing the SOS transition
rules of σpause(ωqrz) in combination with σimm

ass (ωqrz) (or σimm
ass (ωqrz) only,

respectively) with the SOS transition rules of σimm
ass (ω

φ
st). The semantics are

preserved, considering that a PLC cycle can contain several macro steps (see
Section 3.2 and 3.3). The single assignment per macro step is respected by
considering the last update and read of lhs(σimm

ass (ω
φ
st)).

54

4.2. From ST Models to Quartz Models

Illustrative Example for Lemma 4.15

As an example, the immediately assigned variables of the ST ASS IMM1 model
and ST ASS IMM2 model are translated as follows17:

1 y:=x;
2 ⇒ y=x; // σimm

ass (ωqrz′) added to Σseq(ωqrz′)

3 -----------------------

4 y0:=x0; y1:=x1;
5 ⇒ y0=x0; // σimm

ass (ωqrz′) added to Σseq(ωqrz′)

6 ⇒ y1=x1; // σimm
ass (ωqrz′) added to Σseq(ωqrz′)

7 -----------------------

8 y0:=x0; y1:=x1; y0:=x2;
9 ⇒ y0=x0; // σimm

ass (ωqrz′) added to Σseq(ωqrz′)

10 ⇒ y1=x1; // σimm
ass (ωqrz′) added to Σseq(ωqrz′)

11 ⇒ pause; // σpause(ωqrz′) added to Σseq(ωqrz′)

12 ⇒ y0=x2; // σimm
ass (ωqrz′) added to Σseq(ωqrz′)

13 -----------------------

14 y2:=x0; y2:=x1;
15 ⇒ y2=x0; // σimm

ass (ωqrz′) added to Σseq(ωqrz′)

16 ⇒ pause; // σpause(ωqrz′) added to Σseq(ωqrz′)

17 ⇒ y2=x1; // σimm
ass (ωqrz′) added to Σseq(ωqrz′)

18 -----------------------

19 y0:=x0; x0:=y0+x1;
20 ⇒ y0=x0; // σimm

ass (ωqrz′) added to Σseq(ωqrz′)

21 ⇒ pause; // σpause(ωqrz′) added to Σseq(ωqrz′)

22 ⇒ x0=y0+x1; // σimm
ass (ωqrz′) added to Σseq(ωqrz′)

Lemma 4.16. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg}, and

ϑ = del. Then, t
Σass
st↦qrz(σdel

ass(ω
φ
st)) translates σdel

ass(ω
φ
st) to a sequence

Σseq(ωqrz′) of σdel
ass(ωqrz′) and σpause(ωqrz′) as specified in Definition 4.8.

Σseq(ωqrz′) conforms to the syntax rules of Σseq(ωqrz), preserves the SOS
transition rules of σdel

ass(ω
φ
st), and respects the single assignment per macro

step constraint in Quartz.

Proof The validity of Lemma 4.16 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σseq(ωqrz′) with
the syntax rules of Σseq(ωqrz) as specified in Section 3.3, where Σseq(ωqrz′) =
{σdel

ass(ωqrz′);σpause(ωqrz′)}, which conforms to the syntax rules of σdel
ass(ωqrz)

and σpause(ωqrz). Second, the semantic correctness is checked by comparing
the SOS transition rules of σdel

ass(ωqrz) in combination with σpause(ωqrz) with
the SOS transition rules of σdel

ass(ω
φ
st) (see Section 3.2 and 3.3). The semantics

are preserved, considering that a PLC cycle can contain several macro steps.
The single assignment per macro step is implicitly respected by using the
delayed assignment operator of Quartz followed by a pause statement.

Illustrative Example for Lemma 4.16

As an example, the delayed assigned variable of the ST ASS DELmodel is trans-
lated as follows18:

17Both models, ST and Quartz , are included in Appendix B.15, B.16, C.15, and C.16.
18Both models, ST and Quartz , are included in Appendix B.11 and C.11.

55

Chapter 4: Model Transformation of ST Models to Quartz Models

1 y0 := y0 + x0;
2 ⇒ next(y0) = y0 + x0; // σdel

ass(ωqrz′) added to Σseq(ωqrz′)

3 ⇒ pause; // σpause(ωqrz′) added to Σseq(ωqrz′)

4.2.9. Conditions

This step covers the translation function for translating conditions in ST mod-
els Σϑ

cond(ω
φ
st) to conditions in Quartz models Σϑ

cond(ωqrz′).

Definition 4.9 (Translation of conditions – ST-to-Quartz). Let
Ωφ
st = {ω

φ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements. A

condition in ST models σcond(ωφ
st) ∈ Σcond(ωφ

st) is translated to a condition
in Quartz models σcond(ωqrz′) ∈ Σcond(ωqrz) using the translation function

tΣcond
st↦qrz(σϑ

cond(ω
φ
st)), which is described by Algorithm 7.

Algorithm 7 Translate condition – ST-to-Quartz

Input: σϑ
cond(ω

φ
st)

Output: σϑ
cond(ωqrz′)

Translation Function tΣcond
st↦qrz(σϑ

cond(ω
φ
st)):

switch ϑ do
case it do

σit
cond(ωqrz′) ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩

if(tτst↦qrz(λb(σit
cond(ω

φ
st)))){

tΣst↦qrz(Σ1(σit
cond(ω

φ
st))

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
end
case ϑ = ite do

σite
cond(ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

if(tτst↦qrz(λb(σite
cond(ω

φ
st)))){

tΣst↦qrz(Σ1(σite
cond(ω

φ
st))

}else{
tΣst↦qrz(Σ2(σite

cond(ω
φ
st)))

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
end

end

Correctness

To check the correctness of Definition 4.9, the following lemma is used.

Lemma 4.17. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, fun, prg}.

Then, tΣcond
st↦qrz(σϑ

cond(ω
φ
st)) translates σϑ

cond(ω
φ
st) to σϑ

cond(ωqrz′) as specified

in Definition 4.9. σϑ
cond(ωqrz′) conforms to the syntax rules of σϑ

cond(ωqrz)
and preserves the SOS transition rules of σϑ

cond(ω
φ
st).

56

4.2. From ST Models to Quartz Models

Proof The validity of Lemma 4.17 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σϑ

cond(ωqrz′) with
the syntax rules of σϑ

cond(ωqrz) as specified in Section 3.3. Second, the seman-
tic correctness is checked by comparing the SOS transition rules of σϑ

cond(ωqrz)
in Section 3.3 with the SOS transition rules of σϑ

cond(ω
φ
st) in Section 3.2, con-

sidering that statements are assumed to terminate within the same PLC cycle.

Illustrative Example for Lemma 4.17

As an example, the conditions of the ST CONDmodel are translated as follows19:

1 IF x1 THEN // initial condition

2 x2 := TRUE;

3 END_IF;
4 ⇒ if(x1){ // resulting condition

5 ⇒ x2 = true;

6 ⇒ }

7 -----------------------
8 IF x1 THEN // initial condition

9 x0 := TRUE;

10 ELSE

11 x0 := FALSE;

12 END_IF;
13 ⇒ if(x1){ // resulting condition

14 ⇒ x0 = true;

15 ⇒ }else{

16 ⇒ x0 false;

17 ⇒ }

4.2.10. Loops

This step covers the translation function for translating loops in ST models
Σϑ
loop(ω

φ
st) to loops in Quartz models Σϑ

loop(ωqrz′).

Definition 4.10 (Translation of loops – ST-to-Quartz). Let Ωφ
st =

{ωφ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements. A loop

in ST models σϑ
loop(ω

φ
st) ∈ Σloop(ωφ

st) is translated to a loop in Quartz models

σϑ
loop(ωqrz′) ∈ Σloop(ωqrz′) using the translation function t

Σloop

st↦qrz(σϑ
loop(ω

φ
st)),

which is described by Algorithm 8.

Correctness

To check the correctness of Definition 4.10, the following lemmas are used.

Lemma 4.18. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, fun, prg}.

Then, t
Σloop

st↦qrz(σhead
loop (ω

φ
st)) translates σhead

loop (ω
φ
st) to σhead

loop (ωqrz′) as specified
in Definition 4.10. σhead

loop (ωqrz′) conforms to the syntax rules of σhead
loop (ωqrz)

and preserves the SOS transition rules of σhead
loop (ω

φ
st).

19Both models, ST and Quartz , are included in Appendix B.8 and C.8.

57

Chapter 4: Model Transformation of ST Models to Quartz Models

Algorithm 8 Translate loop – ST-to-Quartz

Input: σϑ
loop(ω

φ
st)

Output: σϑ
loop(ωqrz′)

Translation Function t
Σloop

st↦qrz(σϑ
loop(ω

φ
st)):

switch ϑ do
case head do

σhead
loop (ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

while(tτst↦qrz(λb(σhead
loop (ω

φ
st)))){

tΣst↦qrz(Σ(σhead
loop (ω

φ
st))

[pause;]

}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
▷ pause is the last statement of an iteration that can be contained
in tΣst↦qrz(Σ(σhead

loop (ω
φ
st))

end
case foot do

σfoot
loop (ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

do{
tΣst↦qrz(Σ(σ

foot
loop (ω

φ
st))

[pause;]

}while(!(tτst↦qrz(λb(σfoot
loop (ω

φ
st)))));

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
▷ pause is the last statement of an iteration that can be contained
in tΣst↦qrz(Σ(σ

foot
loop (ω

φ
st))

end

end

Proof The validity of Lemma 4.18 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of σhead

loop (ωqrz′)
(including optional σpause(ωqrz′)) with the syntax rules of σhead

loop (ωqrz) and
σpause(ωqrz) as specified in Section 3.3. Second, the semantic correctness is
checked by comparing the SOS transition rules of σhead

loop (ωqrz) and optional

σpause(ωqrz) in Section 3.3 with the SOS transition rules of σhead
loop (ω

φ
st) in Sec-

tion 3.2, noting that σpause(ωqrz) is not always necessary (like for delayed
assignments).

Illustrative Example for Lemma 4.18

As an example, the head-controlled loop of the ST LOOP HEAD model is trans-
lated as follows20:

1 i := i0; // initial loop

2 WHILE i <= i1 DO

3 y := i;

4 i := i + x2;

5 END_WHILE;

6 y := x1;

7 ⇒ i = i0; // resulting loop

20Both models, ST and Quartz , are included in Appendix B.14 and C.14.

58

4.2. From ST Models to Quartz Models

8 ⇒ while(i <= i1){

9 ⇒ y = i;

10 ⇒ next(i) = i + x2;

11 ⇒ pause;

12 ⇒ }

13 ⇒ y = x1;

Lemma 4.19. Let ωφ
st be translated to ωqrz′ and φ ∈ {fb, fun, prg}.

Then, t
Σloop

st↦qrz(σ
foot
loop (ω

φ
st)) translates σfoot

loop (ω
φ
st) to σfoot

loop (ωqrz′) as specified

in Definition 4.10. σfoot
loop (ωqrz′) conforms to the syntax rules of σfoot

loop (ωqrz)
and preserves the SOS transition rules of σfoot

loop (ω
φ
st).

Proof The validity of Lemma 4.19 is proved as follows: First, the syntac-
tic correctness is proved by comparing the resulting syntax of σfoot

loop (ωqrz′)
(including optional σpause(ωqrz′)) with the syntax rules of σfoot

loop (ωqrz) and

σpause(ωqrz) as specified in Section 3.3. Second, the semantic correctness is

checked by comparing the SOS transition rules of σfoot
loop (ωqrz) and optional

σpause(ωqrz) in Section 3.3 with the SOS transition rules of σfoot
loop (ω

φ
st) in Sec-

tion 3.2, noting that σpause(ωqrz) is not always necessary, such as for delayed
assignments.

Illustrative Example for Lemma 4.19

As an example, the foot-controlled loop of the ST LOOP FOOT model is trans-
lated as follows21:

1 i := i0; // initial loop

2 REPEAT

3 y := x0;

4 i := i + x2;

5 UNTIL i>i1

6 END_REPEAT;

7 y := x1;

8 ⇒ i = i0; // resulting loop

9 ⇒ do{

10 ⇒ y = x0;

11 ⇒ next(i) = i + x2;

12 ⇒ pause;

13 ⇒ }while (!(i > i1));

14 ⇒ y = x1;

21Both models, ST and Quartz , are included in Appendix B.13 and C.13.

59

Chapter 4: Model Transformation of ST Models to Quartz Models

4.2.11. Sequences

This step covers the translation function for translating sequences in ST mod-
els Σseq(ωφ

st) to sequences in Quartz models Σseq(ωqrz′).

Definition 4.11 (Translation of sequences – ST-to-Quartz). Let Ωφ
st =

{ωφ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements. There are

the following variants of ST statements:

• POU invocations: σinv(ωφ
st) ∈ Σinv(ωφ

st)
• Assignments: σimm

ass (ω
φ
st) ∈ Σimm

ass (ω
φ
st), σdel

ass(ω
φ
st) ∈ Σdel

ass(ω
φ
st)

• Conditions: σhead
cond(ω

φ
st) ∈ Σhead

cond(ω
φ
st), σ

foot
cond(ω

φ
st) ∈ Σ

foot
cond(ω

φ
st)

• Loops: σhead
loop (ω

φ
st) ∈ Σhead

loop (ω
φ
st), σ

foot
loop (ω

φ
st) ∈ Σ

foot
loop (ω

φ
st)

According to the Definition 4.7, 4.8, 4.9, and 4.10, these ST statements are
translated to the following variants of Quartz statements:

• Pause: σpause(ωqrz′) ∈ Σpause(ωqrz′)
• Model invocations: σinv(ωqrz′) ∈ Σinv(ωqrz′)
• Assignments: σimm

ass (ωqrz′) ∈ Σimm
ass (ωqrz′), σdel

ass(ωqrz′) ∈ Σdel
ass(ωqrz′)

• Conditions: σhead
cond(ωqrz′) ∈ Σhead

cond(ωqrz′), σfoot
cond(ωqrz′) ∈ Σfoot

cond(ωqrz′)

• Loops: σhead
loop (ωqrz′) ∈ Σhead

loop (ωqrz′), σfoot
loop (ωqrz′) ∈ Σfoot

loop (ωqrz′)
• Sequences: Σseq(ωqrz′)

A set of the resulting Quartz statements represents a sequence, de-
noted as Σseq(ωqrz′), which was introduced and appended in isolated
transformation steps, such as for delayed assignments Σseq(ωqrz′) =
{σdel

seq(ωqrz′);σpause(ωqrz′)} in Definition 4.8. The translation function

t
Σseq

st↦qrz(Σseq(ωqrz′)) inserts σi(ωqrz′) ∈ Σseq(ωqrz′) to ωqrz′, following the
process described by Algorithm 9.

Algorithm 9 Add sequence – ST-to-Quartz

Input: Σseq(ωqrz′)
Output: ωqrz′

Translation Function t
Σseq

st↦qrz(Σseq(ωqrz′)):
forall σi ∈ Σseq(ωqrz′) do

ωqrz′ ← add σi to the position w.r.t. its execution order and dependent
constructs;

end

Correctness

To check the correctness of Definition 4.11, the following lemma is used.

60

4.2. From ST Models to Quartz Models

Lemma 4.20. Let ωφ
st be translated to ωqrz′, φ ∈ {fb, fun, prg},

Σseq(ωqrz′) ≠ ∅, and Σseq(ωqrz′) be syntactically correct. Then,

t
Σseq

st↦qrz(Σseq(ωqrz′)) inserts each translated statement σi ∈ Σseq(ωqrz′) to
ωqrz′. The resulting Quartz model ωqrz′ conforms to the syntax rules of
ωqrz, preserves the SOS transition rules of ωφ

st (in particular with regard to
the execution order of the statements), and respects the single assignment
per macro step constraint in Quartz.

Proof The validity of Lemma 4.20 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σseq(ωqrz′) with
the syntax rules of Σseq(ωqrz) as specified in Section 3.3 using induction on
the number of statements to be added Σseq(ωqrz′):

1. Base Case: When Σseq(ωqrz′) = ∅, there are no statements to be added,
which conforms to the syntax rules of δω(ωqrz).

2. Induction Hypothesis: The lemma holds for any set of statements to
be added Σseq(ωqrz′).

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules Σseq(ωqrz), because the syntactic cor-
rectness of this statement to be added has been proved in the corre-
sponding section.

Second, the SOS transition rules and the single assignment per macro step
constraint in Quartz are respected by the individual statements themselves.
The order is respected by the order within the resulting Quartz model.

Illustrative Example for Lemma 4.20

As an example, below are the inserted statements in the resulting Quartz
model of the ST SIMPLE PRG1 model:

1 . . .
2 loop{

3 immediate await(EI);

4

5 emit(DEBOUNCE_01_EI); // σ1 ∈ Σinv(ωqrz′)

6 immediate await(DEBOUNCE_01_EO); // σ2 ∈ Σinv(ωqrz′)

7 PRG_OUT1 = DEBOUNCE_01_OUT; // σ3 ∈ Σass(ωqrz′)

8 PRG_ET_OFF = DEBOUNCE_01_ET_OFF; // σ4 ∈ Σass(ωqrz′)

9 ST_SIMPLE_FUN(. . .); // σ5 ∈ Σinv(ωqrz′)

10 PRG_OUT2 = ST_SIMPLE_FUN_l1; // σ6 ∈ Σass(ωqrz′)

11

12 emit(EO);

13 pause;

14 }

15 || DEBOUNCE_01:DEBOUNCE(. . .); // σ1 ∈ Σinv(ωqrz′)

61

Chapter 4: Model Transformation of ST Models to Quartz Models

4.3. Experimental Results

The applicability of the introduced translation functions is evaluated with the
ST models listed in Table 4.1. The examples are listed with the Source Lines
of Code (SLOC) metric [BM14] of the ST model and the experimental results.
For evaluation purposes, the listed ST models and the expected Quartz models
are manually implemented to verify the applicability of the isolated translation
functions. To ensure the correctness of both models, ST and Quartz , they are
compiled with the built-in compilers of CODESYS and Averest. The transla-
tion functions have been implemented as a prototype in PLCreX , resulting in
the overall test strategy shown in Figure 4.6. The correctness of the resulting
Quartz models is verified in two ways: (1) through manual reviews, differences
between the expected Quartz models and the automatically generated models
are identified, and (2) using the built-in compilers of Averest , the syntactic
correctness of the automatically generated Quartz models is ensured. Both

Codesys Averest

compile

PLCreX

Averest

review

compile

compile

(generated automatically)(implemented manually)

(implemented manually)

(implemented manually)

Figure 4.6.: Test strategy to evaluate the ST-to-Quartz transformation

tests passed for all examples (ignoring minor formatting differences between
manually implemented and automatically generated Quartz models), with the
following warnings:

• Initializing input variables: According to Lemma 4.2, input variables
of Quartz models are always invoked with connected values, because
input variables have only read access as specified in Section 3.3. Thus,
input variables cannot be set to specific values, which is why the example
simple calculation throws a warning for the initialized input variable,
since the initialization is skipped during translation.

Based on the experimental results in Table 4.1, it can be concluded that the
introduced translation functions are applicable and lead to correct Quartz
models. They can be reused in model-based design, if a few conditions are
considered. These are summarized in the following section.

62

4.4. Summary

Table 4.1.: Set of ST models and test results to evaluate the applicability of the
introduced ST-to-Quartz transformation

Model

S
L
O
C

Source ωφ
st ωqrz′ Result

2-of-3 logic function 11 [Sch19] B.1 C.1 passed
Alarm function 8 [Sch19] B.2 C.2 passed

Analog value processing 1 8 [Sch19] B.3 C.3 passed
Analog value processing 2 7 [Sch19] B.4 C.4 passed

Arithmetic operators 20 self B.5 C.5 passed
Boolean operators 14 self B.6 C.6 passed

Compensation system 28 [Sch19] B.7 C.7 passed
Condition statements 15 self B.8 C.8 passed
Data types and fields 28 self B.9 C.9 passed

Debounce 20 [GDV14] B.10 C.10 passed
Delayed assignments 7 self B.11 C.11 passed
Equality, inequality 9 self B.12 C.12 passed
Foot-controlled loop 20 self B.13 C.13 passed
Head-controlled loop 18 self B.14 C.14 passed

Immediate assignments 1 13 self B.15 C.15 passed
Immediate assignments 2 19 self B.16 C.16 passed
Immediate assignments 3 10 self B.17 C.17 passed

Invoke function 1 7 self B.18 C.18 passed
Left detection 7 [Sch19] B.19 C.19 passed

Numeric relations 11 self B.20 C.20 passed
Off delay timer 39 [GDV14] B.21 C.21 passed
On delay timer 39 [GDV14] B.22 C.22 passed
RS-Flip-Flop 14 [GDV14] B.23 C.23 passed

Right detection 7 [Sch19] B.24 C.24 passed
SR-Flip-Flop 14 [GDV14] B.25 C.25 passed

Simple calculation 16 [GDV14] B.26 C.26
passed with
warnings

Simple program 19 [GDV14] B.27 C.27 passed
Tank control 19 [Sch19] B.28 C.28 passed

Track correction 23 [Sch19] B.29 C.29 passed
Two-Point controller 21 [Sch19] B.30 C.30 passed

4.4. Summary

This chapter introduced the transformation of ST models to Quartz models.
For this purpose, individual translation functions were defined that take into
account the sequential execution order of ST statements. The applicability
of these translation functions was demonstrated using a set of ST examples.
Based on the presented lemmas and experimental results, the following theo-
rem encapsulates the entire transformation:

63

Chapter 4: Model Transformation of ST Models to Quartz Models

Theorem 4.1 (ST-to-Quartz Translation). Let ωφ
st ∈ Ω

φ
st be an ST

model of variant φ ∈ {fb, fun, prg}, and let Tst↦qrz(ωφ
st) be the model

transformation of ωφ
st to ωqrz′ using the translation functions defined in

this chapter. Then, the resulting Quartz model ωqrz′ :

1. Conforms to the syntax rules of ωqrz

2. Preserves the semantics of ωφ
st

3. Contains constructs corresponding to the constructs of ωφ
st and pre-

serves the intended functionality of ωφ
st under the following condi-

tions:

• φ ∈ {fb, fun, prg}
• ∆idcl(ωφ

st) =∆in(ωφ
st)∪∆out(ωφ

st)∪∆inout(ωφ
st), where models are

always invoked with defined input values, so no initializations
are required for ∆in(ωφ

st)
• ∆vdcl(ωφ

st) = ∆local(ωφ
st), where variables are represented as

memorized variables

• Imported models are available as Quartz models

• Functions are called formally complete in ST models

• ∀α[+](ωφ
st) ∶ α[+] ∈ {αbool

bv , αbyte
bv , αword

bv , αint
i , αdint

i , αuint
i , αudint

i ,
αdur, α

+}, where αdur can be treated as an unbounded integer
and is specified in milliseconds

• ∀τ(ωφ
st) ∶ τ ∈ {τ cstmisc, τ

id
misc, τ

π,η,λ
misc , τ

br
misc, τ

true
misc, τ

false
misc , τ

arr
misc, τ

inv
misc,

τ eqcomp, τ
ne
comp, τ

gt
comp, τ

ge
comp, τ

lt
comp, τ

le
comp, τ

mul
arith, τ

div
arith, τ

add
arith, τ

sub
arith,

τ exptarith, τ
mod
arith, τ

um
arith, τ

sel
cond}

• ∀σ(ωφ
st) ∶ σ ∈ {σϑ

inv, σ
ϑ
ass, σ

ϑ
cond, σ

ϑ
loop}

Proof The validity of Theorem 4.1 is proved as follows:

1. Syntax Conformance: Lemma 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,
4.9, 4.10, 4.11, 4.12, 4.13, 4.14 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20
demonstrate that each translated construct conforms to the syntax rules
of ωqrz as specified in Section 3.3.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

• Model declaration: Lemma 4.1

• Interfaces: Lemma 4.2

• Variables: Lemma 4.6

• Data types and fields: Lemma 4.10

64

4.4. Summary

• POU imports: Lemma 4.11

• Expressions: Lemma 4.12

• POU invocations: Lemma 4.13 and 4.14

• Assignments: Lemma 4.15 and 4.16

• Conditions: Lemma 4.17

• Loops: Lemma 4.18 and 4.19

• Sequences: Lemma 4.20

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in ωqrz for the considered constructs in ωφ

st, preserving the original func-
tionality.

Overall, this results in the following solutions to the challenges summarized in
Section 4.1.

1. Cyclic execution of Quartz models (with and without memory):
The execution of Quartz models mimicking both POU variants, with
and without memory, depends on the invocation by the external Quartz
model, i.e., the external model is responsible for the cyclic execution.

2. Event-driven execution of synchronous parallel threads: An it-
eration of Quartz models mimicking POUs with memory is triggered via
event input EI and returned via event output EO after a finite number
of macro steps n ≥ 0, thus realizing an external event-driven execution
control of the resulting Quartz model.

3. Sequential execution of synchronous parallel threads: Due to the
event-driven execution control realized with the event interfaces EI and
EO, the invoking Quartz model can invoke instances depending on their
feedback via EO, thus allowing the sequential execution of synchronous
parallel threads taking into account an individual number of macro steps
of the instances.

4. Dynamic system time: The global clock synchronization is realized by
an additional memorized input CLK, i.e., the clock is controlled externally
and processed within the Quartz model with read access.

5. Translation of ST language constructs: The solution follows from
Theorem 4.1.

65

Chapter 5
Model Transformation of ST Models
to SCL Models

Contents

5.1. High-Level Design Flow – ST-to-SCL 68

5.2. From ST Models to SCL Models 69

5.2.1. Model Declaration . 70

5.2.2. Interfaces . 72

5.2.3. Variables . 76

5.2.4. Data Types and Fields . 77

5.2.5. Expressions . 78

5.2.6. Assignments . 79

5.2.7. Conditions . 81

5.2.8. Loops . 82

5.2.9. Sequences . 84

5.3. Experimental Results . 86

5.4. Summary . 88

The second approach to reusing existing POUs in model-based design is the
transformation of ST models into SCL models, where the goal is to create a
robust set of translation functions that ensure semantic preservation during
the transition. In addition to the approaches presented in [WS24a; WS24b],
it considers the following additional issues:

• Model Declaration: Mimicking the termination behavior of the initial
model, i.e., distinguishing between models with and without memory

• Interfaces and Variables: Additional interfaces for event-driven exe-
cution control and an external controlled time (provided as a bounded
integer)

• Data Types and Fields: Additional IEC 61131-3 data types

67

Chapter 5: Model Transformation of ST Models to SCL Models

The correctness of the translation functions is proved by theoretical reason-
ing, which includes a detailed analysis of the resulting syntax and semantics
compared to the syntax rules and semantics specified in Chapter 3. In addi-
tion, the theoretical results are evaluated with real-world and self-defined ST
models.

This chapter is structured as follows: Section 5.1 introduces the high-level
design flow and translation strategy. Section 5.2 defines the translation func-
tions and theoretical analysis. Section 5.3 presents an evaluation of the theo-
retical results, and Section 5.4 summarizes the transformation.

5.1. High-Level Design Flow – ST-to-SCL

The high-level design flow for transforming an ST model ωφ
st ∈ Ωφ

st of the
variant function block (φ = fb), function (φ = fun), or program (φ = prg) to
an SCL model ωscl ∈ Ωscl is shown in Figure 5.1.

KIELERIEC 61131-3

Figure 5.1.: High-level design flow of the ST-to-SCL transformation

The ST-to-SCL transformation Tst↦scl(ωφ
st) includes the following transforma-

tion steps1:

1. tδωst↦scl(δω(ω
φ
st)): Model declaration (see Section 5.2.1)

2. t∆idcl

st↦scl(ω
φ
st): Interfaces (see Section 5.2.2)

3. t∆vdcl

st↦scl(ω
φ
st): Variables (see Section 5.2.3)

4. tαst↦scl(α[+](ω
φ
st)): Data types and fields (see Section 5.2.4)

5. tτst↦scl(τ (ω
φ
st)): Expressions (see Section 5.2.5)

6. t
Σass

st↦scl(σ
ϑ
ass(ω

φ
st)): Assignments (see Section 5.2.6)

7. tΣcond

st↦scl(σ
ϑ
cond(ω

φ
st)): Conditions (see Section 5.2.7)

8. t
Σloop

st↦scl(σ
ϑ
loop(ω

φ
st)): Loops (see Section 5.2.8)

9. t
Σseq

st↦scl(Σseq(ωscl′)): Sequences (see Section 5.2.9)

1It should be noted that based on experimental results in the latest version of KIELER, SCL
models are not intended to import external SCL models (due to the minimal instruction
set), and thus transformations of model imports and invocations are not considered in
this chapter.

68

5.2. From ST Models to SCL Models

Translation Strategy:

This chapter introduces two translation strategies illustrated in Figure 5.2. In
contrast to the strategies introduced in Chapter 4, in this approach both POU
variants (with and without memory) run in an infinite loop. The difference is
that the ST model is either transformed into an SCL model that (1) contains
variables that are reset to their defaults at the beginning of each iteration
(to mimic a POU without memory), or (2) runs in an infinite loop without
resetting the variables (to mimic a POU with memory). Figure 5.2a shows
the high-level runtime behavior of the resulting SCL model that follows the
first translation strategy, where the set of input variables IN is read when an
iteration of the SCL model is triggered via the input variable EI in macro step
Si. In the following macro steps during execution, the interfaces are synchro-
nized, where only CLK may be updated externally and is read. Neither input
variables IN are allowed to be updated nor output variables OUT are allowed
to be processed externally until the current iteration is terminated. In macro
step Sm, OUT is returned to the invoking model for external processing. The
subsequent final macro step is used to switch to the next iteration (triggered
in the next PLC cycle) and to reset EO. In contrast, Figure 5.2b shows the
high-level runtime behavior of the resulting SCL model that follows the sec-
ond translation strategy, where the model is initialized in the first macro step
S0 and then runs in an infinite loop until an iteration is triggered externally
via the input variable EI. When an iteration is triggered in macro step Si, the
set of input variables IN and an external clock variable CLK are read and can
be processed. In the following macro steps during execution, the interfaces
are synchronized, where only CLK may be updated externally. Neither input
variables IN are allowed to be updated nor output variables OUT are allowed to
be processed externally until the iteration reaches the macro step Sm, where
EO is set to true. In this macro step, OUT and EO are returned to the invoking
model for external processing. The subsequent final macro step is used to
switch to the next iteration (triggered in the next PLC cycle) and to reset EO.

Challenges:

From this, the following challenges for translating ST models to SCL models
can be derived:

1. Cyclic execution of SCL models (with and without memory)

2. Event-driven execution of SCL models

3. Dynamic system time

4. Translation of ST language constructs

5.2. From ST Models to SCL Models

This section defines the individual translation functions for translating an ST
model ωφ

st ∈ Ω
φ
st to an SCL model ωscl′ ∈ Ωscl and analyzes the theoretical

correctness.

69

Chapter 5: Model Transformation of ST Models to SCL Models

(a) Model of a POU without memory

(b) Model of a POU with memory

Figure 5.2.: ST-to-SCL translation strategies: high-level runtime behavior of the
resulting SCL models

5.2.1. Model Declaration

This step covers the translation function for translating an ST model dec-
laration δω(ωφ

st) to an SCL model declaration δω(ωscl′). According to the
introduced translation strategies, the resulting SCL model of an ST model,
variant φ ∈ {fb, fun, prg}, is executed in an infinite loop, reflecting the behav-
ior of the original ST model with and without memory. For this, in each PLC
cycle, the SCL model waits2 until a loop iteration is triggered by an input,
where the termination of the iteration is returned by an output.

Definition 5.1 (Model Declaration – ST-to-SCL). Let Ωφ
st = {ω

φ
st ∣ φ ∈

{fb, fun, prg}} be the set of possible ST model elements. δω(ωφ
st) is translated

to δω(ωscl′) using the translation function tδωst↦scl(δω(ω
φ
st)), which is described

by Algorithm 10.

Correctness

To check the correctness of Definition 5.1, the following lemma is used.

2The wait functionality is derived from the immediate await macro of Quartz [Sch09].

70

5.2. From ST Models to SCL Models

Algorithm 10 Translate model declaration – ST-to-SCL

Input: δω(ωφ
st)

Output: δω(ωscl′)
Translation Function tδωst↦scl(δω(ω

φ
st)):

δω(ωscl′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

module an(ωφ
st){

t∆idcl

st↦scl(ω
φ
st) t∆vdcl

st↦scl(ω
φ
st)

loop:

while(!EI){ pause; }
tΣst↦scl(ω

φ
st)

EO = true; pause; EO = false;

goto loop;

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Lemma 5.1. Let ωφ
st be translated to ωscl′ and φ ∈ {fb, fun, prg}.

Then, tδωst↦scl(δω(ω
φ
st)) translates δω(ωφ

st) to δω(ωscl′) as specified in Defi-
nition 5.1. δω(ωscl′) conforms to the syntax rules of δω(ωscl) and preserves
the semantics of δω(ωφ

st) regarding its termination behavior.

Proof The validity of Lemma 5.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of δω(ωscl′) with the
syntax rules of δω(ωscl) as specified in Section 3.4. Second, the preservation of
semantics is checked by comparing Jδω(ωscl)Kξ (see Section 3.4) with Jδω(ωφ

st)Kξ
for φ ∈ {fb, fun, prg} (see Section 3.2). In particular, given the SOS transition
rules of σinf

loop(ωscl′), σhead
loop (ωscl′), σimm

ass (ωscl′), and σpause(ωscl′) as specified in

Section 3.4, δω(ωscl) results in an infinite loop whose iteration is executed
immediately when input EI becomes true and triggers EO at the end of an
iteration. Iterations are separated by σpause(ωscl). Consequently, Jδω(ωscl)Kξ
preserves Jδω(ωφ

st)Kξ regarding its termination behavior (see Section 3.2 and
3.4). The difference between POUs with and without memory is that interfaces
and local variables are reset at the beginning of an iteration.

Illustrative Example for Lemma 5.1

Usage examples are shown below using snippets of the resulting SCL models3

in combination with a visualization of the high-level runtime behavior. The
resulting SCL model of example ST ALARM in Figure 5.3 represents a model
without memory, and the resulting SCL model of example ST ASS DEL in Fig-
ure 5.4 represents a model that preserves the state of the last macro step of
the current PLC cycle for the next iteration (i.e., for the next PLC cycle).

3Both SCL models are included in Appendix D.2 and D.9.

71

Chapter 5: Model Transformation of ST Models to SCL Models

1 module ST_ALARM{

2 input bool EI;

3 output bool EO;

4 input bool xSENSOR_L;

5 . . .
6

7 loop:

8 while(!EI){ pause; }

9 ST_ALARM = false // Reset

10 ST_ALARM = . . .
11 EO = true; pause; EO =

false;

12 goto loop;

13 }

 ...

!EI true

false

EO = true

pause

EO = false

W
ai

t
S

ta
te

m
en

ts

entry

ST_ALARM =
...

pause

xSENSOR_L,
xSENSOR_M,
xSENSOR_R

CLKi

ST_ALARM

R
es

et

Figure 5.3.: Resulting SCL model of example ST ALARM (without memory)

1 module ST_ASS_DEL{

2 input bool EI;

3 output bool EO;

4 int x0 = 2;

5 int y0 = 1;

6

7 loop:

8 while(!EI){ pause; }

9 y0 = y0 + x0;

10 EO = true; pause; EO =

false;

11 goto loop;

12 }

EO = true

pause

Init.

W
ai

t
S

ta
te

m
en

ts

entry

x0 = 2; ...

!EI

false

y0 = y0 + x0

CLKi

CLKi+1

true

pause

EO = false

Figure 5.4.: Resulting SCL model of example ST ASS DEL (with memory)

5.2.2. Interfaces

This step covers the translation function for translating ST model interfaces
∆idcl(ωφ

st) to SCL model interfaces ∆idcl(ωscl′)), where ∆idcl(ωφ
st) =∆in(ωφ

st)∪
∆out(ωφ

st) ∪∆inout(ωφ
st).

Definition 5.2 (Interfaces – ST-to-SCL). Let Ωφ
st = {ω

φ
st ∣ φ ∈ {fb, fun,

prg}} be the set of possible ST model elements. ∆idcl(ωscl′) is derived from
ωφ
st and extended by interfaces for event-driven execution control and by an

optional system time, using the translation function t∆idcl

st↦scl(ω
φ
st), which is de-

scribed by Algorithm 11.

Correctness

To check the correctness of Definition 5.2, the following lemmas are used.

72

5.2. From ST Models to SCL Models

Algorithm 11 Translate interfaces – ST-to-SCL

Input: ωφ
st

Output: Σseq(ωscl′), ∆in(ωscl′), ∆out(ωscl′), ∆inout(ωscl′),
Translation Function t∆idcl

st↦scl(ω
φ
st):

∆in(ωscl′) ← add input bool EI; ▷ add Boolean input variable
∆out(ωscl′) ← add output bool EO; ▷ add Boolean output variable
if ωφ

st contains time-based logic then
∆in(ωscl′) ← add input int CLK;

▷ add input variable
end
if φ = fun ∧ erT ≠ ∅, where erT ∈ ErT (ωφ

st),ErT (ω
φ
st) ⊂ Ei(ω

φ
st) then

∆out(ωscl′) ← add output tαst↦scl(α(erT)) an(ωφ
st);
▷ add output variable

end
forall ei ∈ Ei(ωφ

st) do
if ei = eiV s, where eiV s ∈ EiV s(ωφ

st),EiV s(ωφ
st) ⊂ Ei(ω

φ
st) then

∆in(ωscl′) ← add input tαst↦scl(α(ei)) an(ei) [= tτmisc

st↦scl(π)];
▷ add input variable with optional initialization

end
if ei = eoV s, where eoV s ∈ EoV s(ωφ

st),EoV s(ωφ
st) ⊂ Ei(ω

φ
st) then

∆out(ωscl′) ← add output tαst↦scl(α(ei)) an(ei) [= tτmisc

st↦scl(π)];
▷ add output variable with optional initialization

Σseq(ωscl′) ← add an(ei) = tτmisc

st↦scl(π); (if φ = fun)
▷ add reset to default value if φ = fun

end
if ei = eiOV s, where eiOV s ∈ EiOV s(ωφ

st),EiOV s(ωφ
st) ⊂ Ei(ω

φ
st) then

∆inout(ωscl′) ← add input output tαst↦scl(α(ei)) an(ei) [=

tτmisc

st↦scl(π)];
▷ add inout variable with optional initialization

end

end

Lemma 5.2. Let ωφ
st be translated to ωscl′ and φ ∈ {fb, fun, prg}. Then,

for each interface ei ∈ Ei(ωφ
st), t

∆idcl

st↦scl(ω
φ
st) extends Σseq(ωscl′), ∆in(ωscl′),

∆out(ωscl′), or ∆inout(ωscl′) including optional initialization and reset to
default value as specified in Definition 5.2. ∆in(ωscl′), ∆out(ωscl′), and
∆inout(ωscl′) conform to the syntax rules of ∆in(ωscl), ∆out(ωscl), and
∆inout(ωscl) regarding the storage class, data type, and name. Σseq(ωscl′)
conforms to the syntax rules of Σseq(ωscl). With and without initialization,
∆in(ωscl′), ∆out(ωscl′) (in combination with Σseq(ωscl′)), and ∆inout(ωscl′)
preserves the semantics of ∆in(ωφ

st), ∆out(ωφ
st), and ∆inout(ωφ

st) regarding
information flow, modifiability, and initialization.

73

Chapter 5: Model Transformation of ST Models to SCL Models

Proof The validity of Lemma 5.2 is proved as follows: First, the syntactic cor-
rectness is checked by comparing the resulting syntax of Σseq(ωscl′), ∆in(ωscl′),
∆out(ωscl′), and ∆inout(ωscl′) with the syntax rules of Σseq(ωscl), ∆in(ωscl),
∆out(ωscl), and ∆inout(ωscl) as specified in Section 3.4 using induction on the
number of added interfaces Ei(ωφ

st), where φ = fun:

1. Base Case: When Ei(ωφ
st) = ∅, there are no input variables, output

variables, and inout variables to add, which trivially conforms to the
syntax rules of Σseq(ωscl), ∆in(ωscl), ∆out(ωscl), and ∆inout(ωscl), since
these sets remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in Σseq(ωscl′),
∆in(ωscl′), ∆out(ωscl′), and ∆inout(ωscl′). Their syntax still conforms to
the syntax rules of Σseq(ωscl), ∆in(ωscl), ∆out(ωscl), and ∆inout(ωscl).

Second, the semantic correctness is checked by comparing J∆in(ωscl)Kξ,
J∆out(ωscl)Kξ in combination with the SOS transition rules of Σseq(ωscl),
and J∆inout(ωscl)Kξ (see Section 3.4) with J∆in(ωφ

st)Kξ, J∆out(ωφ
st)Kξ, and

J∆inout(ωφ
st)Kξ (see Section 3.2).

Illustrative Example for Lemma 5.2

As an example, below are the derived interfaces of the ST TON model4, where
one interface is initialized:

1 input bool IN; // added to ∆in(ωscl′)

2 input int PT; // added to ∆in(ωscl′)

3 output bool Q1 = false; // added to ∆out(ωscl′)

4 output int ET; // added to ∆out(ωscl′)

Lemma 5.3. Let ωφ
st be translated to ωscl′, φ ∈ {fb, fun, prg}, and ωscl′

be event-driven. Then, t∆idcl

st↦scl(ω
φ
st) adds the additional input variable EI to

∆in(ωscl′) and the additional output variable EO to ∆out(ωscl′) as specified
in Definition 5.2. ∆in(ωscl′) and ∆out(ωscl′) conform to the syntax rules
of ∆in(ωscl) and ∆out(ωscl).

Proof The validity of Lemma 5.3 is proved by comparing the resulting syntax
of ∆in(ωscl′) and ∆out(ωscl′) with the syntax rules of ∆in(ωscl) and ∆out(ωscl)
as specified in Section 3.4.

4Both models, ST and SCL, are included in Appendix B.22 and D.19.

74

5.2. From ST Models to SCL Models

Illustrative Example for Lemma 5.3

As an example, below are the derived interfaces of the ST TON model5:

1 input bool EI; // added to ∆in(ωscl′)

2 output bool EO; // added to ∆out(ωscl′)

Lemma 5.4. Let ωφ
st be translated to ωscl′, φ ∈ {fb, fun, prg}, and ωφ

st

contains time-based logic, where time is a readable variable and is synchro-
nized externally. Then, t∆idcl

st↦scl(ω
φ
st) adds an additional input to ∆in(ωscl′)

as specified in Definition 5.2. ∆in(ωscl′) conforms to the syntax rules of
∆in(ωscl).

Proof The validity of Lemma 5.4 is proved by comparing the resulting syntax
of ∆in(ωscl′) with the syntax rules of ∆in(ωscl) as specified in Section 3.4.

Illustrative Example for Lemma 5.4

As an example, below is the derived input of the ST TON model6:

1 input int CLK; // added to ∆in(ωscl′)

Lemma 5.5. Let ωfun
st be translated to ωscl′ and ωfun

st has a return value,

which is processed by ωfun
st . Then, t∆idcl

st↦scl(ω
φ
st) adds an additional output

to ∆out(ωscl′) as specified in Definition 5.2. ∆out(ωscl′) conforms to the
syntax rules of ∆out(ωscl).

Proof The validity of Lemma 5.5 is proved by comparing the resulting syntax
of ∆out(ωscl′) with the syntax rules of ∆out(ωscl) as specified in Section 3.4.

Illustrative Example for Lemma 5.5

As an example, below is the derived output of the ST SIMPLE FUN model7:

1 output float ST_SIMPLE_FUN; // added to ∆out(ωscl′)

5Both models, ST and SCL, are included in Appendix B.22 and D.19.
6Both models, ST and SCL, are included in Appendix B.22 and D.19.
7Both models, ST and SCL, are included in Appendix B.26 and D.23.

75

Chapter 5: Model Transformation of ST Models to SCL Models

5.2.3. Variables

This step covers the translation function for translating local ST model vari-
ables ∆vdcl(ωφ

st) to local SCL model variables ∆vdcl(ωscl′)), where ∆vdcl(ωφ
st) =

∆local(ωφ
st) ∪∆inst(ωφ

st).

Definition 5.3 (Variables – ST-to-SCL). Let Ωφ
st = {ω

φ
st ∣ φ ∈ {fb, fun,

prg}} be the set of possible ST model elements. ∆vdcl(ωscl′) is derived from ωφ
st

using the translation function t∆vdcl

st↦scl(ω
φ
st), which is described by Algorithm 12.

Algorithm 12 Translate variables – ST-to-SCL

Input: ωφ
st

Output: Σseq(ωscl′), ∆local(ωscl′)
Translation Function t∆vdcl

st↦scl(ω
φ
st):

forall elV s ∈ Ei(ωφ
st) do

if ed(elV s) = ∅ then
∆local(ωscl′) ← add tαst↦scl(α(elV s)) an(elV s) [= tτmisc

st↦scl(π)];
▷ add local variable with optional initialization

Σseq(ωscl′) ← add an(elV s) = tτmisc

st↦scl(π); (if φ = fun)
▷ add reset to default value if φ = fun

end

end

Correctness

To check the correctness of Definition 5.3, the following lemma is used.

Lemma 5.6. Let ωφ
st be translated to ωscl′ and φ ∈ {fb, fun, prg}. Then,

for each local variable elV s ∈ Ei(ωφ
st) that is not derived from external

models ed(elV s) = ∅, t∆vdcl

st↦scl(ω
φ
st) adds a local variable including optional

initialization value to ∆local(ωscl′) and reset to default to Σseq(ωscl′) as
specified in Definition 5.3. ∆local(ωscl′) conforms to the syntax rules of
∆local(ωscl) regarding the storage class, data type, and name. Σseq(ωscl′)
conforms to the syntax rules of Σseq(ωscl). With and without initialization,
∆local(ωscl′) (in combination with Σseq(ωscl′)) preserves the semantics of
∆local(ωφ

st) regarding modifiability and initialization.

Proof The validity of Lemma 5.6 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σseq(ωscl′) and
∆local(ωscl′) with the syntax rules of Σseq(ωscl) and ∆local(ωscl) as specified in
Section 3.4 using induction on the number of added variables Ei(ωφ

st), where
φ = fun:

76

5.2. From ST Models to SCL Models

1. Base Case: When Ei(ωφ
st) = ∅, there are no local variables to add, which

trivially conforms to the syntax rules of ∆local(ωscl) and Σseq(ωscl), since
these sets remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of local variables
with possible initialization.

3. Inductive Step: Adding an element to local variables with initializa-
tion results in an additional element in ∆local(ωscl′) and Σseq(ωscl′).
Their syntax still conforms to the syntax rules of ∆local(ωscl) and
Σseq(ωscl).

Second, the semantic correctness is checked by comparing J∆local(ωscl)Kξ in
combination with the SOS transition rules of Σseq(ωscl) (see Section 3.4) with
J∆local(ωφ

st)Kξ (see Section 3.2).

Illustrative Example for Lemma 5.6

As an example, below are the derived local variables of the ST ASS DELmodel8,
where both variables are initialized:

1 int x0 = 2; // added to ∆local(ωscl′)

2 int y0 = 1; // added to ∆local(ωscl′)

5.2.4. Data Types and Fields

This step covers the translation function for translating ST data types and
fields A[+](ωφ

st) to SCL data types and fields A[+](ωscl′).
Definition 5.4 (Translation of FBD data types and fields). Let Ωφ

st =
{ωφ

st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements. A ST
data type or field α[+](ωφ

st) ∈ A[+](ω
φ
st) is translated to an SCL data type and

field α[+](ωscl′) ∈ A[+](ωscl′) using the translation function tαst↦scl(α[+](ω
φ
st)),

which is described by Algorithm 39 in Appendix J.0.19.

Correctness

To check the correctness of Definition 5.4, the following lemma is used, noting
that the exclusion of data types is based on experimental tests in the latest
version of KIELER with restriction to internal data types.

Lemma 5.7. Let ωφ
st be translated to ωscl′, φ ∈ {fb, fun, prg}, and bit

vector, integer, floating point, and duration be the considered data type
categories A[+](ωφ

st) as specified in Section 3.2. Then, tαst↦scl(α[+](ω
φ
st))

translates α[+](ωφ
st) to α[+](ωscl′) as specified in Definition 5.4. α[+](ωscl′)

conforms to the syntax rules of α[+](ωscl) and preserves the semantics
of α[+](ωφ

st) regarding boundaries, precision, resolution, and defaults (if
applicable), with the following restrictions:

8Both models, ST and SCL, are included in Appendix B.11 and D.9.
9This algorithm describes an intuitive mapping, which is moved to the appendix for the
sake of readability, but is not necessary for understanding the following lemma.

77

Chapter 5: Model Transformation of ST Models to SCL Models

• ∀α(ωφ
st) ∶ α ∈ {α

byte
bv αword

bv , αudint
i ,}: Data types are not supported by

internal SCL data types

• ∀α(ωφ
st) ∶ α(ω

φ
st) ∈ {αtime

dur , αint
i , αuint

i , αdint
i }: Boundaries are changed

to those of αint
i (ωscl) (see Section 3.5)

Proof The validity of Lemma 5.7 is proved as follows: First, the syntactic cor-
rectness is checked by comparing all resulting data types and fields α[+](ωscl′)
with syntax rules α[+](ωscl) as specified in Section 3.4. Second, the semantic
correctness is checked by comparing Jα[+](ωscl)Kξ with Jα[+](ωφ

st)Kξ (see Sec-
tion 3.2 and 3.4), taking into account that the resolution of the duration data
type is restricted to milliseconds.

Illustrative Example for Lemma 5.7

Usage examples are given by illustrative examples of previous lemmas, such
as Lemma 5.6.

5.2.5. Expressions

This step covers the translation function for translating expressions in ST
models T (ωφ

st) to expressions in SCL models T (ωscl′).

Definition 5.5 (Expressions – ST-to-SCL). Let Ωφ
st = {ω

φ
st ∣ φ ∈ {fb,

fun, prg}} be the set of possible ST model elements. An expression in ST
models τ (ωφ

st) ∈ T (ω
φ
st) is translated to an expression in SCL models τ (ωscl′) ∈

T (ωscl′) using the translation function tτst↦scl(τ (ω
φ
st)), which is described by

Algorithm 40 in Appendix J.0.210.

Correctness

To check the correctness of Definition 5.5, the following lemma is used, noting
that the exclusion of expressions is based on experimental tests in the latest
version of KIELER with restriction to internal operators.

Lemma 5.8. Let ωφ
st be translated to ωscl′, φ ∈ {fb, fun, prg}, and mis-

cellaneous, compare operators, arithmetic operators, conditional operator,
and boolean operators be the considered expression categories T (ωφ

st) as
specified in Section 3.2. Then, for each τ(ωφ

st) ∈ T (ω
φ
st), tτst↦scl(τ(ω

φ
st))

translates τ(ωφ
st) to τ(ωscl′) as specified in Definition 5.5. τ(ωscl′) con-

forms to the syntax rules of τ(ωscl) and preserves the semantics of τ(ωφ
st)

regarding the type system and SOS rules, with the following restrictions:

10This algorithm describes an intuitive mapping, which is moved to the appendix for the
sake of readability, but is not necessary for understanding the following lemma.

78

5.2. From ST Models to SCL Models

• ∀τ(ωϑ
st) ∶ τ ∉ {τ invmisc, τ

expt
arith}, because they are not covered by the in-

ternal SCL operators

Proof The validity of Lemma 5.8 is proved as follows: First, the syntactic cor-
rectness is checked by comparing all resulting expressions τ(ωscl′) with syntax
rules τ(ωscl) as specified in Section 3.4. Second, the semantic correctness is
checked by comparing Jτ(ωscl)Kξ with Jτ(ωφ

st)Kξ, their type system, and SOS
transition rules as specified in Section 3.2 and 3.4.

Illustrative Example for Lemma 5.8

As an example, below are two derived expressions of the ST SIMPLE FUN

model11:

1 (COUNT + 1) // result of tτst↦scl(COUNT+1)

2 ((A1 * B1) / C1) // result of tτst↦scl((A1*B1)/C1)

5.2.6. Assignments

This step covers the translation function for translating assignments in ST
models Σϑ

ass(ω
φ
st) to assignments in SCL models Σϑ

ass(ωscl′).

Definition 5.6 (Translation of assignments – ST-to-SCL). Let
Ωφ
st = {ω

φ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements

and Σϑ
ass(ω

φ
st) be the set of assigned variables. An immediate assign-

ment σimm
ass (ω

φ
st) ∈ Σimm

ass (ω
φ
st) (i.e., rhs(σimm

ass (ω
φ
st)) does not depend on

lhs(σimm
ass (ω

φ
st)) and a delayed assignment in ST models σdel

ass(ω
φ
st) ∈ Σdel

ass(ω
φ
st)

(i.e., rhs(σdel
ass(ω

φ
st)) does depend on lhs(σdel

ass(ω
φ
st)) is translated to a cor-

responding immediate assignment σimm
ass (ωscl′) ∈ Σimm

ass (ωscl′) and delayed
assignment σdel

ass(ωscl′) ∈ Σdel
ass(ωscl′) in SCL models using the translation

function t
Σass

st↦scl(σ
ϑ
ass(ω

φ
st)), which is described by Algorithm 13.

Correctness

To check the correctness of Definition 5.6, the following lemmas are used.

Lemma 5.9. Let ωφ
st be translated to ωscl′, φ ∈ {fb, fun, prg}, and

ϑ = imm. Then, t
Σass

st↦scl(σ
imm
ass (ω

φ
st)) identifies the left-hand side and right-

hand side of σimm
ass (ω

φ
st), and thus translates σimm

ass (ω
φ
st) to σimm

ass (ωscl′) as
specified in Definition 5.6. σimm

ass (ωscl′) conforms to the syntax rules of
σimm
ass (ωscl) preserves the SOS rules of σimm

ass (ω
φ
st) and σdel

ass(ω
φ
st), and re-

spects the SCMoC.

11Both models, ST and SCL, are included in Appendix B.26 and D.23.

79

Chapter 5: Model Transformation of ST Models to SCL Models

Algorithm 13 Translate assignment – ST-to-SCL

Input: σϑ
ass(ω

φ
st)

Output: σϑ
ass(ωscl′)

Translation Function t
Σass

st↦scl(σ
ϑ
ass(ω

φ
st)):

switch ϑ do
case imm do

σimm
ass (ωscl′) ← lhs(σimm

ass (ω
φ
st)) = tτst↦scl(rhs(σimm

ass));
end
case del do

σdel
ass(ωscl′) ← lhs(σdel

ass(ω
φ
st)) = tτst↦scl(rhs(σdel

ass));
end

end

Proof The validity of Lemma 5.9 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σimm

ass (ωscl′) with
the syntax rules of σimm

ass (ωscl) as specified in Section 3.4. Second, the semantic
correctness is checked by comparing the SOS transition rules of σimm

ass (ωscl)
with the SOS transition rules of σimm

ass (ω
φ
st) (see Section 3.2 and 3.4). The

SCMoC is implicitly respected, as demonstrated by the SOS transition rules.

Illustrative Example for Lemma 5.9

As an example, the immediately assigned variables of the ST ASS IMM1 model
and ST ASS IMM2 model are translated as follows12:

1 y:=x;
2 ⇒ y=x; // resulting σimm

ass (ωscl′)

3 -----------------------
4 y0:=x0; y1:=x1;
5 ⇒ y0=x0; // resulting σimm

ass (ωscl′)

6 ⇒ y1=x1; // resulting σimm
ass (ωscl′)

7 -----------------------
8 y0:=x0; y1:=x1; y0:=x2;
9 ⇒ y0=x0; // resulting σimm

ass (ωscl′)

10 ⇒ y1=x1; // resulting σimm
ass (ωscl′)

11 ⇒ y0=x2; // resulting σimm
ass (ωscl′)

12 -----------------------
13 y2:=x0; y2:=x1;
14 ⇒ y2=x0; // resulting σimm

ass (ωscl′)

15 ⇒ y2=x1; // resulting σimm
ass (ωscl′)

16 -----------------------
17 y0:=x0; x0:=y0+x1;
18 ⇒ y0=x0; // resulting σimm

ass (ωscl′)

19 ⇒ x0=y0+x1; // resulting σimm
ass (ωscl′)

Lemma 5.10. Let ωφ
st be translated to ωscl′, φ ∈ {fb, fun, prg}, and ϑ =

del. Then, t
Σass

st↦scl(σ
del
ass(ω

φ
st)) identifies the left-hand side and right-hand

side of σdel
ass(ω

φ
st), and thus translates σdel

ass(ω
φ
st) to σdel

ass(ωscl′) as specified
in Definition 5.6. σdel

ass(ωscl′) conforms to the syntax rules of σdel
ass(ωscl),

preserves the SOS rules of σdel
ass(ω

φ
st), and respects the SCMoC.

12Both models, ST and SCL, are included in Appendix B.15, B.16, D.13, and D.14.

80

5.2. From ST Models to SCL Models

Proof The validity of Lemma 5.10 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σdel

ass(ωscl′) with
the syntax rules of σdel

ass(ωscl) as specified in Section 3.4. Second, the semantic
correctness is checked by comparing the SOS transition rules of σdel

ass(ωscl) with
the SOS transition rules of σdel

ass(ω
φ
st) (see Section 3.2 and 3.4). The SCMoC

is implicitly respected, as demonstrated by the SOS transition rules.

Illustrative Example for Lemma 5.10

As an example, the delayed assigned variable of the ST ASS DELmodel is trans-
lated as follows13:

1 y0:=y0+x0;
2 ⇒ y0=y0+x0; // resulting σdel

ass(ωscl′)

5.2.7. Conditions

This step covers the translation function for translating conditions in ST mod-
els Σϑ

cond(ω
φ
st) to conditions in SCL models Σϑ

cond(ωscl′).

Definition 5.7 (Translation of conditions – ST-to-SCL). Let Ωφ
st =

{ωφ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements. A condition

in ST models σcond(ωφ
st) ∈ Σcond(ωφ

st) is translated to a condition in SCL models

σcond(ωscl′) ∈ Σcond(ωscl′) using the translation function tΣcond

st↦scl(σ
ϑ
cond(ω

φ
st)),

which is described by Algorithm 14.

Algorithm 14 Translate condition – ST-to-SCL

Input: σϑ
cond(ω

φ
st)

Output: σϑ
cond(ωscl′)

Translation Function tΣcond

st↦scl(σ
ϑ
cond(ω

φ
st)):

switch ϑ do
case it do

σit
cond(ωscl′) ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩

if(tτst↦scl(λb(σit
cond(ω

φ
st)))){

tΣst↦scl(Σ1(σit
cond(ω

φ
st))

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
end
case ϑ = ite do

σite
cond(ωscl′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

if(tτst↦scl(λb(σite
cond(ω

φ
st)))){

tΣst↦scl(Σ1(σite
cond(ω

φ
st))

}else{
tΣst↦scl(Σ2(σite

cond(ω
φ
st)))

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
end

end

13Both models, ST and SCL, are included in Appendix B.11 and D.9.

81

Chapter 5: Model Transformation of ST Models to SCL Models

Correctness

To check the correctness of Definition 5.7, the following lemma is used.

Lemma 5.11. Let ωφ
st be translated to ωscl′ and φ ∈ {fb, fun, prg}.

Then, tΣcond

st↦scl(σ
ϑ
cond(ω

φ
st)) translates σϑ

cond(ω
φ
st) to σϑ

cond(ωscl′) as specified
in Definition 5.7. σϑ

cond(ωscl′) conforms to the syntax rules of σϑ
cond(ωscl)

and preserves the SOS rules of σϑ
cond(ω

φ
st).

Proof The validity of Lemma 5.11 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σϑ

cond(ωscl′) with
the syntax rules of σϑ

cond(ωscl) in Section 3.4. Second, the semantic correctness
is checked by comparing the SOS transition rules of σϑ

cond(ωscl) in Section 3.4
with the SOS transition rules of σϑ

cond(ω
φ
st) in Section 3.2, considering that

statements are assumed to terminate within the same PLC cycle.

Illustrative Example for Lemma 5.11

As an example, the conditions of the ST CONDmodel are translated as follows14:

1 IF x1 THEN // initial condition

2 x2:=TRUE;

3 END_IF;

4 ⇒ if(x1){ // resulting condition

5 ⇒ x2=true;

6 ⇒ }

7 -----------------------

8 IF x1 THEN // initial condition

9 x0:=TRUE;

10 ELSE

11 x0:= FALSE;

12 END_IF;

13 ⇒ if(x1){ // resulting condition

14 ⇒ x0=true;

15 ⇒ }else{

16 ⇒ x0=false;

17 ⇒ }

5.2.8. Loops

This step covers the translation function for translating loops in ST models
Σϑ
loop(ω

φ
st) to loops in SCL models Σϑ

loop(ωscl′).

Definition 5.8 (Translation of loops – ST-to-SCL). Let Ωφ
st =

{ωφ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements. A loop

in ST models σϑ
loop(ω

φ
st) ∈ Σloop(ωφ

st) is translated to a loop in SCL models

σϑ
loop(ωscl′) ∈ Σloop(ωscl′) using the translation function t

Σloop

st↦scl(σ
ϑ
loop(ω

φ
st)),

which is described by Algorithm 15.

14Both models, ST and SCL, are included in Appendix B.8 and D.7.

82

5.2. From ST Models to SCL Models

Algorithm 15 Translate loop – ST-to-SCL

Input: σϑ
loop(ω

φ
st)

Output: σϑ
loop(ωscl′)

Translation Function t
Σloop

st↦scl(σ
ϑ
loop(ω

φ
st)):

switch ϑ do
case head do

σhead
loop (ωscl′) ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

while(tτst↦scl(λb(σhead
loop (ω

φ
st)))){

tΣst↦scl(Σ(σhead
loop (ω

φ
st))

pause;

}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
end
case foot do

σfoot
loop (ωscl′) ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

do:

tΣst↦scl(Σ(σ
foot
loop (ω

φ
st))

pause;

if(!(tτst↦scl(λb(σfoot
loop (ω

φ
st))))){ goto do; }

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
end

end

Correctness

To check the correctness of Definition 5.8, the following lemmas are used.

Lemma 5.12. Let ωφ
st be translated to ωscl′ and φ ∈ {fb, fun, prg}.

Then, t
Σloop

st↦scl(σ
head
loop (ω

φ
st)) translates σhead

loop (ω
φ
st) to σhead

loop (ωscl′) as specified

in Definition 5.8. σhead
loop (ωscl′) conforms to the syntax rules of σhead

loop (ωscl)
and preserves the SOS rules of σhead

loop (ω
φ
st).

Proof The validity of Lemma 5.12 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σhead

loop (ωscl′) with
the syntax rules of σhead

loop (ωscl) as specified in Section 3.4. Second, the semantic

correctness is checked by comparing the SOS transition rules of σhead
loop (ωscl) in

Section 3.4 with the SOS transition rules of σhead
loop (ω

φ
st) in Section 3.2.

Illustrative Example for Lemma 5.12

As an example, the head-controlled loop of the ST LOOP HEAD model is trans-
lated as follows15:

1 i:=i0; // initial loop

2 WHILE i<=i1 DO

15Both models, ST and SCL, are included in Appendix B.14 and D.12.

83

Chapter 5: Model Transformation of ST Models to SCL Models

3 y := i;

4 i := i+x2;

5 END_WHILE;

6 y := x1;

7 ⇒ i = i0; // resulting loop

8 ⇒ while(i<=i1){

9 ⇒ y = i;

10 ⇒ i = i + x2;

11 ⇒ }

12 ⇒ y = x1;

Lemma 5.13. Let ωφ
st be translated to ωscl′ and φ ∈ {fb, fun, prg}.

Then, t
Σloop

st↦scl(σ
foot
loop (ω

φ
st)) translates σfoot

loop (ω
φ
st) to σfoot

loop (ωscl′) as specified

in Definition 5.8. σfoot
loop (ωscl′) conforms to the syntax rules of σfoot

loop (ωscl)
and preserves the SOS rules of σfoot

loop (ω
φ
st).

Proof The validity of Lemma 5.13 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σfoot

loop (ωscl′) with
the syntax rules of σfoot

loop (ωscl) as specified in Section 3.4. Second, the semantic

correctness is checked by comparing the SOS transition rules of σfoot
loop (ωscl) in

Section 3.4 with the SOS transition rules of σfoot
loop (ω

φ
st) in Section 3.2.

Illustrative Example for Lemma 5.13

As an example, the foot-controlled loop of the ST LOOP FOOT model is trans-
lated as follows16:

1 i:=i0; // initial loop

2 REPEAT

3 y := x0;

4 i := i + x2;

5 UNTIL i>i1

6 END_REPEAT;

7 y := x1;

8 ⇒ i = i0; // resulting loop

9 ⇒ do:

10 ⇒ y = x0;

11 ⇒ i = i + x2;

12 ⇒ pause;

13 ⇒ if(!(i>i1)){

14 ⇒ goto do;

15 ⇒ }

16 ⇒ y = x1;

5.2.9. Sequences

This step covers the translation function for translating sequences in ST mod-
els Σseq(ωφ

st) to sequences in SCL models Σseq(ωscl′).
16Both models, ST and SCL, are included in Appendix B.13 and D.11.

84

5.2. From ST Models to SCL Models

Definition 5.9 (Translation of sequences – ST-to-SCL). Let Ωφ
st =

{ωφ
st ∣ φ ∈ {fb, fun, prg}} be the set of possible ST model elements. There are

the following variants of ST statements considered in this approach:

• Assignments: σimm
ass (ω

φ
st) ∈ Σimm

ass (ω
φ
st), σdel

ass(ω
φ
st) ∈ Σdel

ass(ω
φ
st)

• Conditions: σhead
cond(ω

φ
st) ∈ Σhead

cond(ω
φ
st), σ

foot
cond(ω

φ
st) ∈ Σ

foot
cond(ω

φ
st)

• Loops: σhead
loop (ω

φ
st) ∈ Σhead

loop (ω
φ
st), σ

foot
loop (ω

φ
st) ∈ Σ

foot
loop (ω

φ
st)

According to the Definitions 5.6, 5.7, and 5.8, these ST statements are trans-
lated to the following variants of SCL statements:

• Pause: σpause(ωscl′) ∈ Σpause(ωscl′)
• Assignments: σimm

ass (ωscl′) ∈ Σimm
ass (ωscl′), σdel

ass(ωscl′) ∈ Σdel
ass(ωscl′)

• Conditions: σhead
cond(ωscl′) ∈ Σhead

cond(ωscl′), σfoot
cond(ωscl′) ∈ Σfoot

cond(ωscl′)

• Loops: σhead
loop (ωscl′) ∈ Σhead

loop (ωscl′), σfoot
loop (ωscl′) ∈ Σfoot

loop (ωscl′)

A set of the resulting SCL statements represents a sequence, denoted

as Σseq(ωscl′). The translation function t
Σseq

st↦scl(Σseq(ωscl′)) inserts
σi(ωscl′) ∈ Σseq(ωscl′) to ωscl′, following the process described by Algo-
rithm 16.

Algorithm 16 Add sequence – ST-to-SCL

Input: Σseq(ωscl′)
Output: ωscl′

Translation Function t
Σseq

fbd↦scl(Σseq(ωscl′)):
forall σi ∈ Σseq(ωscl′) do

ωscl′ ← add σi to the position w.r.t. its execution order and dependent
constructs

end

Correctness

To check the correctness of Definition 5.9, the following lemma is used.

Lemma 5.14. Let ωφ
st be translated to ωscl′ and φ ∈ {fb, fun,

prg}, Σseq(ωscl′) ≠ ∅, and Σseq(ωscl′) be syntactically correct. Then,

t
Σseq

fbd↦scl(Σseq(ωscl′)) inserts each translated statement σi ∈ Σseq(ωscl′) to
ωscl′ as specified in Definition 5.9. The resulting SCL model ωscl′ con-
forms to the syntax rules of ωscl and preserves the SOS rules of ωφ

st (in
particular with regard to the execution order of the statements).

85

Chapter 5: Model Transformation of ST Models to SCL Models

Proof The validity of Lemma 5.14 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σseq(ωscl′) with
the syntax rules of Σseq(ωscl) as specified in Section 3.4 using induction on
the number of statements to be added Σseq(ωscl′):

1. Base Case: When Σseq(ωscl′) = ∅, there are no statements to be added,
which conforms to the syntax rules of δω(ωscl).

2. Induction Hypothesis: The lemma holds for any set of statements to
be added Σseq(ωscl′).

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules Σseq(ωscl), because the syntactic cor-
rectness of this statement to be added has been proved in the corre-
sponding section.

Second, the SOS transition rules are respected by the individual statements
themselves. The order is respected by the order within the resulting Quartz
model.

Illustrative Example for Lemma 5.14

As an example, below are the inserted statements in the resulting SCL model
of the ST TON model17:

1 . . .
2 if(IN != LASTIN){ ⇐ σ1 ∈ Σ

ite
cond(ωscl′)

3 LASTIN = IN; ⇐ σ2 ∈ Σ
imm
ass (ωscl′)

4 if(IN){ ⇐ σ3 ∈ Σ
ite
cond(ωscl′)

5 TSTART = CLK; ⇐ σ4 ∈ Σ
imm
ass (ωscl′)

6 }else{
7 TSTART = 0; ⇐ σ5 ∈ Σ

imm
ass (ωscl′)

8 }
9 Q1_Temp1 = false; ⇐ σ6 ∈ Σ

imm
ass (ωscl′)

10 Q1 = Q1_Temp1; ⇐ σ7 ∈ Σ
imm
ass (ωscl′)

11 ET = 0; ⇐ σ8 ∈ Σ
imm
ass (ωscl′)

12 }else{
13 if(IN & (!(Q1_Temp1))){ ⇐ σ9 ∈ Σ

ite
cond(ωscl′)

14 ETTIME = (CLK - TSTART); ⇐ σ10 ∈ Σ
imm
ass (ωscl′)

15 if(ETTIME < PT){ ⇐ σ11 ∈ Σ
ite
cond(ωscl′)

16 ET = ETTIME; ⇐ σ12 ∈ Σ
imm
ass (ωscl′)

17 }else{
18 Q1_Temp1 = true; ⇐ σ13 ∈ Σ

imm
ass (ωscl′)

19 Q1 = Q1_Temp1; ⇐ σ14 ∈ Σ
imm
ass (ωscl′)

20 ET = PT; ⇐ σ15 ∈ Σ
imm
ass (ωscl′)

21 }
22 }
23 }
24 . . .

5.3. Experimental Results

The applicability of the introduced translation functions is evaluated with
the ST models listed in Table 5.1. The examples are listed with the SLOC
metric [BM14] of the ST model and the experimental results. For evaluation
purposes, the listed ST models and the expected SCL models are manually

17Both models, ST and SCL, are included in Appendix B.22 and D.19.

86

5.3. Experimental Results

implemented to verify the applicability of the isolated translation functions.
To ensure the correctness of both models, ST and SCL, they are compiled with
the built-in compilers of CODESYS and KIELER. The translation functions
have been implemented as a prototype in PLCreX , resulting in the overall test
strategy shown in Figure 5.5. The correctness of the resulting SCL models is
verified in two ways: (1) through manual reviews, differences between the ex-
pected SCL models and the automatically generated models are identified, and
(2) using the built-in compilers of KIELER, the syntactic correctness of the
automatically generated SCL models is ensured. Both tests passed for all ex-

Codesys KIELER

compile

PLCreX

KIELER

review

compile

compile

(generated automatically)(implemented manually)

(implemented manually)

(implemented manually)

Figure 5.5.: Test strategy to evaluate the ST-to-SCL transformation

amples (ignoring minor formatting differences between manually implemented
and automatically generated SCL models), with the following warnings:

• Supported operators: According to Lemma 5.8, only a subset of the
considered ST expressions can be translated into corresponding SCL
expressions with the restriction to internal operators. Therefore, the
example arithmetic operators throws a warning for affected expressions.
Affected expressions are skipped during translation.

• Supported data types: According to Lemma 5.7, only a subset of the
considered ST data types can be translated into corresponding SCL data
types with the restriction to internal data types. Therefore, the example
data types and fields throws a warning for affected declarations. Affected
declarations and expressions are skipped during translation.

Furthermore, some examples are not testable:

• Model imports: Based on experimental results in the latest version of
KIELER, SCL models are not intended to import external SCL models,
which is why the examples analog value processing 2 , debounce, invoke
function 1 , simple program, and track correction are not testable and
are not listed in Appendix D. ST models that import other models are
not translated to SCL models by default.

Based on the experimental results in Table 5.1, it can be concluded that the
introduced translation functions are applicable and lead to correct SCL models

87

Chapter 5: Model Transformation of ST Models to SCL Models

Table 5.1.: Set of ST models and test results to evaluate the applicability of the
introduced ST-to-SCL transformation

Model

S
L
O
C

Source ωφ
st ωscl′ Result

2-of-3 logic function 11 [Sch19] B.1 D.1 passed
Alarm function 8 [Sch19] B.2 D.2 passed

Analog value processing 1 8 [Sch19] B.3 D.3 passed
Analog value processing 2 7 [Sch19] B.4 - not testable

Arithmetic operators 20 self B.5 D.4
passed with
warnings

Boolean operators 14 self B.6 D.5 passed
Compensation system 28 [Sch19] B.7 D.6 passed
Condition statements 15 self B.8 D.7 passed

Data types and fields 28 self B.9 D.8
passed with
warnings

Debounce 20 [GDV14] B.10 - not testable
Delayed assignments 7 self B.11 D.9 passed
Equality, inequality 9 self B.12 D.10 passed
Foot-controlled loop 20 self B.13 D.11 passed
Head-controlled loop 18 self B.14 D.12 passed

Immediate assignments 1 13 self B.15 D.13 passed
Immediate assignments 2 19 self B.16 D.14 passed
Immediate assignments 3 10 self B.17 D.15 passed

Invoke function 1 7 self B.18 - not testable
Left detection 7 [Sch19] B.19 D.16 passed

Numeric relations 11 self B.20 D.17 passed
Off delay timer 39 [GDV14] B.21 D.18 passed
On delay timer 39 [GDV14] B.22 D.19 passed
RS-Flip-Flop 14 [GDV14] B.23 D.20 passed

Right detection 7 [Sch19] B.24 D.21 passed
SR-Flip-Flop 14 [GDV14] B.25 D.22 passed

Simple calculation 16 [GDV14] B.26 D.23 passed
Simple program 19 [GDV14] B.27 - not testable

Tank control 19 [Sch19] B.28 D.24 passed
Track correction 23 [Sch19] B.29 - not testable

Two-Point controller 21 [Sch19] B.30 D.25 passed

that can be reused in model-based design, if a few conditions are considered.
These are summarized in the following section.

5.4. Summary

This chapter introduced the transformation of ST models to SCL models.
For this purpose, individual translation functions were defined that take into

88

5.4. Summary

account the sequential execution order of ST statements. The applicability
of these translation functions was demonstrated using a set of ST examples.
Based on the presented lemmas and experimental results, the following theo-
rem encapsulates the entire transformation:

Theorem 5.1 (ST-to-SCL Translation). Let ωφ
st ∈ Ωφ

st be an ST
model of the variant φ ∈ {fb, fun, prg} and let Tst↦scl(ωφ

st) be the model
transformation of ωφ

st to ωscl′ using the translation functions defined in
this chapter. Then, the resulting SCL model ωscl′ :

1. Conforms to the syntax rules of ωscl

2. Preserves the semantics of ωφ
st

3. Contains constructs corresponding to the constructs of ωφ
st and pre-

serves the intended functionality of ωφ
st under the following condi-

tions:

• φ ∈ {fb, fun, prg}
• ∆idcl(ωφ

st) =∆in(ωφ
st) ∪∆out(ωφ

st) ∪∆inout(ωφ
st)

• ∆vdcl(ωφ
st) =∆local(ωφ

st)
• ∀α[+](ωφ

st) ∶ α[+] ∈ {αbool
bv , αint

i , αdint
i , αuint

i , αdur, α
+}, where

αdur can be treated as a bounded integer and is specified in
milliseconds

• ∀τ(ωφ
st) ∶ τ ∈ {τ cstmisc, τ

id
misc, τ

π,η,λ
misc , τ

br
misc, τ

true
misc, τ

false
misc , τ

arr
misc, τ

inv
misc,

τ eqcomp, τ
ne
comp, τ

gt
comp, τ

ge
comp, τ

lt
comp, τ

le
comp, τ

mul
arith, τ

div
arith, τ

add
arith, τ

sub
arith,

τ exptarith, τ
mod
arith, τ

um
arith, τ

sel
cond}

• ∀σ(ωϑ
st) ∶ σ ∈ {σϑ

ass, σ
ϑ
cond, σ

ϑ
loop}

Proof The validity of Theorem 5.1 is proved as follows:

1. Syntax Conformance: Lemma 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8,
5.9, 5.10, 5.11, 5.12, 5.13, and 5.14 demonstrate that each translated
construct conforms to the syntax rules of ωscl as specified in Section 3.4.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

• Model declaration: Lemma 5.1

• Interfaces: Lemma 5.2

• Variables: Lemma 5.6

• Data types and fields: Lemma 5.7

• Expressions: Lemma 5.8

89

Chapter 5: Model Transformation of ST Models to SCL Models

• Assignments: Lemma 5.9 and 5.10

• Conditions: Lemma 5.11

• Loops: Lemmas 5.12 and 5.13

• Sequences: Lemma 5.14

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in ωscl for the considered constructs in ωφ

st, preserving the original func-
tionality.

Overall, this results in the following solutions to the challenges summarized in
Section 5.1.

1. Cyclic execution of SCL models (with and without memory):
The execution of the SCL model with and without memory depends on
the invocation by an external model, i.e., an external model is responsible
for the cyclic execution of the resulting SCL model. Unlike variables of
a resulting SCL model based on an ST model with memory, variables of
a resulting SCL model based on an ST model without memory are set
to their default values (if necessary) at the beginning of each iteration.

2. Event-driven execution of SCL models: An iteration of the SCL
model is triggered via the input variable EI and returned via the output
variable EO after a finite number of macro steps (n ≥ 0), thus realizing
an external event-driven execution control.

3. Dynamic system time: The global clock synchronization is realized
by an additional input variable CLK, i.e., the clock is controlled externally
and processed within the SCL model with read access.

4. Translation of ST language constructs: The solution follows from
Theorem 5.1.

90

Chapter 6
Model Transformation of FBDs to
Quartz Models

Contents

6.1. High-Level Design Flow – FBD-to-Quartz 92

6.2. From FBDs to Quartz Models . 94

6.2.1. Model Declaration . 94

6.2.2. Interfaces . 94

6.2.3. Variables . 94

6.2.4. Data Types and Fields . 94

6.2.5. POU Imports . 95

6.2.6. Expressions . 95

6.2.7. POU Invocations . 95

6.2.8. Assignments . 99

6.2.9. Sequences . 99

6.3. Experimental Results . 99

6.4. Summary . 100

The third approach to reusing existing POUs in model-based design is the
transformation of FBDs into Quartz models, where the goal is to create a
robust set of translation functions that ensure semantic preservation during the
transition. In addition to the approaches presented in [WS20; WS21; WS24b],
it considers a number of additional aspects as mentioned in Chapter 4 in the
context of the ST-to-Quartz transformation. The correctness of the translation
functions proposed in this chapter is proved by theoretical reasoning, which
includes a detailed analysis of the resulting syntax and semantics compared
to the syntax rules and semantics specified in Chapter 3. In addition, the
theoretical results are evaluated with real-world and self-defined FBDs.

This chapter is structured as follows: Section 6.1 introduces the high-level
design flow and translation strategy. Section 6.2 defines the translation func-

91

Chapter 6: Model Transformation of FBDs to Quartz Models

tions and theoretical analysis. Section 6.3 presents an evaluation of the theo-
retical results, and Section 6.4 summarizes the transformation.

6.1. High-Level Design Flow – FBD-to-Quartz

The high-level design flow for transforming an FBD ωφ
fbd ∈ Ω

φ
fbd of the variant

function block (φ = fb), function (φ = fun), or program (φ = prg) to a Quartz
model ωqrz ∈ Ωqrz is shown in Figure 6.1.

IEC 61131-3 Averest

Figure 6.1.: High-level design flow of the FBD-to-Quartz transformation

The FBD-to-Quartz transformation Tfbd↦qrz(ωφ
fbd) includes the following

transformation steps:

1. tδωfbd↦qrz(δω(ω
φ
fbd)): Model declaration (see Section 6.2.1)

2. t∆idcl

fbd↦qrz(ω
φ
fbd): Interfaces (see Section 6.2.2)

3. t∆vdcl

fbd↦qrz(ω
φ
fbd): Variables (see Section 6.2.3)

4. tαfbd↦qrz(α[+](ω
φ
fbd)): Data types and fields (see Section 6.2.4)

5. t
∆imports

fbd↦qrz (ω
φ
fbd): POU imports (see Section 6.2.5)

6. tτfbd↦qrz(τ (ω
φ
fbd)): Expressions (see Section 6.2.6)

7. tΣinv

fbd↦qrz(σ
ϑ
inv(ω

φ
fbd)): POU invocations (see Section 6.2.7)

8. t
Σass

fbd↦qrz(σ
ϑ
ass(ω

φ
fbd)): Assignments (see Section 6.2.8)

9. t
Σseq

fbd↦qrz(Σseq(ωqrz′)): Sequences (see Section 6.2.9)

Translation Strategy:

This chapter introduces two translation strategies that are basically the same
as the translation strategies introduced in Section 4.1. The difference is the
translation of statements that are given as graphical FBDs and not as textual
ST statements. Taking into account an explicit execution order of the blocks
and assignments, this results in the two translation strategies illustrated in
Figure 6.2, where graphical blocks are used to demonstrate the relationship
to the underlying FBD. Figure 6.2a shows the high-level runtime behavior of
the initial FBD (top) and the resulting Quartz model (bottom) that follows
the first translation strategy, where the set of input variables IN is read when
the model is invoked at time ti (FBD) or in macro step Si (SCChart), respec-
tively, and where the set of output variables OUT is returned at time tm (FBD)

92

6.1. High-Level Design Flow – FBD-to-Quartz

or in the final macro step Sm (SCChart). In contrast, Figure 6.2b shows the
high-level runtime behavior of the initial FBD (top) and the resulting Quartz
model (bottom) that follows the second translation strategy, where the model
is initialized at time t0 (FBD) or in the first macro step S0 (SCChart), re-
spectively, and then waits until an iteration is triggered (SCChart via input
variable EI). At time tm (FBD) or in macro step Sm (SCChart), OUT and EO

are returned to the invoking model for external processing. The final macro
step in the resulting SCChart is used to switch to the next iteration (triggered
in the next PLC cycle).

ti

ti ... tm

S
ta

te
m

en
ts

entry

In
it.

IN

OUT

CLK1
1

5

3
2

4

6

CLK3

S
ta

te
m

en
ts

entryIN

OUT

exit

pause

Si

exit

In
it.

Sm

 Sl
 Sk

 Sj
 Si

...

...

EI
EO ...

CLKi

CLKm

...

(a) Model of a POU without memory

invoked

ti ... tm

S
ta

te
m

en
ts

t0

entry

In
it.

IN

OUT

CLK1
1

5

3
2

4

6

CLK3

entry

CLKi

In
it.

Cycle

S0

S
ta

te
m

en
ts

emit(EO)

Sm

 Sl

pause

 Sk
 Sj

 Si

... EI
EO

...

IN

OUT

pause

CLKm

immediate
await(EI)

...

...

(b) Model of a POU with memory

Figure 6.2.: FBD-to-Quartz translation strategies: high-level runtime behavior of
the initial FBD (top) and resulting Quartz model (bottom)

Challenges:

Consequently, this leads to the following challenges for translating FBDs to
Quartz models, which are almost the same as for translating ST models to
Quartz models:

93

Chapter 6: Model Transformation of FBDs to Quartz Models

1. Cyclic execution of Quartz models (with and without memory)

2. Event-driven execution of synchronous parallel threads

3. Sequential execution of synchronous parallel threads

4. Dynamic system time

5. Translation of FBD language constructs

6.2. From FBDs to Quartz Models

This section defines the individual translation functions for translating an
FBD ωφ

fbd ∈ Ω
φ
fbd to a Quartz model ωqrz′ ∈ Ωqrz and analyzes the theoretical

correctness.

6.2.1. Model Declaration

The translation strategy for an ST model declaration to a Quartz model decla-
ration introduced in Section 4.2.1 can be applied to an FBD δω(ωφ

fbd), because
the declaration is equivalent [GDV14; PLC09]. As a result, Definition 4.1 and
Lemma 4.1 are also valid for FBDs (if all occurrences of ωφ

st are replaced by
ωφ
fbd), resulting in tδωfbd↦qrz(δω(ω

φ
fbd)) ∶≡ t

δω
st↦qrz(δω(ω

φ
fbd)).

6.2.2. Interfaces

The translation strategy for ST model interfaces introduced in Section 4.2.2
can be applied to FBD interfaces ∆idcl(ωφ

fbd) = ∆in(ωφ
fbd) ∪ ∆out(ωφ

fbd) ∪
∆inout(ωφ

fbd), because the declaration is equivalent [GDV14; PLC09]. As a
result, Definition 4.2 and Lemma 4.2, 4.3, 4.4, and 4.5 are also valid for FBDs
(if all occurrences of ωφ

st are replaced by ωφ
fbd), resulting in t∆idcl

fbd↦qrz(ω
φ
fbd) ∶≡

t∆idcl
st↦qrz(ω

φ
fbd).

6.2.3. Variables

The translation strategy for local ST model variables introduced in Sec-
tion 4.2.3 can be applied to FBD variables ∆vdcl(ωφ

fbd) =∆local(ωφ
fbd), because

the declaration is equivalent [GDV14; PLC09]. As a result, Definition 4.3 and
Lemma 4.6, 4.7, 4.8, and 4.9 are also valid for FBDs (if all occurrences of ωφ

st

are replaced by ωφ
fbd), resulting in t∆vdcl

fbd↦qrz(ω
φ
fbd) ∶≡ t

∆vdcl
st↦qrz(ω

φ
fbd).

6.2.4. Data Types and Fields

The translation strategy for ST data types and fields introduced in Sec-
tion 4.2.4 can be applied to FBD data types and fields A[+](ωφ

fbd), because
the data types and fields are equivalent [GDV14]. As a result, Definition 4.4
and Lemma 4.10 are also valid for FBDs (if all occurrences of ωφ

st are replaced
by ωφ

fbd), resulting in tαfbd↦qrz(α[+](ω
φ
fbd)) ∶≡ t

α
st↦qrz(α[+](ω

φ
fbd)).

94

6.2. From FBDs to Quartz Models

6.2.5. POU Imports

The translation strategy for instantiated and invoked POUs in ST models
introduced in Section 4.2.5 can be applied to FBDs, because the instantiated
and invoked POUs in FBDs are handled in the same way as in ST models, such
as instances of POUs with memory represented as local variables and POUs
without memory invoked inline without a specific identifier [GDV14]. As a
result, Definition 4.5 and Lemma 4.11 are also valid for FBDs (if all occurrences

of ωφ
st are replaced by ωφ

fbd), resulting in t
∆imports

fbd↦qrz (ω
φ
fbd) ∶≡ t

∆imports

st↦qrz (ω
φ
fbd).

6.2.6. Expressions

The translation strategy of ST model expressions introduced in Section 4.2.6
can be applied to FBD expressions T (ωφ

fbd), because the translations consid-
ered by the algorithm are linked to the individual, specified syntax rules and se-
mantics of FBDs. Thus, Definition 4.6 and Lemma 4.12 are also valid for FBDs
(if all occurrences of ωφ

st are replaced by ωφ
fbd), resulting in tτfbd↦qrz(τ (ω

φ
fbd)) ∶≡

tτst↦qrz(τ (ω
φ
fbd)).

6.2.7. POU Invocations

This step covers the translation function for translating POU invocations in
FBDs Σϑ

inv(ω
φ
fbd) to Quartz model invocations in Quartz models Σϑ

inv(ωqrz′).
The high-level runtime behavior of FBD (with memory) translated to a Quartz
model is similar to the high-level runtime behavior introduced in Section 4.2.7
with the difference that the statements and their execution order are not
present as textual statements and position, but as graphical FBDs and ex-
ecution order identifiers. Therefore, the adapted high-level runtime behav-
ior is illustrated in Figure 6.3. Figure 6.3a shows the runtime behavior of
an example FBD with memory that is triggered in each PLC cycle (red)
and invokes a model with memory and a model without memory depend-
ing on their execution order (blue). In contrast, Figure 6.3b shows the run-
time behavior of the resulting Quartz model, whose models with memory
are triggered by additional event-driven variables (red) and the model with-
out memory depending on its execution order (blue) without an additional
event-driven variable. As a consequence, the translation strategy for invo-
cations in ST models introduced in Section 4.2.7 can be applied to FBDs,
taking into account the graphical representation of the expressions and in-
vocations. More specifically, Definition 4.7 can be applied to FBDs (if all
occurrences of ωφ

st are replaced by ωφ
fbd) with minor changes: Unlike the pre-

condition in Definition 4.7, POU invocations are not represented as complete
formal function call [GDV14], but all ports are visible in the graphical FBD,
i.e., the information is the same. However, the difference is that an argu-
ment i of an invoked model is not given as a string. For this reason, i must
be identified before it is placed. This is described by Algorithm 17, which
describes a backward translation strategy introduced in [YKL13]. As a con-
sequence, the following replacement in Algorithm 5 must be considered for

95

Chapter 6: Model Transformation of FBDs to Quartz Models

entry

PLC
Cycle

with memorywith memory without memory

entry

entry

exit

ti

tj

tk

tl

tm

tj

tk

t0 t0

FBD,
ST, ...

FBD,
ST, ...

(a) Initial FBD

entry

EI

with memorywith memory without memory

entry

entry

EI

EO

exit

EO

Si

Sj

Sk

Sl

Sm

Sj

Sk

S0 S0

Quartz,
...

Quartz,
...

(b) Resulting Quartz model

Figure 6.3.: High-level runtime behavior of a model with memory that invokes two
models (Approach: FBD-to-Quartz)

FBDs: tτst↦qrz(i) ↦ tτst↦qrz(get expr(i)). Then, Lemma 4.13 and 4.14 are

also valid for FBDs, resulting in tΣinv

fbd↦qrz(σ
ϑ
inv(ω

φ
fbd)) ∶≡ t

Σinv
st↦qrz(σϑ

inv(ω
φ
fbd)).

Algorithm 17 Get expression following backward translation strategy

Input: lhs
Output: τi(ωφ

fbd′)
Function get expr(lhs):

find rhs ∈ EiV ∪ EiOV ∪ Ebinst ∪ Ebfun ∪ Ebfun′ , where arLI(lhs) = alI(rhs);
if rhs ∉ Ebfun then

return τi(ωφ
fbd′) = eval(afP (rhs), alI(rhs), ee(rhs));

else
rhs← atN(rhs) with parameter list EiV s(rhs) ∪ EiOV s(rhs);
forall lhsi ∈ EiV s(rhs) ∪ EiOV s(rhs) do

lhsi ← assign get expr(lhsi);
update rhs;

end
return τi(ωφ

fbd′) = rhs;
end

96

6.2. From FBDs to Quartz Models

Correctness

To check the correctness of the function get expr(lhs), the following lemma
is used.

Lemma 6.1. Let ωφ
fbd be translated to ωqrz′, φ ∈ {fb, fun, prg}, and

ωφ
fbd does not contain explicit loops. Then, the function get expr(lhs)

described by Algorithm 17 identifies and returns the right-hand side ex-
pression τi(ωfbd′) for lhs = element(x) with x ∈ {δout(ωφ

fbd), δinout(ω
φ
fbd),

δlocal(ωφ
fbd), δin(ω

φ
pou,i) with ωφ

pou,i ≠ ω
φ
fbd}, where τi(ω

φ
fbd′) conforms to the

syntax rules of τi(ωφ
fbd) and preserves the semantics of τi(ωφ

fbd) regarding
the I/O behavior.

Proof The validity of Lemma 6.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of τ(ωqrz′) with the
syntax rules of τ(ωqrz) as specified in Section 3.3 using inductive reasoning.

1. Base Case: According to the specifications for a valid PLCopen xml

file [PLC09], there is a unique link between arLI(lhs) and alI(rhs) of
FBD elements. Thus, a call of get expr(lhs) with lhs = element(x),
x ∈ {δout(ωφ

fbd), δinout(ω
φ
fbd), δlocal(ω

φ
fbd), δin(ω

φ
plc,i) with ωφ

plc,i ≠ ωφ
fbd}

always leads to a corresponding rhs. If rhs ∉ Ebfun , eval(afP (rhs),
alI(rhs), ee(rhs)) is returned, which is a variable name or a constant.
This terminates the algorithm.

2. Inductive Hypothesis: For any right-hand side parameter list expres-
sion lhsi ∈ EiV s(rhs) ∪ EiOV s(rhs), the function get expr(lhsi) syntac-
tically correctly derives a rhsi, so that the algorithm terminates after a
finite number of steps.

3. Inductive Step: Considering the recursive case where rhs ∈ Ebfun . The
algorithm replaces rhs through the block name atN(rhs) with param-
eter list EiV s(rhs) ∪ EiOV s(rhs) and recursively derives expressions for
parameter list elements lhsi ∈ EiV s(rhs)∪EiOV s(rhs), ensuring that each
recursive call maintains the appropriate arLI(lhsi) = alI(rhsi) relation-
ship according to the inductive hypothesis. The correctness of these
recursive steps ensures that the final rhs expression correctly matches
lhs as required.

Thus, after executing the function, there are the following possible post
conditions:

a) If rhs ∉ Ebfun , eval(afP (rhs), alI(rhs), ee(rhs)) is returned, which
is a variable name or a constant. It also terminates the algorithm.

b) If rhs ∈ Ebfun , the rhs is correctly updated and replaced based on
recursive outcomes and transformations, maintaining the relation-
ship arLI(lhs) = alI(rhs), and returns final rhs.

97

Chapter 6: Model Transformation of FBDs to Quartz Models

Since ωφ
fbd does not contain explicit loops by definition, the algorithm termi-

nates after a finite number of steps. Second, the semantic correctness is given
because this algorithm implements the backward translation strategy, whose
general correctness with respect to I/O behavior has been demonstrated in
[YKL13].

Illustrative Example for Lemma 6.1

As an illustrative example of how get expr(lhs) is processed, below is a
snippet of the trace when get expr(lhs) is called for the FBD AIR COND CTRL1

model, parameter RS0.RESET1, i.e., lhs = RS0.RESET1. The order in which
get expr(RS0.RESET1) is processed is visualized in Figure 6.4:

1 get_expr(RS0.RESET1): // 1. call

2 get_expr(OR(<IN1 >, <IN2 >)): // replace

3 get_expr(<IN1 >): // 2. call

4 get_expr(OR(<IN1 >, <IN2 >, <IN3 >, <IN4 >): // replace

5 get_expr(<IN1 >): // 3. call

6 get_expr(NOT(<IN1 >)): // replace

7 get_expr(<IN1 >): // 4. call

8 ⇒ IN5 // return

9 ⇒ NOT(IN5) // update

10 . . .
11 get_expr(<IN4 >): // 9. call

12 get_expr(NOT(<IN1 >)): // replace

13 get_expr(<IN1 >): // 10. call

14 ⇒ IN8 // return

15 ⇒ NOT(IN8) // update

16 ⇒ OR(NOT(IN5),. . .,NOT(IN8)) // update

17 get_expr(<IN2 >): // 11. call

18 get_expr(NOT(<IN1 >)): // replace

19 get_expr(<IN1 >): // 12. call

20 ⇒ IN9 // return

21 ⇒ NOT(IN9) // update

22 . . .
23 ⇒ OR(NOT(IN5),. . .,NOT(IN8)),NOT(IN9)) // return

1

2
34

56

78

910

1112

Figure 6.4.: Visualization of the processing sequence: get expr(RS0.RESET1)

1Both models, FBD and Quartz , are included in Appendix E.2 and F.2.

98

6.3. Experimental Results

6.2.8. Assignments

This step covers the translation function for translating assignments in FBDs
Σϑ
ass(ω

φ
fbd) to assignments in Quartz models Σϑ

ass(ωqrz′). The translation of
assignments in FBDs is quite similar to the translation of assignments in ST
models [GDV14], introduced in Section 4.2.8. For this reason, Definition 4.8
can be applied to FBDs (if all occurrences of ωφ

st are replaced by ωφ
fbd)

with minor changes. The difference is that in FBDs the right-hand side
rhs must first be extracted by the graphical model (or by elements of the
textual PLCopen xml format, respectively) before it can be processed. As a
consequence, the following replacement in Algorithm 6 must be considered for
FBDs: tτst↦qrz(lhs(σϑ

ass(ω
φ
fbd))) ↦ tτst↦qrz(get expr(lhs(σϑ

ass(ω
φ
fbd)))).

Then, Lemma 4.15 and 4.16 are also valid for FBDs, resulting in
tΣass

fbd↦qrz(σ
ϑ
ass(ω

φ
fbd)) ∶≡ t

Σass
st↦qrz(σϑ

ass(ω
φ
fbd)).

6.2.9. Sequences

The translation strategy for sequences in ST models introduced in Sec-
tion 4.2.11 can be applied to sequences in FBDs Σseq(ωφ

fbd), where only the
following statements are applicable to FBDs:

• Pause: σpause(ωqrz′) ∈ Σpause(ωqrz′)
• Model invocations: σinv(ωqrz′) ∈ Σinv(ωqrz′)
• Assignments: σimm

ass (ωqrz′) ∈ Σimm
ass (ωqrz′), σdel

ass(ωqrz′) ∈ Σdel
ass(ωqrz′)

For this reason, Definition 4.11 (with limited statements) and Lemma 4.20 are
also valid for FBDs (if all occurrences of ωφ

st are replaced by ωφ
fbd, resulting

in t
Σseq

fbd↦qrz(ω
φ
fbd) ∶≡ t

Σseq

st↦qrz(ω
φ
fbd).

Due to the equivalence to ST models, additional examples for FBD model
declarations, interfaces, variables, data types and fields, POU imports, ex-
pressions, POU invocations, and sequences are not presented at this point.

6.3. Experimental Results

The applicability of the introduced translation functions is evaluated with the
FBDs listed in Table 6.1. For evaluation purposes, the listed FBDs and the
expected Quartz models are manually implemented to verify the applicability
of the isolated translation functions. To ensure the correctness of both models,
FBDs and Quartz , they are compiled with the built-in compilers of CODESYS
and Averest. The translation functions have been implemented as a prototype
in PLCreX , assuming the FBDs are available in PLCopen xml format, result-
ing in the overall test strategy shown in Figure 6.5. The correctness of the
resulting Quartz models is verified in two ways: (1) through manual reviews,
differences between the expected Quartz models and the automatically gener-
ated models are identified, and (2) using the built-in compilers of Averest , the
syntactic correctness of the automatically generated Quartz models is ensured.

99

Chapter 6: Model Transformation of FBDs to Quartz Models

Both tests passed for all examples (ignoring minor formatting differences be-

Codesys Averest

compile

PLCreX

Averest

review

compile

compile

(generated automatically)(implemented manually)

(implemented manually)

(implemented manually)

Figure 6.5.: Test strategy to evaluate the FBD-to-Quartz transformation

tween manually implemented and automatically generated Quartz models),
with the following warnings:

• Initializing input variables: Similar to the experimental results in the
context of the transformation from ST to Quartz (see Section 4.3), ac-
cording to Lemma 4.2 with remarks in Section 6.2.4, input variables can-
not be set to specific values, which is why the example simple calculation
throws a warning for initialized input variables, since the initialization
is skipped during translation.

Based on the experimental results in Table 6.1, it can be concluded that the
introduced translation functions are applicable and lead to correct Quartz
models. They can be reused in model-based design, if a few conditions are
considered. These are summarized in the following section.

6.4. Summary

This chapter introduced the transformation of FBDs to Quartz models. For
this purpose, individual translation functions were defined that take into ac-
count the sequential execution order of operators and invoked models. The
applicability of these translation functions was demonstrated using a set of
FBD examples. Based on the presented lemmas and experimental results, the
following theorem encapsulates the entire transformation:

Theorem 6.1 (FBD-to-Quartz Translation). Let ωφ
fbd ∈ Ω

φ
fbd be an

FBD of variant φ ∈ {fb, fun, prg}, and let Tfbd↦qrz(ωφ
fbd) be the model

transformation of ωφ
fbd to ωqrz′ using the translation functions defined in

this chapter. Then, the resulting Quartz model ωqrz′ :

1. Conforms to the syntax rules of ωqrz

100

6.4. Summary

Table 6.1.: Set of FBDs and test results to evaluate the applicability of the intro-
duced FBD-to-Quartz transformation

Model Source ωφ
fbd ωqrz′ Result

2-of-3 logic function [Sch19]1 E.1 F.1 passed
Air Condition Control [Tap15] E.2 F.2 passed

Alarm function [Sch19]1 E.3 F.3 passed
Antivalence [Kar18] E.4 F.4 passed

Arithmetic operators self E.5 F.5 passed
Bending Machine Control [AG20] E.6 F.6 passed

Boolean operators self E.7 F.7 passed
Cylinder Control System [Sch14] E.8 F.8 passed

Data types and fields self E.9 F.9 passed
Debounce [GDV14] E.10 F.10 passed

Dice Numbers Indicator [Kar18] E.11 F.11 passed
KV Diagram optimized Chart [Kar18] E.12 F.12 passed

Left detection [Sch19]1 E.13 F.13 passed
Pollutant Indicator [Bub17] E.14 F.14 passed

Reservoirs Control System 1 [WZ07] E.15 F.15 passed
Reservoirs Control System 2 [Kar18] E.16 F.16 passed

Roll Down Shutters [AG20] E.17 F.17 passed
Cable Winch [Tap15] E.18 F.18 passed

Seven Segment Display [WZ07] E.19 F.19 passed
Shop Window Lighting [AG20] E.20 F.20 passed

Silo Valve Control System [WZ07] E.21 F.21 passed

Simple calculation [GDV14] E.22 F.22
passed with
warnings

Simple Program 1 self E.23 F.23 passed
Simple Program 2 self E.24 F.24 passed

Smoke Detection System [Tap15] E.25 F.25 passed
Sports Hall Lighting [AG20] E.26 F.26 passed

Thermometer Code System [Bub17] E.27 F.27 passed
Toggle Switch 4x [Bub17] E.28 F.28 passed

Ventilation Control System [Kar18] E.29 F.29 passed
Wind Direction Indicator [Bub17] E.30 F.30 passed

1example is given as ST model and manually implemented as FBD

2. Preserves the semantics of ωφ
fbd

3. Contains constructs corresponding to the constructs of ωφ
fbd and pre-

serves the intended functionality of ωφ
fbd under the following condi-

tions:

• φ ∈ {fb, fun, prg}
• ∆idcl(ωφ

fbd) =∆in(ωφ
fbd)∪∆out(ωφ

fbd)∪∆inout(ωφ
fbd), where mod-

101

Chapter 6: Model Transformation of FBDs to Quartz Models

els are always invoked with defined input values, so no initial-
izations are required for ∆in(ωφ

st)
• ∆vdcl(ωφ

fbd) = ∆local(ωφ
fbd) ∪ ∆inst(ωφ

fbd), where variables of

∆local(ωφ
fbd) are to be represented as memorized variables

• Imported models are available as Quartz models

• ∀α[+](ωφ
fbd) ∶ α

[+] ∈ {αbool
bv , αbyte

bv , αword
bv , αint

i , αdint
i , αuint

i , αudint
i ,

αdur, α
+}, where αdur can be treated as an unbounded integer

and is specified in milliseconds

• ∀τ(ωφ
fbd) ∶ τ ∈ {τ cstmisc, τ

id
misc, τ

π,η,λ
misc , τ

br
misc, τ

true
misc, τ

false
misc , τ

arr
misc,

τ invmisc, τ
eq
comp, τ

ne
comp, τ

gt
comp, τ

ge
comp, τ

lt
comp, τ

le
comp, τ

mul
arith, τ

div
arith, τ

add
arith,

τ subarith, τ
expt
arith, τ

mod
arith, τ

um
arith, τ

sel
cond}

• ∀σ(ωφ
st) ∶ σ ∈ {σϑ

inv, σ
ϑ
ass}

Proof The validity of Theorem 6.1 is proved as follows, taking into account
the remarks in this chapter, when the linked lemmas of the ST-to-Quartz
transformation are applied to FBDs (see Section 6.2.2, 6.2.3, 6.2.4, 6.2.5, 6.2.6,
6.2.7, 6.2.8, and 6.2.9):

1. Syntax Conformance: Lemma 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,
4.10, 4.11, 4.12, 6.1, 4.13, 4.14 4.15, 4.16, 4.20, and 6.1 demonstrate
that each translated construct conforms to the syntax rules of ωqrz as
specified in Section 3.3.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

• Model declaration: Lemma 4.1

• Interfaces: Lemma 4.2

• Variables: Lemma 4.6

• Data types and fields: Lemma 4.10

• POU imports: Lemma 4.11

• Expressions: Lemma 4.12

• POU invocations: Lemma 6.1, 4.13 and 4.14

• Assignments: Lemma 4.15 and 4.16

• Sequences: Lemma 4.20

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in ωqrz for the considered constructs in ωφ

fbd, preserving the original
functionality.

102

6.4. Summary

Overall, this results in the following solutions to the challenges summarized in
Section 6.2.

1. Cyclic execution of Quartz models (with and without mem-
ory)), Event-driven execution of synchronous parallel threads,
Sequential execution of synchronous parallel threads, and Dy-
namic system time: The solutions follow from the summarized solu-
tions in Section 4.4 in the context of the ST-to-Quartz transformation,
since they also hold for FBDs

2. Translation of FBD language constructs: The solution follows from
Theorem 6.1.

103

Chapter 7
Model Transformation of FBDs to
Data-Flow Oriented SCCharts

Contents

7.1. High-Level Design Flow – FBD-to-SCChart 106

7.2. From FBDs to Data-Flow Oriented SCCharts 107

7.2.1. Model Declaration . 107

7.2.2. Interfaces . 111

7.2.3. Variables . 115

7.2.4. Data Types and Fields . 118

7.2.5. POU Imports . 118

7.2.6. Expressions . 120

7.2.7. POU Invocations . 121

7.2.8. Assignments . 123

7.2.9. Sequences . 126

7.3. Experimental Results . 128

7.4. Summary . 130

The fourth approach to reusing existing POUs in model-based design is the
transformation of FBDs into data-flow oriented SCCharts, where the goal is to
create a robust set of translation functions that ensure semantic preservation
during the transition. In addition to the approaches presented in [WS22;
WS23; WS24b], it considers the following additional issues:

• Model Declaration: Mimicking the termination behavior of the initial
model, i.e., distinguishing between models with and without memory

• Interfaces and Variables: Additional interfaces for event-driven exe-
cution control and an external controlled time (provided as a bounded
integer)

• Data Types and Fields: Additional IEC 61131-3 data types

105

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

• Sequential Execution: Sequential execution via additional event-
driven interfaces, which replaces the pre expression applied in [WS22]1

• POU invocations: Instantiation and invocation of user-defined models,
taking into account their individual termination behavior

The correctness of the translation functions is proved by theoretical reasoning,
which includes a detailed analysis of the resulting syntax and semantics com-
pared to the syntax rules and semantics specified in Chapter 3. In addition,
the theoretical results are evaluated with real and self-defined FBDs.

This chapter is structured as follows: Section 7.1 introduces the high-level
design flow and translation strategy. Section 7.2 defines the translation func-
tions and theoretical analysis. Section 7.3 presents an evaluation of the theo-
retical results, and Section 7.4 summarizes the transformation.

7.1. High-Level Design Flow – FBD-to-SCChart

The high-level design flow for transforming an FBD ωφ
fbd ∈ Ω

φ
fbd of the variant

function block (φ = fb), function (φ = fun), or program (φ = prg) to a data-
flow oriented SCCharts ωscd ∈ Ωscd is shown in Figure 7.1.

KIELERIEC 61131-3

Figure 7.1.: High-level design flow of the FBD-to-SCChart transformation

The FBD-to-SCChart transformation Tfbd↦scd(ωφ
fbd) includes the following

transformation steps:

1. tδωfbd↦scd(δω(ω
φ
fbd)): Model declaration (see Section 7.2.1)

2. t∆idcl

fbd↦scd(ω
φ
fbd): Interfaces (see Section 7.2.2)

3. t∆vdcl

fbd↦scd(ω
φ
fbd): Variables (see Section 7.2.3)

4. tαfbd↦scd(α[+](ω
φ
fbd)): Data types and fields (see Section 7.2.4)

5. t
∆imports

fbd↦scd (ω
φ
fbd): POU imports (see Section 7.2.5)

6. tτfbd↦scd(τ (ω
φ
fbd)): Expressions (see Section 7.2.6)

7. tΣinv

fbd↦scd(σ
ϑ
inv(ω

φ
fbd)): POU invocations (see Section 7.2.7)

8. t
Σass

fbd↦scd(σ
ϑ
ass(ω

φ
fbd)): Assignments (see Section 7.2.8)

9. t
Σseq

fbd↦scd(Σseq(ωscd′)): Sequences (see Section 7.2.9)

1The pre expression was applied in [WS22] to reflect the sequential order of assignments
in the underlying FBD.

106

7.2. From FBDs to Data-Flow Oriented SCCharts

Translation Strategy:

This chapter introduces the translation strategies illustrated in Figure 7.2.
Figure 7.2a shows both the initial high-level runtime behavior of an example
FBD without memory and the resulting high-level runtime of the resulting
SCChart. Basically, when the model is invoked at time ti (FBD) or in macro
step Si (SCChart) via input EI, respectively, inputs IN are read and variables
are initialized, i.e., in the resulting SCChart, the affected variables are set to
their default values. The model can read a dynamic system time CLK during
an iteration in macro step Si, . . . , Sm. The resulting SCChart contains a finite
number of parallel threads that are executed according to the SCMoC, where
the execution order of the initial FBD is enforced. During an iteration, only
CLK is allowed to be updated externally. The final outputs OUT are allowed to
be processed externally when an iteration terminates in macro step Sm when
output EO is triggered. In contrast, Figure 7.2b shows both the initial high-
level runtime behavior of an example FBD with memory and the high-level
runtime of the resulting data-flow oriented SCChart. Basically, the variables
are initialized at time t0 (FBD) or in macro step S0 (SCChart), respectively.
The subsequent processing is equivalent to the first strategy without memory.

Challenges:

From this, the following challenges for translating FBDs to data-flow oriented
SCCharts can be derived:

1. Cyclic execution of SCCharts (with and without memory)

2. Event-driven execution of synchronous parallel threads

3. Sequential execution of synchronous parallel threads

4. Dynamic system time

5. Translation of FBD language constructs

7.2. From FBDs to Data-Flow Oriented SCCharts

This section defines the individual translation functions for translating an
FBD ωφ

fbd ∈ Ω
φ
fbd to a data-flow oriented SCChart ωscd′ ∈ Ωscd and analyzes

the theoretical correctness.

7.2.1. Model Declaration

This step covers the translation function for translating an FBD declaration
δω(ωφ

fbd) to an SCChart declaration δω(ωscd′). According to the introduced

translation strategies, the resulting SCChart of an FBD, variant φ ∈ {fb, prg},
is executed in an infinite loop without reset of variables, reflecting an FBD
with memory. In contrast, the resulting SCChart of an FBD, variant φ = fun,
is also executed in an infinite loop, but with variables set to their default values
at the beginning of each iteration, reflecting an FBD without memory. For the
reset and variable assignment, the control-flow oriented MOVEα SCCharts with

107

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

ti

ti ... tm

S
ta

te
m

en
ts

entry

In
it.

IN

OUT

CLK1
1

5

3
2

4

6

CLK3

S
ta

te
m

en
ts

entry

IN

OUT

CLKiCLKj

 Sm
 Sl

 Sk
 Sj

 Si

...

CLKj+1...
EI

EO

exit

EIEO

...
EO

Reset

(a) without memory

ti ... tm

S
ta

te
m

en
ts

t0

entry

In
it.

IN

OUT

CLK1
1

5

3
2

4

6

CLK3

S
ta

te
m

en
ts

S0

entry

In
it.

IN

OUT

CLKiCLKj

 Sm
 Sl

 Sk
 Sj

 Si

EIEO

...
EO...

CLKj+1...EI

EO

Cycle

(b) with memory

Figure 7.2.: FBD-to-SCChart translation strategies: high-level runtime behavior
of the initial FBD (top) and resulting SCChart (bottom)

α ∈ {bool, f loat, int} are integrated, which are derived from the IEC 61131-
3 MOVE selection function [GDV14] and listed in Listing K.1, K.2, and K.3.
These blocks simply move the input value to the output (with memory) when
the EI port is triggered (an indicated by the EO output), which is illustrated
in Section 7.2.8.

Definition 7.1 (Model Declaration – FBD-to-SCChart). Let Ωφ
fbd =

{ωφ
fbd ∣ φ ∈ {fb, fun, prg}} be the set of possible FBDs. δω(ωφ

fbd) is trans-

lated to δω(ωscd′) using the translation function tδωfbd↦scd(δω(ω
φ
fbd)), which is

described by Algorithm 18.

Correctness

To check the correctness of Definition 7.1, the following lemma is used.

108

7.2. From FBDs to Data-Flow Oriented SCCharts

Algorithm 18 Translate model declaration – FBD-to-SCChart

Input: δω(ωφ
fbd)

Output: δω(ωscd′)
Translation Function tδωfbd↦scd(δω(ω

φ
fbd)):

δω(ωscd′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

import "MOVEα.sctx" . . .

t
∆imports

fbd↦scd (ω
φ
fbd)

scchart an(ωφ
fbd){

input bool EI

output bool EO

t∆idcl

fbd↦scd(ω
φ
fbd)

t∆vdcl

fbd↦scd(ω
φ
fbd)

ref MOVEα MOVE 01 . . .
dataflow:

MOVE 01 = {EI, . . . };
tΣfbd↦scd(ω

φ
fbd)

EO = . . .;
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
▷ data-flow starts with reset to defaults using MOVE SCCharts if φ = fun

Lemma 7.1. Let ωφ
fbd be translated to ωscd′ and φ ∈ {fb, fun, prg}.

Then, tδωfbd↦scd(δω(ω
φ
fbd)) translates δω(ωφ

fbd) to δω(ωscd′) as specified in

Definition 7.1. δω(ωscd′) conforms to the syntax rules of δω(ωscd) and
preserves the semantics of δω(ωφ

fbd) regarding its termination behavior.

Proof The validity of Lemma 7.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of δω(ωscd′) with the
syntax rules of δω(ωscd). The correctness in both cases φ = fun and φ ∈ {fb,
prg} follows from the syntactically correct import of a MOVE SCChart, decla-
ration of EI and EO, assignments, and invocations as specified in Section 3.5.
Second, there are two cases to distinguish when checking the semantic correct-
ness:

• Case 1 (φ = fun): δω(ωscd′) starts each cycle by resetting variables
to their defaults, mimicking POUs without memory. Thus, Jδω(ωscd)Kξ
preserves Jδω(ωφ

fbd)Kξ regarding its termination behavior (see Section 3.2
and 3.5).

• Case 2 (φ ∈ {fb, prg}): δω(ωscd′) starts each cycle with an invocation
or assignment without resetting variables to their defaults, mimicking
POUs with memory. Thus, Jδω(ωscd)Kξ preserves Jδω(ωφ

fbd)Kξ regarding
its termination behavior (see Section 3.2 and 3.5).

109

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Illustrative Example for Lemma 7.1

As simple examples, Figure 7.3 and Figure 7.4 show two SCCharts, with the
graphical data-flow oriented SCCharts in the front and the compiled control-
flow oriented SCCharts in the background (illustrating the resulting parallel
threads). In particular, Figure 7.3 shows an SCChart with reset2 of variables
and Figure 7.4 shows an SCChart without reset of variables. The graphical
views illustrate the sequential execution from invocation by EI to triggering
EO. Both models increment X1 by 1, where the resulting SCChart with resets
always returns X1=4 (analogous to an FBD of the variant φ = fun), and
X1 in the resulting SCChart with memory either retains its current value (if
EI=false) or is incremented by one (if EI=true), which is equivalent to the
behavior of an FBD of the variant φ ∈ {fb, prg}. Both scenarios are evaluated
within CODESYS and equivalent IEC 61131-3 FBDs.

1 import "MOVE_int.sctx"

2 scchart SIMPLE_ADD_FUN{

3 input bool EI

4 output bool EO

5 int X1 = 3

6 ref MOVE_int MOVE_01

7 ref MOVE_int MOVE_02

8

9 dataflow:

10 MOVE_01 = {EI, 3};

11 X1 = MOVE_01.OUT;

12 MOVE_02 = {MOVE_01.EO, X1

+ 1};

13 X1 = MOVE_02.OUT;

14 EO = MOVE_02.EO;

15 }

EOReset

EI

Init.

Figure 7.3.: Example SCChart illustrating a resulting model with reset

1 import "MOVE_int.sctx"

2 scchart SIMPLE_ADD_FB{

3 input bool EI

4 output bool EO

5 int X1 = 3

6 ref MOVE_int MOVE_01

7

8 dataflow:

9 MOVE_01 = {EI, X1 + 1};

10 X1 = MOVE_01.OUT;

11 EO = MOVE_01.EO;

12 }

Init.

EO

EI

Figure 7.4.: Example SCChart illustrating the resulting model without reset

2Setting a variable to its default value requires a MOVE block, for which the data type must
be considered.

110

7.2. From FBDs to Data-Flow Oriented SCCharts

7.2.2. Interfaces

This step covers the translation function for translating FBD inter-
faces ∆idcl(ωφ

fbd) to SCChart interfaces ∆idcl(ωscd′), where ∆idcl(ωφ
fbd) =

∆in(ωφ
fbd) ∪∆out(ωφ

fbd) ∪∆inout(ωφ
fbd).

Definition 7.2 (Interfaces – FBD-to-SCChart). Let Ωφ
fbd = {ω

φ
fbd ∣ φ ∈

{fb, fun, prg}} be the set of possible FBD elements. ∆idcl(ωscd′) is derived
from ωφ

fbd and extended by interfaces for event-driven execution control and by

an optional system time, using the translation function t∆idcl

fbd↦scd(ω
φ
fbd), which

is described by Algorithm 19.

Correctness

To check the correctness of Definition 7.2, the following lemmas are used.

Lemma 7.2. Let ωφ
fbd be translated to ωscd′ and φ ∈ {fb, prg}.

Then, for each interface ei ∈ Ei(ωφ
fbd), t

∆idcl

fbd↦scd(ω
φ
fbd) extends ∆in(ωscd′),

∆out(ωscd′), or ∆inout(ωscd′) as specified in Definition 7.2. ∆in(ωscd′),
∆out(ωscd′), and ∆inout(ωscd′) conform to the syntax rules of ∆in(ωscd),
∆out(ωscd), and ∆inout(ωscd) regarding the storage class, data type, and
name. With and without initialization, ∆in(ωscd′), ∆out(ωscd′), and
∆inout(ωscd′) preserves the semantics of ∆in(ωφ

fbd), ∆out(ωφ
fbd), and

∆inout(ωφ
fbd) regarding information flow, modifiability, and initialization.

Proof The validity of Lemma 7.2 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of ∆in(ωscd′),
∆out(ωscd′), and ∆inout(ωscd′) with the syntax rules of ∆in(ωscd), ∆out(ωscd),
and ∆inout(ωscd) as specified in Section 3.5 using induction on the number of
added interfaces Ei(ωφ

fbd):

1. Base Case: When Ei(ωφ
fbd) = ∅, there are no input variables, output

variables, and inout variables to add, which trivially conforms to the
syntax rules of ∆in(ωscd), ∆out(ωscd), and ∆inout(ωscd), since these sets
remain unchanged.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in ∆in(ωscd′),
∆out(ωscd′), and ∆inout(ωscd′). Their syntax still conforms to the syntax
rules of ∆in(ωscd), ∆out(ωscd), and ∆inout(ωscd).

Second, the semantic correctness is checked by comparing J∆in(ωscd)Kξ,
J∆out(ωscd)Kξ, and J∆inout(ωscd)Kξ (see Section 3.5) with J∆in(ωφ

fbd)Kξ,
J∆out(ωφ

fbd)Kξ, and J∆inout(ωφ
fbd)Kξ (see Section 3.2).

111

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Algorithm 19 Translate interfaces – FBD-to-SCChart

Input: ωφ
fbd

Output: ∆in(ωscd′), ∆out(ωscd′), ∆inout(ωscd′), Σseq(ωscd′)
Translation Function t∆idcl

fbd↦scd(ω
φ
fbd):

∆in(ωscd′) ← add input bool EI; ▷ add Boolean input variable
∆out(ωscd′) ← add output bool EO; ▷ add Boolean output variable
if ωφ

fbd contains time-based logic then
∆in(ωscd′) ← add input int CLK;

▷ add input variable
end
if φ = fun ∧ erT ≠ ∅, where erT ∈ ErT (ωφ

fbd),ErT (ω
φ
fbd) ⊂ Ei(ω

φ
fbd) then

∆out(ωscd′) ← add output tαfbd↦scd(α(erT)) an(ωφ
fbd);
▷ add output variable

end
forall ei ∈ Ei(ωφ

fbd) do
if ei = eiV s, where eiV s ∈ EiV s(ωφ

fbd),EiV s(ωφ
fbd) ⊂ Ei(ω

φ
fbd) then

∆in(ωscd′) ← add input tαfbd↦scd(α(ei)) an(ei) [= tτmisc

fbd↦scd(π)];
▷ add input variable with optional initialization

end
if ei = eoV s, where eoV s ∈ EoV s(ωφ

fbd),EoV s(ωφ
fbd) ⊂ Ei(ω

φ
fbd) then

∆out(ωscd′) ← add output tαfbd↦scd(α(ei)) an(ei) [=

tτmisc

fbd↦scd(π)];
▷ add output variable with optional initialization

if φ = fun then

Σseq(ωscd′) ← {
MOVEiN = {EI, tτmisc

fbd↦scd(π)};
an(ei) = MOVEiN.OUT;

}

▷ add reset to default value with corresponding MOVE instance
end

end
if ei = eiOV s, where eiOV s ∈ EiOV s(ωφ

fbd),EiOV s(ωφ
fbd) ⊂ Ei(ω

φ
fbd) then

∆inout(ωscd′) ← add input output tαfbd↦scd(α(ei)) an(ei) [=

tτmisc

fbd↦scd(π)];
▷ add inout variable with optional initialization

end

end

Illustrative Example for Lemma 7.2

As an example, below are some derived interfaces of the FBD AIR COND CTRL

model3:

1 input bool IN1 // added to ∆in(ωscd′)

2 input bool IN2 // added to ∆in(ωscd′)

3 . . .

3Both models, FBD and SCChart, are included in Appendix E.2 and G.2.

112

7.2. From FBDs to Data-Flow Oriented SCCharts

Lemma 7.3. Let ωφ
fbd be translated to ωscd′ and φ = fun. Then, for each

interface ei ∈ Ei(ωφ
fbd), t

∆idcl

fbd↦scd(ω
φ
fbd) extends ∆in(ωscd′), ∆out(ωscd′) in-

cluding optional initialization, or ∆inout(ωscd′), and adds possible assign-
ments to defaults to Σseq(ωscd′) as specified in Definition 7.2. ∆in(ωscd′),
∆out(ωscd′), and ∆inout(ωscd′) conform to the syntax rules of ∆in(ωscd),
∆out(ωscd), and ∆inout(ωscd) regarding the storage class, data type, and
name. Σseq(ωscd′) conforms to the syntax rules of Σseq(ωscd). With and
without assignments to defaults, ∆in(ωscd′), ∆out(ωscd′), and ∆inout(ωscd′)
in combination with Σseq(ωscd′) preserves the semantics of ∆in(ωφ

st),
∆out(ωφ

st), and ∆inout(ωφ
st) regarding information flow, modifiability, and

initialization.

Proof The validity of Lemma 7.3 is checked as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of ∆in(ωscd′),
∆out(ωscd′), ∆inout(ωscd′), and Σseq(ωscd′) with the syntax rules of ∆in(ωscd),
∆out(ωscd), ∆inout(ωscd), and Σseq(ωscd) as specified in Section 3.5 using in-
duction on the number of added interfaces Ei(ωφ

fbd):

1. Base Case: When Ei(ωφ
fbd) = ∅, there are no input variables, out-

put variables with possible initialization, and inout variables, and thus
no statements to add, which trivially conforms to the syntax rules of
∆in(ωscd), ∆out(ωscd), ∆inout(ωscd), Σfb

inv(ωscd), and Σimm
ass (ωscd), since

these sets remain unchanged and are optional.

2. Induction Hypothesis: The lemma holds for any set of input vari-
ables, output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in ∆in(ωscd′),
∆out(ωscd′), ∆inout(ωscd′), Σfb

inv(ωscd), and Σimm
ass (ωscd). Their syntax

still conforms to the syntax rules of ∆in(ωscd), ∆out(ωscd), ∆inout(ωscd),
Σfb
inv(ωscd), and Σimm

ass (ωscd).

Second, the semantic correctness is checked by comparing J∆in(ωscd)Kξ,
J∆out(ωscd)Kξ, and J∆inout(ωscd)Kξ in combination with the SOS transition

rules of Σfb
inv(ωscd) and Σimm

ass (ωscd), noting that MOVE instances termi-
nate immediately (see Section 3.5) with J∆in(ωφ

fbd)Kξ, J∆out(ωφ
fbd)Kξ, and

J∆inout(ωφ
fbd)Kξ (see Section 3.2).

Illustrative Example for Lemma 7.3

As an example, below are some derived interfaces of the FBD TWO OF THREE

model4:

4Both models, FBD and SCChart, are included in Appendix E.1 and G.1.

113

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

1 input bool xB1_Temp // added to ∆in(ωscd′)

2 input bool xB2_Temp // added to ∆in(ωscd′)

3 . . .

Lemma 7.4. Let ωφ
fbd be translated to ωscd′ and φ ∈ {fb, fun, prg}. Then,

t∆idcl

fbd↦scd(ω
φ
fbd) adds the additional input EI to ∆in(ωscd′) and the additional

output EO to ∆out(ωscd′) as specified in Definition 7.2. ∆in(ωscd′) and
∆out(ωscd′) conform to the syntax rules of ∆in(ωscd) and ∆out(ωscd).

Proof The validity of Lemma 7.4 is proved by comparing the resulting syn-
tax of ∆in(ωscd′) and ∆out(ωscd′) with the syntax rules of ∆in(ωscd) and
∆out(ωscd) as specified in see Section 3.5.

Illustrative Example for Lemma 7.4

As an example, below are the derived interfaces of the SIMPLE ADD FUN model
introduced in Lemma 7.1:

1 input bool EI // added to ∆in(ωscd′)

2 output bool EO // added to ∆out(ωscd′)

Lemma 7.5. Let ωφ
fbd be translated to ωscd′, φ ∈ {fb, fun, prg}, and

ωφ
fbd contains time-based logic, where time is a readable variable and is

synchronized externally. Then, t∆idcl

fbd↦scd(ω
φ
fbd) adds an additional input to

∆in(ωscd′) as specified in Definition 7.2. ∆in(ωscd′) conforms to the syntax
rules of ∆in(ωscd).

Proof The validity of Lemma 7.5 is proved by comparing the resulting syntax
of ∆in(ωscd′) with the syntax rules of ∆in(ωscd) as specified in Section 3.5.

Illustrative Example for Lemma 7.5

As an example, below is the derived input of the FBD DEBOUNCE model5:

1 input int CLK // added to ∆in(ωscd′)

Lemma 7.6. Let ωfun
fbd be translated to ωscd′ and ωfun

fbd has a specified

return type, which is processed by ωfun
fbd . Then, t∆idcl

fbd↦scd(ω
φ
fbd) adds an

additional memorized output for the specified return type to ∆out(ωscd′)
as specified in Definition 7.2. ∆out(ωscd′) conforms to the syntax rules of
∆out(ωscd).

5Both models, FBD and SCChart, are included in Appendix E.10 and G.10.

114

7.2. From FBDs to Data-Flow Oriented SCCharts

Proof The validity of Lemma 7.6 is proved by comparing the resulting syntax
of ∆out(ωscd′) with the syntax rules of ∆out(ωscd) as specified in Section 3.5.

Illustrative Example for Lemma 7.6

As an example, below is the derived output of the FBD SIMPLE FUN model6:

1 output float FBD_SIMPLE_FUN // added to ∆out(ωscd′)

7.2.3. Variables

This step covers the translation function for translating local FBD
variables ∆vdcl(ωφ

fbd) to local SCChart variables ∆vdcl(ωscd′), where

∆vdcl(ωφ
fbd) =∆local(ωφ

fbd) ∪∆inst(ωφ
fbd).

Definition 7.3 (Variables – FBD-to-SCChart). Let Ωφ
fbd = {ω

φ
fbd ∣ φ ∈

{fb, fun, prg}} be the set of possible FBD elements. ∆vdcl(ωscd′) is derived
from ωφ

fbd using the translation function t∆vdcl

fbd↦scd(ω
φ
fbd), which is described by

Algorithm 20.

Algorithm 20 Translate variables – FBD-to-SCChart

Input: ωφ
fbd

Output: ∆local(ωscd′), ∆inst(ωscd′), Σseq(ωscd′)
Translation Function t∆vdcl

fbd↦scd(ω
φ
fbd):

forall elV s ∈ Ei(ωφ
fbd) do

if ed(elV s) = ∅ then
∆local(ωscd′) ← add tαfbd↦scd(α(elV s)) an(elV s) [= tτmisc

fbd↦scd(π)];
▷ add local variable with optional initialization

if φ = fun then

Σseq(ωscd′) ← {
MOVEiN = {EI, tτmisc

fbd↦scd(π)};
an(ei) = MOVEiN.OUT;

}

▷ add reset to default value with corresponding MOVE instance
end

else
∆inst(ωscd′) ← add ref ed(elV s) an(elV s);

▷ add local variable for instance
end

end

Correctness

To check the correctness of Definition 7.3, the following lemmas are used.

6Both models, FBD and SCChart, are included in Appendix E.22 and G.22.

115

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Lemma 7.7. Let ωφ
fbd be translated to ωscd′ and φ ∈ {fb, prg}. Then, for

each local variable elV s ∈ Ei(ωφ
fbd) that is not derived from external models

ed(elV s) = ∅, t∆vdcl

fbd↦scd(ω
φ
fbd) adds a local variable including optional ini-

tialization to ∆local(ωscd′) as specified in Definition 7.3. ∆local(ωscd′) con-
forms to the syntax rules of ∆local(ωscd) regarding the storage class, data
type, and name. With and without initialization, ∆local(ωscd′) preserves
the semantics of ∆local(ωφ

fbd) regarding modifiability and initialization.

Proof The validity of Lemma 7.7 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ∆local(ωscd′) with
the syntax rules of ∆local(ωscd) as specified in Section 3.5 using induction on
the number of added variables Ei(ωφ

fbd):

1. Base Case: When Ei(ωφ
fbd) = ∅, there are no local variables and thus

no statements to add, which trivially conforms to the syntax rules of
∆local(ωscd), since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of local variables
with possible initialization.

3. Inductive Step: Adding an element to local variables with initializa-
tion results in an additional element in ∆local(ωscd′). Its syntax still
conforms to the syntax rules of ∆local(ωscd).

Second, the semantic correctness is checked by comparing J∆local(ωscd)Kξ
(see Section 3.5) with J∆local(ωφ

fbd)Kξ (see Section 3.2).

Illustrative Example for Lemma 7.7

As an example, below is a snippet of the derived local variables of the
FBD DATATYPES model7:

1 bool A1 // added to ∆local(ωscd′)

2 bool A2 = true // added to ∆local(ωscd′)

Lemma 7.8. Let ωφ
fbd be translated to ωscd′ and φ ∈ {fun}. Then, for

each local variable elV s ∈ Ei(ωφ
fbd) that is not derived from external models

ed(elV s) = ∅, t∆vdcl

fbd↦scd(ω
φ
fbd) adds a local variable including optional ini-

tialization to ∆local(ωscd′), and adds possible assignments to defaults to
Σseq(ωscd′) as specified in Definition 7.3. ∆local(ωscd′) conforms to the
syntax rules of ∆local(ωscd) regarding the storage class, data type, and
name. Σseq(ωscd′) conforms to the syntax rules of Σseq(ωscd). With and

7Both models, FBD and SCChart, are included in Appendix E.9 and G.9.

116

7.2. From FBDs to Data-Flow Oriented SCCharts

without initialization, ∆local(ωscd′) in combination with Σseq(ωscd′) pre-
serves the semantics of ∆local(ωφ

fbd) regarding modifiability and initializa-
tion.

Proof The validity of Lemma 7.8 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ∆local(ωscd′) and
Σseq(ωscd′) with the syntax rules of ∆local(ωscd) and Σseq(ωscd) as specified in
Section 3.5 using induction on the number of added variables Ei(ωφ

fbd):

1. Base Case: When Ei(ωφ
fbd) = ∅, there are no local variables and thus

no statements to add, which trivially conforms to the syntax rules of
∆local(ωscd), Σfb

inv(ωscd), and Σimm
ass (ωscd), since these sets remain un-

changed and are optional.

2. Induction Hypothesis: The lemma holds for any set of local variables.

3. Inductive Step: Adding an element to local variables results in an
additional element in ∆local(ωscd′), Σfb

inv(ωscd), and Σimm
ass (ωscd). Their

syntax still conforms to the syntax rules of ∆local(ωscd), Σfb
inv(ωscd), and

Σimm
ass (ωscd).

Second, the semantic correctness is checked by comparing J∆local(ωscd)Kξ
in combination with the SOS transition rules of Σfb

inv(ωscd) and Σimm
ass (ωscd),

noting that MOVE instances terminate immediately (see Section 3.5) with
J∆local(ωφ

fbd)Kξ (see Section 3.2).

Illustrative Example for Lemma 7.8

As an example, below are a derived variable including reset of the
SIMPLE ADD FUN model introduced in Lemma 7.1:

1 int X1 = 3 // added to ∆in(ωscd′)

2 . . .
3 dataflow:

4 MOVE_01 = {EI, 3}; // added to Σseq(ωscd′)

5 X1 = MOVE_01.OUT; // added to Σseq(ωscd′)

6 . . .

Lemma 7.9. Let ωφ
fbd be translated to ωscd′ and φ ∈ {fb, prg}. Then,

for each local variable elV s ∈ Ei(ωφ
fbd) that is derived from external mod-

els ed(elV s) ≠ ∅, t∆vdcl

fbd↦scd(ω
φ
fbd) adds a local variable to ∆inst(ωscd′) as

specified in Definition 7.3. ∆inst(ωscd′) conforms to the syntax rules of
∆inst(ωscd) regarding the name and preserves the semantics of ∆inst(ωφ

fbd)
regarding usage within the model.

117

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Proof The validity of Lemma 7.9 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ∆inst(ωscd′) with
the syntax rules of ∆inst(ωscd) as specified in Section 3.5 using induction on
the number of added variables Ei(ωφ

fbd):

1. Base Case: When Ei(ωφ
fbd) = ∅, there are no instances, which triv-

ially conforms to the syntax rules of ∆inst(ωscd), since this set remains
unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances.

3. Inductive Step: Adding an instance results in an additional element in
∆inst(ωscd′). Its syntax still conforms to the syntax rules of ∆inst(ωscd).

Second, the semantic correctness is checked by comparing J∆inst(ωscd)Kξ
(see Section 3.5) with J∆inst(ωφ

fbd)Kξ (see Section 3.2).

Illustrative Example for Lemma 7.9

As an example, below is a snippet of the derived local variables of the
FBD AIR COND CTRL model8:

1 ref RS RS0 // added to ∆inst(ωscd′)

7.2.4. Data Types and Fields

This step covers the translation function for translating FBD data types and
fields A[+](ωφ

fbd) to SCChart data types and fields A[+](ωscd′). FBD data
types and fields correspond to ST model data types and fields [GDV14]. Fur-
thermore, SCChart data types and fields correspond to SCL data types and
fields (see Section 3.5). Consequently, the translation strategy introduced in
Section 5.2.4 can be applied to the FBD-to-SCChart transformation, resulting
in tαfbd↦scd(α[+](ω

φ
fbd)) ∶≡ tαst↦scl(α[+](ω

φ
fbd)). Due to the equivalence to the

ST-to-SCL transformation, no additional examples for the FBD-to-SCChart
transformation are included at this point.

7.2.5. POU Imports

This step covers the translation function for translating POU imports
∆imports(ωφ

fbd) to SCChart imports ∆imports(ωscd′).

Definition 7.4 (POU imports – FBD-to-SCChart). Let Ωφ
fbd =

{ωφ
fbd ∣ φ ∈ {fb, fun, prg}} be the set of possible FBD elements. POU imports

in FBDs ∆imports(ωφ
fbd) are derived from external blocks elV s ∈ E(ωφ

fbd),
ed(elV s) ≠ ∅ and user-defined blocks ebfun′ ∈ F ′(ωφ

fbd). The imports are

translated to SCChart imports ∆imports(ωscd′) and extended by data type

specific MOVE models using the translation function t
∆imports

fbd↦scd (ω
φ
fbd), which is

described by Algorithm 21.

8Both models, FBD and SCChart, are included in Appendix E.2 and G.2.

118

7.2. From FBDs to Data-Flow Oriented SCCharts

Algorithm 21 Translate POU imports – FBD-to-SCChart

Input: ωφ
fbd

Output: ∆imports(ωscd′)
Translation Function t

∆imports

fbd↦scd (ω
φ
fbd):

forall α(lhs(σimm
ass (ω

φ
fbd))) do

∆imports(ωscd′) ← add import "MOVE (α(lhs(σimm
ass (ω

φ
fbd)))).sctx";

▷ data type is derived from left-hand side of assigned variables
end
forall elV s ∈ E(ωφ

fbd), ed(elV s) ≠ ∅ do
∆imports(ωscd′) ← add import "(ed(elV s)).sctx";

end
forall ebfun′ ∈ F ′(ω

φ
fbd) (derived from ωφ

fbd) do
∆imports(ωscd′) ← add import "(an(ebfun′)).sctx";

end

Correctness

To check the correctness of Definition 7.4, the following lemmas are used.

Lemma 7.10. Let the IEC 61131-3 standard function blocks (RS, SR,
TOF, TON) [GDV14] be available as semantically and syntactically correct
SCChart models. Then, for each instance elV s ∈ E(ωφ

fbd), ed(elV s) ≠ ∅
and user-defined function ebfun′ ∈ F ′(ω

φ
fbd), t

∆imports

fbd↦scd (ω
φ
fbd) adds the cor-

responding import to ∆imports(ωscd′) (if not already imported) as speci-
fied in Definition 7.4. ∆imports(ωscd′) conforms to the syntax rules of
∆imports(ωscd) and preserves the semantics of ∆imports(ωφ

fbd) regarding
instantiation and usage.

Proof The validity of Lemma 7.10 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ∆imports(ωscd′)
with the syntax rules of ∆imports(ωscd) as specified in Section 3.5 using in-
duction on the number of instances E(ωφ

fbd) = {elV s ∣ ed(elV s) ≠ ∅} and user-

defined functions F ′(ωφ
fbd):

1. Base Case: When E(ωφ
fbd) = ∅ and F ′(ωφ

fbd) = ∅, there are no modules

to import, which trivially conforms to the syntax rules of ∆imports(ωscd),
since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances and
any set of user-defined functions.

3. Inductive Step: Adding an instance and user-defined function
to E(ωφ

fbd) and F ′(ωφ
fbd) results in two additional elements in

∆imports(ωscd′) (one for the instance and one for the user-defined
function). Its syntax still conforms to the syntax rules of ∆imports(ωscd).

119

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Second, the semantic correctness is checked by comparing J∆imports(ωscd)Kξ
(see Section 3.5) with J∆imports(ωφ

fbd)Kξ (see Section 3.2).

Illustrative Example for Lemma 7.10

As an example, below are the derived import of the FBD AIR COND CTRL

model9:

1 import "RS.sctx" // added to ∆imports(ωscd′)

Lemma 7.11. Let the data types of required MOVE models be derived
from the assigned variables α(lhs(σimm

ass (ω
φ
fbd))). Then, for each data type,

t
∆imports

fbd↦scd (ω
φ
fbd) adds the corresponding import to ∆imports(ωscd′) (if not

already imported) as specified in Definition 7.4. ∆imports(ωscd′) conforms
to the syntax rules of ∆imports(ωscd).

Proof The validity of Lemma 7.11 is proved by comparing the resulting syn-
tax of ∆imports(ωscd′) with the syntax rules of ∆imports(ωscd) as specified in
Section 3.5 using induction on the data types of the left-hand side of the
assigned variables α(lhs(σimm

ass (ω
φ
fbd))):

1. Base Case: When lhs(σimm
ass (ω

φ
fbd)) = ∅, there are no derived data

types, which trivially conforms to the syntax rules of ∆imports(ωscd),
since this set remains unchanged and is optional.

2. Induction Hypothesis: The lemma holds for any set of instances and
any set of user-defined functions.

3. Inductive Step: Adding an instance and user-defined function to
lhs(σimm

ass (ω
φ
fbd)) results in an additional element in ∆imports(ωscd′). Its

syntax still conforms to the syntax rules of ∆imports(ωscd).

Illustrative Example for Lemma 7.11

As an example, below is the derived import of the SIMPLE ADD FUN model
introduced in Lemma 7.1:

1 import "MOVE_int.sctx" // added to ∆imports(ωscd′)

7.2.6. Expressions

This step covers the translation function for translating expressions in FBDs
T (ωφ

fbd) to expressions in SCCharts T (ωscd′). The translation strategy for
the ST-to-SCL transformation introduced in Section 5.2.5 can be applied to
the FBD-to-SCChart transformation, because the translations are linked to

9Both models, FBD and SCChart, are included in Appendix E.2 and G.2.

120

7.2. From FBDs to Data-Flow Oriented SCCharts

the individual specifications of the ST and FBD constructs, and the result-
ing expressions for the SCL models are the same as for SCCharts (see Sec-
tion 3.5), resulting in tτfbd↦scd(τ (ω

φ
fbd)) ∶≡ t

τ
st↦scl(τ (ω

φ
fbd)). As summarized in

Lemma 5.8, only a subset of the considered FBD expressions can be translated
to equivalent SCChart expressions (using internal operators).

7.2.7. POU Invocations

This step covers the translation function for translating POU invocations in
FBDs Σϑ

inv(ω
φ
fbd) to model invocations in SCCharts Σϑ

inv(ωscd′). As an il-
lustration, Figure 7.5 shows the high-level runtime behavior of an example
FBD with memory ωfbd,1 invoking a model with memory ωpou,2 and a model
without memory ωpou,3, as well as the resulting SCChart ωscd,1 that invokes
the two models, ωx,2 and ωx,3. In particular, Figure 7.5a shows that ωfbd,1

is triggered in every PLC cycle at time ti and invokes ωpou,2 and ωpou,3 de-
pending on their execution order at time tj and tk, until an iteration of ωfbd,1

terminates at time tm, with i < j < k < l < m and i, j, k, l,m ≥ 0. In con-
trast, Figure 7.5b shows that an iteration of the resulting SCChart ωscd,1 is
triggered in each PLC cycle at macro step Si and invokes ωx,2 and ωx,3 de-
pending on their execution order at macro step Sj and Sk. The models are
invoked by the additional interfaces EI and EO of the corresponding compo-
nents. Consequently, an iteration of ωscd,1 terminates at macro step Sm and
allows multiple macro steps of instances due to the event-driven execution
control using EI and EO. If an iteration of an instance terminates within the
same macro step per PLC cycle, it is possible to force a sequential execution of
parallel threads of SCCharts using the sequential statement (see Section 3.5)
without additional interfaces for event-driven execution control. However, for
a generic application of the introduced approach, this thesis focuses on event-
driven execution control. It is worth noting that this event-driven execution
control focuses on model invocations, although in principle it is possible to
invoke any operator of depending on its execution order (which was pursued,
for example, in an approach to transform IEC 61131-3 models into IEC 61499
models [Wen+09b]).

Definition 7.5 (POU Invocations – FBD-to-SCChart). Let Ωφ
fbd =

{ωφ
fbd ∣ φ ∈ {fb, fun, prg}} be the set of possible FBD elements. A POU invo-

cation σϑ
inv(ω

φ
fbd) ∈ Σ

ϑ
inv(ω

φ
fbd) (considering additional MOVE instances for re-

setting variables) is translated to a model invocation σϑ
inv(ωscd′) ∈ Σϑ

inv(ωscd′)
in SCCharts using the translation function tΣinv

fbd↦scd(σ
ϑ
inv(ω

φ
fbd)), which is de-

scribed by Algorithm 22 (that applies function get expr described by Algo-
rithm 17).

Correctness

To check the correctness of Definition 7.5, the following lemma is used.

121

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

entry

PLC
Cycle

with memorywith memory without memory

entry

entry

exit

ti

tj

tk

tl

tm

tj

tk

t0 t0

FBD,
ST, ...

FBD,
ST, ...

(a) Initial FBD

entry

EI

with memorywith memory without memory

entry entry

EIEO

EOEI

EO

EIEO

Reset

Si

Sj

Sk

Sl

Sm

Sj

Sk

S0 S0 S0

S0

SCChart,
...

SCChart,
...

(b) Resulting SCChart

Figure 7.5.: High-level runtime behavior of a model with memory invoking two
models (Approach: FBD-to-SCChart)

Algorithm 22 Invoke POU – FBD-to-SCChart

Input: σϑ
inv(ω

φ
fbd)

Output: σfb
inv(ωscd′)

Translation Function tΣinv

fbd↦scd(σ
ϑ
inv(ω

φ
fbd)):

σfb
inv(ωscd′) ← aiN(σϑ

inv(ω
φ
fbd)) = {MOVE (IDn−1).EO, [CLK,] I};

▷ add invocation with EO trigger of previous component IDn−1 and
system time (if specified)

forall i ∈ I,I = EiV s(σϑ
inv(ω

φ
fbd)) ∪ EiOV s(σϑ

inv(ω
φ
fbd)) do

i↦ tτfbd↦scd(get expr(i));
▷ add translated input or inout argument

end

Lemma 7.12. Let ωφ
fbd be translated to ωscd′ and φ ∈ {fb, fun,

prg}. Then, tΣinv

fbd↦scd(σ
ϑ
inv(ω

φ
fbd)) translates a model invocation in FBDs

σϑ
inv(ω

φ
fbd) to a model invocation in SCCharts σfb

inv(ωscd′) with related ar-
guments including synchronized system time (if specified) as specified in
Definition 7.5. σfb

inv(ωscd′) conforms to the syntax rules of σfb
inv(ωscd) and

preserves the SOS rules of σϑ
inv(ω

φ
fbd) regarding termination behavior.

122

7.2. From FBDs to Data-Flow Oriented SCCharts

Proof The validity of Lemma 7.12 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σfb

inv(ωscd′) with the

syntax rules of σfb
inv(ωscd) as specified in Section 3.5 using induction on the

number of input variables including inout variables EiV s(aiN(σϑ
inv(ω

φ
fbd))) ∪

EiOV s(aiN(σϑ
inv(ω

φ
fbd))) of an invoked instance σfb

inv(ω
φ
fbd) with system time:

1. Base Case: When σfb
inv(ω

φ
fbd) ≠ ∅, EiV s(aiN(σϑ

inv(ω
φ
fbd))) = ∅, and

EiOV s(aiN(σϑ
inv(ω

φ
fbd))) = ∅, there are no existing interfaces to add,

which conforms to the syntax rules of σfb
inv(ωscd).

2. Induction Hypothesis: The lemma holds for any set of input variables
including inout variables of an invoked instance.

3. Inductive Step: Adding an input and inout variable to EiV s(aiN(σϑ
inv(

ωφ
fbd))) and EiOV s(aiN(σϑ

inv(ω
φ
fbd))) results in two additional interfaces

and σfb
inv(ωscd′), which conforms to the syntax rules of σfb

inv(ωscd). Syn-
tactic correctness of get expr follows from Lemma 6.1.

Second, the semantic correctness is checked by comparing the SOS transition
rules of σfb

inv(ωscd) (see Section 3.5) with the SOS transition rules of σfb
inv(ω

φ
fbd)

(see Section 3.2).

Illustrative Example for Lemma 7.12

As an example, below are the derived invocations of the FBD DEBOUNCE

model10. Furthermore, Figure 7.6 shows the graphical SCChart (compiled by
KIELER), which illustrates the sequential execution of the instances.

1 . . .
2 dataflow:

3 // DB_ON.EI ⇐ EI

4 DB_ON = {EI, CLK, IN, DB_TIME}

5 // DB_OFF.EI ⇐ DB_ON.EO

6 DB_OFF = {DB_ON.EO, CLK, !(IN), DB_TIME}

7 // MOVE_01.EI ⇐ DB_OFF.EO

8 MOVE_01 = {DB_OFF.EO, DB_OFF.ET}

9 . . .
10 // DB_FF.EI ⇐ MOVE_01.EO

11 DB_FF = {MOVE_01.EO, DB_ON.Q, DB_OFF.Q}

12 // MOVE_02.EI ⇐ DB_FF.EO

13 MOVE_02 = {DB_FF.EO, DB_FF.Q1}

14 . . .

7.2.8. Assignments

This step covers the translation function for translating assignments in FBDs
Σϑ
ass(ω

φ
fbd) to assignments in SCCharts Σϑ

ass(ωscd′) or the corresponding se-

quence Σseq(ωscd′), respectively. The strategy is to place a MOVE block between
each variable assignment to ensure that only the final output value of the pre-
vious block is processed, i.e., when the previous block terminates. This is

10Both models, FBD and SCChart, are included in Appendix E.10 and G.10.

123

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

DB_ON.EO DB_OFF.EO MOVE_01.EO DB_FF.EO MOVE_02.EO

DB_ON.EI DB_OFF.EI MOVE_01.EI DB_FF.EI MOVE_02.EI

Figure 7.6.: Graphical SCChart of the translated FBD DEBOUNCE model

illustrated in Figure 7.7 using the FBD SIMPLE PRG2 example, which instan-
tiates the ST LOOP HEAD example11 mentioned in Section 5.3. In particular,
Figure 7.7a shows, that the intermediate output value is not assigned to OUT,
because MOVE 01 and ST LOOP HEAD0 have not terminated. In contrast, Fig-
ure 7.7b shows, that the final output value is assigned to OUT, as soon as
MOVE 01 and ST LOOP HEAD0 terminate. This reflects the runtime behavior of
the initial FBD shown in Figure 7.7c and Figure 7.7d in both scenarios, within
and after the first PLC cycle.

Definition 7.6 (Translation of assignments – FBD-to-SCChart).
Let Ωφ

fbd = {ω
φ
fbd ∣ φ ∈ {fb, prg}} be the set of possible FBD elements and

Σϑ
ass(ω

φ
fbd) = {σ

ϑ
ass(ω

φ
fbd) ∣ lhs(σ

ϑ
ass(ω

φ
fbd)) ∈ EoV (ω

φ
fbd)∪EiOV (ωφ

fbd)} be the set
of assigned variables, where (EoV (ωφ

fbd)∪EiOV (ωφ
fbd))∩EiV (ω

φ
fbd) is not neces-

sarily an empty set. An immediate assignment σimm
ass (ω

φ
fbd) ∈ Σ

imm
ass (ω

φ
fbd) (i.e.,

rhs(σimm
ass (ω

φ
fbd)) does not depend on lhs(σimm

ass (ω
φ
fbd)) and a delayed assign-

ment σdel
ass(ω

φ
fbd) ∈ Σ

del
ass(ω

φ
fbd) (i.e., rhs(σ

del
ass(ω

φ
fbd)) in FBDs does depend on

lhs(σdel
ass(ω

φ
fbd)) is translated to a sequence Σseq(ωscd′) in SCCharts using the

translation function t
Σass

fbd↦scd(σ
ϑ
ass(ω

φ
fbd)), which is described by Algorithm 23.

Correctness

To check the correctness of Definition 7.6, the following lemma is used.

Lemma 7.13. Let ωφ
fbd be translated to ωscd′, φ ∈ {fb, fun, prg}, and

ϑ = imm. Then, t
Σass

fbd↦scd(σ
ϑ
ass(ω

φ
fbd)) translates σϑ

ass(ω
φ
fbd) to Σseq(ωscd′)

as specified in Definition 7.6. Σseq(ωscd′) conforms to the syntax rules

11The translated SCL model was compiled to an equivalent control-flow oriented SCChart
using KIELER.

124

7.2. From FBDs to Data-Flow Oriented SCCharts

(a) View in KIELER (after the 6th macro step, i.e., within the first
PLC cycle)

(b) View in KIELER (after the 7th macro step, i.e., after the first
PLC cycle)

(c) View in CODESYS (after the 6th simulation step, i.e., within the
first PLC cycle)

(d) View in CODESYS (after the 7th simulation step, i.e., after the first
PLC cycle)

Figure 7.7.: Views during simulation of the FBD SIMPLE PRG2 example

of Σseq(ωscd), preserves the SOS rules of σimm
ass (ω

φ
fbd), and respects the

SCMoC.

Proof The validity of Lemma 7.13 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σfb

inv(ωscd′) and

125

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

Algorithm 23 Translate assignment – FBD-to-SCChart

Input: σϑ
ass(ω

φ
fbd)

Output: Σseq(ωφ
scd′)

Translation Function t
Σass

fbd↦scd(σ
ϑ
ass(ω

φ
fbd)):

Σseq(ωscd′) ←
⎧⎪⎪⎪⎨⎪⎪⎪⎩

MOVEiN = {MOVE (IDn−1).EO, tτfbd↦scd(
get expr(lhs(σϑ

ass(ω
φ
fbd))))};

an(ei) = MOVEiN.OUT;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
▷ add invocation with EO trigger of previous component IDn−1)

Σimm
ass (ωscd′) with the syntax rules of Σfb

inv(ωscd) and Σimm
ass (ωscd) as speci-

fied in Section 3.5. Second, the semantic correctness is proved by comparing
the SOS transition rules of Σfb

inv(ωscd) and Σimm
ass (ωscd), noting that MOVE in-

stances terminate immediately (see Section 3.5) with the SOS transition rules
of σimm

ass (ω
φ
fbd) (see Section 3.2). The SCMoC is respected because FBDs are

limited to implicit loops in this approach [GDV14].

Illustrative Example for Lemma 7.13

As an example, the immediately assigned variables of the FBD SIMPLE PRG2

model are translated as follows12:

1 OUT := ST_LOOP_HEAD0.y; // initial FBD assignment

2 ⇒ MOVE_01 = {ST_LOOP_HEAD0.EO, ST_LOOP_HEAD0.y}

3 ⇒ OUT = MOVE_01.OUT

4 ⇒ EO = MOVE_01.EO

7.2.9. Sequences

This step covers the translation function for translating sequences in FBDs
Σseq(ωφ

fbd) to sequences in SCCharts Σseq(ωscd′).

Definition 7.7 (Translation of sequences – FBD-to-SCChart). Let
Ωφ
fbd = {ω

φ
fbd ∣ φ ∈ {fb, fun, prg}} be the set of possible FBD elements. There

are the following variants of FBD statements:

• POU invocations: σinv(ωφ
fbd) ∈ Σinv(ωφ

fbd)

• Assignments: σimm
ass (ω

φ
fbd) ∈ Σ

imm
ass (ω

φ
fbd), σ

del
ass(ω

φ
fbd) ∈ Σ

del
ass(ω

φ
fbd)

According to the Definition 7.5 and 7.6, these FBD statements are translated
to the following variants of SCChart statements:

• Model invocations: σinv(ωscd′) ∈ Σinv(ωscd′)
• Assignments: σimm

ass (ωscd′) ∈ Σimm
ass (ωscd′)

A set of the resulting SCChart statements represents a sequence, denoted as

Σseq(ωscd′). The translation function t
Σseq

fbd↦scd(Σseq(ωscd′)) inserts σi(ωscd′) ∈
Σseq(ωscd′) to ωscd′, following the process described by Algorithm 24.

12Both models, FBD and SCChart, are included in Appendix E.24 and G.24.

126

7.2. From FBDs to Data-Flow Oriented SCCharts

Algorithm 24 Add sequence – FBD-to-SCChart

Input: Σseq(ωscd′)
Output: ωscd′

Translation Function t
Σseq

fbd↦scd(Σseq(ωscd′)):
forall σi ∈ Σseq(ωscd′) do

ωscd′ ← add σi to the position w.r.t. its execution order and dependent
constructs;

▷ execution order of parallel threads is enforced by event-driven
execution control

end

Correctness

To check the correctness of Definition 7.7, the following lemma is used.

Lemma 7.14. Let ωφ
fbd be translated to ωscd′, φ ∈ {fb, prg}, Σseq(ωscd′) ≠

∅, and Σseq(ωscd′) be syntactically correct. Then, t
Σseq

fbd↦scd(Σseq(ωscd′))
inserts each translated statement σi ∈ Σseq(ωscd′) to ωscd′. The resulting
SCChart ωscd′ conforms to the syntax rules of ωscd, preserves the SOS rules
of ωφ

fbd (in particular with regard to the execution order of the statements),
and respects the SCMoC.

Proof The validity of Lemma 7.14 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σseq(ωscd′) with
the syntax rules of Σseq(ωscd) as specified in Section 3.5 using induction on
the number of statements to be added Σseq(ωscd′):

1. Base Case: When Σseq(ωscd′) = ∅, there are no statements to be added,
which conforms to the syntax rules of δω(ωscd).

2. Induction Hypothesis: The lemma holds for any set of statements to
be added Σseq(ωscd′).

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules Σseq(ωscd), because the syntactic cor-
rectness of this statement to be added has been proved in the corre-
sponding section.

Second, the SOS transition rules and the SCMoC are respected by the state-
ments themselves. The order is maintained by sequential execution, which is
ensured by event-driven execution control.

Illustrative Example for Lemma 7.14

As an example, below are the inserted statements in the resulting SCChart of
the FBD DEBOUNCE model13:
13Both models, FBD and SCChart, are included in Appendix E.10 and G.10.

127

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

1 . . .
2 dataflow:

3 DB_ON = {EI, CLK, IN, DB_TIME} ⇐ σ1

4 DB_OFF = {DB_ON.EO, CLK, !(IN), DB_TIME} ⇐ σ2

5 MOVE_01 = {DB_OFF.EO, DB_OFF.ET} ⇐ σ3

6 ET_OFF = MOVE_01.OUT ⇐ σ4

7 DB_FF = {MOVE_01.EO, DB_ON.Q, DB_OFF.Q} ⇐ σ5

8 MOVE_02 = {DB_FF.EO, DB_FF.Q1} ⇐ σ6

9 OUT = MOVE_02.OUT ⇐ σ7

10 EO = MOVE_02.EO ⇐ σ8

7.3. Experimental Results

The applicability of the introduced translation functions is evaluated with the
FBDs listed in Table 7.1. For evaluation purposes, the listed FBDs and the
expected SCCharts are manually implemented to verify the applicability of the
isolated translation functions. To ensure the correctness of both models, FBDs
and SCCharts, they are compiled with the built-in compilers of CODESYS and
KIELER. The translation functions have been implemented as a prototype in
PLCreX , assuming the FBDs are available in PLCopen xml format, resulting
in the overall test strategy shown in Figure 7.8. The correctness of the resulting
SCCharts is verified in two ways: (1) through manual reviews, differences
between the expected SCCharts and the automatically generated SCCharts
are identified, and (2) using the built-in compilers of KIELER, the syntactic
correctness of the automatically generated SCCharts is ensured.

Codesys KIELER

compile

KIELER

review

compile

compile

(generated automatically)(implemented manually)

(implemented manually)

PLCreX
(implemented manually)

Figure 7.8.: Test strategy to evaluate the FBD-to-SCChart transformation

Both tests passed for all examples (ignoring minor formatting differences be-
tween manually implemented and automatically generated SCCharts), with
the following warnings:

• Supported operators: Similar to the experimental results in the con-
text of the transformation from ST to SCL (see Section 5.3), according
to Lemma 5.8 with remarks in Section 7.2.6, only a subset of the consid-
ered FBD expressions can be translated to corresponding internal SC-
Chart expressions. Therefore, the example arithmetic operators throws

128

7.3. Experimental Results

Table 7.1.: Set of FBDs and test results to evaluate the applicability of the intro-
duced FBD-to-SCChart transformation

Model Source ωφ
fbd ωscd′ Result

2-of-3 logic function [Sch19]1 E.1 G.1 passed
Air Condition Control [Tap15] E.2 G.2 passed

Alarm function [Sch19]1 E.3 G.3 passed
Antivalence [Kar18] E.4 G.4 passed

Arithmetic operators self E.5 G.5
passed with
warnings

Bending Machine Control [AG20] E.6 G.6 passed
Boolean operators self E.7 G.7 passed

Cylinder Control System [Sch14] E.8 G.8 passed

Data types and fields self E.9 G.9
passed with
warnings

Debounce [GDV14] E.10 G.10 passed
Dice Numbers Indicator [Kar18] E.11 G.11 passed

KV Diagram optimized Chart [Kar18] E.12 G.12 passed
Left detection [Sch19]1 E.13 G.13 passed

Pollutant Indicator [Bub17] E.14 G.14 passed
Reservoirs Control System 1 [WZ07] E.15 G.15 passed
Reservoirs Control System 2 [Kar18] E.16 G.16 passed

Roll Down Shutters [AG20] E.17 G.17 passed
Cable Winch [Tap15] E.18 G.18 passed

Seven Segment Display [WZ07] E.19 G.19 passed
Shop Window Lighting [AG20] E.20 G.20 passed

Silo Valve Control System [WZ07] E.21 G.21 passed

Simple calculation [GDV14] E.22 G.22
passed with
warnings

Simple Program 1 self E.23 G.23 passed
Simple Program 2 self E.24 G.24 passed

Smoke Detection System [Tap15] E.25 G.25 passed
Sports Hall Lighting [AG20] E.26 G.26 passed

Thermometer Code System [Bub17] E.27 G.27 passed
Toggle Switch 4x [Bub17] E.28 G.28 passed

Ventilation Control System [Kar18] E.29 G.29 passed
Wind Direction Indicator [Bub17] E.30 G.30 passed

a warning for affected expressions. Affected expressions are skipped dur-
ing translation.

• Supported data types: Similar to the experimental results in the con-
text of the transformation from ST to SCL (see Section 5.3), according
to Lemma 5.7 with remarks in Section 7.2.4, only a subset of the consid-
ered FBD data types can be translated to corresponding SCChart data
types. Therefore, the example data types and fields throws a warning for
affected declarations. Affected declarations and expressions are skipped

129

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

during translation.

• Reset of variables: According to Lemma 7.3, only output variables
are considered to be reset to their default values for the FBD variant
φ = fun. Otherwise, external values are overridden by default values
due to the SCMoC. Therefore, the example simple calculation throws a
warning for the affected input variable. The reset to default values for
input and inout variables is skipped during translation.

Based on the experimental results in Table 7.1, it can be concluded that the
introduced translation functions are applicable and lead to correct SCCharts
that can be reused in model-based design, if a few conditions are considered.
These are summarized in the following section.

7.4. Summary

This chapter introduced the transformation of FBDs to data-flow oriented
SCCharts. For this purpose, individual translation functions were defined that
take into account the sequential execution order of blocks and assignments.
The applicability of these translation functions was demonstrated using a set
of FBD examples. Based on the presented lemmas and experimental results,
the following theorem encapsulates the entire transformation:

Theorem 7.1 (FBD-to-SCChart Translation). Let ωφ
fbd ∈ Ω

φ
fbd be an

FBD of the variant φ ∈ {fb, fun, prg} and let Tfbd↦scd(ωφ
fbd) be the model

transformation of ωφ
fbd to ωscd′ using the translation functions defined in

this chapter. Then, the resulting SCChart ωscd′ :

1. Conforms to the syntax rules of ωscd

2. Preserves the semantics of ωφ
fbd

3. Contains constructs corresponding to the constructs of ωφ
fbd and pre-

serves the intended functionality of ωφ
fbd under the following condi-

tions:

• φ ∈ {fb, fun, prg}
• ∆idcl(ωφ

fbd) =∆in(ωφ
fbd)∪∆out(ωφ

fbd)∪∆inout(ωφ
fbd), where mod-

els are always invoked with defined input values, so no reset are
required for ∆in(ωφ

fbd) for FBD variant φ = fun
• ∆vdcl(ωφ

fbd) =∆local(ωφ
fbd) ∪∆inst(ωφ

fbd)
• Imported models are available as SCCharts

• ∀α[+](ωφ
fbd) ∶ α

[+] ∈ {αbool
bv , αint

i , αdint
i , αuint

i , αdur, α
+}, where

αdur can be treated as a bounded integer and is specified in
milliseconds

130

7.4. Summary

• ∀τ(ωφ
fbd) ∶ τ ∈ {τ cstmisc, τ

id
misc, τ

π,η,λ
misc , τ

br
misc, τ

true
misc, τ

false
misc , τ

arr
misc,

τ invmisc, τ
eq
comp, τ

ne
comp, τ

gt
comp, τ

ge
comp, τ

lt
comp, τ

le
comp, τ

mul
arith, τ

div
arith, τ

add
arith,

τ subarith, τ
expt
arith, τ

mod
arith, τ

um
arith, τ

sel
cond}

• ∀σ(ωϑ
fbd) ∶ σ ∈ {σϑ

inv, σ
ϑ
ass}

Proof The validity of Theorem 7.1 is proved as follows:

1. Syntax Conformance: Lemma 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8,
7.9, 5.7 (see remarks in Section 7.2.4), 7.10, 7.11, 5.8 (see remarks in
Section 7.2.6), 7.12, 7.13, and 7.14 demonstrate that each translated
construct conforms to the syntax rules of ωscd as specified in Section 3.5.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

• Model declaration: Lemma 7.1

• Interfaces: Lemma 7.2 and 7.3

• Variables: Lemma 7.7, 7.8, and 7.9

• Data types and fields: Lemma 5.7 (see remarks in Section 7.2.4)

• POU imports: Lemma 7.10

• Expressions: Lemma 5.8 (see remarks in Section 7.2.6)

• POU invocations: Lemma 7.12

• Assignments: Lemma 7.13

• Sequences: Lemma 7.14

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in ωscd for the considered constructs in ωφ

fbd, preserving the original
functionality.

Overall, this results in the following solutions to the challenges summarized in
Section 7.1.

1. Cyclic execution of SCCharts (with and without memory): The
cyclic execution of a resulting SCChart (with and without memory) de-
pends on the invocation by an external model. When an SCChart is
invoked, an iteration is triggered that terminates after a finite number
of macro steps (n ≥ 0). Unlike variables of a resulting SCChart based
on an FBD with memory, variables of a resulting SCChart based on an
FBD without memory are set to their default values (if necessary) at the
beginning of each iteration.

131

Chapter 7: Model Transformation of FBDs to Data-Flow Oriented SCCharts

2. Event-driven execution of synchronous parallel threads: An it-
eration of an SCChart and iterations of its instances (executed in parallel
threads) are triggered by additional interfaces (EI and EO) of each com-
ponent, which allows event-driven execution control.

3. Sequential execution of synchronous parallel threads: Due to
the event-driven execution control, the invoking SCChart can invoke in-
stances depending on the feedback of the previous blocks. This allows
a sequential execution of synchronous parallel threads, allowing an indi-
vidual number of macro steps of the invoked models.

4. Dynamic system time: A dynamic system time is realized by an
additional input CLK, i.e., the clock is controlled externally and processed
within the resulting SCChart with read access.

5. Translation of FBD language constructs: The solution follows from
Theorem 7.1.

132

Chapter 8
Formal Methods-Based Optimization
of Data-Flow Models

Contents

8.1. High-Level Design Flow – Optimization 134

8.2. Optimization of Data-Flow Models 135

8.2.1. Operators . 137

8.2.2. From Graphical Data-Flow Models to Textual Models . 138

8.2.3. Identification of Submodels 138

8.2.4. From SubmodelsM to SMV FormulasMsmv 139

8.2.5. f1-Simplification ofMsmv 140

8.2.6. From f1(Msmv)′ to SMV Formulas f1(Msmv) 140

8.2.7. Equivalence Check ofMsmv and f1(Msmv) 140

8.2.8. From SubmodelsM to SMT FormulasMsmt 141

8.2.9. f2-Simplification ofMsmt 142

8.2.10. From f1(Msmv) to SMT Formulas (f1(Msmv))smt . . . 142

8.2.11. f2-Simplification of (f1(Msmv))smt 142

8.2.12. Pattern-Based Formula Refactoring 143

8.2.13. Selection of Optimized SMT Formulas 144

8.2.14. Equivalence Check ofMsmt and Ωsmt 145

8.2.15. From Ωsmt to Initial SubmodelsM′ 147

8.2.16. Reconstruct Software Model 147

8.3. Experimental Results . 148

8.4. Summary . 150

This chapter focuses on a formal methods-based optimization of data-flow
models (like data-flow oriented SCCharts, Quartz models, and others), where
the goal is to automatically identify potentially optimizable submodels and
optimize them while ensuring semantic preservation and leaving the non-
modifiable components unchanged. The purpose is to reduce the number of

133

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

components in data-flow-related expressions where the user can configure the
optimization strategy. More specifically, this chapter proposes a generic iden-
tification strategy of submodels in real-world applications and introduces an
applicable formal methods-based optimization strategy for data-flow models
using NuSMV , Z3Py , and PLCreX. In addition to the approaches presented
in [WS23; WS24b], it considers the following additional optimization strategy:

• Pattern-based submodel refactoring: A pattern-based submodel
refactoring of the optimized formulas, which improves the optimization
results as demonstrated in Section 8.2

The correctness of the semantics during the optimization is ensured by an inte-
grated equivalence check using NuSMV and Z3Py. In addition, the syntactic
correctness is checked for the set of real-world applications of the case study
by compilation after reconstruction.

This chapter is structured as follows: Section 8.1 introduces the high-level
design flow and optimization strategy. Section 8.2 defines the translation and
optimization steps, as well as the theoretical analysis. Section 8.3 presents an
evaluation of the theoretical results and analyzes the optimization potential
in real-world examples. Section 8.4 summarizes the optimization.

8.1. High-Level Design Flow – Optimization

The high-level design flow with a focus on optimizing an FBD ωφ
fbd ∈ Ω

φ
fbd,

a data-flow oriented ST model ωφ
st ∈ Ω

φ
st, a data-flow oriented Quartz model

ωqrz ∈ Ωqrz, and a data-flow oriented SCChart ωscd ∈ Ωscd is shown in Fig-
ure 8.1, with ωϑ

pou ∈ {ωϑ
st, ω

ϑ
fbd}. The individual transformations Tpou↦d(ωφ

pou),
Tqrz↦d(ωqrz), Tscd↦d(ωscd), and Td↦d(M(ωd)) are explained in the next sec-
tion.

KIELER

Averest PLCreX

IEC 61131-3 NuSMV
SMT
Z3Py

Figure 8.1.: High-level design flow of the optimization process with focus on the
models and system architecture

134

8.2. Optimization of Data-Flow Models

Optimization Strategy:

The basic concept of the optimization process is shown in Figure 8.2. The
idea is to express graphical data-flow models in textual form and then split
them into two categories: (1) submodels that can be potentially optimized
and (2) non-modifiable components. The submodels are then simplified using
formal methods and pattern-based submodel refactoring. In particular, the
model checker NuSMV [Rob10] is used to generate a simplified canonical rep-
resentation of the submodels, and the SMT solver Z3Py1 is used for algebraic
simplification. Consequently, formal methods are used for correct simplifi-
cation, which goes beyond their usual purpose of demonstrating correctness.
The overall approach includes multiple model-to-model translations including
simplifications ∆, equivalence checking E, and a configurable optimization
o ∈ O implemented in PLCreX [WS23; WS24b].

Figure 8.2.: High-level design flow of the optimization process with focus on the
optimization strategy [WS23]

Challenges:

This approach leads to the following challenges:

1. Identification of potentially optimizable submodels

2. Configurable optimization

3. Correctness of the optimization

8.2. Optimization of Data-Flow Models

This section introduces the optimization of data-flow models, whose low-level
design flow is illustrated in Figure 8.3. The transformation Tpou↦d(ωφ

pou) in-
cludes the following steps:

1. ∆1: FBD-to-ST transformation (see Section 8.2.2)

2. ∆2: Identification of submodels (see Section 8.2.3)

1https://microsoft.github.io/z3guide/

135

https://microsoft.github.io/z3guide/

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Figure 8.3.: Low-level design flow of the optimization process [WS23]

The transformations Tqrz↦d(ωqrz) and Tscd↦d(ωscd) include the following steps:

1. ∆2: Identification of submodels (see Section 8.2.3)

The optimization process Td↦d(M(ωd)) includes the following steps:

1. ∆3,∆5: NuSMV -related translations (see Section 8.2.4 and 8.2.6)

2. ∆4: NuSMV -related simplification (see Section 8.2.5)

3. ϵ1: Equivalence check using NuSMV (see Section 8.2.7)

136

8.2. Optimization of Data-Flow Models

4. ∆6,∆8: Z3Py-related translations (see Section 8.2.8 and 8.2.10)

5. ∆7,∆9: Z3Py-related simplification (see Section 8.2.9 and 8.2.11)

6. ∆10: Pattern-based formula refactoring (see Section 8.2.12)

7. o: Configurable optimization (see Section 8.2.13)

8. ϵ2: Equivalence check using Z3Py (see Section 8.2.14)

9. ∆11: Reconstruct submodels (see Section 8.2.15)

10. ∆12: Reconstruct model (see Section 8.2.16)

8.2.1. Operators

Since the optimization and translation process requires multiple model-to-
model translations between the different software models, Table 8.1 provides
an overview of the operators supported in this approach when translating the
original data-flow models ST, SCCharts, and Quartz to NuSMV and Z3Py
(and vice versa) [WS23]. This overview is used for several translations ex-
plained in the following subsections.

Table 8.1.: Overview of supported operators across the ST, SCChart, Quartz,
NuSMV, and Z3Py models [WS23]

ST SCChart Quartz NuSMV Z3Py

Boolean operators (with α(λ) = αbool
bv)

τnotbool(ω
φ
st) τnotbool(ωscd) τnotbool(ωqrz) !(λ1) Not(λ1)

τandbool(ω
φ
st) τandbool(ωscd) τandbool(ωqrz) λ1 & ... & λn And(λ1, ..., λn)

τ orbool(ω
φ
st) τ orbool(ωscd) τ orbool(ωqrz) λ1 | ... | λn Or(λ1 ..., λn)

τxorbool(ω
φ
st) τxorbool(ωscd) τxorbool(ωqrz) λ1 xor λ2 Xor(λ1, λ2)

Equality/Inequality operators

τ eqcomp(ωφ
st) τ eqcomp(ωscd) τ eqcomp(ωqrz) π1 = π2 π1 == π2

τnecomp(ω
φ
st) τnecomp(ωscd) τnecomp(ωqrz) π1 != π2 π1 != π2

Conditional operator

τ selcond(ω
φ
st) τ selcond(ωscd) τ selcond(ωqrz) λb ? π1 : π2 If(λb, π1, π2)

Correctness

To check the correctness of the overview, the following lemma is used.

Lemma 8.1. Let an ST, SCChart or a Quartz operator be translated
to a corresponding NuSMV or Z3Py operator (and vice versa) as listed
in Table 8.1. Then, the resulting NuSMV and Z3Py operator conforms
to the syntax rules of NuSMV and Z3Py, and preserves the semantics of
the original operator. This is also true after translating the NuSMV and
Z3Py operator back to the original model operator.

137

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Proof The validity of Lemma 8.1 is proved by a systematic comparison. First,
it is checked whether the syntax of the translated operators conforms to the
specifications of NuSMV [Rob10] and Z3Py2. Second, the semantic preser-
vation is verified by comparing the specified functionality of the translated
NuSMV and Z3Py operators with that of the original ST, SCChart, and
Quartz operators, as detailed in Section 3.2, 3.3 and 3.5. Furthermore, it
can be concluded that this equivalence holds when operators are translated
back from NuSMV and Z3Py to their respective original model forms, thus
ensuring bi-directional semantic consistency.

Illustrative Example for Lemma 8.1

Illustrative examples are implicitly given by the mapping of the operators in
Table 8.1.

8.2.2. From Graphical Data-Flow Models to Textual Models

Step ∆1 of the optimization process Td↦d(M(ωd)) requires the graphical data-
flow model to be represented as an equivalent textual model, which is only rele-
vant for Tpou↦d(ωφ

pou), since SCCharts and Quartz models are already available
in a textual format [WS23]. An FBD-to-ST transformation is often supported
by the PLC vendor (like CODESYS , Beremiz , and others) and also supported
by PLCreX [WS24b] following the backward translation strategy introduced
in Section 6.2.7. In addition, Chapter 6 introduced an FBD-to-Quartz trans-
formation and Chapter 7 introduced an FBD-to-SCChart transformation.

8.2.3. Identification of Submodels

Step ∆2 relevant for Tpou↦d(ωφ
pou), Tqrz↦d(ωqrz) and Tscd↦d(ωscd) splits the

textual data-flow model into potentially optimizable submodels3 M and non-
modifiable components L [WS23]. The idea is illustrated in Figure 8.4 using
an example SCChart. In particular, the model ωscd is split into two sets: (1)
set L contains non-modifiable components (like instance T1) and (2) set M
contains submodels with potentially optimizable expressions (like m1).

Completeness

To check the completeness of the strategy, the following lemma is used.

Lemma 8.2. An FBD, FBD-based ST model, SCChart, and a data-
flow oriented Quartz model can be completely decomposed into potentially
optimizable submodelsM and non-modifiable components L.

2https://microsoft.github.io/z3guide/
3Arithmetic expressions are treated as submodels, but are not optimized in this approach.

138

https://microsoft.github.io/z3guide/

8.2. Optimization of Data-Flow Models

Figure 8.4.: Visualization of the submodel identification using a simple SCChart
example [WS23]

Proof The validity of Lemma 8.2 is proved by an analysis of the specifica-
tions of the original models. More specifically, an FBD, an FBD-based ST
model, a data-flow oriented Quartz model, and an SCChart are restricted to
assignments and model invocations, where Quartz models can additionally
contain pause statements Σpause(ωqrz) (see Section 3.2, 3.3, and 3.5). Thus, a
data-flow model can be completely decomposed into the sets L andM, where
Σpause(ωqrz) is assigned to L.

Illustrative Example for Lemma 8.2

As an example, the following submodels are identified for the simple SCChart
example in Figure 8.4.

1 T1 = {A & ((B | C & D) & !(E)), F+G}

2 ⇒m1: A & ((B | C & D) & !(E))

3 ⇒m2: F + G

4 -----------------------

5 I = T1.Q & H

6 ⇒m3: T1.Q & H

8.2.4. From Submodels M to SMV Formulas Msmv

Step ∆3 represents the first step of the optimization process Td↦d(M(ωd)),
which focuses on a simplification using NuSMV. To do this, first each expres-
sion m ∈ M is translated into a corresponding NuSMV formula msmv ∈ Msmv

using a mapping of the operators as listed in Table 8.1 [WS23].

Correctness

To check the correctness of the translation, the following lemma is used.

139

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Lemma 8.3. A submodel expression m can be translated into a NuSMV
formula msmv′ if m contains operators that are restricted to those listed in
Table 8.1. msmv′ conforms to the syntax rules of msmv and preserves the
semantics of m.

Proof The validity of Lemma 8.3 follows from Lemma 8.1.

Illustrative Example for Lemma 8.3

As an example, m1 of the simple SCChart example in Figure 8.4 is translated
to m1,smv as follows. According to Table 8.1, the operators are syntactically
equivalent. Therefore, no changes result.

1 A & ((B | C & D) & !(E))

2 ⇒ (A&((B|(C&D))&!E))

8.2.5. f1-Simplification of Msmv

Once Msmv has been created, in step ∆4 of the optimization process
Td↦d(M(ωd)), each formula msmv ∈ Msmv will be expressed as an equivalent
simplified formula f1(msmv)′ ∈ f1(Msmv)′ using a built-in simplification of
NuSMV 4. Depending on the underlying complexity of the formula, this may
lead to an initial simplification of the submodel [WS23]. In this context,
it may happen that besides the operators listed in Table 8.1, additional
temporary variables and case expressions appear (which still follow the
syntactical rules) [Rob10].

8.2.6. From f1(Msmv)′ to SMV Formulas f1(Msmv)
Due to the possibility of additional case expressions and additional temporary
variables in f1(Msmv)′, in step ∆5 of the optimization process Td↦d(M(ωd)),
a translation back to the expressions restricted to the operators listed in Ta-
ble 8.1 is required and realized by a model-to-model transformation based on
the NuSMV grammar [Rob10]. Additionally, a reduction to the set of original
variables is required [WS23].

8.2.7. Equivalence Check of Msmv and f1(Msmv)
Step ϵ1 of the optimization process Td↦d(M(ωd)) ensures the correctness of
Msmv and f1(Msmv) by an equivalence check using NuSMV.

Correctness

To check the correctness of the simplification and back translation, the follow-
ing lemma is used.

4Simplification is triggered by printing the formula.

140

8.2. Optimization of Data-Flow Models

Lemma 8.4. A NuSMV formula msmv can be expressed as an equivalent
simplified formula f1(msmv)′, which possibly contains additional tempo-
rary variables and case expressions. After translating f1(msmv)′ back
into an expression restricted to the operators listed in Table 8.1 follow-
ing the syntax rules of NuSMV, the result is a possibly simplified formula
f1(msmv′) that conforms to the syntax rules of f1(msmv) and preserves
the semantics of msmv.

Proof The validity of Lemma 8.4, i.e., step ∆4 and ∆5, is proved for each
formula during runtime by an equivalence check ϵ1 using NuSMV as illustrated
in the example below. In particular, NuSMV is used to check whether for all
elements m ∈ M the following assertion holds: msmv ≡ f1(msmv).

Illustrative Example for Lemma 8.4

As an illustrative example, the following snippet illustrates the equivalence
check using the derived submodel m2 of the FBD POLL example:

1 m2,smv: ((!(IN3)&IN2&IN1)|(IN3&!(IN2)&IN1)|(IN3&IN2 &!(IN1)))

2 // ∆4:

3 ⇒ FORMULA =

4 ⇒ case

5 ⇒ IN1 : case

6 ⇒ IN2 : !IN3;

7 ⇒ TRUE : IN3;

8 ⇒ esac;

9 ⇒ TRUE : (IN2 & IN3);

10 ⇒ esac

11 -----------------------

12 // ∆5:

13 ⇒ f1(m2,smv): (IN1?(IN2?!IN3:IN3):(IN2&IN3))

14 -----------------------

15 // ϵ1 ∶m2,smv = f1(m2,smv):

16 ⇒ ((!(IN3)&IN2&IN1)|(IN3&!(IN2)&IN1)|(IN3&IN2 &!(IN1)))=(IN1 ?(!IN2&!

IN3):(IN1?(IN2?!IN3:IN3):(IN2&IN3))

17 ⇒ FORMULA = TRUE

8.2.8. From Submodels M to SMT Formulas Msmt

Similar to the translation of the submodels from M to Msmv, in step ∆6

of the optimization process Td↦d(M(ωd)), each expression of the submodels
m ∈ M is translated into a corresponding Z3Py formula msmt ∈ Msmt using a
mapping of operators as listed in Table 8.1 [WS23].

Correctness

To check the correctness of the translation, the following lemma is used.

141

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Lemma 8.5. A submodel expression m can be translated into a Z3Py
formula msmt′ if m contains operators that are restricted to those listed in
Table 8.1. msmt′ conforms to the syntax rules of msmt and preserves the
semantics of m.

Proof The validity of Lemma 8.5 follows from Lemma 8.1.

Illustrative Example for Lemma 8.5

As an example, m1 of the simple SCChart example in Figure 8.4 is translated
to m1,smt as follows.

1 A & ((B | C & D) & !(E))

2 ⇒ And(A,And(Or(B,And(C,D)),Not(E)))

8.2.9. f2-Simplification of Msmt

Once Msmt has been created, in step ∆7 of the optimization process
Td↦d(M(ωd)), each formula msmt ∈ Msmt will be expressed as an equivalent
simplified formula f2(msmt)′ ∈ f2(Msmt)′ using the built-in simplification
feature of Z3Py , such as eliminating unnecessary terms, using associative and
commutative properties, and solving equations [WS23]. Although there are
no Z3Py-based methods to ensure that expressions are simplified to a unique
canonical form5, simplification by Z3Py is considered as a possible subsequent
simplification of submodels already simplified by NuSMV f1(Msmv).

8.2.10. From f1(Msmv) to SMT Formulas (f1(Msmv))smt

In step ∆8 of the optimization process Td↦d(M(ωd)), f1(Msmv) is translated
into equivalent Z3Py formulas (f1(Msmv))smt for a subsequent simplifica-
tion (depending on the optimization configuration and formula complexity)
[WS23]. This translation is restricted to the operators listed in Table 8.1,
which is implicitly given by the fact that f1(Msmv) is already restricted to
these operators.

8.2.11. f2-Simplification of (f1(Msmv))smt

After the simplified NuSMV formulas f1(Msmv) have been translated into
corresponding Z3Py formulas (f1(Msmv))smt, a further simplification is per-
formed using Z3Py ’s built-in simplification feature in step ∆9 of the opti-
mization process Td↦d(M(ωd)), as introduced in Section 8.2.9, denoted as
f2((f1(Msmv))smt) [WS23].

5https://microsoft.github.io/z3guide/

142

https://microsoft.github.io/z3guide/

8.2. Optimization of Data-Flow Models

8.2.12. Pattern-Based Formula Refactoring

Comparing each submodel m ∈ M with the corresponding formula in Msmt,
f2(Msmt), (f1(Msmv))smt, and f2((f1(Msmv))smt), it can be concluded that,
depending on the complexity of the original submodel, different simplification
approaches can have different effects on the following metrics:

• Number of Operators (NoO): Number of visible operators (without
instances) in the corresponding graphical data-flow model

• Number of Edges (NoE): Number of visible edges in the correspond-
ing graphical data-flow model

• Number of Variable Accesses (NoV): Sum of visible input variables
and connected instance output variables, i.e., variables accessed by the
submodels

Overall, there is no guarantee that the corresponding formula represents the
most optimal solution. Thus, as an additional optimization approach, step ∆10

of the optimization process Td↦d(M(ωd)) considers a pattern-based formula
refactoring with a focus on exclusive or patterns.

Definition 8.1 (Exclusive Or Pattern). An exclusive or operator ex-
pressed with the operators listed in Table 8.1 can have one of the following
patterns within Z3Py:

• Pattern 1: If-Not

1 If(τ1,Not(τ2),τ2);

• Pattern 2: Not-Equal

1 Not(Eq(τ1,τ2));

In both scenarios, the pattern can be replaced through Xor(τ1,τ2).

Correctness

To check the correctness of Definition 8.1, the following lemma is used.

Lemma 8.6. Both patterns listed in Definition 8.1 conform to the logic
of Xor(τ1,τ2) and thus, can be expressed as Xor(τ1,τ2), which reduces the
number of variable accesses compared to pattern 1 and reduces the number
of operators compared to patterns 1 and 2.

Proof The validity of Lemma 8.6 is proved by an equivalence check of the
exclusive or operator and both patterns using Z3 theorem proving. In partic-
ular, Z3Py is used to check whether for any assignment of the variables τ1 and
τ2 the following assertion holds: pattern 1 ≡ Xor(τ1,τ2) and pattern 2 ≡
Xor(τ1,τ2). In addition, the reduction to one operator is implicitly confirmed
by the refactoring strategy. In pattern 1, the variable access is reduced to two
times.

143

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Illustrative Example for Lemma 8.6

As an example, Figure 8.5 illustrates pattern 1, which is identified in ω2,smt of
the FBD POLL example. The original submodel is shown in Figure 8.5a and the
optimization is shown in Figure 8.5b. The pattern-based formula refactoring
reduces NoO, NoE, and NoV, as shown in Figure 8.5c.

(a) Original submodel m2: NoO = 7,
NoE = 16, NoV = 9

(b) Simplified model (op-opt):
NoO = 4, NoE = 10, NoV = 6

(c) Refactored model:
NoO = 3, NoE = 8,
NoV = 5

Figure 8.5.: Simplification of m2 of the FBD POLL example (with and without
pattern-based formula refactoring)

8.2.13. Selection of Optimized SMT Formulas

With the goal of optimizing the original software model, the question arises
which corresponding element of the four sets should be used for each sub-
model to create the set Ωsmt. To do this, in step o of the optimization
process Td↦d(M(ωd)), the resulting formulas can be rated using the met-
rics NoO, NoE, and NoV. While these metrics provide a possible indication of
the complexity of the resulting submodels, the perceived complexity depends
on the preferences of the individual user. Consequently, there is a risk that

144

8.2. Optimization of Data-Flow Models

with a fixed choice of one of the corresponding formula in Msmt, f2(Msmt),
(f1(Msmv))smt, and f2((f1(Msmv))smt), the resulting optimization with re-
spect to NoO, NoE, and NoV may not fully satisfy the user’s preferences
[WS23].

The problem is illustrated by two simplifications in Figure 8.6 applied to
m3 of the Cylinder Control System example. NoO is higher in Scenario 1
in Figure 8.6a, but leads to a lower NoE and NoV compared to Scenario 2
in Figure 8.6b. Thus, it can be concluded that not all metrics can be op-
timized equally following a single simplification strategy, which is why the
user can choose [WS23]. This gives the user the flexibility to manually select
the optimization strategy based on personal preference. Possible optimization
strategies according to the introduced metrics are variable access (var-opt),
number of operators (op-opt), and number of edges (edge-opt).

More specifically, the set of optimized formulas Ωsmt is created as follows,
where exactly one element from one of the four introduced sets is selected as
the resulting optimization of a formula ωsmt ∈ Ωsmt (depending on the chosen
optimization strategy and the metrics of each corresponding formula in the
different sets, as demonstrated in Section 8.3):

Ωsmt = {(x0, x1, x2, x3) ∣
(x0 ∈ f3(f2((f1(Msmv))smt)) ∧ x1 = ∅ ∧ x2 = ∅ ∧ x3 = ∅)∨
(x0 = ∅ ∧ x1 ∈ f3((f1(Msmv))smt) ∧ x2 = ∅ ∧ x3 = ∅)∨
(x0 = ∅ ∧ x1 = ∅ ∧ x2 ∈ Msmt ∧ x3 = ∅)∨
(x0 = ∅ ∧ x1 = ∅ ∧ x2 = ∅ ∧ x3 ∈ f3(f2(Msmt)))}

8.2.14. Equivalence Check of Msmt and Ωsmt

As a previous step before the optimized submodel is reconstructed, in step ϵ2
of the optimization process Td↦d(M(ωd)) it is checked whether the optimized
formulas Ωsmt are equivalent toMsmt. Thus, this steps checks the correctness
of the translation in step ∆8, simplifications in step ∆7, ∆9 and ∆10, and
optimization in step o.

Correctness

To check the correctness of the translation, simplifications and optimization,
the following lemma is used.

Lemma 8.7. Each optimized formula ωsmt′ ∈ Ωsmt conforms to the syntax
rules of ωsmt and preserves the semantics of msmt ∈ Msmt, which implicitly
confirms the correctness of translation ∆8, simplifications ∆7, ∆9, and
∆10, and optimization o.

145

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

(a) Simplification Scenario 1: NoO = 10, NoE = 18,
NoV = 8

(b) Simplification Scenario 2: NoO = 9, NoE = 19, NoV = 10

Figure 8.6.: Comparison of two different simplification scenarios related to m3 of
the Cylinder Control System example

Proof The validity of Lemma 8.7 is proved by an equivalence check for each
formula during runtime using Z3Py. In particular, similar to Lemma 8.6, it is
checked whether for all elements msmt ∈ Msmt the following assertion holds:
ωsmt′ ≡msmt. This implicitly confirms the syntactic correctness of ωsmt′ .

Illustrative Example for Lemma 8.7

As an illustrative example, the following snippet illustrates the equivalence
check using m2 of the FBD POLL example and op-opt optimization strategy:

1 // ∆6:

2 m2,smt: Or(And(IN1, IN2, Not(IN3)), And(IN1, Not(IN2), IN3), And(Not(IN1

), IN2, IN3))

146

8.2. Optimization of Data-Flow Models

3 -----------------------

4 // ∆7:

5 f2(m2,smt): Or(And(IN1, IN2, Not(IN3)), And(IN1, Not(IN2), IN3), And(Not(

IN1), IN2, IN3))

6 -----------------------

7 // ∆8:

8 (f1(m2,smv))smt: If(IN1,If(IN2,Not(IN3),IN3),(And(IN2,IN3)))

9 -----------------------

10 // ∆9:

11 f2((f1(m2,smv))smt): If(IN1, Not(IN3 == IN2), And(IN2, IN3))

12 -----------------------

13 // ∆7 ⇒∆10:

14 no pattern identified

15 -----------------------

16 // ∆8 ⇒∆10:

17 Pattern 1 identified

18 ⇒ If(IN1,Xor(IN2,IN3),And(IN2,IN3))

19 -----------------------

20 // ∆9 ⇒∆10:

21 Pattern 2 identified

22 ⇒ If(IN1,Xor(IN3,IN2),And(IN2,IN3))

23 -----------------------

24 // o: selected formula: ∆8 ⇒∆10

25 op-opt: If(IN1,Xor(IN2,IN3),And(IN2,IN3))

26 -----------------------

27 // ϵ2:
28 solve((Or(And(IN1, IN2, Not(IN3)), And(IN1, Not(IN2), IN3), And(Not(IN1

), IN2, IN3))!=If(IN1,Xor(IN2,IN3),And(IN2,IN3))))

29 ⇒ no solution

8.2.15. From Ωsmt to Initial Submodels M′

If the correctness is confirmed by the equivalence check in step ϵ2, the step
∆11 of the optimization process Td↦d(M(ωd)) translates Ωsmt back to the
submodels M′. Since the set Ωsmt is available as Z3Py formulas and thus
restricted to the operators listed in Table 8.1, the translation back to M′ is
straightforward (see Section 8.2.1) [WS23].

8.2.16. Reconstruct Software Model

In step ∆12 of the optimization process Td↦d(M(ωd)), the original submodels
M are replaced through the optimized and back translated submodels M′.
Combined with the non-modifiable components, this leads to the optimized
software model ω′.

Correctness

To check the correctness of the reconstruction, the following lemma is used.

Lemma 8.8. The resulting optimized software model ω′ conforms to
the syntax rules of ω and preserves the semantics of the original software
model, which implicitly confirms the correctness of the back translations
∆11 and ∆12.

147

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Proof The validity of Lemma 8.8 is proved by the correctness of the optimized
formulas (see Lemma 8.7) and by restrictions to the supported operators listed
in Table 8.1, whose correctness follows from Lemma 8.1.

Illustrative Example for Lemma 8.8

As an example, the following model represents an optimized model of the
simple SCChart example in Figure 8.4.

1 T1 = {A & ((B | C & D) & !(E)), F+G}

2 ⇒ T1 = {A & (!(E)) & (C?(D|B):B), F+G}

3 -----------------------

4 I = T1.Q & H

5 ⇒ T1.Q & H

8.3. Experimental Results

Following the optimization approach presented in the previous section, this
section identifies the optimization potential for data-flow models using indus-
trial examples from PLC vendors and literature. The optimization potential is
evaluated using the system architecture shown in the high-level design flow in
Figure 8.1 in Section 8.1. For a fair evaluation of the optimization possibilities,
Table 8.2 lists a collection of representative data-flow models with the number
of potentially optimizable submodels and the average runtime for determining
all four optimized submodels with code generation for the selected strategy6.
These models have been manually implemented as data-flow oriented SCCha-
rts in KIELER and are optimized using the optimization process implemented
as a prototype in PLCreX 7. The resulting optimized SCCharts are compiled
in KIELER to check their syntactic correctness. The selection of real-world
examples from PLC vendors and literature ensures practical relevance and
objectivity when evaluating the optimization potential using the introduced
optimization process. In total, 96 submodels are available as input models,
which results in 288 optimized output models after optimization.
The optimized submodels are listed in detail in Appendix L in a textual ST-

like format8, which allows to reproduce the experimental results in Table 8.3
that summarizes the experimental results of the case study. Additionally, two
results are shown in Figure 8.7 to demonstrate that the optimization strategy
can affect the other metrics. For example, while the op-opt strategy reduces
the number of operators in Figure 8.7a, it increases the number of variable ac-
cesses. Similarly, optimizing the model in Figure 8.7b with respect to op-opt

saves less number of variable accesses compared to the other strategies. Thus,
of particular interest is the comparison of the average optimization potential
using the strategies op-opt, edge-opt, and var-opt, evaluated by the NoE,
NoO, and NoV metrics for the resulting model. The results are summarized

6The case study was tested on Windows 11, x64, 11th Gen Intel(R) Core(TM) i7-11850H,
2.50GHz, 8 cores, 32GB RAM DDR4, with Python 3.9.18. The average refers to the
mean of the three optimization strategies.

7The latest release supports FBDs as input models.
8This format represents an intermediate PLCreX format.

148

8.3. Experimental Results

Table 8.2.: Data-flow model overview, including number of submodels, number of
operators (without instances), and average runtime for determining all
four optimized submodels with code generation for the selected strat-
egy (based on related work without pattern-based formula refactoring
[WS23])

ID Data-Flow Model

N
u
m
b
e
r
o
f

S
u
b
m
o
d
e
ls

N
u
m
b
e
r

o
f
O
p
e
ra

to
rs

Ø
R
u
n
ti
m
e

Source

1 Air Condition Control 4 9 2.04 s [Tap15]
2 Antivalence 3x 1 10 1.15 s [Kar18]
3 Bending Machine Control 15 21 5.21 s [AG20]
4 Cylinder Control System 6 30 3.59 s [Sch14]
5 Dice Numbers Indicator 9 67 6.58 s [Kar18]
6 KV Diagram optimized Chart 2 13 1.51 s [Kar18]
7 Pollutant Indicator 3 18 2.07 s [Bub17]
8 Reservoirs Control System 1 4 35 3.34 s [WZ07]
9 Reservoirs Control System 2 4 35 3.31 s [Kar18]
10 Roll Down Shutters 2 24 2.14 s [AG20]
11 Cable winch 4 28 2.69 s [Tap15]
12 Seven Segment Display 7 81 5.93 s [WZ07]
13 Shop Window Lighting 8 15 3.11 s [AG20]
14 Silo Valve Control System 1 11 1.22 s [WZ07]
15 Smoke Detection System 3 28 2.32 s [Tap15]
16 Sports Hall Lighting 12 17 4.29 s [AG20]
17 Thermometer Code System 3 10 1.76 s [Bub17]
18 Toggle Switch 4x 1 27 1.88 s [Bub17]
19 Ventilation Control System 3 25 2.42 s [Kar18]
20 Wind Direction Indicator 4 34 2.78 s [Bub17]

in Table 8.4. As expected, each optimization strategy leads to the best im-
provement of the corresponding metric. In detail, the optimization approach
and examples show an optimization potential of about 35 % for NoO with
the op-opt strategy (on average), about 30 % for NoE with the edge-opt

strategy (on average), and about 26 % for NoV with the var-opt strategy (on
average). The edge-opt strategy leads to the same optimization of the NoV
metric. Overall, as in the case study without pattern-based formula refactor-
ing [WS23], it can be concluded that the edge-opt strategy is the best choice
in terms of the NoE, NoO, and NoV metrics, since it tends to produce the
best balanced optimizations, even if NoO is not reduced as much as with the
op-opt strategy (on average).

149

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

Table 8.3.: Experimental results of the case study with values in percent relative to
the non-optimized model ranging from -75% (better) to 10.7% (worse)
(based on experimental results of related work without pattern-based
formula refactoring [WS23])

op-opt edge-opt var-opt

ID NoE NoO NoV NoE NoO NoV NoE NoO NoV

1 -5.0 -11.1 0.0 -5.0 -11.1 0.0 0.0 0.0 0.0
2 -47.4 -50.0 -44.4 -47.4 -50.0 -44.4 -47.4 -50.0 -44.4
3 -15.7 -28.6 -6.7 -15.7 -28.6 -6.7 -9.8 -14.3 -6.7
4 0.0 -10.0 10.7 -3.4 -6.7 0.0 0.0 0.0 0.0
5 -9.8 -14.9 -4.5 -9.8 -11.9 -7.6 -9.8 -11.9 -7.6
6 -28.0 -38.5 -16.7 -28.0 -38.5 -16.7 -28.0 -38.5 -16.7
7 -43.6 -50.0 -38.1 -43.6 -50.0 -38.1 -43.6 -50.0 -38.1
8 -3.1 -2.9 -3.3 -4.6 0.0 -10.0 -4.6 0.0 -10.0
9 -13.6 -8.6 -19.4 -13.6 -8.6 -19.4 -13.6 -8.6 -19.4
10 -21.7 -29.2 -13.6 -21.7 -29.2 -13.6 -21.7 -29.2 -13.6
11 -44.0 -57.1 -27.3 -44.0 -57.1 -27.3 -28.0 -28.6 -27.3
12 -31.3 -34.6 -27.8 -31.3 -34.6 -27.8 -28.8 -29.6 -27.8
13 -16.2 -26.7 -9.1 -16.2 -26.7 -9.1 -16.2 -26.7 -9.1
14 -65.2 -72.7 -58.3 -65.2 -72.7 -58.3 -65.2 -72.7 -58.3
15 -48.0 -50.0 -45.0 -48.0 -50.0 -45.0 -48.0 -50.0 -45.0
16 -7.1 -17.6 0.0 -7.1 -17.6 0.0 -7.1 -17.6 0.0
17 -42.9 -50.0 -38.9 -42.9 -50.0 -38.9 -42.9 -50.0 -38.9
18 -72.9 -70.4 -75.0 -72.9 -70.4 -75.0 -72.9 -70.4 -75.0
19 -23.2 -24.0 -22.6 -28.6 -24.0 -32.3 -28.6 -24.0 -32.3
20 -62.9 -58.8 -66.7 -62.9 -58.8 -66.7 -62.9 -58.8 -66.7

Table 8.4.: Average number of edges, operators, and variable accesses after opti-
mization

Optimization
Strategy

Ø Number
of Edges

Ø Number
of Operators

Ø Number of
Var. Accesses

op-opt -30.07 % -35.28 % -25.33 %

edge-opt -30.59 % -34.82 % -26.83 %

var-opt -28.95 % -31.54 % -26.83 %

8.4. Summary

This chapter introduced a formal methods-based optimization of data-flow
models using NuSMV , SMT Z3Py , and a pattern-based refactoring approach.
For this purpose, several model-to-model transformations, simplifications,
equivalence checks, and an optimization were defined, with which the opti-
mization potential of a set of real-world data-flow models has been identified.
Based on the presented lemmas and experimental results, the following
theorem encapsulates the entire optimization:

150

8.4. Summary

(a) Cylinder Control System

(b) Dice Numbers Indicator

Figure 8.7.: Experimental Results

Theorem 8.1 (Formal Methods-Based Optimization of Data-Flow
Models). Let ω ∈ {ωϑ

st, ωqrz, ωscd} be a textual data-flow model that is
translated according to the transformations Tpou↦d(ωφ

pou), Tqrz↦d(ωqrz)
and Tscd↦d(ωscd), and optimized according to the optimization process
Td↦d(M(ωd)) introduced in this chapter. Then, the resulting model ω′:

1. Can be completely decomposed into potentially optimizable submod-
els and non-modifiable submodels

2. Is optimized for one of the following metrics:

• Number of operators (NoO)

• Number of edges (NoE)

• Number of variable accesses (NoV)

3. Conforms to the syntax rules of ω and preserves the semantics of ω

Proof The validity of Theorem 8.1 is proved as follows:

1. Submodels: Lemma 8.2 shows that a data-flow model can be com-
pletely decomposed into the sets of non-modifiable submodels L and

151

Chapter 8: Formal Methods-Based Optimization of Data-Flow Models

potentially optimizable submodelsM (see Section 8.2.3).

2. Optimization Potential: Experimental results on real-world models
show an optimization potential with respect to the NoO metric of about
35.2 % on average, with respect to the NoE metric of about 30.5 % on
average, and with respect to the NoV metric of about 26.8 % on average
(see Section 8.3).

3. Syntax Conformance and Semantic Preservation: According to
Lemma 8.1, the operators are restricted to those listed in Table 8.1,
which are supported by all of the considered software models (see Sec-
tion 3.5 and 3.2). Furthermore, the following lemmas and theorems
addresses the preservation of semantics during the optimization process,
which are structured as follows:

• ∆2: Lemma 8.2

• ∆3: Lemma 8.3

• ∆4, ∆5: Lemma 8.4

• ∆6: Lemma 8.5

• ∆10: Lemma 8.6

• ∆7, ∆8, ∆9, ∆10, o: Lemma 8.7

• ∆11, ∆12: Lemma 8.8

Overall, this results in the following solutions to the challenges summarized in
Section 8.1.

1. Identification of potentially optimizable submodels: The solution
follows from Section 8.2.3.

2. Configurable optimization: The solution follows from Section 8.2.13.

3. Correctness of the optimization: The solution follows from Sec-
tion 8.2.

152

Chapter 9
Control-Flow Oriented SCCharts of
POU-Based Quartz Models

Contents

9.1. High-Level Design Flow – Quartz-to-SCChart 154

9.2. Pattern-based Quartz Code Refactoring 156

9.3. From Quartz Models to SCCharts 160

9.3.1. Model Declaration . 160

9.3.2. Interfaces . 161

9.3.3. Variables . 162

9.3.4. Data Types and Fields . 164

9.3.5. Expressions . 165

9.3.6. Immediate Transitions . 166

9.3.7. Await . 167

9.3.8. Pause . 169

9.3.9. Assignments . 170

9.3.10. Synchronous Concurrency 172

9.3.11. Loops . 173

9.3.12. Halt . 175

9.3.13. Abort . 177

9.3.14. Conditions . 178

9.3.15. Sequences . 180

9.4. SCChart Optimization . 183

9.4.1. Flattening Hierarchy . 183

9.4.2. Removing States . 184

9.5. Experimental Results . 185

9.6. Summary . 187

This chapter focuses on a code refactoring of FBD-based and ST-based Quartz
models and their transformation to control-flow oriented SCCharts, providing

153

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

an alternative view for system analysis. The goal is to create a robust set
of translation functions that ensure semantic preservation during the transi-
tion. More specifically, this chapter details a pattern-based code refactoring of
Quartz models and a set of detailed translation functions. In addition to the
approaches presented in [WS22], it considers the following additional issues:

• Model Declaration: Translation of model declaration

• Interfaces and Variables: Translation of interfaces and variables

• Data Types and Fields: Translation of data types and fields

• Expressions: Translation of expressions

• Statements: Additional Quartz statements to extend the approach
from FBD-based Quartz models to ST-based Quartz models

The correctness of the translation functions is proved by theoretical reasoning,
which includes a detailed analysis of the resulting syntax and semantics com-
pared to the syntax rules and semantics specified in Chapter 3. In addition,
the theoretical results are evaluated with real-world and self-defined Quartz
models.
The outline of this chapter is as follows: Section 9.1 introduces the high-level

design flow and translation strategy. Section 9.2 defines a pattern-based code
refactoring of Quartz models, Section 9.3 defines the translation functions and
theoretical analysis, and Section 9.4 defines possible SCChart optimizations.
Section 9.5 presents an evaluation of the theoretical results, and Section 9.6
summarizes the transformation.

9.1. High-Level Design Flow – Quartz-to-SCChart

The high-level design flow for transforming an FBD-based or ST-based Quartz
model ωqrz ∈ Ωqrz to a control-flow oriented SCChart ωscc ∈ Ωscc is shown in
Figure 9.1.

IEC 61131-3
KIELER

Averest

Figure 9.1.: High-level design flow of the Quartz-to-SCChart transformation

The Quartz code refactoring Tqrz↦qrz(ωqrz) includes the following refactoring
approach:

• t
ΣP1
qrz↦qrz(ΣP1(ωqrz)): Pattern-based Quartz code refactoring (see Sec-
tion 9.2)

154

9.1. High-Level Design Flow – Quartz-to-SCChart

In addition, the Quartz-to-SCChart transformation Tqrz↦scc(ωqrz) includes the
following transformation steps:

1. tδωqrz↦scc(δω(ωqrz)): Model declaration (see Section 9.3.1)

2. t∆idcl
qrz↦scc(∆idcl(ωqrz)): Interfaces (see Section 9.3.2)

3. t∆vdcl
qrz↦scc(∆local(ωqrz)): Variables (see Section 9.3.3)

4. tαqrz↦scc(α[+](ωqrz)): Data types and fields (see Section 9.3.4)

5. tτqrz↦scc(τ (ωqrz)): Expressions (see Section 9.3.5)

6. t
Σnothing
qrz↦scc (pnothing(ωqrz)): Immediate Transition (see Section 9.3.6)

7. t
Σawait
qrz↦scc(pϑawait(ωqrz)): Await (see Section 9.3.7)

8. t
Σpause
qrz↦scc(ppause(ωqrz)): Pause (see Section 9.3.8)

9. t
Σass
qrz↦scc(pϑass(ωqrz)): Assignments (see Section 9.3.9)

10. t
Σconc
qrz↦scc(σconc(ωqrz)): Synchronous concurrency (see Section 9.3.10)

11. t
Σloop
qrz↦scc(pϑloop(ωqrz)): Loops (see Section 9.3.11)

12. t
Σhalt
qrz↦scc(σhalt(ωqrz)): Halt (see Section 9.3.12)

13. t
Σabort
qrz↦scc(pϑabort(ωqrz)): Abort (see Section 9.3.13)

14. t
Σcond
qrz↦scc(pϑcond(ωqrz)): Conditions (see Section 9.3.14)

15. t
Σseq
qrz↦scc(Σseq(ωscc′)): Sequences (see Section 9.3.15)

Furthermore, the transformation includes the following SCChart optimizations
Tscc↦scc(ωscc):

• t
Σhierarchy
scc↦scc (Σ(ωscc)): Flattening Hierarchy (see Section 9.4.1)

• t
Σstate
scc↦scc(Σ(ωscc)): Removing States (see Section 9.4.2)

Translation Strategy:

This chapter introduces the translation strategies shown in Figure 9.21. Fig-
ure 9.2a illustrates the translation strategy of a Quartz model without mem-
ory and Figure 9.2b shows the translation strategy of a Quartz model with
memory, whose high-level runtime behavior was introduced in Chapter 4 for
ST-based Quartz models and in Chapter 6 for FBD-based Quartz models. The
translation strategy in this chapter leads to a graphical control-flow oriented
SCChart that visualizes the control flow of the Quartz model (and the orig-
inal FBD or ST model, respectively). In this context, a pattern-based code
refactoring of the Quartz model is considered that (assuming the pattern is
available) leads to a hierarchical control-flow oriented SCChart as an alter-
native view of the POU behavior. In addition, possible optimizations of the
resulting SCChart are considered.

1The states can contain inner behavior which is considered, but hidden in the examples
shown in this chapter.

155

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Sj

entry

Si

IN

pause

Sm

Sl

OUT

pause

exit

... ...

(a) Left: Quartz model, right: SCChart
(both without memory)

 Si

Sj

emit(EO)

pause

...

entry

S0

IN

pause

Sm

Sl

OUT

immediate
await(EI)

pause

...

(b) Left: Quartz model, right: SCChart
(both with memory)

Figure 9.2.: Quartz-to-SCChart translation strategies: high-level view of the initial
Quartz model and the resulting SCChart

Challenges:

This approach leads to the following challenges:

1. Correct code refactoring of the initial Quartz model

2. Correct and complete translation of the considered Quartz constructs

3. Correct optimization of the resulting SCChart

9.2. Pattern-based Quartz Code Refactoring

This section introduces three different pattern-based Quartz code refactoring
approaches for FBD-based Quartz models that are also applicable to ST-based
Quartz models. The basic strategy is to split the conditions within a loop into
nested loops that contain only those statements of the original conditions that
are relevant to the current iteration [WS22]. Placing the statements at the end
of a loop ensures that the statements are executed exactly once per iteration
(even after an abort).

Definition 9.1 (Patterns – Quartz-to-Quartz). Let Σϑ
seq(ωqrz) be a pos-

sible Quartz sequence representing one of the following three patterns ϑ ∈ {1,

156

9.2. Pattern-based Quartz Code Refactoring

2,3} with instantaneous constructs and Σ3(ωqrz) including the last statement
that is equal to σpause(ωqrz), and each pattern considering two representations:
(1) as a conditional expression and (2) as an if-else statement:

• Pattern 1: Condition statement

1 loop{ Σ0;
2 x = λb

1 ? τ1 : τ2;
3 . . . // add. assignments

4 Σ3; }

1 // Σ1={x=τ1; . . . }, Σ2= {x=τ2; . . . }
2 loop{ Σ0; if(λb

1){ Σ1; }else{ Σ2; } Σ3; }

• Pattern 2: Nested condition statement within else branch

1 loop{ Σ0;
2 x = λb

2 ? τ4 : (λb
1 ? τ1 : τ2);

3 . . . // add. assignments

4 Σ3; }

1 // Σ1={x=τ1; . . . }, Σ2={x=τ2; . . . }, Σ4={x=τ4; . . . }
2 loop{ Σ0; if(λb

2){ Σ4; }else{ if(λb
1){ Σ1; }else{ Σ2; } } Σ3; }

• Pattern 3: Nested condition statement within if branch

1 loop{ Σ0;
2 x = λb

2 ? (λb
1 ? τ1 : τ2) : τ4;

3 . . . // add. assignments

4 Σ3; }

1 // Σ1={x=τ1; . . . }, Σ2={x=τ2; . . . }, Σ4={x=τ4; . . . }
2 loop{ Σ0; if(λb

2){ if(λb
1){ Σ1; }else{ Σ2; } }else{ Σ4; } Σ3; }

Σϑ
seq(ωqrz) is refactored to Σϑ

seq(ωqrz′) using the translation function

t
Σrefact
qrz↦qrz(Σϑ

seq(ωqrz)), which is described by Algorithm 25.

Correctness

To check the correctness of Definition 9.1, the following lemma is used.

Lemma 9.1. Let ϑ ∈ {1,2,3} and Σϑ
seq(ωqrz) be a possible

Quartz sequence of an infinite loop σinf
loop(ωqrz) containing instanta-

neous statements with the final statement equal to σpause(ωqrz). Then,

t
Σrefact
qrz↦qrz(Σϑ

seq(ωqrz)) translates Σϑ
seq(ωqrz) to Σϑ

seq(ωqrz′) as specified in

Definition 9.1. Σϑ
seq(ωqrz′) conforms to the syntax rules of Σϑ

seq(ωqrz) and
preserves the SOS transition rules of Σϑ

seq(ωqrz).

157

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 25 Refactor Quartz code – Quartz-to-Quartz

Input: Σϑ
seq(ωqrz)

Output: Σϑ
seq(ωqrz′)

Translation Function t
Σrefact
qrz↦qrz(Σϑ

seq(ωqrz)):
switch ϑ do

case 1 (Pattern 1) do

Σϑ
seq(ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

loop{
immediate abort{
loop{ Σ0(ωqrz);Σ2(ωqrz);Σ3(ωqrz); }

}when(λb
1(ωqrz));

Σ0(ωqrz);Σ1(ωqrz);Σ3(ωqrz); }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
end
case 2 (Pattern 2) do

Σϑ
seq(ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

loop{
immediate abort{
loop{
immediate abort{
loop{ Σ0(ωqrz);Σ2(ωqrz);
Σ3(ωqrz); }

}when(λb
1(ωqrz));

Σ0(ωqrz);Σ1(ωqrz);Σ3(ωqrz);
}when(λb

2(ωqrz));
Σ0(ωqrz);Σ4(ωqrz);Σ3(ωqrz); }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end
case 3 (Pattern 3) do

Σϑ
seq(ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

loop{
immediate abort{
loop{
immediate abort{
loop{ Σ0(ωqrz);Σ2(ωqrz);
Σ3(ωqrz); }

}when(λb
1(ωqrz));

Σ0(ωqrz);Σ1(ωqrz);Σ3(ωqrz);
}when(!λb

2(ωqrz));
Σ0(ωqrz);Σ4(ωqrz);Σ3(ωqrz); }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end

end

Proof The validity of Lemma 9.1 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σϑ

seq(ωqrz′) with
the syntax rules of Σϑ

seq(ωqrz) as specified in Section 3.3. Second, the preserva-

tion of semantic is checked for all scenarios of λb
1(ωqrz) and λb

2(ωqrz) by com-

paring the SOS transition rules of Σϑ
seq(ωqrz), σinf

loop(ωqrz), σimm
abort(ωqrz), and

σpause(ωqrz) (see Section 3.5) with those of the initial constructs σϑ
seq(ωqrz),

158

9.2. Pattern-based Quartz Code Refactoring

σinf
loop(ωqrz), σϑ

cond(ωqrz), and σpause(ωqrz) (see Section 3.3). Since strong
aborts lead to a condition check before the micro steps are executed [Sch09]
and the statements are instantaneous (except the last one of Σ3(ωqrz)), each
micro step of the sequences is executed once per macro step, preserving the
initial semantics.

Illustrative Example for Lemma 9.1

As an example, Figure 9.3 illustrates each of the three introduced patterns.
In particular, Figure 9.3a illustrates Pattern 1, Figure 9.3b illustrates Pattern
2, and Figure 9.3c illustrates Pattern 3.

(a) Pattern 1

(b) Pattern 2

(c) Pattern 3

Figure 9.3.: Illustration of the Quartz code pattern-based refactoring approach
[WS22]

159

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

9.3. From Quartz Models to SCCharts

This section defines the individual translation functions for synthesizing a
graphical SCChart ωscc′ ∈ Ωscc from a Quartz model Ωqrz ∈ Ωqrz and analyzes
the theoretical correctness.

9.3.1. Model Declaration

This step covers the translation function for translating a Quartz model dec-
laration δω(ωqrz) to an SCChart declaration δω(ωscc′).
Definition 9.2 (Model Declaration – Quartz-to-SCChart). Let ωqrz be
the set of possible Quartz elements. δω(ωqrz) is translated to δω(ωscc′) using
the translation function tδωqrz↦scc(δω(ωqrz)), which is described by Algorithm 26.

Algorithm 26 Translate model declaration – Quartz-to-SCChart

Input: δω(ωqrz)
Output: δω(ωscc′)
Translation Function tδωqrz↦scc(δω(ωqrz)):

δω(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

scchart an(ωqrz){
t∆idcl
qrz↦scc(∆idcl(ωqrz))
t∆vdcl
qrz↦scc(∆vdcl(ωqrz))
region:

tΣqrz↦scc(ωqrz)
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Correctness

To check the correctness of Definition 9.2, the following lemma is used.

Lemma 9.2. Let ωqrz be translated to ωscc′. Then, tδωqrz↦scc(δω(ωqrz))
translates δω(ωqrz) to δω(ωscc′) as specified in Definition 9.2. δω(ωscc′)
conforms to the syntax rules of δω(ωscc) and preserves the semantics of
δω(ωqrz) regarding its termination behavior.

Proof The validity of Lemma 9.2 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of δω(ωscc′) with
the syntax rules of δω(ωscc) as specified in Section 3.5. Second, the preserva-
tion of semantics is checked by comparing Jδω(ωscc)Kξ (see Section 3.5) with
Jδω(ωqrz)Kξ (see Section 3.3), where model imports are ignored in this chapter.

Illustrative Example for Lemma 9.2

As an example, Figure 9.4 shows the resulting textual and synthesized SC-
Chart of the ST ALARM model2.
2Both models, Quartz and SCChart, are included in Appendix C.27 and H.1.

160

9.3. From Quartz Models to SCCharts

1 scchart ST_ALARM{

2 input bool xSENSOR_L

3 . . .
4

5 region:

6 initial state S0

7 immediate do ST_ALARM = . . .
8 final state S1

9 }

Figure 9.4.: SCChart of the ST ALARM example

9.3.2. Interfaces

This step covers the translation function for translating Quartz model in-
terfaces ∆idcl(ωqrz) to SCChart interfaces ∆idcl(ωscc′), where ∆idcl(ωqrz) =
∆in(ωqrz) ∪∆out(ωqrz) ∪∆inout(ωqrz).
Definition 9.3 (Interfaces – Quartz-to-SCChart). ∆idcl(ωscc′) is de-
rived from ∆idcl(ωqrz) using the translation function t∆idcl

qrz↦scc(∆idcl(ωqrz)),
which is described by Algorithm 27.

Algorithm 27 Translate interfaces – Quartz-to-SCChart

Input: ∆idcl(ωqrz)
Output: ∆in(ωscc′), ∆out(ωscc′), ∆inout(ωscc′)
Translation Function t∆idcl

qrz↦scc(∆idcl(ωqrz)):
forall ei ∈∆idcl(ωqrz) do

if ei ∈∆in(ωqrz) then
∆in(ωscc′) ← add input [signal] tαqrz↦scc(α(ei)) an(ei)

end
if ei ∈∆out(ωqrz) then

∆out(ωscc′) ← add output [signal] tαqrz↦scc(α(ei)) an(ei)
end
if ei ∈∆inout(ωqrz) then

∆inout(ωscc′) ← add input output tαqrz↦scc(α(ei)) an(ei)
end

end
▷ signal keyword is only required for event variables

Correctness

To check the correctness of Definition 9.3, the following lemma is used.

Lemma 9.3. Let ωqrz be translated to ωscc′. Then, for each interface
ei ∈ ∆idcl(ωqrz), t∆idcl

qrz↦scc(∆idcl(ωqrz)) extends ∆in(ωscc′), ∆out(ωscc′), or

161

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

∆inout(ωscc′) as specified in Definition 9.3. ∆in(ωscc′), ∆out(ωscc′), and
∆inout(ωscc′) conform to the syntax rules of ∆in(ωscc), ∆out(ωscc), and
∆inout(ωscc) regarding the storage class, data type, and name. ∆in(ωscc′),
∆out(ωscc′), and ∆inout(ωscc′) preserves the semantics of ∆in(ωqrz),
∆out(ωqrz), and ∆inout(ωqrz) regarding information flow and modifiabil-
ity.

Proof The validity of Lemma 9.3 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of ∆in(ωscc′),
∆out(ωscc′), and ∆inout(ωscc′) with the syntax rules of ∆in(ωscc), ∆out(ωscc),
and ∆inout(ωscc) as specified in Section 3.5 using induction on the number of
added interfaces ∆idcl(ωqrz):

1. Base Case: When ∆idcl(ωqrz) = ∅, there are no input variables, output
variables, and inout variables to add, which trivially conforms to the
syntax rules of ∆in(ωscc), ∆out(ωscc), and ∆inout(ωscc), since these sets
remain unchanged.

2. Induction Hypothesis: Lemma 9.3 holds for any set of input variables,
output variables, and inout variables.

3. Inductive Step: Adding an element to input variables, output vari-
ables, and inout variables results in an additional element in ∆in(ωscc′),
∆out(ωscc′), and ∆inout(ωscc′). Their syntax still conforms to the syntax
rules of ∆in(ωscc), ∆out(ωscc), and ∆inout(ωscc).

Second, the semantic correctness regarding information flow and modifiabil-
ity is checked by comparing J∆in(ωscc)Kξ, J∆out(ωscc)Kξ, and J∆inout(ωscc)Kξ
(see Section 3.5) with J∆in(ωqrz)Kξ, J∆out(ωqrz)Kξ, and J∆inout(ωqrz)Kξ (see
Section 3.3).

Illustrative Example for Lemma 9.3

As an example, below are the derived interfaces of the ST ALARM Quartz
model3:

1 input bool xSENSOR_L // added to ∆in(ωscc′)

2 input bool xSENSOR_M // added to ∆in(ωscc′)

3 input bool xSENSOR_R // added to ∆in(ωscc′)

9.3.3. Variables

This step covers the translation function for translating local Quartz
model variables ∆vdcl(ωqrz) to local SCChart variables ∆vdcl(ωscc′)), where
∆vdcl(ωqrz) =∆local(ωqrz).
3Both models, Quartz and SCChart, are included in Appendix C.27 and H.1.

162

9.3. From Quartz Models to SCCharts

Definition 9.4 (Variables – Quartz-to-SCChart). ∆vdcl(ωscc′) is derived
from ∆vdcl(ωqrz) using the translation function t∆vdcl

qrz↦scc(∆local(ωqrz)), which
is described by Algorithm 28.

Algorithm 28 Translate variables – Quartz-to-SCChart

Input: ∆local(ωqrz)
Output: ∆local(ωscc′)
Translation Function t∆vdcl

qrz↦scc(∆local(ωqrz)):
forall elV s ∈∆local(ωqrz) do

∆local(ωscc′) ← add tαqrz↦scc(α(elV s)) an(elV s);
end

Correctness

To check the correctness of Definition 9.4, the following lemma is used.

Lemma 9.4. Let ωqrz be translated to ωscc′. Then, for each local vari-
able elV s ∈ ∆local(ωqrz)), t∆vdcl

qrz↦scc(∆local(ωqrz)) adds a local variable to
∆local(ωscc′) as specified in Definition 9.4. ∆local(ωscc′) conforms to the
syntax rules of ∆local(ωscc) regarding the storage class, data type, and
name. ∆local(ωscc′) preserves the semantics of ∆local(ωqrz) regarding mod-
ifiability and initialization.

Proof The validity of Lemma 9.4 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of ∆local(ωscc′) with
the syntax rules of ∆local(ωscc) as specified in Section 3.5 using induction on
the number of added variables ∆local(ωqrz):

1. Base Case: When ∆local(ωqrz) = ∅, there are no local variables to add,
which trivially conforms to the syntax rules of ∆local(ωqrz), since this
set remains unchanged.

2. Induction Hypothesis: Lemma 9.4 holds for any set of local variables.

3. Inductive Step: Adding a local variable results in an additional ele-
ment in ∆local(ωscc′). Its syntax still conforms to the syntax rules of
∆local(ωscc).

Second, the semantic correctness regarding modifiability and initialization
is checked by comparing J∆local(ωscc)Kξ (see Section 3.5) with J∆local(ωqrz)Kξ
(see Section 3.3).

163

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Illustrative Example for Lemma 9.4

As an example, below is a derived local variable of the FBD DATATYPES Quartz
model4:

1 bool A1 // added to ∆local(ωscc′)

9.3.4. Data Types and Fields

This step covers the translation function for translating Quartz data types
and fields A[+](ωqrz) to SCChart data types and fields A[+](ωscc′)).

Definition 9.5 (Data types and fields – Quartz-to-SCChart). Let
α(ωqrz) be a considered Quartz data type and α+(ωqrz) be a Quartz model data
field. Quartz data types and fields A[+](ωqrz) are translated to SCChart data
types and fields A[+](ωscc′) using the translation function tαqrz↦scc(α[+](ωqrz)),
which is described by Algorithm 41 in Appendix M.0.1 that defines a straight-
forward mapping of data types.

Correctness

To check the correctness of Definition 9.5, the following lemma is used.

Lemma 9.5. Let ωqrz be translated to ωscc′ and bit vector, integer, float-
ing point, and duration be the considered data type categories A[+](ωqrz)
as specified in Section 3.3. Then, tαqrz↦scc(α[+](ωqrz)) translates α[+](ωqrz)
to α[+](ωscc′) as specified in Definition 9.5. α[+](ωscc′) conforms to the
syntax rules of α[+](ωqrz) and preserves the semantics of α[+](ωqrz) re-
garding boundaries, precision, resolution, and defaults (if applicable), with
the following restrictions:

• ∀α(ωqrz) ∶ α(ωqrz) ∈ {αbyte
bv (ωqrz), αword

bv (ωqrz),nat{4294967296}}:
Data types are not supported by internal SCChart data types

• ∀α(ωqrz) ∶ α(ωqrz) ∈ {αtime
dur (ωqrz),int{32768},int{2147483648},

nat{65536}}: Boundaries are changed to those of αint
i (ωscc) (see

Section 3.5)

Proof The validity of Lemma 9.5 is proved as follows: First, the syntactic cor-
rectness is checked by comparing all resulting data types and fields A[+](ωscc′)
with the syntax rules of A[+](ωscc) as specified in Section 3.5. Second, the se-
mantic correctness regarding boundaries, precision, resolution, and defaults
(if applicable) is checked by comparing Jα[+](ωscc)Kξ (see Section 3.5) with
Jα[+](ωqrz)Kξ (see Section 3.3).

4Both models, Quartz and SCChart, are included in Appendix F.9 and H.8.

164

9.3. From Quartz Models to SCCharts

Illustrative Example for Lemma 9.5

Usage examples are given by illustrative examples of previous lemmas, such
as Lemma 9.4.

9.3.5. Expressions

This step covers the translation function for translating expressions in Quartz
models T (ωqrz) to expressions in SCCharts T (ωscc′).

Definition 9.6 (Expressions – Quartz-to-SCChart). An expression in
Quartz models τ (ωqrz) ∈ T (ωqrz) is translated to an expression in SCCharts
τ (ωscc′) ∈ T (ωscc′) using the translation function tτqrz↦scc(τ (ωqrz)), which is
described by Algorithm 42 in Appendix M.0.2.

Correctness

To check the correctness of Definition 9.6, the following lemma is used.

Lemma 9.6. Let ωqrz be translated to ωscc′ and miscellaneous, com-
pare operators, arithmetic operators, conditional operator, and Boolean
operators be the considered expression categories T (ωqrz) as specified in
Section 3.3. Then, for each τ(ωqrz) ∈ T (ωqrz), tτqrz↦scc(τ(ωqrz)) translates
τ(ωqrz) to τ(ωscc′) as specified in Definition 9.6. τ(ωscc′) conforms to the
syntax rules of τ(ωscc) and preserves the semantics of τ(ωqrz) regarding
the type system and SOS transition rules, with the following restrictions:

• ∀τ(ωqrz) ∶ τ ∉ {τ invmisc, τ
expt
arith}, because they are not covered by the

internal SCChart operators

Proof The validity of Lemma 9.6 is proved as follows: First, syntactic correct-
ness is checked by comparing the syntax of each resulting expression τ(ωscc′)
with the syntax rules of the corresponding expression τ(ωscc) as specified in
Section 3.5. Second, the semantic correctness regarding the type system and
SOS transition rules is checked by comparing the semantics, type system, and
SOS transition rule of each resulting expression τ(ωscc) (see Section 3.5) with
the semantics, type system, and SOS transition rule of the corresponding ex-
pression τ(ωqrz) (see Section 3.3).

Illustrative Example for Lemma 9.6

As an example, below is the derived expression of the ST ALARM Quartz model5:

1 (!(xSENSOR_L) & !(xSENSOR_M) & !(xSENSOR_R)) | (xSENSOR_L &

xSENSOR_R)

5Both models, Quartz and SCChart, are included in Appendix C.27 and H.1.

165

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

9.3.6. Immediate Transitions

This step covers the translation function for translating an immediate transi-
tion pattern in Quartz pnothing(ωqrz) to an immediate transition in SCCharts
σnothing(ωscc′).

Definition 9.7 (Translation of immediate transitions – Quartz-
to-SCChart). An immediate transition in Quartz pnothing(ωqrz) ∈
Pnothing(ωqrz) has the following pattern:

1 Σ1(pnothing(ωqrz)); σnothing(ωqrz); Σ2(pnothing(ωqrz));

This pattern is translated to an immediate transition σnothing(ωscc′) ∈
Σnothing(ωscc′) in SCCharts using the translation function t

Σnothing
qrz↦scc (pnothing(ωqrz)),

which is described by Algorithm 29.

Algorithm 29 Translate an immediate transition – Quartz-to-SCChart

Input: pnothing(ωqrz)
Output: σnothing(ωscc′)
Translation Function t

Σnothing
qrz↦scc (pnothing(ωqrz)):

σnothing(ωscc′) ←
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1(pnothing(ωqrz))
immediate go to Σ2(pnothing(ωqrz))
[final] state Σ2(pnothing(ωqrz))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
▷ initial and final identifiers are optional and are used for the first and
last state

Correctness

To check the correctness of Definition 9.7, the following lemma is used.

Lemma 9.7. Let ωqrz be translated to ωscc′. Then,

t
Σnothing
qrz↦scc (pnothing(ωqrz)) translates pnothing(ωqrz) to σnothing(ωscc′) as
specified in Definition 9.7. σnothing(ωscc′) conforms to the syntax rules of
σnothing(ωscc) and preserves the SOS transition rules of pnothing(ωqrz).

Proof The validity of Lemma 9.7 is proved as follows: First, syntactic cor-
rectness is checked by comparing the syntax of σnothing(ωscc′) with the syntax
rules of σnothing(ωscc) as specified in Section 3.5. Second, the semantic correct-
ness is checked by comparing the SOS transition rules of σnothing(ωscc) (see
Section 3.5) with those of the sequence Σ1(σnothing(ωqrz)) ∶= σnothing(ωqrz),
σnothing(ωqrz), and Σ2(σnothing(ωqrz)) ∶= σnothing(ωqrz) (see Section 3.3).

166

9.3. From Quartz Models to SCCharts

1 . . .
2 initial state S1

3 immediate go to S2

4 final state S2

5 . . .

Figure 9.5.: SCChart of Quartz sequence {S1; nothing; S2;} [WS22]

Illustrative Example for Lemma 9.7

As an example, Figure 9.5 shows an immediate transition from state S1 to
state S2. S1 is entered and left in the same macro step, because the nothing
statement does not change any variables or stop control flow [WS22].

9.3.7. Await

This step covers the translation function for translating await statement pat-
terns in Quartz P ϑ

await(ωqrz) to await transitions in SCCharts Σϑ
await(ωscc′).

Definition 9.8 (Translation of await statements – Quartz-to-
SCChart). A sequence containing an await statement in Quartz
pϑawait(ωqrz) ∈ P ϑ

await(ωqrz) has one of the following patterns:

• Await (ϑ = reg)
1 Σ1(p

reg
await(ωqrz)); σreg

await(ωqrz); Σ2(p
reg
await(ωqrz));

• Immediate await (ϑ = imm)

1 Σ1(p
imm
await(ωqrz)); σimm

await(ωqrz); Σ2(p
imm
await(ωqrz));

Each of these patterns is translated into a corresponding await transition
in SCCharts σϑ

await(ωscc′) ∈ Σϑ
await(ωscc′) using the translation function

t
Σawait
qrz↦scc(pϑawait(ωqrz)), which is described by Algorithm 30.

Correctness

To check the correctness of Definition 9.8, the following lemma is used.

Lemma 9.8. Let ωqrz be translated to ωscc′. Then, t
Σawait
qrz↦scc(pϑawait(ωqrz))

translates pϑawait(ωqrz) to σϑ
await(ωscc′) as specified in Definition 9.8.

σϑ
await(ωscc′) conforms to the syntax rules of σϑ

await(ωscc) and preserves
the SOS transition rules of pϑawait(ωqrz).

Proof The validity of Lemma 9.8 is proved as follows: First, syntactic cor-
rectness is checked by comparing the syntax of σϑ

await(ωscc′) with the syntax
rules of σϑ

await(ωscc) as specified in Section 3.5. Second, the semantic cor-
rectness is checked by comparing the SOS transition rules of σϑ

await(ωscc) (see
Section 3.5) with those of the sequence Σ1(pϑawait(ωqrz)) ∶= σnothing(ωqrz),
σϑ
await(ωqrz), and Σ2(pϑawait(ωqrz)) ∶= σnothing(ωqrz) (see Section 3.3).

167

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 30 Translate await statement – Quartz-to-SCChart

Input: pϑawait(ωqrz)
Output: σϑ

await(ωscc′)
Translation Function t

Σawait
qrz↦scc(pϑawait(ωqrz)):

if ϑ = reg then

σreg
await(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[initial] state Σ1(pregawait(ωqrz))
if λb(σreg

await(ωqrz)) abort to

Σ2(pregawait(ωqrz))
[final] state Σ2(pregawait(ωqrz))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
end
if ϑ = imm then

σimm
await(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[initial] state Σ1(pimm
await(ωqrz))

immediate if λb(σimm
await(ωqrz)) abort

to Σ2(pimm
await(ωqrz))

[final] state Σ2(pimm
await(ωqrz))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
end
▷ initial and final identifiers are optional and are used for the first and
last state

Illustrative Examples for Lemma 9.8

As an example, Figure 9.6 shows a regular await statement, where the transi-
tion from state S1 to state S2 becomes active in the next macro step after S1
is entered. In contrast, Figure 9.7 shows an immediate await statement, where
the transition from state S1 to state S2 becomes active in the same macro step
when S1 is entered [WS22] (if Boolean condition a is true).

1 . . .
2 initial state S1

3 if a abort to S2

4 final state S2

5 . . .

Figure 9.6.: SCChart of Quartz sequence {S1; await(a); S2;} [WS22]

1 . . .
2 initial state S1

3 immediate if a abort to S2

4 final state S2

5 . . .

Figure 9.7.: SCChart of Quartz sequence {S1; immediate await(a); S2;}
[WS22]

168

9.3. From Quartz Models to SCCharts

9.3.8. Pause

This step covers the translation function for translating pause statement pat-
terns in Quartz Ppause(ωqrz) to pause transitions in SCCharts Σpause(ωscc′).

Definition 9.9 (Translation of pause statements – Quartz-to-
SCChart). A pause statement ppause(ωqrz) ∈ Ppause(ωqrz) is translated
to a pause transition in SCCharts σpause(ωscc′) ∈ Σpause(ωscc′) using

t
Σpause
qrz↦scc(ppause(ωqrz)), where t

Σpause
qrz↦scc(ppause(ωqrz)) = tΣawait

qrz↦scc(p
reg
await(ωqrz))

⇐⇒ λb(σreg
await(ωqrz)) = true.

Correctness

To check the correctness of Definition 9.9, the following lemma is used.

Lemma 9.9. Lemma 9.8 is also valid for pause statements, if
λb(σreg

await(ωqrz)) = true.

Proof Lemma 9.9 is valid, because a pause statement is never instanta-
neous. It consumes a logical unit of time. Therefore, both Quartz statements,
pause and wait(true), are equivalent, as confirmed by Schneider [Sch09] and
demonstrated in the example below [WS22].

Illustrative Examples for Lemma 9.9

As an example, Figure 9.8 shows a await(true) transition in the resulting
SCChart. In contrast, Figure 9.9 shows a pause transition in the resulting
SCChart. Both resulting SCCharts are equivalent.

1 . . .
2 initial state S1

3 if true abort to S2

4 final state S2

5 . . .

Figure 9.8.: SCChart of Quartz sequence {S1; await(true); S2;} [WS22]

1 . . .
2 initial state S1

3 abort to S2

4 final state S2

5 . . .

Figure 9.9.: SCChart of Quartz sequence {S1; pause; S2;} [WS22]

169

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

9.3.9. Assignments

This step covers the translation function for translating assignment patterns
in Quartz models P ϑ

ass(ωqrz) to sequences including assignments in SCCharts
Σseq(ωscc′).

Definition 9.10 (Translation of assignments – Quartz-to-SCChart).
A sequence including an immediate assignment and a delayed assignment in
Quartz pϑass(ωqrz) ∈ P ϑ

ass(ωqrz) has one of the following patterns:

• Immediate Assignment (ϑ = imm)

1 σimm
ass (ωqrz); Σ1(p

imm
ass (ωqrz));

• Delayed Assignment (ϑ = del)
1 σdel

ass(ωqrz); σpause(ωqrz)); Σ1(p
del
ass(ωqrz));

Each of these patterns is translated to a corresponding sequence includ-
ing assignment in SCCharts Σseq(ωscc′) using the translation function

t
Σass
qrz↦scc(pϑass(ωqrz)), which is described by Algorithm 31.

Algorithm 31 Translate assignment – Quartz-to-SCChart

Input: pϑass(ωqrz)
Output: Σseq(ωscc′)
Translation Function t

Σass
qrz↦scc(pϑass(ωqrz)):

if ϑ = imm then

Σseq(ωscc′) ← {
immediate do σimm

ass (ωqrz) go to Σ1(pimm
ass (ωqrz))

[final] state Σ1(pimm
ass (ωqrz))

}

end
if ϑ = del then

Σseq(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

state Σp,1 "pause" {
initial state Σ00 ""

do lhs(σdel
ass(ωqrz))) = pre(rhs(σdel

ass(ωqrz))))
abort to Σ01

final state Σ01 ""

}
immediate [do rhs(pdelass(ωqrz)) = . . .] join

to Σ1(pdelass(ωqrz))
[final] state Σ1(pdelass(ωqrz))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
▷ lhs(σdel

ass(ωqrz))) without next keyword

end
▷ initial and final identifiers are optional and are used for the first and
last state

170

9.3. From Quartz Models to SCCharts

Correctness

To check the correctness of Definition 9.10, the following lemmas are used.

Lemma 9.10. Let ωqrz be translated to ωscc′. Then, t
Σass
qrz↦scc(pϑass(ωqrz))

translates pimm
ass (ωqrz) to Σseq(ωscc′) as specified in Definition 9.10.

Σseq(ωscc′) conforms to the syntax rules of Σseq(ωscc) and preserves the
SOS transition rules of pimm

ass (ωqrz).

Proof The validity of Lemma 9.10 is proved as follows: First, the syntactic
correctness is checked by comparing the syntax of Σseq(ωscc′) with the syntax
rules of Σseq(ωscc) as specified in Section 3.5, considering the do prefix of
assignments. Second, the semantic correctness is checked by comparing the
SOS transition rules of Σseq(ωscc) (see Section 3.5) with those of the sequence
σimm
ass (ωqrz) and Σ1(pimm

ass (ωqrz)) ∶= σnothing(ωqrz) (see Section 3.3).

Illustrative Examples for Lemma 9.10

As an example, Figure 9.10 shows an immediate assignment, where a is in-
stantaneously set to b [WS22].

1 . . .
2 initial state S1

3 immediate do a=b go to S2

4 final state S2

5 . . .

Figure 9.10.: SCChart of Quartz sequence {S1; a=b; S2;} [WS22]

Lemma 9.11. Let ωqrz be translated to ωscc′. Then, t
Σass
qrz↦scc(pϑass(ωqrz))

translates pdelass(ωqrz) to Σseq(ωscc′) as specified in Definition 9.10.
Σseq(ωscc′) conforms to the syntax rules of Σseq(ωscc) and preserves the
SOS transition rules of pdelass(ωqrz).

Proof The validity of Lemma 9.11 is proved as follows: First, the syntac-
tic correctness is checked by comparing the syntax of Σseq(ωscc′) with the
syntax rules of Σseq(ωscc) as specified in Section 3.5, considering the pre op-
erator in SCCharts applied in [WS22] and do prefix of assignments. Second,
the semantic correctness is checked by comparing the SOS transition rules of
Σseq(ωscc) (see Section 3.5) with those of the sequence σdel

ass(ωqrz), σpause(ωqrz),
and Σ1(pdelass(ωqrz)) ∶= σnothing(ωqrz) (see Section 3.3).

171

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Illustrative Examples for Lemma 9.11

As an example, Figure 9.11 shows a delayed assignment, where a is instanta-
neously set to 1 and in the next macro step, b is set to 1, although a is set to
2 in the same macro step [WS22].

1 . . .
2 initial state S1

3 immediate do a =1 go to S

4 state S "pause" {

5 initial state S0 ""

6 do b = pre(a) abort to

S1

7 final state S1 ""

8 }

9 immediate do a=2 join to

S2

10 final state S2

11 . . .

Figure 9.11.: SCChart of Quartz sequence {S1; a=1; next(b)=a; pause; a=2;

S2;} [WS22]

9.3.10. Synchronous Concurrency

This step covers the translation function for translating synchronous concur-
rency in Quartz Σconc(ωqrz) to parallel regions in SCCharts Σconc(ωscc′).

Definition 9.11 (Translation of synchronous concurrency – Quartz-
to-SCChart). Synchronous concurrency in Quartz Σconc(ωqrz) has the fol-
lowing pattern:

1 Σ1(ωqrz); || . . . || Σn(ωqrz);

This pattern is translated to parallel regions in SCCharts Σconc(ωscc′) using the
translation function t

Σconc
qrz↦scc(Σconc(ωqrz)), which is described by Algorithm 32.

Algorithm 32 Translate synchronous concurrency – Quartz-to-SCChart

Input: Σconc(ωqrz)
Output: Σconc(ωscc′)
Translation Function t

Σconc
qrz↦scc(Σconc(ωqrz)):

Σconc(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

region:

initial state Σ1(Σconc(ωqrz))
. . .
region:

initial state Σn(Σconc(ωqrz))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

172

9.3. From Quartz Models to SCCharts

Correctness

To check the correctness of Definition 9.11, the following lemma is used.

Lemma 9.12. Let ωqrz be translated to ωscc′. Then, t
Σconc
qrz↦scc(Σconc(ωqrz))

translates Σconc(ωqrz) to Σconc(ωscc′) as specified in Definition 9.11.
Σconc(ωscc′) conforms to the syntax rules of Σconc(ωscc) and preserves the
SOS transition rules of Σconc(ωqrz).

Proof The validity of Lemma 9.12 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of Σconc(ωscc′) with
the syntax rules of Σconc(ωscc) as specified in Section 3.5, where n = 2. Second,
the semantic correctness is proved by comparing the SOS transition rules of
Σconc(ωscc) (see Section 3.5) with those of Σconc(ωqrz) (see Section 3.3), where
n = 2.

Illustrative Example for Lemma 9.12

As an example, Figure 9.12 shows synchronous concurrency of states S1, S2,
S3, and Sn. At the macro steps, the statements in the regions are synchronized
and can interact. Any abort statements will affect all parallel regions. The
synchronous concurrency terminates as soon as the last of the parallel regions
terminates [WS22].

1 . . .
2 region:

3 initial state S1

4 region:

5 initial state S2

6 region:

7 initial state S3

8 region:

9 initial state Sn

10 . . .

Figure 9.12.: SCChart of Quartz sequence {S1; || S2; || S3; || Sn;} [WS22]

9.3.11. Loops

This step covers the translation function for translating loop variants in Quartz
P ϑ
loop(ωqrz) to loop variants in SCCharts Σϑ

loop(ωscc′)).

Definition 9.12 (Translation of loops – Quartz-to-SCChart). A loop
in Quartz has one of the following patterns pϑloop(ωqrz) ∈ P ϑ

loop(ωqrz):

• Head-controlled loop (ϑ = head, Σ1(pheadloop (ωqrz)) ∶= Σ(σhead
loop (ωqrz)))

1 σhead
loop (ωqrz); Σ2(p

head
loop (ωqrz));

173

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

• Foot-controlled loop (ϑ = foot, Σ1(pfootloop (ωqrz)) ∶= Σ(σfoot
loop (ωqrz)))

1 σfoot
loop
(ωqrz); Σ2(p

foot
loop
(ωqrz));

• Infinite loop (ϑ = inf , Σ1(pinfloop(ωqrz)) ∶= Σ(σinf
loop(ωqrz)))

1 σinf
loop
(ωqrz); Σ2(p

foot
loop
(ωqrz));

Each of these patterns is translated to a corresponding loop in SCCharts

σϑ
loop(ωscc′) ∈ Σϑ

loop(ωscc′) using the translation function t
Σloop
qrz↦scc(pϑloop(ωqrz)),

which is described by Algorithm 33.

Correctness

To check the correctness of Definition 9.12, the following lemma is used.

Lemma 9.13. Let ωqrz be translated to ωscc′. Then, t
Σloop
qrz↦scc(pϑloop(ωqrz))

translates pϑloop(ωqrz) to σϑ
loop(ωscc′) as specified in Definition 9.12.

σϑ
loop(ωscc′) conforms to the syntax rules of σϑ

loop(ωscc) and preserves the

SOS transition rules of pϑloop(ωqrz).

Proof The validity of Lemma 9.13 is proved as follows: First, the syntactic
correctness is checked by comparing the resulting syntax of σϑ

loop(ωscc′) with
the syntax rules of σϑ

loop(ωscc) as specified in Section 3.5, considering nesting
of statements. Second, the semantic correctness is checked by comparing the
SOS transition rules of Σϑ

loop(ωscc) (see Section 3.5) with those of the sequence

σϑ
loop(ωqrz) and Σ2(pϑloop(ωqrz)) ∶= σnothing(ωqrz) (see Section 3.3).

Illustrative Examples for Lemma 9.13

As an example, Figure 9.13 shows a head-controlled loop σhead
loop (ωqrz), where

S1 immediately switches to a final state where a Boolean condition a is checked
before the other statements S1 are executed. In contrast, Figure 9.14 shows a
foot-controlled loop σfoot

loop (ωqrz), where the statement S1 is executed and the
Boolean condition a is ignored. After S1 has been terminated, a is checked. If a
is true then S1 is executed again, otherwise S1 is not executed again [WS22].
Figure 9.14 illustrates an infinite loop, that executes statement S1 without
checking a Boolean condition. Consequently, this loop variant represents a
special case of the foot-controlled loop σfoot

loop (ωqrz) for which it can be assumed

that the termination condition is never true6 [WS22].

6!a = false, because a is always true

174

9.3. From Quartz Models to SCCharts

Algorithm 33 Translate loop – Quartz-to-SCChart

Input: pϑloop(ωqrz)
Output: σϑ

loop(ωscc′)
Translation Function t

Σloop
qrz↦scc(pϑloop(ωqrz)):

if ϑ = head then

σhead
loop (ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σhead
loop (ωqrz)){

initial state Σ1

immediate go to Σ2

final state Σ2

immediate if λb(σhead
loop (ωqrz) go to . . .

. . .
}
immediate if !(λb(σhead

loop (ωqrz))) join

to Σ2(pheadloop (ωqrz))
[final] state Σ2(pheadloop (ωqrz))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end
if ϑ = foot then

σfoot
loop (ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σfoot
loop (ωqrz)){

initial state Σ1

. . .
final state Σn

immediate if λb(σfoot
loop (ωqrz)) go to Σ1

}
immediate if !(λb(σfoot

loop (ωqrz))) join

to Σ2(pfootloop (ωqrz))
[final] state Σ2(pfootloop (ωqrz))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end
if ϑ = inf then

σinf
loop(ωscc′) ← σfoot

loop (ωscc′) ⇐⇒ λb(σfoot
loop (ωqrz)) = true

end
▷ initial and final identifiers are optional and are used for the first and
last state

9.3.12. Halt

This step covers the translation function for translating halt statements in
Quartz Σhalt(ωqrz) to halt statements in SCCharts Σhalt(ωscc′).

Definition 9.13 (Translation of halt statements – Quartz-to-
SCChart). A halt statement in Quartz σhalt(ωqrz) ∈ Σhalt(ωqrz) is
translated to a halt statement in SCCharts σhalt(ωscc′) ∈ Σhalt(ωscc′) using

tΣhalt
qrz↦scc(σhalt(ωqrz)), where tΣhalt

qrz↦scc(σhalt(ωqrz)) = t
Σloop
qrz↦scc(σinf

loop(ωqrz)) ⇐⇒
Σ(σinf

loop(ωqrz)) = pause.

175

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

1 . . .
2 initial state S1{

3 initial final state S1 ""

4 immediate if a go to S2

5 . . .
6 }

7 immediate if !a join to S2

8 final state S2

9 . . .

Figure 9.13.: SCChart of Quartz sequence {while(a){S1;} S2;} [WS22]

1 . . .
2 initial state S1{

3 initial state S1 ""

4 . . .
5 final state S3 ""

6 immediate if a go to S1

7 }

8 immediate if !a join to S2

9 final state S2

10 . . .

Figure 9.14.: SCChart of Quartz sequence {do S1; while(a); S2;} [WS22]

1 . . .
2 initial state S1{

3 initial state S1

4 . . .
5 final state S3 ""

6 immediate go to S1

7 }

8 . . .

Figure 9.15.: SCChart of Quartz sequence {loop S;} [WS22]

Correctness

To check the correctness of Definition 9.13, the following lemma is used.

Lemma 9.14. Lemma 9.13 is also valid for halt statements Σhalt(ωqrz),
if Σ(σinf

loop(ωqrz)) = pause.

Proof Lemma 9.14 is valid, because the halt statement represents an infinite
loop executing a pause statement that consumes one logical unit of time per

176

9.3. From Quartz Models to SCCharts

iteration. Consequently, the halt statement never terminates [WS22]. There-
fore, both Quartz statements, halt and loop{pause;}, are equivalent, as
demonstrated in the illustrative example below and confirmed by Schneider
[Sch09].

Illustrative Examples for Lemma 9.14

As an example, Figure 9.16 shows a halt statement realized as infinite loop. In
contrast, Figure 9.17 shows a halt statement with a resulting state that never
terminates [WS22].

1 . . .
2 initial state S1 ""

3 abort to S2

4 final state S2 ""

5 immediate go to S1

6 . . .

Figure 9.16.: SCChart of Quartz sequence {loop{pause;}} [WS22]

1 . . .
2 initial state S1 ""

3 . . .

Figure 9.17.: SCChart of Quartz sequence {halt;} [WS22]

9.3.13. Abort

This step covers the translation function for translating abort statement pat-
terns in Quartz P ϑ

abort(ωqrz) to abort transitions in SCCharts Σϑ
abort(ωscc′).

Definition 9.14 (Translation of abort statements – Quartz-to-
SCChart). An abort statement in Quartz has one of the following patterns
pϑabort(ωqrz) ∈ P ϑ

abort(ωqrz):
• Abort (ϑ = reg, Σ1(pregabort(ωqrz)) ∶= Σ(σreg

abort(ωqrz)))
1 σreg

abort
(ωqrz); Σ2(p

reg
abort

(ωqrz));

• Immediate abort (ϑ = imm, Σ1(pimm
abort(ωqrz)) ∶= Σ(σimm

abort(ωqrz)))
1 σimm

abort(ωqrz); Σ2(p
imm
abort(ωqrz));

Each of these patterns is translated to a corresponding abort transition
in SCCharts σϑ

abort(ωscc′) ∈ Σϑ
abort(ωscc′) using the translation function

t
Σabort
qrz↦scc(pϑabort(ωqrz)), which is described by Algorithm 34.

177

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 34 Translate abort – Quartz-to-SCChart

Input: pϑabort(ωqrz)
Output: σϑ

abort(ωscc′)
Translation Function t

Σabort
qrz↦scc(pϑabort(ωqrz)):

if ϑ = reg then

σreg
abort(ωscc′) ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1(pregabort(ωqrz))
if λb(σreg

abort(ωqrz)) abort to Σ2(pregabort(ωqrz))
[final] state Σ2(pregabort(ωqrz))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
end
if ϑ = imm then

σimm
abort(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[initial] state Σ1(pimm
abort(ωqrz))

immediate if λb(σimm
abort(ωqrz)) abort

to Σ2(pimm
abort(ωqrz))

[final] state Σ2(pimm
abort(ωqrz))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
end
▷ initial and final identifiers are optional and are used for the first and
last state

Correctness

To check the correctness of Definition 9.14, the following lemma is used.

Lemma 9.15. Let t
Σabort
qrz↦scc(pϑabort(ωqrz)) translate pϑabort(ωqrz) to

σϑ
abort(ωscc′) as specified in Definition 9.14. Then, σϑ

abort(ωscc′) conforms
to the syntax rules of σϑ

abort(ωscc) and preserves the SOS transition rules
of pϑabort(ωqrz).

Proof The validity of Lemma 9.15 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of σϑ

abort(ωscc′)
with the syntax rules of σϑ

abort(ωscc) as specified in Section 3.5). Second,
the semantic correctness is checked by comparing the SOS transition rules
of σϑ

abort(ωscc) (see Section 3.5) with those of the sequence σϑ
abort(ωqrz) and

Σ2(pϑabort(ωqrz)) ∶= σnothing(ωqrz) (see Section 3.3).

Illustrative Examples for Lemma 9.15

As an example, Figure 9.18 shows a resulting regular abort transition from S1

to S2. In contrast, Figure 9.19 shows a resulting immediate abort transition
from S1 to S2 [WS22].

9.3.14. Conditions

This step covers the translation function for translating condition patterns in
Quartz P ϑ

cond(ωqrz) to condition variants in SCCharts Σϑ
cond(ωscc′).

178

9.3. From Quartz Models to SCCharts

1 . . .
2 initial state S1

3 if a abort to S2

4 final state S2

5 . . .

Figure 9.18.: SCChart of Quartz sequence {abort S1; when(a); S2;} [WS22]

1 . . .
2 initial state S1

3 immediate if a abort to S2

4 final state S2

5 . . .

Figure 9.19.: SCChart of Quartz sequence {immediate abort S1; when(a);

S2;} [WS22]

Definition 9.15 (Translation of conditions – Quartz-to-SCChart).
A condition in Quartz has one of the following patterns pϑcond(ωqrz) ∈
P ϑ
cond(ωqrz):

• if condition ϑ = it)
1 Σ1(σ

it
cond(ωqrz)) if(λb

(σit
cond(ωqrz))){ Σ2(σ

it
cond(ωqrz)) } Σ3(σ

it
cond(ωqrz))

• if-else condition ϑ = ite)
1 Σ1(σ

ite
cond(ωqrz)) if(λb

(σite
cond(ωqrz))){ Σ2(σ

ite
cond(ωqrz)) }else{ Σ3(σ

ite
cond(ωqrz))

} Σ4(σ
ite
cond(ωqrz))

Each of these patterns is translated to a corresponding condition in SCCharts

σϑ
cond(ωscc′) ∈ Σϑ

cond(ωscc′) using the translation function t
Σcond
qrz↦scc(pϑcond(ωqrz)),

which is described by Algorithm 35.

Correctness

To check the correctness of Definition 9.15, the following lemma is used.

Lemma 9.16. t
Σcond
qrz↦scc(pϑcond(ωqrz)) translates pϑcond(ωqrz) to σϑ

cond(ωscc′)
as specified in Definition 9.15. σϑ

cond(ωscc′) conforms to the syntax rules
of σϑ

cond(ωscc) and preserves the SOS transition rules of pϑcond(ωqrz).

Proof The validity of Lemma 9.16 is proved as follows: First, the syntac-
tic correctness is checked by comparing the resulting syntax of σϑ

cond(ωscc′)
with the syntax rules of σϑ

cond(ωscc) as specified in Section 3.5. Second, the
semantic correctness is checked by comparing the SOS transition rules of

179

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Algorithm 35 Translate condition – Quartz-to-SCChart

Input: pϑcond(ωqrz)
Output: σϑ

cond(ωscc′)
Translation Function t

Σcond
qrz↦scc(pϑcond(ωqrz)):

if ϑ = it then

σit
cond(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σit
cond(ωqrz))

immediate if λb(σit
cond(ωqrz)) go

to Σ2(σit
cond(ωqrz))

immediate if !(λb(σit
cond(ωqrz)) go

to Σ3(σit
cond(ωqrz))

state Σ2(σit
cond(ωqrz))

immediate go to Σ3(σit
cond(ωqrz))

[final] state Σ3(σit
cond(ωqrz))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end
if ϑ = del then

σite
cond(ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σite
cond(ωqrz))

immediate if λb(σite
cond(ωqrz)) go

to Σ2(σite
cond(ωqrz))

immediate if !(λb(σite
cond(ωqrz)) go

to Σ3(σite
cond(ωqrz))

state Σ2(σite
cond(ωqrz))

immediate go to Σ4(σite
cond(ωqrz))

state Σ3(σite
cond(ωqrz))

immediate go to Σ4(σite
cond(ωqrz))

[final] state Σ4(σite
cond(ωqrz))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
end
▷ initial and final identifiers are optional and are used for the first and
last state

σit
cond(ωscc) (see Section 3.5) with those of the sequence Σ1(σit

cond(ωqrz)) ∶=
σnothing(ωqrz), σit

cond(ωqrz), and Σ3(σit
cond(ωqrz)) ∶= σnothing(ωqrz) for pattern

1 (see Section 3.3), and by comparing the SOS transition rules of σite
cond(ωscc)

(see Section 3.5) with those of the sequence Σ1(σite
cond(ωqrz)) ∶= σnothing(ωqrz),

σite
cond(ωqrz), and Σ4(σite

cond(ωqrz)) ∶= σnothing(ωqrz) for pattern 2 (see Sec-
tion 3.3).

Illustrative Examples for Lemma 9.16

As an example, Figure 9.20 shows an if condition where state S2 is executed
if condition a is true. Figure 9.21 shows an if-else condition, where state S2

is executed if condition a is true, and state S3 is executed otherwise.

9.3.15. Sequences

This step covers the translation function for translating sequences in Quartz
models Σseq(ωqrz) and Quartz patterns P (ωqrz) to sequences in SCCharts
Σseq(ωscc′).

180

9.3. From Quartz Models to SCCharts

1 . . .
2 initial state S1

3 immediate if a go to S2

4 immediate if !a go to S3

5 state S2

6 immediate go to S4

7 state S3

8 immediate go to S4

9 final state S4

10 . . .

Figure 9.20.: SCChart of Quartz sequence {S1; if(a) S2; S3;} [WS24a]

1 . . .
2 initial state S1{

3 initial state S1

4 . . .
5 final state S3 ""

6 immediate go to S1

7 }

8 . . .

Figure 9.21.: SCChart of Quartz sequence {S1; if(a) S2; else S3; S4;}
[WS22]

Definition 9.16 (Translation of sequences – Quartz-to-SCChart). Let
Σseq(ωqrz) be a set of Quartz statements and P (ωqrz) a set of Quartz patterns
that are translated to a set of SCChart statements Σseq(ωscc′) according to the
Definition 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, and 9.15. The translation

function t
Σseq
qrz↦scc(Σseq(ωscc′)) inserts σi(ωscc′) ∈ Σseq(ωscc′) to ωscc′, following

the process described by Algorithm 36, where i ≥ 0.

Algorithm 36 Add sequence – Quartz-to-SCChart

Input: Σseq(ωscc′)
Output: ωscc′

Translation Function t
Σseq
qrz↦scc(Σseq(ωscc′)):

forall σi ∈ Σseq(ωscc′) do
if i > 0 then

ωscc′ ← {
immediate [go|join] to σi
[final] state σi

}
▷ add σi to the position w.r.t. its

execution order, use join for states that contain states (otherwise
go), and add final identifier in last state

else

ωscc′ ← { initial state σi }
end

end

181

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Correctness

To check the correctness of Definition 9.16, the following lemma is used.

Lemma 9.17. Let Σseq(ωscc′) be syntactically correct. Then,

t
Σseq
qrz↦scc(Σseq(ωscc′)) inserts each translated statement σi ∈ Σseq(ωscc′) to
ωscc′. The resulting SCChart ωscc′ conforms to the syntax rules of ωscc and
preserves the SOS transition rules of ωqrz.

Proof The validity of Lemma 9.17 is proved as follows: First, syntactic cor-
rectness is checked by comparing the resulting syntax of Σseq(ωscc′) with the
syntax rules of Σseq(ωscc) as specified in Section 3.5 using induction on the
number of statements to be added Σseq(ωscc′):

1. Base Case: When Σseq(ωscc′) = ∅, there are no statements to be added,
which conforms to the syntax rules of δω(ωscc).

2. Induction Hypothesis: The lemma holds for any set of statements to
be added Σseq(ωscc′).

3. Inductive Step: Adding a statement results in a statement to be added
that conforms to the syntax rules Σseq(ωscc) in both scenarios i = 0 and
i > 0, because the syntactic correctness of this statement to be added
has been proven in the appropriate section.

Second, the overall semantic correctness is given by the individual semantic
correctness of each inserted statement.

Illustrative Examples for Lemma 9.17

As an example, Figure 9.22 shows a sequence of inserted statements S1, S2,
S3, and Sn. Switching between statements does not consume time, and if the
individual statements terminate instantaneously, the sequence also terminates
instantaneously [WS22]. In addition, switching of sequences containing other
sequences (such as S2) is indicated by the green triangle [WS22].

1 . . .
2 initial state S1

3 immediate go to S2

4 state S2 { . . . }

5 immediate join to S3

6 state S3

7 immediate go to Sn

8 final state Sn

9 . . .

Figure 9.22.: SCChart of Quartz sequence {S1; S2; S3; Sn;} [WS22]

182

9.4. SCChart Optimization

9.4. SCChart Optimization

This section defines optimization strategies Tscc↦scc(ωscc) for a resulting
Quartz-based SCChart ωscc′ ∈ Ωscc that are derived from related work in the
context of synthesized safe state machines from Esterel [PTH06].

9.4.1. Flattening Hierarchy

This step covers the strategy for flattening the state hierarchy, where the
focus is on removing surrounding states, which contain a single initial state
that optionally followed by other states [PTH06].

Definition 9.17 (Optimization of hierarchy – Quartz-to-SCChart).
A surrounding state in Quartz-based SCCharts, which contains a single initial
state that optionally followed by other states has one of the following patterns:

• Pattern 1: Initial state only

1 initial state Sx{ initial state Sy{ . . . } }

• Pattern 2: Initial state with one other state

1 initial state Sx{

2 initial state Sy

3 . . . to Sz

4 [final] state Sz{ . . . } }

In both scenarios, the surrounding state is removed as follows, using a trans-

lation denoted as t
Σhierarchy
scc↦scc (Σ(ωscc)):

• Pattern 1: Initial state only

1 initial state Sy "Sx + Sy"{ . . . }

• Pattern 2: Initial state with one other state

1 initial state Sy "Sy + Sx"

2 . . . to Sz

3 [final] state Sz{ . . . } }

Correctness

To check the correctness of Definition 9.17, the following lemma is used.

Lemma 9.18. Removing the surrounding state following Definition 9.17
does not change the conditions for the termination or transition behavior
of the Quartz-based SCChart.

183

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

Proof Lemma 9.18 is valid, because the transition from an initial state to an-
other state contains only the immediate transition, which executes the nothing
statement. If only the initial state is available, no transition is executed. Addi-
tionally, this is confirmed by manually comparing the synthesized Sequentially
Constructive Graphs [Han+13] of both models (with and without hierarchy op-
timization) using KIELER, e.g., for the following illustrative example, where
additional temporary variables that are immediately assigned are ignored.

Illustrative Example for Lemma 9.18

As an example, Figure 9.23 illustrates pattern 2 before optimization and Fig-
ure 9.24 illustrates pattern 2 after optimization, where the surrounding state
Sx is removed.

1 . . .
2 initial state Sx{

3 initial state Sy

4 immediate abort to Sz

5 final state Sz

6 }

7 . . .

Figure 9.23.: SCChart before hierarchy optimization (Pattern 2)

1 . . .
2 initial state Sy "Sy + Sx"

3 immediate abort to Sz

4 final state Sz

5 . . .

Figure 9.24.: SCChart after hierarchy optimization (Pattern 2)

9.4.2. Removing States

This step covers the strategy for removing states, where the focus is on states
without internal actions [PTH06].

Definition 9.18 (Optimization of states – Quartz-to-SCChart). A
state in Quartz-based SCCharts can be removed under the following conditions

using the translation function denoted as t
Σstate
scc↦scc(Σ(ωscc)):

• The state is an initial state, has no internal actions, and has only one
outgoing immediate transition without condition and action.

• The state has no internal actions and has only one outgoing immediate
transition without condition and action. The incoming transition of the
subsequent state is redirected accordingly.

184

9.5. Experimental Results

• The state has no internal actions, only one incoming immediate tran-
sition without condition, and one outgoing transition without condition.
The incoming transition of the subsequent state is redirected accordingly,
and actions are combined.

• The state is a final state, has no internal actions, and has no outgoing
transitions.

Correctness

To check the correctness of Definition 9.18, the following lemma is used.

Lemma 9.19. Removing states following Definition 9.18 does not change
the conditions for the termination or transition behavior of the Quartz-
based SCChart.

Proof Lemma 9.19 is valid, because the considered states contain only im-
mediate outgoing transitions (which execute the nothing statement) or no
outgoing transitions. Additionally, this is confirmed by manually comparing
the synthesized Sequentially Constructive Graph of both models (with and
without state optimization) using KIELER, e.g., for the following illustrative
example, where additional temporary variables that are immediately assigned
are ignored.

Illustrative Example for Lemma 9.19

As an example, Figure 9.25 illustrates all scenarios before optimization and
Figure 9.26 after optimization.

1 . . .
2 initial state Sa

3 immediate go to Sb

4 state Sb{ . . . }

5 join to Sc

6 state Sc

7 immediate do f = true go

to Sd

8 state Sd{ . . . }

9 join to Se

10 final state Se

11 . . .

Figure 9.25.: SCChart before state optimization

9.5. Experimental Results

The applicability of the introduced Quartz code refactoring and transforma-
tion to control-flow oriented SCCharts is evaluated with the Quartz models

185

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

1 . . .
2 initial state Sb{ . . . }

3 do f = true join to Sd

4 final state Sd{ . . . }

5 . . .

Figure 9.26.: SCChart after state optimization

listed in Table 9.1. For evaluation purposes, the expected SCCharts are man-
ually implemented in KIELER and the refactoring and translation functions
as a prototype in PLCreX , resulting in the overall test strategy shown in Fig-
ure 9.27. Similar to the previous chapters, the correctness of the automatically
generated control-flow oriented SCCharts is verified in two ways: (1) manual
reviews are used to identify differences between the expected SCCharts and the
automatically generated SCCharts, and (2) the built-in compilers of KIELER
and Averest are used to verify the syntactic correctness of the refactored and
automatically generated models.

Averest KIELER

PLCreX

KIELER

review

compile compile

(generated automatically)(implemented manually)

(implemented manually)

PLCreX
(implemented manually)

PLCreX
(implemented manually)

compile

(generated automatically)

Figure 9.27.: Test strategy to evaluate the Quartz-to-SCChart transformation in-
cluding optimization and Quartz code refactoring

Both tests passed for all examples (ignoring minor formatting differences be-
tween manually implemented and automatically generated SCCharts), with
the following warnings:

• Supported operators: According to Lemma 9.6, only a subset of the
considered Quartz expressions can be translated to corresponding in-
ternal SCChart expressions. Therefore, the example arithmetic opera-
tors throws a warning for affected expression. Affected expressions are
skipped during translation.

• Supported data types: According to Lemma 9.5, only a subset of the
considered Quartz data types can be translated to corresponding SC-
Chart data types. Therefore, the example data types and fields throws a
warning for affected declarations. Affected declarations and expressions

186

9.6. Summary

Table 9.1.: Set of examples and test results to evaluate the applicability of the
introduced Quartz-to-SCChart transformation

Model Source ωqrz ωscc Result

Alarm function [Sch19] C.2 H.1 passed
Foot-controlled loop self C.13 H.2 passed
Head-controlled loop self C.14 H.3 passed

Arithmetic operators self C.5 H.4
passed with
warnings

RS-Flip-Flop [GDV14] C.23 H.5 passed
2-of-3 logic function [Sch19] C.1 H.6 passed
Boolean operators self F.7 H.7 passed

Data types and fields self F.9 H.8
passed with
warnings

KV Diagram optimized Chart [Kar18] F.12 H.9 passed
Left detection [Sch19] F.13 H.10 passed

Roll Down Shutters [AG20] F.17 H.11 passed
Thermometer Code System [Bub17] F.27 H.12 passed

Toggle Switch 4x [Bub17] F.28 H.13 passed

are skipped during translation.

Based on the experimental results in Table 9.1, it can be concluded that the
introduced refactoring and translation functions are applicable and lead to
correct SCCharts intended for an alternative model view. As a full exam-
ple, Figure 9.28 demonstrates the different steps from refactoring the initial
Quartz model (see Figure 9.28a and Figure 9.28a), to the transformation into a
control-flow oriented SCChart with subsequent optimization (see Figure 9.28d)
using an FBD-based Quartz example introduced in [WS22]7.

9.6. Summary

This chapter introduced a Quartz code refactoring and transformation to
control-flow oriented SCCharts. For this purpose, a code refactoring, individ-
ual translation functions, and optimizations were defined, whose applicability
was demonstrated using a set of Quartz examples. Based on the presented
lemmas and experimental results, the following theorem encapsulates the en-
tire transformation:

Theorem 9.1 (Quartz-to-SCChart Translation). Let Tqrz↦qrz(ωqrz)
be the code refactoring of ωqrz, Tqrz↦scc(ωqrz) be the model transformation
of ωqrz to ωscc′ , and Tscc↦scc(ωscc′) be the model optimization of ωscc′

as introduced in this chapter. Then, the resulting control-flow oriented
SCChart ωscc′ :

7Note that S0 is empty, which is why it does not appear in the resulting SCChart.

187

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

1. Conforms to the syntax rules of ωscc

2. Preserves the semantics of ωqrz

3. Contains constructs corresponding to the constructs of ωqrz and pre-
serves the intended functionality of ωqrz under the following condi-
tions:

• no imported Quartz models

• ∆idcl(ωqrz) =∆in(ωqrz) ∪∆out(ωqrz) ∪∆inout(ωqrz)
• ∆vdcl(ωqrz) =∆local(ωqrz)
• ∀α[+](ωqrz) ∶ α[+] ∈ {αbool

bv , αint
i , αdint

i , αuint
i , αdur, α

+}, where
αdur can be treated as an bounded integer and is specified in
milliseconds

• ∀τ(ωqrz) ∶ τ ∈ {emit(π), τ cstmisc, τ
id
misc, τ

π,η,λ
misc , τ

br
misc, τ

true
misc, τ

false
misc ,

τarrmisc, τ
inv
misc, τ

eq
comp, τ

ne
comp, τ

gt
comp, τ

ge
comp, τ

lt
comp, τ

le
comp, τ

mul
arith, τ

div
arith,

τaddarith, τ
sub
arith, τ

expt
arith, τ

mod
arith, τ

um
arith, τ

sel
cond}

• ∀σ(ωqrz) ∶ σ ∈ {σnothing, σϑ
await, σpause, σconc, σ

ϑ
loop, σhalt, σ

ϑ
abort,

σϑ
cond, σ

ϑ
ass}

Proof The validity of Theorem 9.1 is proved as follows:

1. Syntax Conformance: Lemma 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9,
9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, and 9.17 demonstrate that each
translated construct conforms to the syntax rules of ωscc as specified in
Section 3.5. Furthermore, Lemma 9.18 and 9.19 demonstrate that the
optimized SCChart conforms to the syntax rules of ωscc as specified in
Section 3.5.

2. Semantic Preservation: The following lemmas address the preserva-
tion of semantics for their respective constructs.

• Code refactoring: Lemma 9.1

• Model declaration: Lemma 9.2

• Interfaces: Lemma 9.3

• Variables: Lemma 9.4

• Data types and fields: Lemma 9.5

• Expressions: Lemma 9.6

• Immediate transition: Lemma 9.7

• Await: Lemma 9.8

• Pause: Lemma 9.9

• Assignments: Lemma 9.10 and 9.11

188

9.6. Summary

• Synchronous Concurrency: Lemma 9.12

• Loop: Lemma 9.13

• Halt: Lemma 9.14

• Abort: Lemma 9.15

• Conditions: Lemma 9.16

• Sequences: Lemma 9.17

3. Construct Correspondence: Given the conditions of the theorem,
the provided definitions, proofs, and experimental results, it can be con-
cluded that the translation functions produce corresponding constructs
in ωscc for the considered constructs in ωqrz, preserving the original func-
tionality, taking into account the previous refactoring and subsequent
optimizations.

Overall, this results in the following solutions to the challenges summarized in
Section 9.1.

1. Correct code refactoring of the initial Quartz model: The solu-
tion follows from Section 9.2.

2. Correct and complete translation of the considered Quartz con-
structs: The solution follows from Section 9.3.

3. Correct optimization of the resulting SCChart: The solution fol-
lows from Section 9.4.

189

Chapter 9: Control-Flow Oriented SCCharts of POU-Based Quartz Models

1 loop{

2 if(IN){ // c2

3 if(T >= PT){ // c1

4 Q = true; // S1

5 ET = PT; // S1

6 T_NEW = T; // S1

7 }else{

8 Q = false; // S2

9 ET = T; // S2

10 T_NEW = T + CLK; // S2

11 }

12 }else{

13 Q = false; // S4

14 ET = 0; // S4

15 T_NEW = 0; // S4

16 }

17 next(T) = T_NEW; // S3

18 pause; // S3

19 }

(a) Initial Quartz Model

1 loop{

2 immediate abort{

3 loop{

4 immediate abort{

5 loop{

6 Q = false; // S2

7 ET = T; // S2

8 T_NEW = T + CLK; // S2

9 next(T) = T_NEW; // S3

10 pause; // S3

11 }

12 }when(T >= PT); // c1

13 Q = true; // S1

14 ET = PT; // S1

15 T_NEW = T; // S1

16 next(T) = T_NEW; // S3

17 pause; // S3

18 }

19 }when(!IN); // !c2

20 Q = false; // S4

21 ET = 0; // S4

22 T_NEW = 0; // S4

23 next(T) = T_NEW; // S3

24 pause; // S3

25 }

(b) Refactored Quartz Model (Pattern 3)

(c) Resulting control-flow oriented SCChart (not optimized)

(d) Resulting control-flow oriented SCChart (optimized)

Figure 9.28.: From Quartz to control-flow oriented SCChart [WS22]

190

Chapter 10
Conclusions

This thesis explored the reuse of existing IEC-61131-3 ST- and FBD-based
POUs in model-based design (which supports formal verification) by translat-
ing them into synchronous models. The central objective was to investigate,
using Quartz , SCL and SCCharts as examples, whether ST- and FBD-based
POUs can be translated into synchronous models while maintaining their be-
havioral semantics. In this context, it has been shown that the structural
complexity of data-flow models in real-world applications can be reduced using
formal methods and formula refactoring. Additionally, the possibility of trans-
lating ST- and FBD-based Quartz models into control-flow oriented SCCha-
rts has been presented. In this context, specific patterns have been identified
that allow the transformation of FBD-based Quartz models into hierarchical
control-flow oriented SCCharts. A summary of the contributions is shown in
Figure 10.1, where the elements are labeled according to the categories below.
These categories contain the key findings and answers to the hypotheses H1,
H2 and H3 that were formulated in Section 1.1.

1. H1: Model-Based Design of Program Organization Units

A detailed model transformation from textual ST models to correspond-
ing Quartz and SCL models, and from graphical FBDs to data-flow
oriented Quartz models and SCCharts were presented. The correctness
of the transformations has been demonstrated by theoretical reason-
ing, and the theoretical results have been evaluated with real-world and
self-defined IEC 61131-3 examples, with the translation functions im-
plemented as a prototype in PLCreX. As shown in Theorem 4.1, 5.1,
6.1, and 7.1, the transformations preserve the original runtime behav-
ior of ST- and FBD-based POUs. Furthermore, it has been shown that
existing variable and instance names are retained, and additional vari-
ables provide traceability to the original IEC 61131-3 POU and internal
ports. Existing control structures such as loops and conditions are also
preserved. This allows an intuitive post-translation modification. Over-
all, this translation enables reuse in model-based design using KIELER
and Averest , which support formal verification.

191

Chapter 10: Conclusions

 PLCreX
KIELERIEC 61131-3

Averest

PLC
Verifcation,

Synthesis, ...

1

1

1

1

2

2

2

2
2

4

3

33

Figure 10.1.: Contribution Summary

2. H2: Formal Methods-Based Optimization of Data-Flow Models

By introducing a configurable optimization strategy based on NuSMV ,
SMT Z3Py , and formula refactoring, a formal methods-based optimiza-
tion process for data-flow models has been developed. As shown in The-
orem 8.1, the optimization approach effectively detects and minimizes
the structural complexity of data-flow models in real-world applications
without changing the logical behavior of the models, where structural
complexity is measured by the number of variable accesses (including
output variables of instances), operators, and edges. Empirical evalua-
tions using industrial examples from PLC vendors and literature demon-
strated significant optimization potential, with the optimization process
implemented in PLCreX , confirming that data-flow models in real-world
applications are frequently presented in a more complex structure than
their logic requires.

3. H3: Control-Flow Oriented SCCharts of Quartz Models

A detailed model transformation from ST- and FBD-based Quartz mod-
els to control-flow oriented SCCharts has been presented. This trans-
formation takes into account hierarchy and state optimization of the
resulting SCCharts. The correctness of the translation functions has
been demonstrated by theoretical reasoning, and the theoretical results
have been evaluated with ST- and FBD-based Quartz models, with
the translation functions and optimizations implemented as a prototype
in PLCreX. As shown in Theorem 9.1, by detecting specific patterns,
Quartz models can be translated into hierarchical control-flow oriented
SCCharts, providing an alternative control flow view for system analysis

192

Chapter 10: Conclusions

and design.

4. PLCreX

PLCreX has been developed as part of this thesis. It’s a project for
simplification, transformation, analysis, and validation of IEC 61131-3
POUs. PLCreX encapsulates the approaches developed in this thesis
and serves as a tool to support in challenges of real-world applications.

While this thesis offers robust translations and specific tool support, addi-
tional research and development would further enhance the applicability. For
example, adding more language features to SCL (such as importing other mod-
els or foot-controlled loops) or more detailed documentation, or considering
external data types and operators in the introduced approaches could make
the transformation process more intuitive for professionals with an industrial
background. Furthermore, variables in resulting SCL models that are derived
from POUs without memory are reset by default, even if they are updated
within the same macro step. Resetting is not necessary in these cases. In ad-
dition, initializing variables in Quartz at the time of declaration, rather than
through separate immediate assignments, would reduce overall lines of code
and potentially simplify the traceability with regard to the original IEC 61131-
3 model.
Additional research is recommended for translating FBDs to data-flow ori-

ented SCCharts and Quartz models. The approaches presented in this thesis
enforce the preservation of sequential execution in the original FBDs including
instances, resulting in statements being executed sequentially although they
could be executed in parallel. The decomposition of POUs into independent
paths is recommended.
Furthermore, when translating FBDs to data-flow oriented SCCharts fol-

lowing the approach of additional MOVE blocks, there are intermediate values
at the input ports of these MOVE blocks when at least one instance in the
model does not terminate within the current macro step (or loop iteration,
respectively), which may be the result of invalid operations. These results do
not affect the original semantics (and do not cause a runtime error in C-based
simulations in KIELER) because they are not passed until the MOVE blocks
have been triggered accordingly. However, the affected expressions should be
protected from invalid operations.
Additionally, future research could explore more complex refactoring pat-

terns within the synchronous paradigm to alternatively visualize the mod-
els and potentially identify additional hierarchical structures in data-flow or
control-flow oriented models. Investigating alternative forms of hierarchical
decomposition or synchronous concurrency could extend the approaches pre-
sented in this thesis. For example, LLMs could be used to identify similar
patterns or control structures in large applications, or to suggest appropriate
refactoring strategies in individual POUs.
Furthermore, the formal methods-based optimization introduced in this the-

sis employs the Z3Py theorem solver and the NuSMV model checker. Other
model checkers, theorem solvers, algorithms, or minimization techniques (with

193

Chapter 10: Conclusions

and without LLM support) could increase the observed minimization poten-
tial. Further research could investigate the impact of the introduced optimiza-
tion strategies on code size and execution speed across different platforms. In
addition, it would be beneficial if the optimization approach could take into ac-
count user-defined patterns or templates, which are treated as non-modifiable
and thus excluded from optimization.
Moreover, PLCreX would benefit from additional IEC 61131-3 features and

language constructs to apply the introduced methods to more complex real-
world applications. Since PLCreX is based on an ST-like intermediate repre-
sentation, other languages can be easily integrated.
In summary, this thesis presents detailed approaches for transforming ex-

isting ST- and FBD-based POUs into synchronous models, an optimization
strategy for data-flow oriented models, and the synthesis of control-flow ori-
ented SCCharts from ST- and FBD-based Quartz models. This enables the
transition from traditional IEC 61131-3 development to model-based design
using synchronous languages, while reusing existing IEC 61131-3 development
efforts.

194

Bibliography

[AG20] Siemens AG. LOGO!-Library – Simple application examples -
ID: 109783504 - Industry Support Siemens. https://support.
industry.siemens.com/cs/document/109783504/. Dec. 2020.

[And95] Charles André. “Synccharts: A visual representation of reactive
behaviors”. In: Université de Nice-Sophia Antipolis, 1995.

[BAV08] Gülden Bayrak, Farisoroosh Abrishamchian, and Birgit Vogel-
Heuser. “Effiziente Steuerungsprogrammierung durch automatis-
che Modelltransformation von Matlab/Simulink/Stateflow nach
IEC 61131-3”. In: Automatisierungstechnische Praxis (atp) 50.12
(2008), pp. 49–55.

[BB13] Jan Olaf Blech and Sidi Ould Biha. “On Formal Reasoning on
the Semantics of PLC using Coq”. In: ArXiv (2013), pp. 1–35.
eprint: arXiv:1301.3047v1.

[BB91] Albert Benveniste and Gérard Berry. “The synchronous ap-
proach to reactive and real-time systems”. In: Proceedings of the
IEEE. Vol. 79. 9. 1991, pp. 1270–1282. doi: 10.1109/5.97297.

[BBK12] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. “Ar-
cade.PLC: A verification platform for programmable logic con-
trollers”. In: 27th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2012 - Proceedings. 2012,
pp. 338–341. isbn: 9781450312042. doi: 10 . 1145 / 2351676 .

2351741.

[BD12] Haniel Barbosa and David Déharbe. “Formal Verification of PLC
Programs Using the B Method”. In: Abstract State Machines, Al-
loy, B, VDM, and Z. Ed. by John Derrick, John Fitzgerald, Ste-
fania Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve Reeves,
and Elvinia Riccobene. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, pp. 353–356. isbn: 978-3-642-30885-7.

[BDL04] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen.
“A Tutorial on Uppaal”. In: Formal Methods for the Design of
Real-Time Systems: International School on Formal Methods for
the Design of Computer, Communication, and Software Systems,
Bertinora, Italy, September 13-18, 2004, Revised Lectures. Ed.
by Marco Bernardo and Flavio Corradini. Berlin, Heidelberg:

195

https://support.industry.siemens.com/cs/document/109783504/
https://support.industry.siemens.com/cs/document/109783504/
arXiv:1301.3047v1
https://doi.org/10.1109/5.97297
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1145/2351676.2351741

Bibliography

Springer Berlin Heidelberg, 2004, pp. 200–236. isbn: 978-3-540-
30080-9. doi: 10.1007/978-3-540-30080-9_7. url: https:
//doi.org/10.1007/978-3-540-30080-9_7.

[Bec+15] Bernhard Beckert, Mattias Ulbrich, Birgit Vogel-Heuser, and
Alexander Weigl. Regression Verification for Programmable
Logic Controller Software. Tech. rep. 6. Karlsruher Institut für
Technologie (KIT), 2015. 16 pp. doi: 10.5445/IR/1000047251.

[Ben+03] Albert Benveniste, Paul Caspi, Stephen Edwards, Nicolas Halb-
wachs, Paul Le Guernic, and Robert Simone. “The Synchronous
Languages 12 Years Later”. In: Proceedings of the IEEE 91 (Feb.
2003), pp. 64–83. doi: 10.1109/JPROC.2002.805826.

[Ber16] Yves Bertot. “Coq in a Hurry”. 3rd cycle. Lecture. Types
Summer School, also used at the University of Goteborg, Nice,
Ecole Jeunes Chercheurs en Programmation, Universite de Nice,
France, June 2016. url: https://cel.hal.science/inria-
00001173.

[BG92] Gérard Berry and Georges Gonthier. “The Esterel synchronous
programming language: design, semantics, implementation”. In:
Science of Computer Programming 19.2 (1992), pp. 87–152. issn:
0167-6423. doi: https://doi.org/10.1016/0167-6423(92)
90005-V.

[Bia16] Sebastian Biallas. Verification of Programmable Logic Controller
Code using Model Checking and Static Analysis. Aachen: Shaker
Verlag GmbH, 2016. isbn: 978-3-8440-4711-0.

[BM14] Sonam Bhatia and Jyoteesh Malhotra. “A survey on impact of
lines of code on software complexity”. In: 2014 International
Conference on Advances in Engineering & Technology Research
(ICAETR - 2014). Aug. 2014, pp. 1–4. doi: 10.1109/ICAETR.
2014.7012875.

[Bub17] Otto Bubbers. Lösungen: Skript Steuerungstechnik für UT.
Gottlieb-Daimler-Schule 2, Technisches Schulzentrum Sin-
delfingen mit Abteilung Akademie für Datenverarbeitung.
Sindelfingen, 2017.

[Cav+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto
Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover,
Marco Roveri, and Stefano Tonetta. “The nuXmv Symbolic
Model Checker”. In: Computer Aided Verification. Ed. by
Armin Biere and Roderick Bloem. Cham: Springer International
Publishing, 2014, pp. 334–342. isbn: 978-3-319-08867-9.

[CGP01] Edmund Clarke, Orna Grumberg, and Doron Peled. Model
Checking. MIT Press, Jan. 2001. isbn: 978-0-262-03270-4.

196

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.5445/IR/1000047251
https://doi.org/10.1109/JPROC.2002.805826
https://cel.hal.science/inria-00001173
https://cel.hal.science/inria-00001173
https://doi.org/https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1109/ICAETR.2014.7012875
https://doi.org/10.1109/ICAETR.2014.7012875

Bibliography

[Cim+00] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and
Marco Roveri. “NUSMV: a new symbolic model checker”.
In: STTT 2 (Mar. 2000), pp. 410–425. doi: 10 . 1007 /

s100090050046.

[CM03] Dominique Cansell and Dominique Mery. “Foundations of the B
Method.” In: Computers and Informatics 22 (Jan. 2003), 31 p.

[CR14] Luis Cruz Salazar and Oscar Rojas Alvarado. “The Future of
Industrial Automation and IEC 614993 Standard”. In: Oct. 2014.
doi: 10.1109/CIIMA.2014.6983434.

[DBF15] Dániel Darvas, Enrique Blanco Vinuela, and Borja Fernández
Adiego. “PLCverif: A Tool to Verify PLC Programs Based on
Model Checking Techniques”. In: 15th International Conference
on Accelerator and Large Experimental Physics Control Systems.
2015. doi: 10.18429/JACoW-ICALEPCS2015-WEPGF092.

[DMB16] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela.
“Generic representation of PLC programming languages for
formal verification”. In: Proceedings of the 23rd PhD Mini-
Symposium (Budapest, Hungary). Zenodo, Feb. 2016, pp. 6–9.
doi: 10.5281/zenodo.51064.

[DV12] Wenbin Dai and Valeriy Vyatkin. “Redesign Distributed PLC
Control Systems Using IEC 61499 Function Blocks”. In: IEEE
Transactions on Automation Science and Engineering 9.2 (2012),
pp. 390–401. doi: 10.1109/TASE.2012.2188794.

[Ebr+23] Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and
Cristina Seceleanu. “PyLC: A Framework for Transforming
and Validating PLC Software using Python and Pynguin
Test Generator”. In: Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing. SAC ’23. Tallinn, Estonia:
Association for Computing Machinery, 2023, pp. 1476–1485.
isbn: 9781450395175. doi: 10.1145/3555776.3577698. url:
https://doi.org/10.1145/3555776.3577698.

[Eno+16] Eduard Enoiu, Daniel Sundmark, Adnan Causevic, Robert
Feldt, and Paul Pettersson. “Mutation-Based Test Generation
for PLC Embedded Software Using Model Checking”. In:
Testing Software and Systems. Cham: Springer International
Publishing, Oct. 2016, pp. 155–171. isbn: 978-3-319-47442-7.
doi: 10.1007/978-3-319-47443-4_10.

[Fer+15] Borja Fernandez Adiego, Daniel Darvas, Enrique Blanco Vin-
uela, Jean-Charles Tournier, Simon Bliudze, Jan Olaf Blech, and
Victor Manuel Gonzalez Suarez. “Applying Model Checking to
Industrial-Sized PLC Programs”. In: IEEE Transactions on In-
dustrial Informatics 11.6 (2015), pp. 1400–1410. issn: 1551-3203.
doi: 10.1109/TII.2015.2489184M4-Citavi.

197

https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/s100090050046
https://doi.org/10.1109/CIIMA.2014.6983434
https://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
https://doi.org/10.5281/zenodo.51064
https://doi.org/10.1109/TASE.2012.2188794
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1145/3555776.3577698
https://doi.org/10.1007/978-3-319-47443-4_10
https://doi.org/10.1109/TII.2015.2489184 M4 - Citavi

Bibliography

[GDV14] Electronic German Commission for Electrical, Information Tech-
nologies of DIN, and VDE. Programmable controllers - Part 3:
Programming languages (IEC 61131-3:2013); German version
EN 61131-3:2013. Standard. Berlin: DIN German Institute for
Standardization, 2014.

[Gom+09] Daniel Gomez-Prado, Qian Ren, Maciej J. Ciesielski, Jérémie
Guillot, and Emmanuel Boutillon. “Optimizing data flow
graphs to minimize hardware implementation”. In: 2009 Design,
Automation & Test in Europe Conference & Exhibition (2009),
pp. 117–122.

[Gri+20] Lena Grimm, Steven Smyth, Alexander Schulz-Rosengarten,
Reinhard von Hanxleden, and Marc Pouzet. “From Lustre
to Graphical Models and SCCharts”. In: 2020 Forum for
Specification and Design Languages (FDL). 2020, pp. 1–8. doi:
10.1109/FDL50818.2020.9232944.

[Hal+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pi-
laud. “The synchronous data flow programming language LUS-
TRE”. In: Proceedings of the IEEE 79.9 (1991), pp. 1305–1320.
doi: 10.1109/5.97300.

[Hal98] Nicolas Halbwachs. “Synchronous programming of reactive sys-
tems - A tutorial and commented bibliography”. In: LNCS 1427
(Jan. 1998), pp. 1–16.

[Han+13] Reinhard Hanxleden, Michael Mendler, Joaquin Aquado, Björn
Duderstadt, Insa Marie-Ann Fuhrmann, Christian Motika,
Stephan Mercer, Owen O’Brien, and Partha Roop. Sequen-
tially Constructive Concurrency: A Conservative Extension of
the Synchronous Model of Computation. Tech. rep. [Online].
Available: https://nbn-resolving.org/urn:nbn:de:101:1-
201402136745. Kiel: Selbstverlag des Instituts für Informatik,
2013.

[Han+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika,
Steven Smyth, Michael Mendler, Joaqúın Aguado, Stephen Mer-
cer, and Owen O’Brien. “SCCharts: Sequentially Constructive
Statecharts for Safety-Critical Applications”. In: SIGPLAN Not.
49.6 (June 2014), pp. 372–383. issn: 0362-1340. doi: 10.1145/
2666356.2594310.

[Har08] John Harrison. “Theorem Proving for Verification (Invited Tuto-
rial)”. In: Computer Aided Verification. Ed. by Aarti Gupta and
Sharad Malik. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 11–18. isbn: 978-3-540-70545-1.

[Har87] David Harel. “Statecharts: a visual formalism for complex
systems”. In: Science of Computer Programming 8.3 (1987),
pp. 231–274. issn: 0167-6423. doi: https://doi.org/10.1016/

198

https://doi.org/10.1109/FDL50818.2020.9232944
https://doi.org/10.1109/5.97300
https://nbn-resolving.org/urn:nbn:de:101:1-201402136745
https://nbn-resolving.org/urn:nbn:de:101:1-201402136745
https://doi.org/10.1145/2666356.2594310
https://doi.org/10.1145/2666356.2594310
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9

Bibliography

0167-6423(87)90035-9. url: https://www.sciencedirect.
com/science/article/pii/0167642387900359.

[Hua+19] Yanhong Huang, Xiangxing Bu, Gang Zhu, Xin Ye, Xiaoran
Zhu, and Jianqi Shi. “KST: Executable Formal Semantics of
IEC 61131-3 Structured Text for Verification”. In: IEEE Access 7
(2019), pp. 14593–14602. issn: 21693536. doi: 10.1109/ACCESS.
2019.2894026.

[Jee+09] Eunkyoung Jee, Junbeom Yoo, Sungdeok Cha, and Doohwan
Bae. “A data flow-based structural testing technique for FBD
programs”. In: Information and Software Technology 51.7 (2009),
pp. 1131–1139. issn: 09505849. doi: 10.1016/j.infsof.2009.
01.003.

[JR01] Fernando Jimenez-Fraustro and Eric Rutten. A synchronous
model of IEC 61131 PLC languages in SIGNAL. 2001. doi:
10.1109/EMRTS.2001.934016.

[JT10] Karl Heinz John and Michael Tiegelkamp. IEC 61131-3:
Programming industrial automation systems: Concepts and
programming languages, requirements for programming systems,
decision-making aids. Springer Berlin Heidelberg, 2010, pp. 1–
390. isbn: 9783642120145. doi: 10.1007/978-3-642-12015-2.

[Kar18] Cihat Karaali. Grundlagen der Steuerungstechnik. de. 3rd ed.
Wiesbaden, Germany: Springer Fachmedien, May 2018.

[Kar53] Maurice Karnaugh. “The map method for synthesis of combina-
tional logic circuits”. In: Transactions of the American Institute
of Electrical Engineers, Part I: Communication and Electronics
72.5 (1953), pp. 593–599. doi: 10.1109/TCE.1953.6371932.

[Kas+24] Maximilian Kasperowski, Niklas Rentz, Sören Domrös, and Rein-
hard von Hanxleden. “KIELER: A Text-First Framework for
Automatic Diagramming of Complex Systems”. In: Sept. 2024,
pp. 402–418. isbn: 978-3-031-71290-6. doi: 10.1007/978- 3-
031-71291-3_33.

[Kel+01] Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J., and Ri-
erson Leanna K. A Practical Tutorial on Modified Condition/De-
cision Coverage. Tech. rep. 2001.

[Koz+24] Heiko Koziolek, Virendra Ashiwal, Soumyadip Bandyopadhyay,
and Chandrika K R. Automated Control Logic Test Case Gen-
eration using Large Language Models. 2024. arXiv: 2405.01874
[cs.SE]. url: https://arxiv.org/abs/2405.01874.

[LB21] Guolin Lyu and Robert William Brennan. “Towards IEC
61499-Based Distributed Intelligent Automation: A Literature
Review”. In: IEEE Transactions on Industrial Informatics 17.4
(2021), pp. 2295–2306. doi: 10.1109/TII.2020.3016990.

199

https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://doi.org/10.1109/ACCESS.2019.2894026
https://doi.org/10.1109/ACCESS.2019.2894026
https://doi.org/10.1016/j.infsof.2009.01.003
https://doi.org/10.1016/j.infsof.2009.01.003
https://doi.org/10.1109/EMRTS.2001.934016
https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.1007/978-3-031-71291-3_33
https://doi.org/10.1007/978-3-031-71291-3_33
https://arxiv.org/abs/2405.01874
https://arxiv.org/abs/2405.01874
https://arxiv.org/abs/2405.01874
https://doi.org/10.1109/TII.2020.3016990

Bibliography

[Le +11] Thierry Le Sergent, Alain Guennec, Sébastien Gérard, Yann Tan-
guy, and François Terrier. “Using SCADE System for the De-
sign and Integration of Critical Systems”. In: Oct. 2011. doi:
10.4271/2011-01-2577.

[Le +91] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude
Le Maire. “Programming real-time applications with SIGNAL”.
In: Proceedings of the IEEE 79.9 (1991), pp. 1321–1336. doi:
10.1109/5.97301.

[Lew98] Robert W. Lewis. Programming Industrial Control Systems Us-
ing IEC 1131-3 (I E E Control Engineering Series). 1998. isbn:
0852969503.

[LF22] Stephan Lukasczyk and Gordon Fraser. “Pynguin: auto-
mated unit test generation for Python”. In: Proceedings
of the ACM/IEEE 44th International Conference on Soft-
ware Engineering: Companion Proceedings. ICSE ’22. ACM,
May 2022. doi: 10 . 1145 / 3510454 . 3516829. url: http :

//dx.doi.org/10.1145/3510454.3516829.

[Liu+24] Zihan Liu, Ruinan Zeng, Dongxia Wang, Gengyun Peng, Jingyi
Wang, Qiang Liu, Peiyu Liu, and Wenhai Wang. Agents4PLC:
Automating Closed-loop PLC Code Generation and Verification
in Industrial Control Systems using LLM-based Agents. 2024.
arXiv: 2410.14209 [cs.SE]. url: https://arxiv.org/abs/
2410.14209.

[New+16] Josh Newell, Linna Pang, David Tremaine, Alan Wassyng, and
Mark Lawford. “Formal Translation of IEC 61131-3 Function
Block Diagrams to PVS with Nuclear Application”. In: NASA
Formal Methods.8th International Symposium, NFM 2016, Min-
neapolis, MN, USA, June 7-9, 2016, Proceedings. Ed. by San-
jai Rayadurgam and Oksana Tkachuk. Vol. 9690 SV -. Lecture
Notes in Computer Science TS - CrossRef. Cham: Springer Inter-
national Publishing, 2016, pp. 206–220. isbn: 978-3-319-40647-3.
doi: 10.1007/978-3-319-40648-0_16M4-Citavi.

[New+18] Josh Newell, Linna Pang, David Tremaine, Alan Wassyng,
and Mark Lawford. “Translation of IEC 61131-3 Function
Block Diagrams to PVS for Formal Verification with Real-Time
Nuclear Application”. In: Journal of Automated Reasoning 60
(Jan. 2018), pp. 1–22. doi: 10.1007/s10817-017-9415-7.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. “PVS: A
prototype verification system”. In: International Conference on
Automated Deduction. Springer. 1992, pp. 748–752.

[PE10] Olivera Pavlovic and Hans-Dieter Ehrich. “Model Checking PLC
Software Written in Function Block Diagram”. In: 2010 Third
International Conference on Software Testing, Verification and

200

https://doi.org/10.4271/2011-01-2577
https://doi.org/10.1109/5.97301
https://doi.org/10.1145/3510454.3516829
http://dx.doi.org/10.1145/3510454.3516829
http://dx.doi.org/10.1145/3510454.3516829
https://arxiv.org/abs/2410.14209
https://arxiv.org/abs/2410.14209
https://arxiv.org/abs/2410.14209
https://doi.org/10.1007/978-3-319-40648-0_16 M4 - Citavi
https://doi.org/10.1007/s10817-017-9415-7

Bibliography

Validation. IEEE, 2010, pp. 439–448. isbn: 9780769539904. doi:
10.1109/ICST.2010.10.

[PLC09] PLCopen. Technical Paper PLCopen Technical Committee 6,
XML Formats for IEC 61131-3 Version 2.01 – Official Release.
Tech. rep. 2009.

[Plo04] Gordon Plotkin. “A Structural Approach to Operational Seman-
tics”. In: J. Log. Algebr. Program. 60-61 (July 2004), pp. 17–139.
doi: 10.1016/j.jlap.2004.05.001.

[Pra+17] Herbert Prahofer, Florian Angerer, Rudolf Ramler, and Friedrich
Grillenberger. “Static Code Analysis of IEC 61131-3 Programs:
Comprehensive Tool Support and Experiences from Large-Scale
Industrial Application”. In: IEEE Transactions on Industrial In-
formatics 13.1 (2017), pp. 37–47. issn: 15513203. doi: 10.1109/
TII.2016.2604760.

[PTH06] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxle-
den. “Synthesizing Safe State Machines from Esterel”. In: Pro-
ceedings of the 2006 ACM SIGPLAN/SIGBED Conference on
Language, Compilers, and Tool Support for Embedded Systems.
LCTES ’06. Ottawa, Ontario, Canada: Association for Comput-
ing Machinery, 2006, pp. 113–124. isbn: 159593362X. doi: 10.
1145/1134650.1134667.

[Rob10] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim,
Gavin Keighren, Emanuele Olivetti, Marco Pistore, Marco
Roveri, and Andrei Tchaltsev. NuSMV 2.6 User Manual. Povo
(Trento) – Italy, 2010.

[Rös+15] Susanne Rösch, Sebastian Ulewicz, Julien Provost, and Birgit
Vogel-Heuser. “Review of Model-Based Testing Approaches in
Production Automation and Adjacent Domains—Current Chal-
lenges and Research Gaps”. In: Journal of Software Engineering
and Applications 08 (Jan. 2015), pp. 499–519. doi: 10.4236/
jsea.2015.89048.

[Sal+23] Mikael Ebrahimi Salari, Eduard Paul Enoiu, Cristina Seceleanu,
Wasif Afzal, and Filip Sebek. “Automating Test Generation of
Industrial Control Software Through a PLC-to-Python Transla-
tion Framework and Pynguin”. In: 2023 30th Asia-Pacific Soft-
ware Engineering Conference (APSEC). 2023, pp. 431–440. doi:
10.1109/APSEC60848.2023.00054.

[SB16] Klaus Schneider and Jens Brandt. “Quartz: A Synchronous
Language for Model-Based Design of Reactive Embedded
Systems”. In: Dordrecht: Springer Science+Business Media,
Jan. 2016, pp. 1–30. doi: 10.1007/978-94-017-7358-4_3-1.

201

https://doi.org/10.1109/ICST.2010.10
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1109/TII.2016.2604760
https://doi.org/10.1109/TII.2016.2604760
https://doi.org/10.1145/1134650.1134667
https://doi.org/10.1145/1134650.1134667
https://doi.org/10.4236/jsea.2015.89048
https://doi.org/10.4236/jsea.2015.89048
https://doi.org/10.1109/APSEC60848.2023.00054
https://doi.org/10.1007/978-94-017-7358-4_3-1

Bibliography

[Sch+18] Alexander Schulz-Rosengarten, Reinhard Von Hanxleden,
Frédéric Mallet, Robert De Simone, and Julien Deantoni.
“Time in SCCharts”. In: 2018 Forum on Specification Design
Languages (FDL). 2018, pp. 5–16. doi: 10.1109/FDL.2018.
8524111.

[Sch09] Klaus Schneider. The Synchronous Programming Language
Quartz. Internal Report 375. Kaiserslautern, Germany: Depart-
ment of Computer Science, University of Kaiserslautern, Dec.
2009.

[Sch14] Bernd Schröder. Steuerungstechnik für Ingenieure. de. 2014th ed.
essentials. Wiesbaden, Germany: Springer Fachmedien, Sept.
2014.

[Sch19] Karl Schmitt. SPS-Programmierung mit ST: nach IEC 61131
mit CoDeSys und mit Hinweisen zu STEP 7 im TIA-Portal. de.
Nov. 2019.

[Shi+24] Jianqi Shi, Yinghao Chen, Qin Li, Yanhong Huang, Yang Yang,
and Mengyan Zhao. “Automated Test Cases Generator for IEC
61131-3 Structured Text Based Dynamic Symbolic Execution”.
In: IEEE Transactions on Computers 73 (2024), pp. 1048–
1059. url: https://api.semanticscholar.org/CorpusID:
266895399.

[SLH16] Steven Smyth, Stephan Lenga, and Reinhard von Hanxleden.
“Model Extraction of Legacy C Code in SCCharts”. In: Elec-
tronic Communications of the EASST 74 (Oct. 2016). doi: 10.
14279/tuj.eceasst.74.

[SS06] Klaus Schneider and Tobias Schuele. “A Framework for Verify-
ing and Implementing Embedded Systems.” In: MBMV. 2006,
pp. 242–247.

[STF12] Doaa Soliman, Kleanthis Thramboulidis, and Georg Frey. “Func-
tion Block Diagram to UPPAAL Timed Automata Transforma-
tion Based on Formal Models”. In: IFAC Proceedings Volumes
45 (2012), pp. 1653–1659.

[Sun+08] Christoph Sunder, Monika Wenger, Christian Hanni, Ivo Gosetti,
Heinrich Steininger, and Josef Fritsche. “Transformation of ex-
isting IEC 61131-3 automation projects into control logic ac-
cording to IEC 61499”. In: 2008 IEEE International Confer-
ence on Emerging Technologies and Factory Automation. IEEE,
2008, pp. 369–376. isbn: 1424415063. doi: 10.1109/ETFA.2008.
4638420.

[Tap15] Herbert Tapken. LOGO! - Lösungen. de. 5th ed. Haan, Germany:
Europa-Lehrmittel, Jan. 2015.

202

https://doi.org/10.1109/FDL.2018.8524111
https://doi.org/10.1109/FDL.2018.8524111
https://api.semanticscholar.org/CorpusID:266895399
https://api.semanticscholar.org/CorpusID:266895399
https://doi.org/10.14279/tuj.eceasst.74
https://doi.org/10.14279/tuj.eceasst.74
https://doi.org/10.1109/ETFA.2008.4638420
https://doi.org/10.1109/ETFA.2008.4638420

Bibliography

[TF11] Kleanthis Thramboulidis and Georg Frey. “Towards a Model-
Driven IEC 61131-Based Development Process in Industrial Au-
tomation”. In: Journal of Software Engineering and Applications
04 (04 2011), pp. 217–226. issn: 1945-3116. doi: 10.4236/jsea.
2011.44024M4-Citavi.

[Thr13] Kleanthis Thramboulidis. “IEC 61499 vs. 61131: A Comparison
Based on Misperceptions”. In: Journal of Software Engineering
and Applications 06.08 (2013), pp. 405–415. issn: 1945-3124. doi:
10.4236/jsea.2013.68050. url: http://dx.doi.org/10.
4236/jsea.2013.68050.

[VK02] Norbert Völker and Bernd Johann Krämer. “Automated Veri-
fication of Function Block Based Industrial Control Systems”.
In: Sci. Comput. Program. 42 (Jan. 2002), pp. 101–113. doi:
10.1016/S1571-0661(04)00135-5.

[Wen+09a] Monika Wenger, Alois Zoitl, Christoph Sünder, and Heinrich
Steininger. “Semantic Correct Transformation of IEC 61131-3
Models into the IEC 61499 Standard”. In: 2009 IEEE Confer-
ence on Emerging Technologies Factory Automation. IEEE, Sept.
2009, pp. 1–7. isbn: 978-1-4244-2727-7. doi: 10.1109/ETFA.
2009.5347144.

[Wen+09b] Monika Wenger, Alois Zoitl, Christoph Sünder, and Hein-
rich Steininger. “Transformation of IEC 61131-3 to IEC
61499 based on a model driven development approach”. In:
IEEE International Conference on Industrial Informatics
(INDIN). IEEE, 2009, pp. 715–720. isbn: 9781424437603. doi:
10.1109/INDIN.2009.5195891.

[WFV09] Awang Noor Indra Wardana, Jens Folmer, and Birgit Vogel-
Heuser. “Automatic program verification of continuous function
chart based on model checking”. In: IECON Proceedings (Indus-
trial Electronics Conference). IEEE, Dec. 2009, pp. 2422–2427.
doi: 10.1109/IECON.2009.5415231.

[Wir71] Niklaus Wirth. “The Programming Language Pascal”. In: Acta
Inf. 1.1 (Mar. 1971), pp. 35–63. issn: 0001-5903. doi: 10.1007/
BF00264291. url: https://doi.org/10.1007/BF00264291.

[WS20] Marcel Christian Werner and Klaus Schneider. “Reengineering
Programmable Logic Controllers Using Synchronous Program-
ming Languages”. In: Forum on Specification and Design Lan-
guages (FDL). Work in Progress. Kiel, Germany, 2020.

[WS21] Marcel Christian Werner and Klaus Schneider. “Translation of
Continuous Function Charts to Imperative Synchronous Quartz
Programs”. In: 2021 19th ACM-IEEE International Conference
on Formal Methods and Models for System Design (MEM-
OCODE). 2021, pp. 104–110. doi: 10.1145/3487212.3487338.

203

https://doi.org/10.4236/jsea.2011.44024 M4 - Citavi
https://doi.org/10.4236/jsea.2011.44024 M4 - Citavi
https://doi.org/10.4236/jsea.2013.68050
http://dx.doi.org/10.4236/jsea.2013.68050
http://dx.doi.org/10.4236/jsea.2013.68050
https://doi.org/10.1016/S1571-0661(04)00135-5
https://doi.org/10.1109/ETFA.2009.5347144
https://doi.org/10.1109/ETFA.2009.5347144
https://doi.org/10.1109/INDIN.2009.5195891
https://doi.org/10.1109/IECON.2009.5415231
https://doi.org/10.1007/BF00264291
https://doi.org/10.1007/BF00264291
https://doi.org/10.1007/BF00264291
https://doi.org/10.1145/3487212.3487338

Bibliography

[WS22] Marcel Christian Werner and Klaus Schneider. “From IEC
61131-3 Function Block Diagrams to Sequentially Constructive
Statecharts”. In: 2022 Forum on Specification & Design Lan-
guages (FDL). 2022, pp. 1–8. doi: 10.1109/FDL56239.2022.
9925656.

[WS23] Marcel Christian Werner and Klaus Schneider. “Formal
Methods-Based Optimization of Dataflow Models with
Translation to Synchronous Models”. In: 2023 Forum on
Specification & Design Languages (FDL). 2023, pp. 1–8. doi:
10.1109/FDL59689.2023.10272138.

[WS24a] Marcel Christian Werner and Klaus Schneider. “From Imperative
Sequential Structured Text Models to Synchronous Quartz and
Sequentially Constructive Models”. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltun-
gen und Systemen (MBMV). ITG-Fachbericht. Kaiserslautern,
Germany: VDE, 2024, pp. 164–174.

[WS24b] Marcel Christian Werner and Klaus Schneider. “PLCreX –
Open-Source Project for Simplification, Transformation, Anal-
ysis, and Validation of Programmable Logic Controllers”. In:
Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen (MBMV). ITG-
Fachbericht. Kaiserslautern, Germany: VDE, 2024, pp. 182–
185.

[WV04] Daniel Witsch and Birgit Vogel-Heuser. “Automatische Code-
generierung aus der UML für die IEC 61131-3”. In: Eingebet-
tete Systeme. Ed. by Peter Holleczek and Birgit Vogel-Heuser.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 9–18.
isbn: 978-3-642-18594-6.

[WV09] Daniel Witsch and Birgit Vogel-Heuser. “Close integration be-
tween UML and IEC 61131-3: New possibilities through object-
oriented extensions”. In: 2009 IEEE Conference on Emerging
Technologies & Factory Automation (2009), pp. 1–6. url:
https://api.semanticscholar.org/CorpusID:15055648.

[WZ07] Günter Wellenreuther and Dieter Zastrow. Automatisieren
mit SPS Übersichten und Übungsaufgaben - Von Grund-
verknüpfungen bis Ablaufsteuerungen: STEP 7-Programmierung,
Lösungsmethoden, Lernaufgaben, Kontrollaufgaben, Lösungen,
Beispiele zur Anlagensimulation. Berlin Heidelberg New York:
Springer-Verlag, 2007. isbn: 978-3-834-89210-2.

[WZ12] Monika Wenger and Alois Zoitl. “Re-use of IEC 61131-3 struc-
tured text for IEC 61499”. In: Mar. 2012. doi: 10.1109/ICIT.
2012.6209917.

204

https://doi.org/10.1109/FDL56239.2022.9925656
https://doi.org/10.1109/FDL56239.2022.9925656
https://doi.org/10.1109/FDL59689.2023.10272138
https://api.semanticscholar.org/CorpusID:15055648
https://doi.org/10.1109/ICIT.2012.6209917
https://doi.org/10.1109/ICIT.2012.6209917

Bibliography

[Xio+20] Jiawen Xiong, Gang Zhu, Yanhong Huang, and Jianqi Shi.
“A user-friendly verification approach for IEC 61131-3 PLC
programs”. In: Electronics (Switzerland) 9.4 (Apr. 2020). issn:
20799292. doi: 10.3390/electronics9040572.

[YKL13] Junbeom Yoo, Eui Sub Kim, and Jang Soo Lee. “A behavior-
preserving translation from FBD design to C implementation
for reactor protection system software”. In: Nuclear Engineering
and Technology 45.4 (2013), pp. 489–504. issn: 1738-5733. doi:
10.5516/NET.04.2012.085.

[Yoo+07] Li Hsien Yoong, Partha Roop, Valeriy Vyatkin, and Zoran Salcic.
“Synchronous Execution of IEC 61499 Function Blocks Using Es-
terel”. In: 2007 5th IEEE International Conference on Industrial
Informatics. Vol. 2. 2007, pp. 1189–1194. doi: 10.1109/INDIN.
2007.4384944.

[ZSM11] Justyna Zander, Ina Schieferdecker, and Pieter Mosterman.
Model-Based Testing for Embedded Systems. Sept. 2011. isbn:
9781439818459.

205

https://doi.org/10.3390/electronics9040572
https://doi.org/10.5516/NET.04.2012.085
https://doi.org/10.1109/INDIN.2007.4384944
https://doi.org/10.1109/INDIN.2007.4384944

Appendix A
Detailed Syntax and Semantics

Contents

A.1. IEC 61131-3 FBDs and ST Models 208

A.1.1. POU Variants and Declaration 208

A.1.2. POU Interfaces . 209

A.1.3. Local Variables in POUs 210

A.1.4. Elementary IEC 61131-3 Data Types and Fields 211

A.1.5. Expressions in POUs . 212

A.1.6. Conditions in ST Models 216

A.1.7. Loops in ST Models . 216

A.2. Quartz Models . 217

A.2.1. Quartz Variants and Declaration 217

A.2.2. Module Imports . 217

A.2.3. Quartz Interfaces . 218

A.2.4. Local Variables in Quartz Models 219

A.2.5. Elementary Quartz Data Types and Fields 219

A.2.6. Expressions in Quartz Models 220

A.2.7. Abortions in Quartz Models 223

A.2.8. Assignments in Quartz Models 224

A.2.9. Await Statements in Quartz Models 224

A.2.10.Synchronous Concurrency in Quartz Models 225

A.2.11.Conditions in Quartz Models 225

A.2.12.Halt Statements in Quartz Models 226

A.2.13.Module Invocations in Quartz Models 226

A.2.14.Loops in Quartz Models 227

A.2.15.Nothing Statements in Quartz Models 228

A.2.16.Pause Statements in Quartz Models 228

A.2.17.Sequences in Quartz Models 228

A.3. SCL Models . 229

A.3.1. SCL Variants and Declaration 229

A.3.2. SCL Interfaces . 229

207

Appendix A: Detailed Syntax and Semantics

A.3.3. Local Variables in SCL Models 230
A.3.4. Elementary SCL Data Types and Fields 230
A.3.5. Expressions in SCL Models 231
A.3.6. Assignments in SCL Models 234
A.3.7. Conditions in SCL Models 235
A.3.8. Loops in SCL Models . 235
A.3.9. Pause Statements in SCL Models 236
A.3.10.Sequences in SCL Models 236

A.4. Data-Flow Oriented SCCharts . 237
A.4.1. Data-Flow Oriented SCCharts Declaration 237
A.4.2. Local Variables in SCCharts 237
A.4.3. SCChart Imports . 238
A.4.4. Synchronous Concurrency in Data-Flow Oriented SC-

Charts . 238
A.4.5. Module Invocations in Data-Flow Oriented SCCharts . 239
A.4.6. Sequences in Data-Flow Oriented SCCharts 239

A.5. Control-Flow Oriented SCCharts 239
A.5.1. Control-Flow Oriented SCCharts Declaration 239
A.5.2. Abortions in control-flow oriented SCCharts 240
A.5.3. Await Transitions in control-flow oriented SCCharts . . 241
A.5.4. Synchronous Concurrency in control-flow oriented SC-

Charts . 241
A.5.5. Conditions in control-flow oriented SCCharts 241
A.5.6. Halt Statements in control-flow oriented SCCharts . . . 243
A.5.7. Loops in control-flow oriented SCCharts 243
A.5.8. Immediate Transitions in control-flow oriented SCCharts 246
A.5.9. Pause Statements in control-flow oriented SCCharts . . 246
A.5.10.Sequences in control-flow oriented SCCharts 246

A.1. IEC 61131-3 FBDs and ST Models

A.1.1. POU Variants and Declaration

Syntax of POU elements

• δω(ωprg
pou) def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

PROGRAM an(ωprg
pou)

[∆idcl(ωprg
pou)] [∆vdcl(ωprg

pou)] [Σ(ωprg
pou)]

END_PROGRAM

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• δω(ωfb
pou) def=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FUNCTION_BLOCK an(ωfb
pou)

[∆idcl(ωfb
pou)] [∆vdcl(ωfb

pou)] [Σ(ωfb
pou)]

END_FUNCTION_BLOCK

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

• δω(ωfun
pou) def=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FUNCTION an(ωfun
pou) [: α]

[∆idcl(ωfun
pou)] [∆vdcl(ωfun

pou)] [Σ(ωfun
pou)]

END_FUNCTION

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

208

A.1. IEC 61131-3 FBDs and ST Models

Semantics of POU elements

• Jδω(ωprg
pou)Kξ def= { defines a POU element ωprg

pou with Σ(ωprg
pou), started at

time t with initial conditions set by ∆idcl(ωprg
pou) and ∆vdcl(ωprg

pou) when
invoked, terminating at time t + θ and preserving internal state across
invocations by a resource, i.e., ωprg

pou has memory }

• Jδω(ωfb
pou)Kξ def= { defines a POU element ωfb

pou with Σ(ωfb
pou), started at

time t with initial conditions set by ∆idcl(ωfb
pou) and ∆vdcl(ωfb

pou) when
invoked, terminating at time t + θ and preserving internal state across
invocations by another POU element, i.e., ωfb

pou has memory }

• Jδω(ωfun
pou)Kξ def= { defines an ST model element ωfun

pou with Σ(ωfun
pou) and

optional output of data type α, started at time t with initial conditions
set by ∆idcl(ωfun

pou) and ∆vdcl(ωfun
pou) when invoked, terminating at time

t + θ and not preserving internal state after invocation by another POU
element, i.e., ωfun

pou has no memory }

A.1.2. POU Interfaces

Syntax of POU interfaces

• ∆in(ωφ
pou) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VAR_INPUT

x1 : α
[+]

1 [:=w1];

⋮
xn : α

[+]

n [:=wn];

END_VAR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• ∆out(ωφ
pou) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VAR_OUTPUT

x1 : α
[+]

1 [:=w1];

⋮
xn : α

[+]

n [:=wn];

END_VAR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• ∆inout(ωφ
pou) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VAR_IN_OUT

x1 : α
[+]

1 ;

⋮
xn : α

[+]

n ;

END_VAR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Semantics of POU interfaces

• J∆in(ωφ
pou)Kξ def= { defines a set of variables x1, . . . , xn with corresponding

data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to optional
predefined default values Jw1Kξ, . . . , JwnKξ or to externally supplied val-
ues at time t when ωφ

pou is invoked. Their values cannot be modified
until ωφ

pou terminates at time t+θ, i.e., all instructions of ωφ
pou have been

processed in the current PLC cycle. }

209

Appendix A: Detailed Syntax and Semantics

• J∆out(ωφ
pou)Kξ def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to op-
tional predefined default values Jw1Kξ, . . . , JwnKξ at time t when ωφ

pou

is invoked, and passed to invoking element with final computed values
when ωφ

pou terminates at time t+θ, i.e., all instructions of ωφ
pou have been

processed in the current PLC cycle. }

• J∆inout(ωφ
pou)Kξ def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to ex-
ternally supplied values at time t when ωφ

pou is invoked. Their values can
be modified until ωφ

pou terminates at time t + θ, i.e., all instructions of
ωφ
pou have been processed in the current PLC cycle, and then passed to

invoking element }

A.1.3. Local Variables in POUs

Syntax of local variables in POUs

• ∆local(ωφ
pou) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VAR

x1 : α
[+]

1 [:=w1];

⋮
xn : α

[+]

n [:=wn];

END_VAR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• ∆inst(ωφ
pou) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

VAR

x1 : an(k1);
⋮
xn : an(kn);

END_VAR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Semantics of local variables in POUs

• J∆local(ωφ
pou)Kξ def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. Depending on the POU variant, the
variables keep their values from previous invocation or are assigned to
optional predefined default values Jw1Kξ, . . . , JwnKξ at time t when ωφ

pou

is invoked. These variables can be modified and processed locally un-
til ωφ

pou terminates at time t + θ, i.e., all instructions of ωφ
pou have been

processed in the current PLC cycle. }

• J∆inst(ωφ
pou)Kξ def= { defines a set of instances x1, . . . , xn of correspond-

ing POUs with memory Jan(k1)Kξ, . . . , Jan(kn)Kξ, that can be processed
locally between ωφ

pou was invoked at time t and ωφ
pou terminates at time

t+θ, i.e., all instructions of ωφ
pou have been processed in the current PLC

cycle. }

210

A.1. IEC 61131-3 FBDs and ST Models

A.1.4. Elementary IEC 61131-3 Data Types and Fields

Syntax of elementary IEC 61131-3 data types and fields

Syntax of bit vector data types αbv(ωφ
pou) ∈ Abv(ωφ

pou):

• αbool
bv (ω

φ
pou) def= {BOOL} denotes Boolean values

• αbyte
bv (ω

φ
pou) def= {BYTE} denotes single byte bit masks

• αword
bv (ωφ

pou) def= {WORD} denotes two byte bit masks

Syntax of integer data types αi(ωφ
pou) ∈ Ai(ωφ

pou):

• αint
i (ω

φ
pou) def= {INT} denotes bounded signed integers

• αdint
i (ωφ

pou) def= {DINT} denotes bounded signed double integers

• αuint
i (ωφ

pou) def= {UINT} denotes bounded unsigned integers

• αudint
i (ωφ

pou) def= {UDINT} denotes bounded unsigned double integers

Syntax of floating-point data types αr(ωφ
pou) ∈ Ar(ωφ

pou):

• αreal
r (ωφ

pou) def= {REAL} denotes floating-point values

Syntax of numeric data types αnum(ωφ
pou) ∈ Ai(ωφ

pou)⋃Ar(ωφ
pou):

• αnum(ωφ
pou) ∈ {αi(ωφ

pou), αr(ωφ
pou)}

Syntax of duration data types αdur(ωφ
pou) ∈ Adur(ωφ

pou):

• αtime
dur (ω

φ
pou) def= {TIME} denotes interval value in milliseconds

Syntax of data type fields α+(ωφ
pou) ∈ A+(ωφ

pou):

• α+(ωφ
pou) def= {ARRAY[0..n] OF α(ωφ

pou)} denotes arrays

Semantics of elementary IEC 61131-3 data types and fields

Semantics of bit vector data types αbv(ωφ
pou) ∈ Abv(ωφ

pou):

• Jαbool
bv (ω

φ
pou)Kξ def= ⟨{false, true}, false⟩

• Jαbyte
bv (ω

φ
pou)Kξ def= ⟨{00hex,ffhex},00hex⟩

• Jαword
bv (ωφ

pou)Kξ def= ⟨{0000hex,ffffhex},0000hex⟩

Semantics of integer data types αi(ωφ
pou) ∈ Ai(ωφ

pou):

• Jαint
i (ω

φ
pou)Kξ def= ⟨{−215,215 − 1},0⟩

• Jαdint
i (ωφ

pou)Kξ def= ⟨{−231,231 − 1},0⟩

• Jαuint
i (ωφ

pou)Kξ def= ⟨{0,216 − 1},0⟩

211

Appendix A: Detailed Syntax and Semantics

• Jαudint
i (ωφ

pou)Kξ def= ⟨{0,232 − 1},0⟩

Semantics of floating-point data types αr(ωφ
pou) ∈ Ar(ωφ

pou):

• Jαreal
r (ωφ

pou)Kξ def= ⟨{single precision floating-point (32 Bits)},0⟩

Semantics of duration data types αdur(ωφ
pou) ∈ Adur(ωφ

pou):

• Jαtime
dur (ω

φ
pou)Kξ def= ⟨{0,232 − 1},0⟩

Semantics of data type fields α+(ωφ
pou) ∈ A+(ωφ

pou):

• Jα+(ωφ
pou)Kξ def= { group with n + 1 elements of data type α(ωφ

pou)}

A.1.5. Expressions in POUs

Syntax of expressions in POUs

Syntax of constants and general expressions τmisc(ωφ
pou) ∈ Tmisc(ωφ

pou):

• τ cstmisc(ω
φ
pou) def= {x} denotes a value constant x

• τ idmisc(ω
φ
pou) def= {y} denotes an identifier y

• τ brmisc(ω
φ
pou) def= {(τ(ωφ

pou))} denotes a bracket

• τ truemisc(ω
φ
pou) def= {TRUE} denotes a true-constant

• τ falsemisc (ω
φ
pou) def= {FALSE} denotes a false-constant

• τarrmisc(ω
φ
pou) def= {x[n]} denotes access to index n of array x

• τ invmisc(ω
φ
pou) def= {x.y} denotes access to port y of instance x

Syntax of comparison operators τcomp(ωφ
pou) ∈ Tcomp(ωφ

pou):

• τ eqcomp(ωφ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{π1 = π2} , if φ = st
{EQ(π1,π2)} , if φ ∈ {st, fbd}

denotes equality

• τnecomp(ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{π1 <> π2} , if φ = st
{NE(π1,π2)} , if φ ∈ {st, fbd}

denotes inequality

• τ gtcomp(ωφ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{π1 > π2} , if φ = st
{GT(π1,π2)} , if φ ∈ {st, fbd}

denotes greater than

• τ gecomp(ωφ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{π1 >= π2} , if φ = st
{GE(π1,π2)} , if φ ∈ {st, fbd}

denotes greater than/e-

qual to

• τ ltcomp(ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{π1 < π2} , if φ = st
{LT(π1,π2)} , if φ ∈ {st, fbd}

denotes lower than

212

A.1. IEC 61131-3 FBDs and ST Models

• τ lecomp(ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{π1 <= π2} , if φ = st
{LE(π1,π2)} , if φ ∈ {st, fbd}

denotes lower than/e-

qual to

Syntax of arithmetic operators τarith(ωφ
pou) ∈ Tarith(ωφ

pou):

• τmul
arith(ω

φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{η1 * η2} , if φ = st
{MUL(π1,π2)} , if φ ∈ {st, fbd}

denotes a multiplica-

tion

• τdivarith(ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{η1 / η2} , if φ = st
{DIV(π1,π2)} , if φ ∈ {st, fbd}

denotes a division

• τaddarith(ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{η1 + η2} , if φ = st
{ADD(π1,π2)} , if φ ∈ {st, fbd}

denotes an addition

• τ subarith(ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{η1 - η2} , if φ = st
{SUB(π1,π2)} , if φ ∈ {st, fbd}

denotes a subtraction

• τ exptarith(ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{ηr,1 ** η2} , if φ = st
{EXPT(ηr,1,η2)} , if φ ∈ {st, fbd}

denotes an exponen-

tial function

• τmod
arith(ω

φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{ηi1 MOD ηi2} , if φ = st
{MOD(ηi1,ηi2)} , if φ ∈ {st, fbd}

denotes a modulo func-

tion

• τumarith(ω
φ
pou) def= {-η1} denotes an unary minus

Syntax of bitwise operators τbv(ωφ
pou) ∈ Tbv(ωφ

pou):

• τandbv (ω
φ
pou) def=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{λ1 & . . . & λn} , if φ = st
{λ1 AND . . . AND λn} , if φ = st
{AND(λ1, . . .,λn)} , if φ ∈ {st, fbd}

denotes a con-

junction

• τ orbv (ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{λ1 OR . . . OR λn} , if φ = st
{OR(λ1, . . .,λn)} , if φ ∈ {st, fbd}

denotes a disjunc-

tion

• τxorbv (ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{λ1 XOR λ2} , if φ = st
{XOR(λ1,λ2)} , if φ ∈ {st, fbd}

denotes an exclusive or

• τnotbv (ω
φ
pou) def=

⎧⎪⎪⎨⎪⎪⎩

{NOT λ1} , if φ = st
{NOT(λ1)} , if φ ∈ {st, fbd}

denotes a negation

Syntax of conditional operators τcond(ωφ
pou) ∈ Tcond(ωφ

pou):

• τ selcond(ω
φ
pou) def= {SEL(λb,π1,π2)} denotes a conditional operator

213

Appendix A: Detailed Syntax and Semantics

Type system of expressions in POUs

Type system of comparison operators τγcomp(ωφ
pou) ∈ Tcomp(ωφ

pou), considering
γ ∈ {eq, ne, gt, ge, lt, le}:

•
π1 ∶ α(ωφ

pou) π2 ∶ α(ωφ
pou)

τγcomp(ωφ
pou) ∶ αbool

bv (ω
φ
pou)

Type system of arithmetic operators τγarith(ω
φ
pou) ∈ Tarith(ωφ

pou), considering
γ ∈ {mul, div, add, sub, um}:

•
η1 ∶ αnum(ωφ

pou) [η2 ∶ αnum(ωφ
pou)]

τγarith(ω
φ
pou) ∶ αnum(ωφ

pou)

Type system of modulo operator τmod
arith(ω

φ
pou) ∈ Tarith(ωφ

pou):

•
ηi1 ∶ αi(ωφ

pou) ηi2 ∶ αi(ωφ
pou)

τmod
arith(ω

φ
pou) ∶ αi(ωφ

pou)

Type system of exponential function operator τ exptarith(ω
φ
pou) ∈ Tarith(ωφ

pou):

•
ηr1 ∶ αr(ωφ

pou) η2 ∶ αnum(ωφ
pou)

τ exptarith(ω
φ
pou) ∶ αr(ωφ

pou)

Type system of bitwise operators τγbv(ω
φ
pou) ∈ Tbv(ωφ

pou), considering γ ∈ {and,
or, xor, not}:

•
λ1 ∶ αbv(ωφ

pou) [λ2 ∶ αbv(ωφ
pou) ⋯ λn ∶ αbv(ωφ

pou)]
τγbv(ω

φ
pou) ∶ αbool

bv (ω
φ
pou)

Type system of conditional operator τ selcond(ω
φ
pou) ∈ Tcond(ωφ

pou):

•
λb ∶ αbool

bv (ω
φ
pou) π1 ∶ α(ωφ

pou) π2 ∶ α(ωφ
pou)

τ selcond(ω
φ
pou) ∶ α(ωφ

pou)

Semantics of expressions in POUs

Semantics of constants and general expressions τmisc(ωφ
pou) ∈ Tmisc(ωφ

pou):

• Jτ cstmisc(ω
φ
pou)Kξ def= JxKξ

• Jτ idmisc(ω
φ
pou)Kξ def= y

• Jτ brmisc(ω
φ
pou)Kξ def= (τmisc(ωφ

pou))

• Jτ truemisc(ω
φ
pou)Kξ def= true

• Jτ falsemisc (ω
φ
pou)Kξ def= false

• Jτarrmisc(ω
φ
pou)Kξ def= Jx[n]Kξ

• Jτ invmisc(ω
φ
pou)Kξ def= Jk.xKξ

214

A.1. IEC 61131-3 FBDs and ST Models

Semantics of comparison operators τcomp(ωφ
pou) ∈ Tcomp(ωφ

pou):

• Jτ eqcomp(ωφ
pou)Kξ def= Jπ1Kξ = Jπ2Kξ

• Jτnecomp(ω
φ
pou)Kξ def= Jπ1Kξ ≠ Jπ2Kξ

• Jτ gtcomp(ωφ
pou)Kξ def= Jπ1Kξ > Jπ2Kξ

• Jτ gecomp(ωφ
pou)Kξ def= Jπ1Kξ >= Jπ2Kξ

• Jτ ltcomp(ω
φ
pou)Kξ def= Jπ1Kξ < Jπ2Kξ

• Jτ lecomp(ω
φ
pou)Kξ def= Jπ1Kξ <= Jπ2Kξ

Semantics of arithmetic operators τarith(ωφ
pou) ∈ Tarith(ωφ

pou):

• Jτmul
arith(ω

φ
pou)Kξ def= Jη1Kξ ⋅ Jη2Kξ

• Jτdivarith(ω
φ
pou)Kξ def= Jη1Kξ

Jη2Kξ

• Jτaddarith(ω
φ
pou)Kξ def= Jη1Kξ + Jη2Kξ

• Jτ subarith(ω
φ
pou)Kξ def= Jη1Kξ − Jη2Kξ

• Jτ exptarith(ω
φ
pou)Kξ def= Jηr1K

Jη2Kξ
ξ

• Jτmod
arith(ω

φ
pou)Kξ def= Jηi1Kξ mod Jηi2Kξ

• Jτumarith(ω
φ
pou)Kξ def= −Jη1Kξ

Semantics of Boolean operators τbv(ωφ
pou) ∈ Tbv(ωφ

pou):

• Jτandbv (ω
φ
pou)Kξ def= Jλ1Kξ ∧ ⋅ ⋅ ⋅ ∧ JλnKξ

• Jτ orbv (ω
φ
pou)Kξ def= Jλ1Kξ ∨ ⋅ ⋅ ⋅ ∨ JλnKξ

• Jτxorbv (ω
φ
pou)Kξ def= Jλ1Kξ ⊕ Jλ2Kξ

• Jτnotbv (ω
φ
pou)Kξ def= ¬Jλ1Kξ

Semantics of conditional operators τ selcond(ω
φ
pou) ∈ Tcond(ωφ

pou):

• Jτ selcond(ω
φ
pou)Kξ def=

⎧⎪⎪⎨⎪⎪⎩

Jπ1Kξ, if JλbKξ = true
Jπ2Kξ, otherwise

SOS transition rules of expressions in POUs

• ⟨ξ, τ(ωφ
pou)⟩

TÐ↠ ⟨nothing,{Jτ(ωφ
pou)Kξ}, true⟩

215

Appendix A: Detailed Syntax and Semantics

A.1.6. Conditions in ST Models

Syntax of conditions in ST models

• σit
cond(ω

φ
st)

def= { IF λb(σit
cond(ω

φ
st)) THEN Σ1(σit

cond(ω
φ
st))

END_IF
}

• σite
cond(ω

φ
st)

def= { IF λb(σite
cond(ω

φ
st)) THEN Σ1(σite

cond(ω
φ
st))

ELSE Σ2(σite
cond(ω

φ
st)) END_IF

}

SOS transition rules of conditions in ST models

SOS transition rules of σit
cond(ω

φ
st) ∈ Σit

cond(ω
φ
st):

•
JλbKξ = true ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨nothing,D1, true⟩

⟨ξ,{ IF λb THEN Σ1

END IF
}⟩ TÐ↠ ⟨nothing,D1, true⟩

•
JλbKξ = false ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨nothing,{}, true⟩

⟨ξ,{ IF λb THEN Σ1

END IF
}⟩ TÐ↠ ⟨nothing,{}, true⟩

SOS transition rules of σite
cond(ω

φ
st) ∈ Σite

cond(ω
φ
st):

•
JλbKξ = true ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨nothing,D1, true⟩

⟨ξ,{ IF λb THEN Σ1

ELSE Σ2 END IF
}⟩ TÐ↠ ⟨nothing,D1, true⟩

•
JλbKξ = false ∧ ⟨ξ,Σ2⟩

TÐ↠ ⟨nothing,D2, true⟩

⟨ξ,{ IF λb THEN Σ1

ELSE Σ2 END IF
}⟩ TÐ↠ ⟨nothing,D2, true⟩

A.1.7. Loops in ST Models

Syntax of loops in ST models

• σfoot
loop (ω

φ
st)

def=
⎧⎪⎪⎨⎪⎪⎩

REPEAT Σ(σfoot
loop (ω

φ
st))

UNTIL λb(σfoot
loop (ω

φ
st))

⎫⎪⎪⎬⎪⎪⎭

• σhead
loop (ω

φ
st)

def= { WHILE λb(σhead
loop (ω

φ
st)) DO

Σ(σhead
loop (ω

φ
st)) END WHILE

}

SOS transition rules of loops in ST models

SOS transition rules of σfoot
loop (ω

φ
st) ∈ Σ

foot
loop (ω

φ
st):

216

A.2. Quartz Models

•

⟨ξ,Σ⟩ TÐ↠ ⟨nothing,D, true⟩

⟨ξ,{ REPEAT Σ

UNTIL λb }⟩
TÐ↠

⟨nothing,{D;{ WHILE NOT λb DO

D END WHILE
}}, true⟩

SOS transition rules of σhead
loop (ω

φ
st) ∈ Σhead

loop (ω
φ
st):

•

JλbKξ = true ∧ ⟨ξ,Σ⟩
TÐ↠ ⟨nothing,D, true⟩

⟨ξ,{ WHILE λb DO

Σ END WHILE
}⟩ TÐ↠

⟨nothing,{D;{ WHILE λb DO

D END WHILE
}}, true⟩

•
JλbKξ = false

⟨ξ,{ WHILE λb DO

Σ END WHILE
}⟩ TÐ↠ ⟨nothing,{}, true⟩

A.2. Quartz Models

A.2.1. Quartz Variants and Declaration

Definition A.1 (Syntax of Quartz elements). A Quartz module is de-
clared as follows [Sch09]:

• δω(ωqrz)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∆imports(ωqrz)]
module an(ωqrz)([∆idcl(ωqrz)]){
[∆vdcl(ωqrz)]
[Σ(ωqrz)]

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition A.2 (Semantics of Quartz elements). The semantics of ωqrz

are defined as follows [Sch09]:

• Jδω(ωqrz)Kξ
def= { defines a Quartz model element ωqrz with Σ(ωqrz),

started at time t with initial conditions set by ∆idcl(ωqrz) and ∆vdcl(ωqrz)
when invoked, terminating at time t + θ and preserving internal state
across macro steps.}

A.2.2. Module Imports

Definition A.3 (Syntax of Quartz model imports). Imported Quartz
models are grouped as a set ∆imports(ωqrz), whose syntax is defined as follows
[Sch09]:

• ∆imports(ωqrz)
def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

import x1.∗;
⋮
import xn.∗;

⎫⎪⎪⎪⎬⎪⎪⎪⎭

217

Appendix A: Detailed Syntax and Semantics

Definition A.4 (Semantics of Quartz model imports). The semantics
of ∆imports(ωqrz) are defined as follows [Sch09]:

• J∆imports(ωqrz)Kξ
def= { defines a set of imported Quartz models x1, . . . , xn

that can be instantiated and invoked by ωqrz. }

A.2.3. Quartz Interfaces

Definition A.5 (Syntax of Quartz interfaces). The syntax of ∆in(ωqrz),
∆out(ωqrz), and ∆inout(ωqrz) is defined as follows [Sch09]:

• ∆in(ωqrz)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[event] α
[+]

1 ?x1
⋮
[event] α

[+]

n ?xn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

• ∆out(ωqrz)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[event] α
[+]

1 !x1
⋮
[event] α

[+]

n !xn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

• ∆inout(ωqrz)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[event] α
[+]

1 x1
⋮
[event] α

[+]

n xn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Definition A.6 (Semantics of Quartz interfaces). The semantics of
∆in(ωqrz), ∆out(ωqrz), and ∆inout(ωqrz) are defined as follows [Sch09]:

• J∆in(ωqrz)Kξ
def= { defines a set of variables x1, . . . , xn with corresponding

data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to externally
supplied values at time t when ωqrz is invoked. Their values can be
modified until ωqrz terminates at time t + θ, i.e., all instructions of ωqrz

have been processed. Variables classified as event variables are reset to
their default values if they are not assigned in the current macro step. }

• J∆out(ωqrz)Kξ
def= { defines a set of variables x1, . . . , xn with corresponding

data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables can be updated until ωqrz

terminates at time t + θ, and are passed to invoking element in each
macro step. Variables classified as event variables are reset to their
default values if they are not assigned in the current macro step. }

• J∆inout(ωqrz)Kξ
def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables can be read and up-
dated until ωqrz terminates at time t + θ, and are passed to invoking
element in each macro step. Variables classified as event variables are
reset to their default values if they are not assigned in the current macro
step. }

218

A.2. Quartz Models

A.2.4. Local Variables in Quartz Models

Definition A.7 (Syntax of local variables in Quartz models). The
syntax of ∆local(ωqrz) is defined as follows:

• ∆local(ωqrz)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[event] α
[+]

1 x1;
⋮
[event] α

[+]

n xn;

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Definition A.8 (Semantics of local variables in Quartz models). The
semantics of ∆local(ωqrz) are defined as follows:

• J∆local(ωqrz)Kξ
def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables can be read and up-
dated internally in every macro step until ωqrz terminates at time t+ θ.
Variables classified as event variables are reset to their default values if
they are not assigned in the current macro step. }

A.2.5. Elementary Quartz Data Types and Fields

Definition A.9 (Syntax of elementary Quartz data types and
fields). The syntax of α(ωqrz) ∈ A(ωqrz) and α+(ωqrz) ∈ A+(ωqrz) is defined
as follows [Sch09]:

Syntax of bit vector data types αbv(ωqrz) ∈ Abv(ωqrz):

• αbool
bv (ωqrz)

def= {bool} denotes Boolean values

Syntax of integer data types αi(ωqrz) ∈ Ai(ωqrz):

• αint
i (ωqrz)

def= {int{n}} denotes bounded signed integers

Syntax of integer data types αi(ωqrz) ∈ Ai(ωqrz):

• αuint
i (ωqrz)

def= {nat{n}} denotes bounded unsigned integers

Syntax of floating-point data types αr(ωqrz) ∈ Ar(ωqrz):

• αreal
r (ωqrz)

def= {real} denotes floating-point values

Syntax of numeric data types αnum(ωqrz) ∈ Ai(ωqrz)⋃Ar(ωqrz):

• αnum(ωqrz) ∈ {αi(ωqrz), αr(ωqrz)}

Syntax of duration data types αdur(ωqrz) ∈ Adur(ωqrz):

• αtime
dur (ωqrz)

def= {nat} denotes interval value in unbounded integer

Syntax of data type fields α+(ωqrz) ∈ A+(ωqrz):

219

Appendix A: Detailed Syntax and Semantics

• α+(ωqrz)
def= {[n]α(ωqrz) y} denotes arrays

Definition A.10 (Semantics of elementary Quartz data types and
fields). The semantics of α(ωqrz) ∈ A(ωqrz) and α+(ωqrz) ∈ A+(ωqrz) are
defined as follows [Sch09]:

Semantics of bit vector data types αbv(ωqrz) ∈ Abv(ωqrz):

• Jαbool
bv (ωqrz)Kξ

def= ⟨{false, true}, false⟩

Semantics of integer data types αi(ωqrz) ∈ Ai(ωqrz):

• Jαint
i (ωqrz)Kξ

def= ⟨{−n,n − 1},0⟩

• Jαuint
i (ωqrz)Kξ

def= ⟨{0, n − 1},0⟩

Semantics of floating-point data types αr(ωqrz) ∈ Ar(ωqrz):

• Jαreal
r (ωqrz)Kξ

def= ⟨{single precision floating-point (32 Bits)},0⟩

Semantics of duration data types αdur(ωqrz) ∈ Adur(ωpou):

• Jαtime
dur (ωqrz)Kξ

def= ⟨N,0⟩

Semantics of data type fields α+(ωqrz) ∈ A+(ωqrz):

• Jα+(ωqrz)Kξ
def= { group with n elements of data type α(ωqrz)}

A.2.6. Expressions in Quartz Models

Definition A.11 (Syntax of expressions in Quartz models). The
syntax of Tmisc(ωqrz), Tcomp(ωqrz), Tarith(ωqrz), Tbv(ωqrz), and Tcond(ωqrz) is
defined as follows [Sch09]:

Syntax of constants and general expressions τmisc(ωqrz) ∈ Tmisc(ωqrz):

• τ cstmisc(ωqrz)
def= {x} denotes a value constant x

• τ idmisc(ωqrz)
def= {y} denotes an identifier y

• τ brmisc(ωqrz)
def= {(τ(ωqrz))} denotes a bracket

• τ truemisc(ωqrz)
def= {true} denotes a true-constant

• τ falsemisc (ωqrz)
def= {false} denotes a false-constant

• τarrmisc(ωqrz)
def= {x[n]} denotes access to index n of array x

Syntax of comparison operators τcomp(ωqrz) ∈ Tcomp(ωqrz):

• τ eqcomp(ωqrz)
def= {π1 == π2} denotes equality

220

A.2. Quartz Models

• τnecomp(ωqrz)
def= {π1 != π2} denotes inequality

• τ gtcomp(ωqrz)
def= {π1 > π2} denotes greater than

• τ gecomp(ωqrz)
def= {π1 >= π2} denotes greater than/equal to

• τ ltcomp(ωqrz)
def= {π1 < π2} denotes lower than

• τ lecomp(ωqrz)
def= {π1 <= π2} denotes lower than/equal to

Syntax of arithmetic operators τarith(ωqrz) ∈ Tarith(ωqrz):

• τmul
arith(ωqrz)

def= {η1 * η2} denotes a multiplication

• τdivarith(ωqrz)
def= {η1 / η2} denotes a division

• τaddarith(ωqrz)
def= {η1 + η2} denotes an addition

• τ subarith(ωqrz)
def= {η1 - η2} denotes a subtraction

• τ exptarith(ωqrz)
def= {exp(ηr,1,η2)} denotes an exponential function

• τmod
arith(ωqrz)

def= {ηi,1 % ηi,2} denotes a modulo function

• τumarith(ωqrz)
def= {-η1} denotes an unary minus

Syntax of bitwise operators τbv(ωqrz) ∈ Tbv(ωqrz):

• τandbv (ωqrz)
def= {λ1 & . . . & λn} denotes a conjunction

• τ orbv (ωqrz)
def= {λ1 ∣ . . . ∣ λn} denotes a disjunction

• τxorbv (ωqrz)
def= {λ1 ^ λ2} denotes an exclusive or

• τnotbv (ωqrz)
def= {!λ1} denotes a negation

Syntax of conditional operators τcond(ωqrz) ∈ Tcond(ωqrz):

• τ selcond(ωqrz)
def= {λb?π1∶π2)} denotes a conditional operator

Definition A.12 (Type system of expressions in Quartz models). The
type system of τ(ωqrz) is defined as follows [Sch09]:

Type system of comparison operators τγcomp(ωqrz) ∈ Tcomp(ωqrz), considering
γ ∈ {eq, ne, gt, ge, lt, le}:

•
π1 ∶ α(ωqrz) π2 ∶ α(ωqrz)
τγcomp(ωqrz) ∶ αbool

bv (ωqrz)

Type system of arithmetic operators τγarith(ωqrz) ∈ Tarith(ωqrz), considering
γ ∈ {mul, div, add, sub, um}:

•
η1 ∶ αnum(ωqrz) [η2 ∶ αnum(ωqrz)]

τγarith(ωqrz) ∶ αnum(ωqrz)

221

Appendix A: Detailed Syntax and Semantics

Type system of modulo operator τmod
arith(ωqrz) ∈ Tarith(ωqrz):

•
ηi1 ∶ αi(ωqrz) ηi2 ∶ αi(ωqrz)

τmod
arith(ωqrz) ∶ αi(ωqrz)

Type system of exponential function operator τ exptarith(ωqrz) ∈ Tarith(ωqrz):

•
ηr1 ∶ αr(ωqrz) η2 ∶ αnum(ωqrz)

τ exptarith(ωqrz) ∶ αr(ωqrz)

Type system of bitwise operators τγbv(ωqrz) ∈ Tbv(ωqrz), considering γ ∈ {and,
or, xor, not}:

•
λ1 ∶ αbv(ωqrz) [λ2 ∶ αbv(ωqrz) ⋯ λn ∶ αbv(ωqrz)]

τγbv(ωqrz) ∶ αbool
bv (ωqrz)

Type system of conditional operator τ selcond(ωqrz) ∈ Tcond(ωqrz):

•
λb ∶ αbool

bv (ωqrz) π1 ∶ α(ωqrz) π2 ∶ α(ωqrz)
τ selcond(ωqrz) ∶ α(ωqrz)

Definition A.13 (Semantics of expressions in Quartz models). The
semantics of τ(ωqrz) ∈ T (ωqrz) are defined as follows [Sch09]:

Semantics of constants and general expressions τmisc(ωqrz) ∈ Tmisc(ωqrz):

• Jτ cstmisc(ωqrz)Kξ
def= JxKξ

• Jτ idmisc(ωqrz)Kξ
def= y

• Jτ brmisc(ωqrz)Kξ
def= (τmisc(ωqrz))

• Jτ truemisc(ωqrz)Kξ
def= true

• Jτ falsemisc (ωqrz)Kξ
def= false

• Jτarrmisc(ωqrz)Kξ
def= Jx[n]Kξ

Semantics of comparison operators τcomp(ωqrz) ∈ Tcomp(ωqrz):

• Jτ eqcomp(ωqrz)Kξ
def= Jπ1Kξ = Jπ2Kξ

• Jτnecomp(ωqrz)Kξ
def= Jπ1Kξ ≠ Jπ2Kξ

• Jτ gtcomp(ωqrz)Kξ
def= Jπ1Kξ > Jπ2Kξ

• Jτ gecomp(ωqrz)Kξ
def= Jπ1Kξ >= Jπ2Kξ

• Jτ ltcomp(ωqrz)Kξ
def= Jπ1Kξ < Jπ2Kξ

• Jτ lecomp(ωqrz)Kξ
def= Jπ1Kξ <= Jπ2Kξ

Semantics of arithmetic operators τarith(ωqrz) ∈ Tarith(ωqrz):

222

A.2. Quartz Models

• Jτmul
arith(ωqrz)Kξ

def= Jη1Kξ ⋅ Jη2Kξ

• Jτdivarith(ωqrz)Kξ
def= Jη1Kξ

Jη2Kξ

• Jτaddarith(ωqrz)Kξ
def= Jη1Kξ + Jη2Kξ

• Jτ subarith(ωqrz)Kξ
def= Jη1Kξ − Jη2Kξ

• Jτ exptarith(ωqrz)Kξ
def= Jηr1K

Jη2Kξ
ξ

• Jτmod
arith(ωqrz)Kξ

def= Jηi1Kξ mod Jηi2Kξ

• Jτumarith(ωqrz)Kξ
def= −Jη1Kξ

Semantics of Boolean operators τbv(ωqrz) ∈ Tbv(ωqrz):

• Jτandbv (ωqrz)Kξ
def= Jλ1Kξ ∧ ⋅ ⋅ ⋅ ∧ JλnKξ

• Jτ orbv (ωqrz)Kξ
def= Jλ1Kξ ∨ ⋅ ⋅ ⋅ ∨ JλnKξ

• Jτxorbv (ωqrz)Kξ
def= Jλ1Kξ ⊕ Jλ2Kξ

• Jτnotbv (ωqrz)Kξ
def= ¬Jλ1Kξ

Semantics of conditional operators τ selcond(ωqrz) ∈ Tcond(ωqrz):

• Jτ selcond(ωqrz)Kξ
def=
⎧⎪⎪⎨⎪⎪⎩

Jπ1Kξ, if JλbKξ = true
Jπ2Kξ, otherwise

Definition A.14 (SOS transition rules of expressions in Quartz mod-
els). The SOS transition rules of τ(ωqrz) ∈ T (ωqrz) are defined as follows
[Sch09]:

• ⟨ξ, τ(ωqrz)⟩
TÐ↠ ⟨nothing,{Jτ(ωqrz)Kξ}, true⟩

A.2.7. Abortions in Quartz Models

Definition A.15 (Syntax of abortions in Quartz models). The syn-
tax of strong delayed abortions Σreg

abort(ωqrz) and strong immediate abortions
Σimm
abort(ωqrz) is defined as follows [Sch09]:

• σreg
abort(ωqrz)

def= abort Σ(ωqrz) when(λb(ωqrz)); denotes a strong de-
layed abortion

• σimm
abort(ωqrz)

def= immediate abort Σ(ωqrz) when(λb(ωqrz)); denotes a
strong immediate abortion

Definition A.16 (SOS transition rules of abortions in Quartz mod-
els). The SOS transition rules of strong delayed abortions Σreg

abort(ωqrz) and
strong immediate abortions Σimm

abort(ωqrz) are defined as follows [Sch09]:

SOS transition rules of σreg
abort(ωqrz) ∈ Σreg

abort(ωqrz):

223

Appendix A: Detailed Syntax and Semantics

•
⟨ξ,Σ⟩ TÐ↠ ⟨nothing,D, true⟩

⟨ξ,{abort Σ when(λb);}⟩ TÐ↠ ⟨nothing,D, true⟩

•
⟨ξ,Σ⟩ TÐ↠ ⟨Σ′,D, false⟩

⟨ξ,{abort Σ when(λb);}⟩ TÐ↠ ⟨{ immediate abort Σ′

when(λb); } ,D, false⟩

SOS transition rules of σimm
abort(ωqrz) ∈ Σimm

abort(ωqrz):

•
JλbKξ = true

⟨ξ,{ immediate abort Σ

when(λb); }⟩ TÐ↠ ⟨nothing,{}, true⟩

•
JλbKξ = false ∧ ⟨ξ,Σ⟩

TÐ↠ ⟨nothing,D, true⟩

⟨ξ,{ immediate abort Σ

when(λb); }⟩ TÐ↠ ⟨nothing,D, true⟩

•
JλbKξ = false ∧ ⟨ξ,Σ⟩

TÐ↠ ⟨Σ′,D, false⟩

⟨ξ,{ immediate abort Σ

when(λb); }⟩ TÐ↠ ⟨{ immediate abort Σ′

when(λb); } ,D, false⟩

A.2.8. Assignments in Quartz Models

Definition A.17 (Syntax of assignments in Quartz models). The syntax
of σimm

ass (ωqrz) ∈ Σimm
ass (ωqrz) and σdel

ass(ωqrz) ∈ Σdel
ass(ωqrz) is defined as follows

[Sch09]:

• σimm
ass (ωqrz)

def= { x = τ ; }
– emit(x) ∶≡ σimm

ass (ωqrz) ⇐⇒ τ = true

• σdel
ass(ωqrz)

def= { next(x) = τ(x); }

Definition A.18 (SOS transition rules of assignments in Quartz mod-
els). The SOS transition rules of σimm

ass (ωqrz) ∈ Σimm
ass (ωqrz) and σdel

ass(ωqrz) ∈
Σdel
ass(ωqrz) are defined as follows [Sch09]:

• ⟨ξ, σimm
ass ⟩

TÐ↠ ⟨nothing,{JxKξ = JτKξ}, true⟩

• ⟨ξ, σdel
ass⟩

TÐ↠ ⟨{x = Jτ(x)Kξ}, Jτ(x)Kξ, true⟩

A.2.9. Await Statements in Quartz Models

Definition A.19 (Syntax and SOS transition rules of await state-
ments in Quartz models). The syntax of strong delayed await statements
Σreg
ass(ωqrz) and immediate await statements Σimm

ass (ωqrz) is defined as follows
[Sch09]. The SOS transitions rules are derived from equivalent constructs:

224

A.2. Quartz Models

• σreg
ass(ωqrz)

def= await(λb(ωqrz)); denotes a strong delayed await state-
ments

– σreg
ass(ωqrz) ∶≡ do pause; while(!λb(ωqrz));

– σreg
ass(ωqrz) ∶≡ abort halt; when(λb(ωqrz));

• σimm
ass (ωqrz)

def= immediate await(λb(ωqrz)); denotes an immediate
await statements

– σimm
ass (ωqrz) ∶≡ while(!λb(ωqrz)) pause;

– σimm
ass (ωqrz) ∶≡ immediate abort halt; when(λb(ωqrz));

A.2.10. Synchronous Concurrency in Quartz Models

Definition A.20 (Syntax of synchronous concurrency in Quartz mod-
els). The syntax of a synchronous parallel statement Σconc(ωqrz) is defined as
follows [Sch09]:

• Σconc(ωqrz)
def= Σ1(ωqrz) ∣∣ Σ2(ωqrz)

Definition A.21 (SOS transition rules of synchronous concurrency in
Quartz models). The SOS transition rules of a synchronous parallel state-
ment Σconc(ωqrz) are defined as follows [Sch09]:

•
⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, f1⟩ ∧ ⟨ξ,Σ2⟩
TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,{Σ1 ∣∣ Σ2}⟩
TÐ↠ ⟨{Σ′1 ∣∣ Σ′2},D1⋃D2, f1 ∧ f2⟩

A.2.11. Conditions in Quartz Models

Definition A.22 (Syntax of conditions in Quartz models). The syntax
of σit

cond(ω
φ
st) ∈ Σit

cond(ω
φ
st) and σite

cond(ω
φ
st) ∈ Σite

cond(ω
φ
st) is defined as follows

[Sch09]:

• σit
cond(ωqrz)

def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

if(λb(σit
cond(ωqrz))){

Σ1(σit
cond(ωqrz))

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• σite
cond(ωqrz)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

if(λb(σite
cond(ωqrz))){

Σ1(σite
cond(ωqrz))

}else{

Σ2(σite
cond(ωqrz))

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition A.23 (SOS transition rules of conditions in Quartz
models). The SOS transition rules of σit

cond(ωqrz) ∈ Σit
cond(ωqrz) and

σite
cond(ωqrz) ∈ Σite

cond(ωqrz) are defined as follows [Sch09]:

SOS transition rules of σit
cond(ωqrz) ∈ Σit

cond(ωqrz):

225

Appendix A: Detailed Syntax and Semantics

•
JλbKξ = true ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, f1⟩
⟨ξ,{if(λb){Σ1}}⟩

TÐ↠ ⟨Σ′1,D1, f1⟩

•
JλbKξ = false ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨nothing,{}, true⟩
⟨ξ,{if(λb){Σ1}}⟩

TÐ↠ ⟨nothing,{}, true⟩

SOS transition rules of σite
cond(ωqrz) ∈ Σite

cond(ωqrz):

•
JλbKξ = true ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, f1⟩

⟨ξ,{ if(λb){Σ1

}else{Σ2}
}⟩ TÐ↠ ⟨Σ′1,D1, f1⟩

•
JλbKξ = false ∧ ⟨ξ,Σ2⟩

TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,{ if(λb){Σ1

}else{Σ2}
}⟩ TÐ↠ ⟨Σ′2,D2, f2⟩

A.2.12. Halt Statements in Quartz Models

Definition A.24 (Syntax and SOS transitions rules of halt state-
ments in Quartz models). The syntax of halt statements Σhalt(ωqrz)
is defined as follows [Sch09]. The SOS transitions rules are derived from
equivalent constructs:

• σhalt(ωqrz)
def= halt; denotes an infinite loop doing nothing

– σhalt(ωqrz) ∶≡ do pause; while(true);

A.2.13. Module Invocations in Quartz Models

Definition A.25 (Syntax of Quartz module invocations). The
syntax of Quartz module invocations of a non instantiated module
σf ′

inv(ωqrz) ∈ Σf ′

inv(ωqrz) and of an instantiated module σfb
inv(ωqrz) ∈ Σfb

inv(ωqrz)
is defined as follows, where k represents the module and x the instance name:

• σf ′

inv(ωqrz)
def= {k(I(σf ′

inv(ωqrz)),O(σf ′

inv(ωqrz)))[;]} denotes a Quartz

module invocations of a non instantiated module

• σfb
inv(ωqrz)

def= {x ∶ k(I(σfb
inv(ωqrz)),O(σfb

inv(ωqrz)))[;]} denotes a

Quartz module invocations of an instantiated module

Definition A.26 (SOS transition rules of Quartz module in-
vocations). The SOS transition rules of a non instantiated module

σf ′

inv(ωqrz) ∈ Σf ′

inv(ωqrz) and of an instantiated module σfb
inv(ωqrz) ∈ Σfb

inv(ωqrz)
is defined as follows, where k represents the module and x the instance name:

SOS transition rules of σf ′

inv(ωqrz) ∈ Σf ′

inv(ωqrz):

226

A.2. Quartz Models

• ⟨ξ, σf ′

inv⟩
TÐ↠ ⟨σf ′′

inv,D, f⟩

SOS transition rules of σfb
inv(ωqrz) ∈ Σfb

inv(ωqrz):

• ⟨ξ, σfb
inv⟩

TÐ↠ ⟨σfb′

inv,D, f⟩

A.2.14. Loops in Quartz Models

Definition A.27 (Syntax of loops in Quartz models). The
syntax of σfoot

loop (ωqrz) ∈ Σfoot
loop (ωqrz), σhead

loop (ωqrz) ∈ Σhead
loop (ωqrz), and

σinf
loop(ωqrz) ∈ Σinf

loop(ωqrz) is defined as follows:

• σfoot
loop (ωqrz)

def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

do ∶
Σ(σfoot

loop (ωqrz))
while(λb(σfoot

loop (ωqrz)));

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

• σhead
loop (ωqrz)

def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

while(λb(σhead
loop (ωqrz))){

Σ(σhead
loop (ωqrz))

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• σinf
loop(ωqrz)

def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

loop{
Σ(σinf

loop(ωqrz))
}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
– σinf

loop(ωqrz) ∶≡ σfoot
loop (ωqrz) ⇐⇒ λb(σfoot

loop (ωqrz)) = true

Definition A.28 (SOS transition rules of loops in Quartz
models). The SOS transition rules of σfoot

loop (ωqrz) ∈ Σfoot
loop (ωqrz) and

σhead
loop (ωqrz) ∈ Σhead

loop (ωqrz) are defined as follows:

SOS transition rules of σfoot
loop (ωqrz) ∈ Σfoot

loop (ωqrz):

•
⟨ξ,Σ⟩ TÐ↠ ⟨Σ′,D, false⟩

⟨ξ,{do Σ while(λb);}⟩ TÐ↠ ⟨{Σ′; while(λb) Σ},D, false⟩

SOS transition rules of σhead
loop (ωqrz) ∈ Σhead

loop (ωqrz):

•
JλbKξ = true ∧ ⟨ξ,Σ⟩

TÐ↠ ⟨Σ′,D, false⟩
⟨ξ,{while(λb) Σ}⟩ TÐ↠ ⟨{Σ′; while(λb) Σ},D, false⟩

•
JλbKξ = false

⟨ξ,{while(λb) Σ}⟩ TÐ↠ ⟨nothing,{}, true⟩

227

Appendix A: Detailed Syntax and Semantics

A.2.15. Nothing Statements in Quartz Models

Definition A.29 (Syntax of nothing statements in Quartz mod-
els). The syntax of nothing statements Σnothing(ωqrz) is defined as follows
[Sch09]:

• Σnothing(ωqrz)
def= nothing;

Definition A.30 (SOS transition rules of nothing statements
in Quartz models). The SOS transition rules of nothing statements
Σnothing(ωqrz) are defined as follows [Sch09]:

• ⟨ξ,nothing;⟩ TÐ↠ ⟨nothing,{}, true⟩

A.2.16. Pause Statements in Quartz Models

Definition A.31 (Syntax of pause statements in Quartz models). The
syntax of pause statements Σpause(ωqrz) is defined as follows [Sch09]:

• Σpause(ωqrz)
def= pause;

Definition A.32 (SOS transition rules of pause statements in Quartz
models). The SOS transition rules of pause statements Σpause(ωqrz) are de-
fined as follows [Sch09]:

• ⟨ξ,pause;⟩ TÐ↠ ⟨nothing,{}, false⟩

A.2.17. Sequences in Quartz Models

Definition A.33 (Syntax of sequences in SCL models). The syntax of
a sequence Σseq(ωqrz) is defined as follows [Sch09]:

• Σseq(ωqrz)
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1(ωqrz);
σ2(ωqrz);

⋮
σn(ωqrz);

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Definition A.34 (SOS transition rules of sequences in Quartz mod-
els). The SOS transition rules of a sequence Σseq(ωqrz) are defined as follows
[Sch09]:

•
⟨ξ, σ1⟩

TÐ↠ ⟨σ′1,D1, false⟩
⟨ξ,{σ1;σ2;}⟩

TÐ↠ ⟨{σ′1;σ2;},D1, false⟩

•
⟨ξ, σ1⟩

TÐ↠ ⟨σ′1,D1, true⟩ ∧ ⟨ξ, σ2⟩
TÐ↠ ⟨σ′2,D2, f2⟩

⟨ξ,{σ1;σ2;}⟩
TÐ↠ ⟨σ′2,{D1⋃D2}, f2⟩

228

A.3. SCL Models

A.3. SCL Models

A.3.1. SCL Variants and Declaration

Definition A.35 (Syntax of SCL elements). An SCL module is declared
as follows, assuming fixed order of ∆idcl(ωscl), ∆vdcl(ωscl), and Σ(ωscl):

• δω(ωscl)
def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

module an(ωscl){
[∆idcl(ωscl)] [∆vdcl(ωscl)] [Σ(ωscl)]

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Definition A.36 (Semantics of SCL elements). The semantics of ωscl are
defined as follows:

• Jδω(ωscl)Kξ
def= { defines an SCL model element ωscl with Σ(ωscl), started

at time t with initial conditions set by ∆idcl(ωscl) and ∆vdcl(ωscl) when
invoked, terminating at time t + θ and preserving internal state across
macro steps.}

A.3.2. SCL Interfaces

Definition A.37 (Syntax of SCL interfaces). The syntax of ∆in(ωscl),
∆out(ωscl), and ∆inout(ωscl) is defined as follows:

• ∆in(ωscl)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

input [signal] α
[+]

1 x1[=w1][;]

⋮
input [signal] α

[+]

n xn[=wn][;]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

• ∆out(ωscl)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

output [signal] α
[+]

1 x1[=w1][;]

⋮
output [signal] α

[+]

n xn[=wn][;]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

• ∆inout(ωscl)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

input output α
[+]

1 x1[=w1][;]

⋮
input output α

[+]

n xn[=wn][;]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Definition A.38 (Semantics of SCL interfaces). The semantics of
∆in(ωscl), ∆out(ωscl), and ∆inout(ωscl) are defined as follows:

• J∆in(ωscl)Kξ
def= { defines a set of variables x1, . . . , xn with corresponding

data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to optional
predefined default values Jw1Kξ, . . . , JwnKξ or to externally supplied values
at time t when ωscl is invoked. Their values can be modified until ωscl

terminates at time t+θ, i.e., all instructions of ωscl have been processed.
Variables classified as signal variables are reset to their default values if
they are not assigned in the current macro step. }

229

Appendix A: Detailed Syntax and Semantics

• J∆out(ωscl)Kξ
def= { defines a set of variables x1, . . . , xn with corresponding

data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to optional
predefined default values Jw1Kξ, . . . , JwnKξ at time t when ωscl is invoked,
and passed to invoking element in each macro step with current value
(assumed SCL was synthesized into an SCChart that is instantiated by
another model). Variables classified as signal variables are reset to their
default values if they are not assigned in the current macro step. }

• J∆inout(ωscl)Kξ
def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to ex-
ternally supplied values at time t when ωscl is invoked. Their values
can be modified until ωscl terminates at time t + θ, and passed to invok-
ing element in each macro step with current value (assumed SCL was
synthesized into an SCChart that is instantiated by another model). }

A.3.3. Local Variables in SCL Models

Definition A.39 (Syntax of local variables in SCL models). The syntax
of ∆local(ωscl) is defined as follows:

• ∆local(ωscl)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α
[+]

1 x1[=w1][;]

⋮
α
[+]

n xn[=wn][;]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Definition A.40 (Semantics of local variables in SCL models). The
semantics of ∆local(ωscl) are defined as follows:

• J∆local(ωscl)Kξ
def= { defines a set of variables x1, . . . , xn with correspond-

ing data types Jα[+]1 Kξ, . . . , Jα
[+]

n Kξ. These variables are assigned to op-
tional predefined default values Jw1Kξ, . . . , JwnKξ at time t when ωscl is
invoked and keep their values when switching from one macro step to
another. These variables can be modified and processed locally until ωscl

terminates at time t+θ, i.e., all instructions of ωscl have been processed. }

A.3.4. Elementary SCL Data Types and Fields

Definition A.41 (Syntax of elementary SCL data types and
fields). The syntax of α(ωscl) ∈ A(ωscl) and α+(ωscl) ∈ A+(ωscl) is defined as
follows:

Syntax of bit vector data types αbv(ωscl) ∈ Abv(ωscl):

• αbool
bv (ωscl)

def= {bool} denotes Boolean values

Syntax of integer data types αi(ωscl) ∈ Ai(ωscl):

• αint
i (ωscl)

def= {int} denotes bounded signed integers

230

A.3. SCL Models

Syntax of floating-point data types αr(ωscl) ∈ Ar(ωscl):

• αreal
r (ωscl)

def= {float} denotes floating-point values

Syntax of numeric data types αnum(ωscl) ∈ Ai(ωscl)⋃Ar(ωscl):

• αnum(ωscl) ∈ {αi(ωscl), αr(ωscl)}

Syntax of duration data types αdur(ωscl) ∈ Adur(ωscl):

• αtime
dur (ωscl)

def= {int} denotes interval value in bounded integer

Syntax of data type fields α+(ωscl) ∈ A+(ωscl):

• α+(ωscl)
def= {α(ωscl) y[n]} denotes arrays

Definition A.42 (Semantics of elementary SCL data types and
fields). The semantics of α(ωscl) ∈ A(ωscl) and α+(ωscl) ∈ A+(ωscl) are
defined as follows:

Semantics of bit vector data types αbv(ωscl) ∈ Abv(ωscl):

• Jαbool
bv (ωscl)Kξ

def= ⟨{false, true}, false⟩

Semantics of integer data types αi(ωscl) ∈ Ai(ωscl):

• Jαint
i (ωscl)Kξ

def= ⟨{−231 + 1,231 − 1},0⟩

Semantics of floating-point data types αr(ωscl) ∈ Ar(ωscl):

• Jαreal
r (ωscl)Kξ

def= ⟨{single precision floating-point (32 Bits)},0⟩

Semantics of data type fields α+(ωscl) ∈ A+(ωscl):

• Jα+(ωscl)Kξ
def= { group with n elements of data type α(ωscl)}

A.3.5. Expressions in SCL Models

Definition A.43 (Syntax of expressions in SCL models). The syntax
of Tmisc(ωscl), Tcomp(ωscl), Tarith(ωscl), Tbv(ωscl), and Tcond(ωscl) is defined
as follows:

Syntax of constants and general expressions τmisc(ωscl) ∈ Tmisc(ωscl):

• τ cstmisc(ωscl)
def= {x} denotes a value constant x

• τ idmisc(ωscl)
def= {y} denotes an identifier y

• τ brmisc(ωscl)
def= {(τ(ωscl))} denotes a bracket

• τ truemisc(ωscl)
def= {true} denotes a true-constant

231

Appendix A: Detailed Syntax and Semantics

• τ falsemisc (ωscl)
def= {false} denotes a false-constant

• τarrmisc(ωscl)
def= {x[n]} denotes access to index n of array x

Syntax of comparison operators τcomp(ωscl) ∈ Tcomp(ωscl):

• τ eqcomp(ωscl)
def= {π1 == π2} denotes equality

• τnecomp(ωscl)
def= {π1 != π2} denotes inequality

• τ gtcomp(ωscl)
def= {π1 > π2} denotes greater than

• τ gecomp(ωscl)
def= {π1 >= π2} denotes greater than/equal to

• τ ltcomp(ωscl)
def= {π1 < π2} denotes lower than

• τ lecomp(ωscl)
def= {π1 <= π2} denotes lower than/equal to

Syntax of arithmetic operators τarith(ωscl) ∈ Tarith(ωscl):

• τmul
arith(ωscl)

def= {η1 * η2} denotes a multiplication

• τdivarith(ωscl)
def= {η1 / η2} denotes a division

• τaddarith(ωscl)
def= {η1 + η2} denotes an addition

• τ subarith(ωscl)
def= {η1 - η2} denotes a subtraction

• τmod
arith(ωscl)

def= {ηi,1 % ηi,2} denotes a modulo function

• τumarith(ωscl)
def= {-η1} denotes an unary minus

Syntax of bitwise operators τbv(ωscl) ∈ Tbv(ωscl):

• τandbv (ωscl)
def= {λ1 & . . . & λn} denotes a conjunction

• τ orbv (ωscl)
def= {λ1 ∣ . . . ∣ λn} denotes a disjunction

• τxorbv (ωscl)
def= {λ1 ˆ λ2} denotes an exclusive or

• τnotbv (ωscl)
def= {!λ1} denotes a negation

Syntax of conditional operators τcond(ωscl) ∈ Tcond(ωscl):

• τ selcond(ωscl)
def= {λb?π1∶π2)} denotes a conditional operator

Definition A.44 (Type system of expressions in SCL models). The
type system of τ(ωscl) is defined as follows:

Type system of comparison operators τγcomp(ωscl) ∈ Tcomp(ωscl), considering
γ ∈ {eq, ne, gt, ge, lt, le}:

•
π1 ∶ α(ωscl) π2 ∶ α(ωscl)
τγcomp(ωscl) ∶ αbool

bv (ωscl)

232

A.3. SCL Models

Type system of arithmetic operators τγarith(ωscl) ∈ Tarith(ωscl), considering γ ∈
{mul, div, add, sub, um}:

•
η1 ∶ αnum(ωscl) [η2 ∶ αnum(ωscl)]

τγarith(ωscl) ∶ αnum(ωscl)

Type system of modulo operator τmod
arith(ωscl) ∈ Tarith(ωscl):

•
ηi1 ∶ αi(ωscl) ηi2 ∶ αi(ωscl)

τmod
arith(ωscl) ∶ αi(ωscl)

Type system of bitwise operators τγbv(ωscl) ∈ Tbv(ωscl), considering γ ∈ {and,
or, xor, not}:

•
λ1 ∶ αbv(ωscl) [λ2 ∶ αbv(ωscl) ⋯ λn ∶ αbv(ωscl)]

τγbv(ωscl) ∶ αbool
bv (ωscl)

Type system of conditional operator τ selcond(ωscl) ∈ Tcond(ωscl):

•
λb ∶ αbool

bv (ωscl) π1 ∶ α(ωscl) π2 ∶ α(ωscl)
τ selcond(ωscl) ∶ α(ωscl)

Definition A.45 (Semantics of expressions in SCL models). The
semantics of τ(ωscl) ∈ T (ωscl) are defined as follows:

Semantics of constants and general expressions τmisc(ωscl) ∈ Tmisc(ωscl):

• Jτ cstmisc(ωscl)Kξ
def= JxKξ

• Jτ idmisc(ωscl)Kξ
def= y

• Jτ brmisc(ωscl)Kξ
def= (τmisc(ωscl))

• Jτ truemisc(ωscl)Kξ
def= true

• Jτ falsemisc (ωscl)Kξ
def= false

• Jτarrmisc(ωscl)Kξ
def= Jx[n]Kξ

Semantics of comparison operators τcomp(ωscl) ∈ Tcomp(ωscl):

• Jτ eqcomp(ωscl)Kξ
def= Jπ1Kξ = Jπ2Kξ

• Jτnecomp(ωscl)Kξ
def= Jπ1Kξ ≠ Jπ2Kξ

• Jτ gtcomp(ωscl)Kξ
def= Jπ1Kξ > Jπ2Kξ

• Jτ gecomp(ωscl)Kξ
def= Jπ1Kξ >= Jπ2Kξ

• Jτ ltcomp(ωscl)Kξ
def= Jπ1Kξ < Jπ2Kξ

• Jτ lecomp(ωscl)Kξ
def= Jπ1Kξ <= Jπ2Kξ

233

Appendix A: Detailed Syntax and Semantics

Semantics of arithmetic operators τarith(ωscl) ∈ Tarith(ωscl):

• Jτmul
arith(ωscl)Kξ

def= Jη1Kξ ⋅ Jη2Kξ

• Jτdivarith(ωscl)Kξ
def= Jη1Kξ

Jη2Kξ

• Jτaddarith(ωscl)Kξ
def= Jη1Kξ + Jη2Kξ

• Jτ subarith(ωscl)Kξ
def= Jη1Kξ − Jη2Kξ

• Jτmod
arith(ωscl)Kξ

def= Jηi1Kξ mod Jηi2Kξ

• Jτumarith(ωscl)Kξ
def= −Jη1Kξ

Semantics of Boolean operators τbv(ωscl) ∈ Tbv(ωscl):

• Jτandbv (ωscl)Kξ
def= Jλ1Kξ ∧ ⋅ ⋅ ⋅ ∧ JλnKξ

• Jτ orbv (ωscl)Kξ
def= Jλ1Kξ ∨ ⋅ ⋅ ⋅ ∨ JλnKξ

• Jτxorbv (ωscl)Kξ
def= Jλ1Kξ ⊕ Jλ2Kξ

• Jτnotbv (ωscl)Kξ
def= ¬Jλ1Kξ

Semantics of conditional operators τ selcond(ωscl) ∈ Tcond(ωscl):

• Jτ selcond(ωscl)Kξ
def=
⎧⎪⎪⎨⎪⎪⎩

Jπ1Kξ, if JλbKξ = true
Jπ2Kξ, otherwise

Definition A.46 (SOS transition rules of expressions in SCL mod-
els). The SOS transition rules of τ(ωscl) ∈ T (ωscl) are defined as follows:

• ⟨ξ, τ(ωscl)⟩
TÐ↠ ⟨nothing,{Jτ(ωscl)Kξ}, true⟩

A.3.6. Assignments in SCL Models

Definition A.47 (Syntax of assignments in SCL models). The syntax
of σimm

ass (ωscl) ∈ Σimm
ass (ωscl) and σdel

ass(ωscl) ∈ Σdel
ass(ωscl) is defined as follows:

• σimm
ass (ωscl)

def= { [do] x = τ[;] }

• σdel
ass(ωscl)

def= { [do] x = τ(x)[;] }

Definition A.48 (SOS transition rules of assignments in SCL
models). The SOS transition rules of σimm

ass (ωscl) ∈ Σimm
ass (ωscl) and

σdel
ass(ωscl) ∈ Σdel

ass(ωscl) are defined as follows:

• ⟨ξ, σimm
ass (ωscl)⟩

TÐ↠ ⟨nothing,{x = JτKξ}, true⟩

• ⟨ξ, σdel
ass(ωscl)⟩

TÐ↠ ⟨nothing,{x = Jτ(x)Kξ}, true⟩

234

A.3. SCL Models

A.3.7. Conditions in SCL Models

Definition A.49 (Syntax of conditions in SCL models). The syntax of
σit
cond(ωscl) ∈ Σit

cond(ωscl) and σite
cond(ωscl) ∈ Σite

cond(ωscl) is defined as follows:

• σit
cond(ωscl)

def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

if(λb(σit
cond(ωscl))){

Σ1(σit
cond(ωscl))

}

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• σite
cond(ωscl)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

if(λb(σite
cond(ωscl))){

Σ1(σite
cond(ωscl))

}else{

Σ2(σite
cond(ωscl))

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
Definition A.50 (SOS transition rules of conditions in SCL
models). The SOS transition rules of σit

cond(ωscl) ∈ Σit
cond(ωscl) and

σite
cond(ωscl) ∈ Σite

cond(ωscl) are defined as follows:

SOS transition rules of σit
cond(ωscl) ∈ Σit

cond(ωscl):

•
JλbKξ = true ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, f1⟩
⟨ξ,{if(λb){Σ1}}⟩

TÐ↠ ⟨Σ′1,D1, f1⟩

•
JλbKξ = false ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨nothing,{}, true⟩
⟨ξ,{if(λb){Σ1}}⟩

TÐ↠ ⟨nothing,{}, true⟩
SOS transition rules of σite

cond(ωscl) ∈ Σite
cond(ωscl):

•
JλbKξ = true ∧ ⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, f1⟩

⟨ξ,{ if(λb){Σ1

}else{Σ2}
}⟩ TÐ↠ ⟨Σ′1,D1, f1⟩

•
JλbKξ = false ∧ ⟨ξ,Σ2⟩

TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,{ if(λb){Σ1

}else{Σ2}
}⟩ TÐ↠ ⟨Σ′2,D2, f2⟩

A.3.8. Loops in SCL Models

Definition A.51 (Syntax of loops in SCL models). The syntax of
σfoot
loop (ωscl) ∈ Σfoot

loop (ωscl) and σhead
loop (ωscl) ∈ Σhead

loop (ωscl) is defined as follows:

• σfoot
loop (ωscl)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

do ∶
Σ(σfoot

loop (ωscl)
pause;

if(λb(σfoot
loop (ωscl))){

goto do;
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

235

Appendix A: Detailed Syntax and Semantics

• σhead
loop (ωscl)

def=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

while(λb(σhead
loop (ωscl))){

Σ(σhead
loop (ωscl)

pause;
}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

• σinf
loop(ωscl)

def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

loop ∶
Σ(σinf

loop(ωscl))
goto loop;

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
– σinf

loop(ωscl) ∶≡ σfoot
loop (ωscl) ⇐⇒ λb(σfoot

loop (ωscl)) = true

Definition A.52 (SOS transition rules of loops in SCL models). The
SOS transition rules of σfoot

loop (ωscl) ∈ Σfoot
loop (ωscl) and σhead

loop (ωscl) ∈ Σhead
loop (ωscl)

are defined as follows:

SOS transition rules of σfoot
loop (ωscl) ∈ Σfoot

loop (ωscl):

•
⟨ξ,Σ⟩ TÐ↠ ⟨Σ′,D, false⟩

⟨ξ,{ do ∶ Σ
if(λb) goto do;

}⟩ TÐ↠ ⟨{Σ′; while(λb) Σ},D, false⟩

SOS transition rules of σhead
loop (ωscl) ∈ Σhead

loop (ωscl):

•
JλbKξ = true ∧ ⟨ξ,Σ⟩

TÐ↠ ⟨Σ′,D, false⟩
⟨ξ,{while(λb) Σ}⟩ TÐ↠ ⟨{Σ′; while(λb) Σ},D, false⟩

•
JλbKξ = false

⟨ξ,{while(λb) Σ}⟩ TÐ↠ ⟨nothing,{}, true⟩

A.3.9. Pause Statements in SCL Models

Definition A.53 (Syntax of pause statements in SCL models). The
syntax of pause statements Σpause(ωscl) is defined as follows:

• Σpause(ωscl)
def= pause;

Definition A.54 (SOS transition rules of pause statements in SCL
models). The SOS transition rules of pause statements Σpause(ωscl) are de-
fined as follows:

• ⟨ξ,pause;⟩ TÐ↠ ⟨nothing,{}, false⟩

A.3.10. Sequences in SCL Models

Definition A.55 (Syntax of sequences in SCL models). The syntax of
a sequence Σseq(ωscl) is defined as follows:

236

A.4. Data-Flow Oriented SCCharts

• Σseq(ωscl)
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1(ωscl);
σ2(ωscl);

⋮
σn(ωscl);

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Definition A.56 (SOS transition rules of sequences in SCL mod-
els). The SOS transition rules of a sequence Σseq(ωscl) are defined as follows:

•
⟨ξ, σ1⟩

TÐ↠ ⟨σ′1,D1, false⟩
⟨ξ,{σ1;σ2;}⟩

TÐ↠ ⟨{σ′1;σ2;},D1, false⟩

•
⟨ξ, σ1⟩

TÐ↠ ⟨σ′1,D1, true⟩ ∧ ⟨ξ′, σ2⟩
TÐ↠ ⟨σ′2,D2, f2⟩

⟨ξ,{σ1;σ2;}⟩
TÐ↠ ⟨σ′2,{D1;D2}, f2⟩

A.4. Data-Flow Oriented SCCharts

A.4.1. Data-Flow Oriented SCCharts Declaration

Definition A.57 (Syntax of data-flow oriented SCChart elements). A
data-flow oriented SCChart is declared as follows, assuming fixed order of
∆idcl(ωscd), ∆vdcl(ωscd), and Σ(ωscd):

• δω(ωscd)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∆imports(ωscd)]
scchart an(ωscd){
[∆idcl(ωscd)]
[∆vdcl(ωscd)]
dataflow:

[Σ(ωscd)]
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition A.58 (Semantics of data-flow oriented SCChart ele-
ments). The semantics of ωscd are defined as follows:

• Jδω(ωscd)Kξ
def= { defines a data-flow oriented SCChart ωscd with Σ(ωscd),

started at time t with initial conditions set by ∆idcl(ωscd) and ∆vdcl(ωscd)
when invoked, and preserving internal state across macro steps. Further-
more, ωscd never terminates. }

A.4.2. Local Variables in SCCharts

Definition A.59 (Syntax of local variables in SCCharts). The syntax
of ∆local(ωscd) and ∆inst(ωscd) is defined as follows:

• ∆local(ωscd)
def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α
[+]

1 x1[=w1][;]

⋮
α
[+]

n xn[=wn][;]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

237

Appendix A: Detailed Syntax and Semantics

• ∆inst(ωscd)
def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ref x1 k1
⋮
ref xn kn

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Definition A.60 (Semantics of local variables in SCCharts). The se-
mantics of ∆local(ωscd) and ∆inst(ωscd) are defined as follows:

• J∆local(ωscd)Kξ
def= { defines a set of variables x1, . . . , xn with correspond-

ing SCCharts JαKξ, . . . , Jα
[+]

n Kξ. These variables are assigned to optional
predefined default values Jw1Kξ, . . . , JwnKξ at time t when ωscd is invoked
and keep their values when switching from one macro step to another.
These variables can be modified and processed locally until ωscd termi-
nates at time t + θ, i.e., all instructions of ωscd have been processed. }

• J∆inst(ωscd)Kξ
def= { defines a set of variables k1, . . . , kn of SCCharts

Jx1Kξ, . . . , JxnKξ. These instances are invoked at time t when ωscd is
invoked and keep their values when switching from one macro step to
another. }

A.4.3. SCChart Imports

Definition A.61 (Syntax of SCChart imports). Imported SCCharts are
grouped as a set ∆imports(ωscd), whose syntax is defined as follows:

• ∆imports(ωscd)
def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

import ”x1.sctx”;
⋮
import ”xn.sctx”;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Definition A.62 (Semantics of SCChart imports). The semantics of
∆imports(ωscd) are defined as follows:

• J∆imports(ωscd)Kξ
def= { defines a set of imported SCCharts x1, . . . , xn that

can be instantiated and invoked by ωscd. }

A.4.4. Synchronous Concurrency in Data-Flow Oriented SC-
Charts

Definition A.63 (Syntax of synchronous concurrency in data-flow
oriented SCCharts). The syntax of a synchronous parallel statement
Σconc(ωscd) is defined as follows:

• Σconc(ωscd)
def= Σ1(ωscd) ; Σ2(ωscd)

Definition A.64 (SOS transition rules of synchronous concurrency in
data-flow oriented SCCharts). The SOS transition rules of a synchronous
parallel statement Σconc(ωscd) are defined as follows:

•
⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, f1⟩ ∧ ⟨ξ,Σ2⟩
TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,{Σ1 ∣∣ Σ2}⟩
TÐ↠ ⟨{Σ′1 ∣∣ Σ′2},{D1;D2}, f1 ∧ f2⟩

238

A.5. Control-Flow Oriented SCCharts

A.4.5. Module Invocations in Data-Flow Oriented SCCharts

Definition A.65 (Syntax of SCChart invocations). The syntax of an
SCChart invocation σfb

inv(ωqrz) ∈ Σfb
inv(ωqrz) is defined as follows, where k the

instance name:

• σfb
inv(ωqrz)

def= {k={I(σfb
inv(ωqrz))};} denotes a Quartz module invoca-

tions of an instantiated module

Definition A.66 (SOS transition rules of SCChart invocations). The
SOS transition rules of an SCChart invocation σfb

inv(ωqrz) ∈ Σfb
inv(ωqrz) are

defined as follows:

SOS transition rules of σfb
inv(ωqrz) ∈ Σfb

inv(ωqrz):

• ⟨ξ, σfb
inv⟩

TÐ↠ ⟨σfb′

inv, JkKξ, f⟩

A.4.6. Sequences in Data-Flow Oriented SCCharts

Definition A.67 (Syntax of sequences in Data-Flow Oriented SC-
Charts). The syntax of a sequence Σseq(ωscd) is defined as follows:

• Σseq(ωscd)
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1(ωqrz);
σ2(ωqrz);

⋮
σn(ωqrz);

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Definition A.68 (SOS transition rules of sequences in Data-Flow
Oriented SCCharts). The SOS transition rules of a sequence Σseq(ωscd)
are defined as follows:

•
⟨ξ, σ1⟩

TÐ↠ ⟨σ′1,D1, f1⟩ ∧ ⟨ξ, σ2⟩
TÐ↠ ⟨σ′2,D2, f2⟩

⟨ξ,{σ1;σ2}⟩
TÐ↠ ⟨{σ′1;σ′2},{D1;D2}, f1 ∧ f2⟩

A.5. Control-Flow Oriented SCCharts

A.5.1. Control-Flow Oriented SCCharts Declaration

Definition A.69 (Syntax of control-flow oriented SCChart ele-
ments). A control-flow oriented SCChart is declared as follows, assuming
fixed order of ∆idcl(ωscc), ∆vdcl(ωscc), and Σ(ωscc):

• δω(ωscc)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

scchart an(ωscc){
[∆idcl(ωscc)]
[∆vdcl(ωscc)]
region:

[Σ(ωscc)]
[region: . . .]

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

239

Appendix A: Detailed Syntax and Semantics

Definition A.70 (Semantics of control-flow oriented SCChart ele-
ments). The semantics of ωscc are defined as follows:

• Jδω(ωscc)Kξ
def= { defines a control-flow oriented SCChart ωscc with

Σ(ωscc), started at time t with initial conditions set by ∆idcl(ωscc) and
∆vdcl(ωscc) when invoked, and preserving internal state across macro
steps.

A.5.2. Abortions in control-flow oriented SCCharts

Definition A.71 (Syntax of abortions in control-flow oriented SC-
Charts). The syntax of a strong delayed abortion Σreg

abort(ωscc) and a strong
immediate abortion Σimm

abort(ωscc) is defined as follows:

• σreg
abort(ωscc)

def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1(σreg
abort(ωscc))

if λb(σreg
abort(ωscc)) abort to Σ2(σreg

abort(ωscc))
[final] state Σ2(σreg

abort(ωscc))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
de-

notes a strong delayed abortion

• σimm
abort(ωscc)

def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σimm
abort(ωscc))

immediate if λb(σimm
abort(ωscc)) abort to

Σ2(σimm
abort(ωscc))

[final] state Σ2(σimm
abort(ωscc))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

denotes

a strong immediate abortion

Definition A.72 (SOS transition rules of abortions in control-flow
oriented SCCharts). The SOS transition rules of a strong delayed abortion
Σreg
abort(ωscc) and a strong immediate abortion Σimm

abort(ωscc) are defined as
follows:

SOS transition rules of σreg
abort(ωscc) ∈ Σreg

abort(ωscc):

•
⟨ξ,Σ1⟩

TÐ↠ ⟨nothing,D1, true⟩

⟨ξ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1

if λb abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩ TÐ↠ ⟨nothing,D1, true⟩

•
⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, false⟩

⟨ξ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1

if λb abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩ TÐ↠

⟨
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ′1
immediate if λb abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,D1, false⟩

SOS transition rules of σimm
abort(ωscc) ∈ Σimm

abort(ωscc):

•
JλbKξ = true ∧ ⟨Σ2,D2, f2⟩

⟨ξ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1

immediate if λb abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩ TÐ↠ ⟨Σ′2,D2, f2⟩

240

A.5. Control-Flow Oriented SCCharts

•
JλbKξ = false ∧ ⟨ξ,Σ⟩

TÐ↠ ⟨nothing,D1, true⟩

⟨ξ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1

immediate if λb abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩ TÐ↠ ⟨nothing,D1, true⟩

•
JλbKξ = false ∧ ⟨ξ,Σ⟩

TÐ↠ ⟨Σ′1,D1, false⟩

⟨ξ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1

immediate if λb abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩ TÐ↠

⟨
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ′1
immediate if λb abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,D1, false⟩

A.5.3. Await Transitions in control-flow oriented SCCharts

Definition A.73 (Syntax and SOS transition rules of await transitions
in control-flow oriented SCCharts). The syntax of a delayed await tran-
sition Σreg

await(ωscc) and a immediate await transition Σimm
await(ωscc) is defined

as follows. The SOS transitions rules are derived from equivalent constructs:

• σreg
await(ωscc) ∶≡ σreg

abort(ωscc)
• σimm

await(ωscc) ∶≡ σimm
abort(ωscc)

A.5.4. Synchronous Concurrency in control-flow oriented SC-
Charts

Definition A.74 (Syntax of synchronous concurrency in control-flow
oriented SCCharts). The syntax of a synchronous parallel statement
Σconc(ωscc) is defined as follows:

• Σconc(ωscc)
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

region:

[Σ1(ωscc)]
region:

[Σ2(ωscc)]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Definition A.75 (SOS transition rules of synchronous concurrency
in control-flow oriented SCCharts). The SOS transition rules of a syn-
chronous parallel statement Σconc(ωscc) are defined as follows:

•
⟨ξ,Σ1⟩

TÐ↠ ⟨Σ′1,D1, f1⟩ ∧ ⟨ξ,Σ2⟩
TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,{Σ1 ∣∣ Σ2}⟩
TÐ↠ ⟨{Σ′1 ∣∣ Σ′2},{D1⋃D2}, f1 ∧ f2⟩

A.5.5. Conditions in control-flow oriented SCCharts

Definition A.76 (Syntax of conditions in control-flow oriented
SCCharts). The syntax of σit

cond(ωscc) ∈ Σit
cond(ωscc) and σite

cond(ωscc) ∈
Σite
cond(ωscc) is defined as follows:

241

Appendix A: Detailed Syntax and Semantics

• σit
cond(ωscc)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σit
cond(ωscc))

immediate if λb(σit
cond(ωscc)) go

to Σ2(σit
cond(ωscc))

immediate if !(λb(σit
cond(ωscc))) go

to Σ3(σit
cond(ωscc))

state Σ2(σit
cond(ωscc))

[...] Σ3(σit
cond(ωscc))

[final] state Σ3(σit
cond(ωscc))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• σite
cond(ωscc)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σite
cond(ωscc))

immediate if λb(σite
cond(ωscc)) go

to Σ2(σite
cond(ωscc))

immediate if !(λb(σite
cond(ωscc))) go

to Σ3(σite
cond(ωscc))

state Σ2(σite
cond(ωscc))

[...] Σ4(σite
cond(ωscc))

state Σ3(σite
cond(ωscc))

[...] Σ4(σite
cond(ωscc))

[final] state Σ4(σite
cond(ωscc))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition A.77 (SOS transition rules of conditions in control-flow
oriented SCCharts). The SOS transition rules of σit

cond(ωscc) ∈ Σit
cond(ωscc)

and σite
cond(ωscc) ∈ Σite

cond(ωscc) are defined as follows:

SOS transition rules of σit
cond(ωscc) ∈ Σit

cond(ωscc):

•

JλbKξ = true ∧ ⟨ξ,Σ2⟩
TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1

immediate if λb go

to Σ2

immediate if !(λb) go

to Σ3

state Σ2

[...] Σ3

[final] state Σ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟩ TÐ↠ ⟨{Σ′2;Σ3},D2, f2⟩

•

JλbKξ = false ∧ ⟨ξ,Σ3⟩
TÐ↠ ⟨Σ′3,D3, f3⟩

⟨ξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1

immediate if λb go

to Σ2

immediate if !(λb) go

to Σ3

state Σ2

[...] Σ3

[final] state Σ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟩ TÐ↠ ⟨Σ′3,D3, f3⟩

SOS transition rules of σite
cond(ωscc) ∈ Σite

cond(ωscc):

242

A.5. Control-Flow Oriented SCCharts

•

JλbKξ = true ∧ ⟨ξ,Σ2⟩
TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1)
immediate if λb go

to Σ2

immediate if !(λb) go

to Σ3

state Σ2

[...] Σ4

state Σ3

[...] Σ4

[final] state Σ4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟩ TÐ↠ ⟨{Σ′2;Σ4},D2, f2⟩

•

JλbKξ = false ∧ ⟨ξ,Σ3⟩
TÐ↠ ⟨Σ′3,D3, f3⟩

⟨ξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1

immediate if λb go

to Σ2

immediate if !(λb) go

to Σ3

state Σ2

[...] Σ4

state Σ3

[...] Σ4

[final] state Σ4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟩ TÐ↠ ⟨{Σ′3;Σ4},D3, f3⟩

A.5.6. Halt Statements in control-flow oriented SCCharts

Definition A.78 (Syntax and SOS transitions rules of halt state-
ments in control-flow oriented SCCharts). The syntax of halt statements
Σhalt(ωscc) is defined as follows. The SOS transitions rules are derived from
equivalent constructs [Sch09]:

• σhalt(ωscc)
def= ⇐⇒ λb(σfoot

loop (ωscc)) = true ∧ Σ1(σfoot
loop (ωscc)) =

Σpause(ωscc))

A.5.7. Loops in control-flow oriented SCCharts

Definition A.79 (Syntax of loops in control-flow oriented SCCha-
rts). The syntax of σfoot

loop (ωscc) ∈ Σfoot
loop (ωscc), σhead

loop (ωscc) ∈ Σhead
loop (ωscc), and

σinf
loop(ωscc) ∈ Σinf

loop(ωscc) is defined as follows:

243

Appendix A: Detailed Syntax and Semantics

• σfoot
loop (ωscc)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1(σfoot
loop (ωscc))

. . .

state Σn(σfoot
loop (ωscc))

immediate if λb(σfoot
loop (ωscc))

go to Σ1(σfoot
loop (ωscc))

immediate if !(λb(σfoot
loop (ωscc))

join to Σ2(σfoot
loop (ωscc))

[final] state Σ2(σfoot
loop (ωscc))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• σhead
loop (ωscc)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σi(σhead
loop (ωscc))

immediate if λb(σhead
loop (ωscc))

go to Σ1(σhead
loop (ωscc))

immediate if !(λb(σhead
loop (ωscc))

join to Σ2(σhead
loop (ωscc))

state Σ1(σhead
loop (ωscc))

. . .

state Σn(σhead
loop (ωscc))

go to Σi(σhead
loop (ωscc))

[final] state Σ2(σhead
loop (ωscc))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• σinf
loop(ωscc)

def= σfoot
loop (ωscc) ⇐⇒ λb(σfoot

loop (ωscc)) = true

Definition A.80 (SOS transition rules of loops in control-flow
oriented SCCharts). The SOS transition rules of σfoot

loop (ωscc) ∈ Σfoot
loop (ωscc)

and σhead
loop (ωscc) ∈ Σhead

loop (ωscc) are defined as follows:

SOS transition rules of σfoot
loop (ωscc) ∈ Σfoot

loop (ωscc):

244

A.5. Control-Flow Oriented SCCharts

•

⟨ξ,Σn⟩
TÐ↠ ⟨Σ′n,Dn, fn⟩

⟨ξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σ1

. . .
state Σn

immediate if λb

go to Σ1

immediate if !(λb)
join to Σ2

[final] state Σ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟩ TÐ↠

⟨{Σ′n;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σi

immediate if λb

go to Σ1

immediate if !(λb)
join to Σ2

state Σ1

. . .
state Σn

go to Σi

[final] state Σ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

},Dn, fn⟩

SOS transition rules of σhead
loop (ωscc) ∈ Σhead

loop (ωscc):

••

JλbKξ = true ∧ ⟨ξ,Σi⟩
TÐ↠ ⟨Σ′i,Di, fi⟩

⟨ξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σi

immediate if λb

go to Σ1

immediate if !(λb)
join to Σ2

state Σ1

. . .
state Σn

go to Σi

[final] state Σ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟩ TÐ↠

⟨{Σ′i;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σi

immediate if λb

go to Σ1

immediate if !(λb)
join to Σ2

state Σ1

. . .
state Σn

go to Σi

[final] state Σ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

},Di, fi⟩

245

Appendix A: Detailed Syntax and Semantics

•

JλbKξ = false ∧ ⟨ξ,Σ2⟩
TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[initial] state Σi

immediate if λb

go to Σ1

immediate if !(λb)
join to Σ2

state Σ1

. . .
state Σn

go to Σi

[final] state Σ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⟩ TÐ↠ ⟨Σ′2,D2, f2⟩

A.5.8. Immediate Transitions in control-flow oriented SCCha-
rts

Definition A.81 (Syntax of immediate transitions in control-flow ori-
ented SCCharts). The syntax of an immediate transition Σnothing(ωscc) is
defined as follows:

• σnothing(ωscc)
def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1(σnothing(ωscc))
immediate abort to Σ2(σnothing(ωscc))
[final] state Σ2(σnothing(ωscc))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Definition A.82 (SOS transition rules of immediate transitions in
control-flow oriented SCCharts). The SOS transition rules of an imme-
diate transition Σnothing(ωscc) are defined as follows:

•

⟨ξ,Σ2⟩
TÐ↠ ⟨Σ′2,D2, f2⟩

⟨ξ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[initial] state Σ1

immediate abort to Σ2

[final] state Σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩ TÐ↠ ⟨Σ′2,D2, f2⟩

A.5.9. Pause Statements in control-flow oriented SCCharts

Definition A.83 (Syntax and SOS transition rules of pause state-
ments in control-flow oriented SCCharts). The syntax of pause state-
ments Σpause(ωscc) is defined as follows. The SOS transitions rules are derived
from equivalent constructs:

• σpause(ωscc) ∶≡ σreg
await(ωscc) ⇐⇒ λb(σreg

await(ωscc)) = true

A.5.10. Sequences in control-flow oriented SCCharts

Definition A.84 (Syntax of sequences in control-flow oriented SC-
Charts). The syntax of a sequence Σseq(ωscc) is defined as follows:

• Σseq(ωscc)
def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

initial state σi(σseq(ωscc))
immediate [go|join] to σj(σseq(ωscc))
[final] state σj(σseq(ωscc))

⎫⎪⎪⎪⎬⎪⎪⎪⎭

246

A.5. Control-Flow Oriented SCCharts

Definition A.85 (SOS transition rules of sequences in control-flow
oriented SCCharts). The SOS transition rules of a sequence Σseq(ωscc) are
defined as follows:

•
⟨ξ, σ1⟩

TÐ↠ ⟨σ′1,D1, f1⟩ ∧ ⟨ξ, σ2⟩
TÐ↠ ⟨σ′2,D2, f2⟩

⟨ξ,{σ1;σ2}⟩
TÐ↠ ⟨{σ′1;σ′2},{D1;D2}, f1 ∧ f2⟩

247

Appendix B
ST Model Examples

1 PROGRAM ST_TWO_OF_THREE

2 VAR_INPUT

3 xB1_Temp : BOOL;

4 xB2_Temp : BOOL;

5 xB3_Temp : BOOL;

6 END_VAR

7 VAR_OUTPUT

8 xP1_Temp : BOOL;

9 END_VAR

10

11 xP1_Temp := xB1_Temp AND xB2_Temp OR xB1_Temp AND xB3_Temp OR xB2_Temp

AND xB3_Temp;

12 END_PROGRAM

Listing B.1: ST Model: ST TWO OF THREE

1 FUNCTION ST_ALARM : BOOL

2 VAR_INPUT

3 xSENSOR_L : BOOL;

4 xSENSOR_M : BOOL;

5 xSENSOR_R : BOOL;

6 END_VAR

7

8 ST_ALARM := (NOT xSENSOR_L AND NOT xSENSOR_M AND NOT xSENSOR_R) OR (

xSENSOR_L AND xSENSOR_R);

9 END_FUNCTION

Listing B.2: ST Model: ST ALARM

1 FUNCTION ST_SCALE : REAL

2 VAR_INPUT

3 iX : INT;

4 rY_MAX : REAL;

5 rY_MIN : REAL;

6 END_VAR

7

8 ST_SCALE := (rY_MAX - rY_MIN) / 32760.0 * iX + rY_MIN;

9 END_FUNCTION

Listing B.3: ST Model: ST SCALE

1 FUNCTION_BLOCK ST_AVAL_PROC

2 VAR

3 rPressure : REAL;

249

Appendix B: ST Model Examples

4 iPressure_Per : INT;

5 END_VAR

6

7 ST_SCALE(iX := iPressure_Per, rY_MAX := 10.0, rY_MIN := 6.0, ST_SCALE

=> rPressure);

8 END_FUNCTION_BLOCK

Listing B.4: ST Model: ST AVAL PROC

1 FUNCTION_BLOCK ST_OP_ARITH

2 VAR

3 x01 : REAL;

4 x02 : REAL;

5 x03 : REAL;

6 x04 : REAL;

7 x05 : REAL;

8 x06 : REAL;

9 x1 : REAL := 1.0;

10 x2 : REAL := 2.0;

11 x3 : INT := 1;

12 x4 : INT := 2;

13 END_VAR

14

15 x01 := x1 + x2;

16 x02 := x1 - x2;

17 x03 := x1 * x2;

18 x04 := x1 / x2;

19 x05 := EXPT(x1, x2);

20 x06 := x3 MOD x4;

21 END_FUNCTION_BLOCK

Listing B.5: ST Model: ST OP ARITH

1 FUNCTION_BLOCK ST_OP_BOOL

2 VAR

3 x01 : BOOL;

4 x02 : BOOL;

5 x03 : BOOL;

6 x04 : BOOL;

7 x1 : BOOL := TRUE;

8 x2 : BOOL := FALSE;

9 END_VAR

10

11 x01 := NOT x1;

12 x02 := x1 AND x2;

13 x03 := x1 OR x2;

14 x04 := x1 XOR x2;

15 END_FUNCTION_BLOCK

Listing B.6: ST Model: ST OP BOOL

1 PROGRAM ST_COMPENS

2 VAR

3 rQ : REAL := 1500.0;

4 xQ1 : BOOL;

5 xQ2 : BOOL;

6 xQ3 : BOOL;

7 END_VAR

8

9 IF rQ < 1000.0 THEN

10 xQ3 := FALSE;

11 xQ2 := FALSE;

12 xQ1 := FALSE;

13 END_IF;

14 IF rQ >= 1000.0 THEN

250

Appendix B: ST Model Examples

15 xQ3 := FALSE;

16 xQ2 := FALSE;

17 xQ1 := TRUE;

18 END_IF;

19 IF rQ >= 2000.0 THEN

20 xQ3 := FALSE;

21 xQ2 := TRUE;

22 xQ1 := TRUE;

23 END_IF;

24 IF rQ > 3000.0 THEN

25 xQ3 := TRUE;

26 xQ2 := TRUE;

27 xQ1 := TRUE;

28 END_IF;

29 END_PROGRAM

Listing B.7: ST Model: ST COMPENS

1 FUNCTION_BLOCK ST_COND

2 VAR

3 x0 : BOOL;

4 x1 : BOOL := TRUE;

5 x2 : BOOL := TRUE;

6 END_VAR

7

8 IF x1 THEN

9 x2 := TRUE;

10 END_IF;

11 IF x1 THEN

12 x0 := TRUE;

13 ELSE

14 x0 := FALSE;

15 END_IF;

16 END_FUNCTION_BLOCK

Listing B.8: ST Model: ST COND

1 FUNCTION_BLOCK ST_DATATYPES

2 VAR

3 A1 : BOOL;

4 A2 : BOOL := TRUE;

5 A3 : BYTE;

6 A4 : WORD;

7 A5 : INT;

8 A6 : INT := 2;

9 A7 : DINT;

10 A8 : DINT := 2;

11 A9 : UINT;

12 A10 : UINT := 2;

13 A11 : UDINT;

14 A12 : UDINT := 2;

15 A13 : REAL;

16 A14 : REAL := 1.23;

17 A15 : TIME;

18 A16 : TIME := T#5000 MS;

19 A17 : ARRAY [1..2] OF BOOL;

20 A18 : ARRAY [1..2] OF BYTE;

21 A19 : ARRAY [1..2] OF WORD;

22 A20 : ARRAY [1..2] OF INT;

23 A21 : ARRAY [1..2] OF DINT;

24 A22 : ARRAY [1..2] OF UINT;

25 A23 : ARRAY [1..2] OF UDINT;

26 A24 : ARRAY [1..2] OF REAL;

27 A25 : ARRAY [1..2] OF TIME;

28 END_VAR

251

Appendix B: ST Model Examples

29 END_FUNCTION_BLOCK

Listing B.9: ST Model: ST DATATYPES

1 FUNCTION_BLOCK ST_DEBOUNCE

2 VAR_INPUT

3 IN : BOOL;

4 DB_TIME : TIME;

5 END_VAR

6 VAR_OUTPUT

7 OUT : BOOL;

8 ET_OFF : TIME;

9 END_VAR

10 VAR

11 DB_ON : TON;

12 DB_OFF : TON;

13 DB_FF : SR;

14 END_VAR

15

16 DB_ON(IN := IN, PT := DB_TIME);

17 DB_OFF(IN := NOT IN, PT := DB_TIME);

18 ET_OFF := DB_OFF.ET;

19 DB_FF (SET1:= DB_ON.Q, RESET := DB_OFF.Q);

20 OUT := DB_FF.Q1;

21 END_FUNCTION_BLOCK

Listing B.10: ST Model: ST DEBOUNCE

1 FUNCTION_BLOCK ST_ASS_DEL

2 VAR

3 x0 : INT := 2;

4 y0 : INT := 1;

5 END_VAR

6

7 y0 := y0 + x0;

8 END_FUNCTION_BLOCK

Listing B.11: ST Model: ST ASS DEL

1 FUNCTION_BLOCK ST_OP_IN_EQ

2 VAR

3 x0 : BOOL;

4 x1 : BOOL := TRUE;

5 x2 : BOOL := FALSE;

6 END_VAR

7

8 x0 := x1 = x2;

9 x0 := x1 <> x2;

10 END_FUNCTION_BLOCK

Listing B.12: ST Model: ST OP IN EQ

1 FUNCTION_BLOCK ST_LOOP_FOOT

2 VAR_OUTPUT

3 y : INT;

4 END_VAR

5 VAR

6 x0 : INT := 0;

7 x1 : INT := 1;

8 x2 : INT := 2;

9 i : INT;

10 i0 : INT := 0;

11 i1 : INT := 10;

12 END_VAR

252

Appendix B: ST Model Examples

13

14 i := i0;

15 REPEAT

16 y := x0;

17 i := i + x2;

18 UNTIL i > i1

19 END_REPEAT;

20 y := x1;

21 END_FUNCTION_BLOCK

Listing B.13: ST Model: ST LOOP FOOT

1 FUNCTION_BLOCK ST_LOOP_HEAD

2 VAR_OUTPUT

3 y : INT;

4 END_VAR

5 VAR

6 x1 : INT := 1;

7 x2 : INT := 2;

8 i : INT;

9 i0 : INT := 0;

10 i1 : INT := 10;

11 END_VAR

12

13 i := i0;

14 WHILE i <= i1 DO

15 y := i;

16 i := i + x2;

17 END_WHILE;

18 y := x1;

19 END_FUNCTION_BLOCK

Listing B.14: ST Model: ST LOOP HEAD

1 FUNCTION_BLOCK ST_ASS_IMM1

2 VAR

3 x : INT := 2;

4 y : INT := 2;

5 x0 : INT := 2;

6 y0 : INT;

7 y1 : INT;

8 x1 : INT;

9 END_VAR

10

11 y := x;

12 y0 := x0;

13 y1 := x1;

14 END_FUNCTION_BLOCK

Listing B.15: ST Model: ST ASS IMM1

1 FUNCTION_BLOCK ST_ASS_IMM2

2 VAR

3 x0 : INT := 2;

4 x1 : INT := 2;

5 x2 : INT := 2;

6 y0 : INT;

7 y1 : INT;

8 y2 : INT := 2;

9 END_VAR

10

11 y0 := x0;

12 y1 := x1;

13 y0 := x2;

14

253

Appendix B: ST Model Examples

15 y2 := x0;

16 y2 := x1;

17

18 y0 := x0;

19 x0 := y0 + x1;

20 END_FUNCTION_BLOCK

Listing B.16: ST Model: ST ASS IMM2

1 FUNCTION ST_ASS_IMM_OUT : BOOL

2 VAR_INPUT

3 x : INT;

4 END_VAR

5 VAR_OUTPUT

6 y: INT;

7 END_VAR

8

9 y := x;

10 ST_ASS_IMM_OUT := TRUE;

11 END_FUNCTION

Listing B.17: ST Model: ST ASS IMM OUT

1 FUNCTION_BLOCK ST_ASS_IMM3

2 VAR

3 y1: INT;

4 y2: BOOL;

5 END_VAR

6

7 ST_ASS_IMM_OUT(x := 4, y => y1, ST_ASS_IMM_OUT => y2);

8 END_FUNCTION_BLOCK

Listing B.18: ST Model: ST ASS IMM3

1 FUNCTION ST_LEFT1 : BOOL

2 VAR_INPUT

3 xSENSOR_L : BOOL;

4 xSENSOR_R : BOOL;

5 END_VAR

6

7 ST_LEFT1 := xSENSOR_L AND NOT xSENSOR_R;

8 END_FUNCTION

Listing B.19: ST Model: ST LEFT1

1 FUNCTION_BLOCK ST_OP_NUM_REL

2 VAR

3 x0 : BOOL;

4 x1 : INT := 1;

5 x2 : INT := 2;

6 END_VAR

7

8 x0 := x1 < x2;

9 x0 := x1 <= x2;

10 x0 := x1 > x2;

11 x0 := x1 >= x2;

12 END_FUNCTION_BLOCK

Listing B.20: ST Model: ST OP NUM REL

1 FUNCTION_BLOCK ST_TOF

2 VAR_INPUT

3 CLK: TIME;

4 IN: BOOL;

254

Appendix B: ST Model Examples

5 PT: TIME;

6 END_VAR

7 VAR_OUTPUT

8 Q1: BOOL := FALSE;

9 ET: TIME;

10 END_VAR

11 VAR

12 ETTIME: TIME;

13 TSTART: TIME;

14 LASTIN: BOOL;

15 Q1_Temp1: BOOL;

16 END_VAR

17

18 IF (IN <> LASTIN) THEN

19 LASTIN := IN;

20 IF IN THEN

21 TSTART := CLK;

22 ELSE

23 TSTART := T#0MS;

24 END_IF;

25 Q1_Temp1 := TRUE;

26 Q1 := Q1_Temp1;

27 ET := T#0MS;

28 ELSE

29 IF ((NOT IN) AND Q1_Temp1) THEN

30 ETTIME := CLK - TSTART;

31 IF (ETTIME < PT) THEN

32 ET := ETTIME;

33 ELSE

34 Q1_Temp1 := FALSE;

35 Q1 := Q1_Temp1;

36 ET := PT;

37 END_IF;

38 END_IF;

39 END_IF;

40 END_FUNCTION_BLOCK

Listing B.21: ST Model: ST TOF

1 FUNCTION_BLOCK ST_TON

2 VAR_INPUT

3 CLK: TIME;

4 IN: BOOL;

5 PT: TIME;

6 END_VAR

7 VAR_OUTPUT

8 Q1: BOOL := FALSE;

9 ET: TIME;

10 END_VAR

11 VAR

12 ETTIME: TIME;

13 TSTART: TIME;

14 LASTIN: BOOL;

15 Q1_Temp1: BOOL;

16 END_VAR

17

18 IF (IN <> LASTIN) THEN

19 LASTIN := IN;

20 IF IN THEN

21 TSTART := CLK;

22 ELSE

23 TSTART := T#0MS;

24 END_IF;

25 Q1_Temp1 := FALSE;

26 Q1 := Q1_Temp1;

27 ET := T#0MS;

255

Appendix B: ST Model Examples

28 ELSE

29 IF (IN AND (NOT Q1_Temp1)) THEN

30 ETTIME := CLK - TSTART;

31 IF (ETTIME < PT) THEN

32 ET := ETTIME;

33 ELSE

34 Q1_Temp1 := TRUE;

35 Q1 := Q1_Temp1;

36 ET := PT;

37 END_IF;

38 END_IF;

39 END_IF;

40 END_FUNCTION_BLOCK

Listing B.22: ST Model: ST TON

1 FUNCTION_BLOCK ST_RS

2 VAR_INPUT

3 SET: BOOL;

4 RESET1: BOOL;

5 END_VAR

6 VAR_OUTPUT

7 Q1: BOOL;

8 END_VAR

9 VAR

10 Q1_Tmp: BOOL;

11 END_VAR

12

13 Q1_Tmp := (SET OR Q1_Tmp) AND (NOT RESET1);

14 Q1 := Q1_Tmp;

15 END_FUNCTION_BLOCK

Listing B.23: ST Model: ST RS

1 FUNCTION ST_RIGHT1 : BOOL

2 VAR_INPUT

3 xSENSOR_L : BOOL;

4 xSENSOR_R : BOOL;

5 END_VAR

6

7 ST_RIGHT1 := NOT xSENSOR_L AND xSENSOR_R;

8 END_FUNCTION

Listing B.24: ST Model: ST RIGHT1

1 FUNCTION_BLOCK ST_SR

2 VAR_INPUT

3 SET1 : BOOL;

4 RESET : BOOL;

5 END_VAR

6 VAR_OUTPUT

7 Q1 : BOOL;

8 END_VAR

9 VAR

10 Q1_Tmp : BOOL;

11 END_VAR

12

13 Q1_Tmp := SET1 OR (Q1_Tmp AND (NOT RESET));

14 Q1 := Q1_Tmp;

15 END_FUNCTION_BLOCK

Listing B.25: ST Model: ST SR

256

Appendix B: ST Model Examples

1 FUNCTION ST_SIMPLE_FUN : REAL

2 VAR_INPUT

3 A1 : REAL;

4 B1 : REAL;

5 C1 : REAL := 1.0;

6 END_VAR

7 VAR_IN_OUT

8 COUNT : INT;

9 END_VAR

10 VAR

11 COUNTP1 : INT;

12 END_VAR

13

14 COUNTP1 := COUNT + 1;

15 COUNT := COUNTP1;

16 ST_SIMPLE_FUN := (A1 * B1) / C1;

17 END_FUNCTION

Listing B.26: ST Model: ST SIMPLE FUN

1 PROGRAM ST_SIMPLE_PRG1

2 VAR_INPUT

3 PRG_IN : BOOL;

4 PRG_A : REAL;

5 PRG_B : REAL;

6 PRG_C : REAL;

7 END_VAR

8 VAR_OUTPUT

9 PRG_OUT1 : BOOL;

10 PRG_OUT2 : REAL := 1.0;

11 PRG_ET_OFF : TIME;

12 END_VAR

13 VAR

14 DEBOUNCE_01 : ST_DEBOUNCE;

15 PRG_COUNT : INT := 4;

16 END_VAR

17

18 DEBOUNCE_01(IN := PRG_IN, DB_TIME := T#2000MS, OUT => PRG_OUT1, ET_OFF

=> PRG_ET_OFF);

19 ST_SIMPLE_FUN(A1 := PRG_A + 2.0, B1 := PRG_B, C1 := PRG_C, COUNT :=

PRG_COUNT, ST_SIMPLE_FUN => PRG_OUT2);

20 END_PROGRAM

Listing B.27: ST Model: ST SIMPLE PRG1

1 PROGRAM ST_TANK_CTRL

2 VAR

3 S1 : BOOL;

4 B1 : BOOL;

5 B2 : BOOL;

6 P1 : BOOL;

7 M1 : BOOL;

8 M2 : BOOL;

9 END_VAR

10

11 P1 := S1;

12 IF NOT B1 THEN

13 M1 := TRUE;

14 M2 := TRUE;

15 END_IF;

16 IF B2 OR NOT S1 THEN

17 M1 := FALSE;

18 M2 := FALSE;

19 END_IF;

257

Appendix B: ST Model Examples

20 END_PROGRAM

Listing B.28: ST Model: ST TANK CTRL

1 PROGRAM ST_TRACK_CORR

2 VAR_INPUT

3 B1 : BOOL;

4 B2 : BOOL;

5 B3 : BOOL;

6 END_VAR

7 VAR_OUTPUT

8 P1_Alarm : BOOL;

9 K1_Left : BOOL;

10 K2_Right : BOOL;

11 END_VAR

12 VAR

13 Tmp1 : BOOL;

14 Tmp2 : BOOL;

15 Tmp3 : BOOL;

16 END_VAR

17

18 ST_ALARM(xSENSOR_L := B1, xSENSOR_M := B2, xSENSOR_R := B3, ST_ALARM

=> Tmp1);

19 P1_Alarm := Tmp1;

20 ST_LEFT1(xSENSOR_L := B1, xSENSOR_R := B3, ST_LEFT1 => Tmp2);

21 K1_Left := Tmp2;

22 ST_RIGHT1(xSENSOR_L := B1, xSENSOR_R := B3, ST_RIGHT1 => Tmp3);

23 K2_Right := Tmp3;

24 END_PROGRAM

Listing B.29: ST Model: ST TRACK CORR

1 PROGRAM ST_TWO_PCTRL

2 VAR

3 usiS : UINT := 150;

4 usiH : UINT := 200;

5 usiOn : UINT;

6 usiOff : UINT;

7 xOut : BOOL;

8 END_VAR

9 END_PROGRAM

10

11 IF usiS > 200 OR usiS < 100 THEN

12 usiS := 150;

13 END_IF;

14 usiOn := usiS - 25;

15 usiOff := usiS + 25;

16 IF usiH > usiOff THEN

17 xOut := FALSE;

18 END_IF;

19 IF usiH < usiOn THEN

20 xOut := TRUE;

21 END_IF;

22 END_PROGRAM

Listing B.30: ST Model: ST TWO PCTRL (USINT data type designed as UINT)

258

Appendix C
Resulting ST-Based Quartz Models

1 module ST_TWO_OF_THREE(

2 event bool ?EI,

3 event bool !EO,

4 bool ?xB1_Temp,

5 bool ?xB2_Temp,

6 bool ?xB3_Temp,

7 bool !xP1_Temp){

8

9 loop{

10 immediate await(EI);

11

12 xP1_Temp = ((xB1_Temp&xB2_Temp)|(xB1_Temp&xB3_Temp)|(xB2_Temp&

xB3_Temp));

13

14 emit(EO); pause;

15 }

16 }

Listing C.1: Quartz Model: ST TWO OF THREE

1 module ST_ALARM(

2 bool ?xSENSOR_L,

3 bool ?xSENSOR_M,

4 bool ?xSENSOR_R,

5 bool !ST_ALARM){

6

7 ST_ALARM = (!(xSENSOR_L)&!(xSENSOR_M)&!(xSENSOR_R))|(xSENSOR_L&

xSENSOR_R);

8 }

Listing C.2: Quartz Model: ST ALARM

1 module ST_SCALE(

2 int {32768} ?iX,

3 real ?rY_MAX,

4 real ?rY_MIN,

5 real !ST_SCALE){

6

7 ST_SCALE = (rY_MAX - rY_MIN) / 32760.0 * iX + rY_MIN;

8 }

Listing C.3: Quartz Model: ST SCALE

259

Appendix C: Resulting ST-Based Quartz Models

1 import ST_SCALE .*;

2

3 module ST_AVAL_PROC(

4 event bool ?EI,

5 event bool !EO){

6

7 real rPressure;

8 int {32768} iPressure_Per;

9 real ST_SCALE_l1;

10

11

12 loop{

13 immediate await(EI);

14

15 ST_SCALE(iPressure_Per, 10.0, 6.0, ST_SCALE_l1);

16 rPressure = ST_SCALE_l1;

17

18 emit(EO); pause;

19 }

20 }

Listing C.4: Quartz Model: ST AVAL PROC

1 module ST_OP_ARITH(

2 event bool ?EI,

3 event bool !EO){

4

5 real x01;

6 real x02;

7 real x03;

8 real x04;

9 real x05;

10 real x06;

11 real x1;

12 real x2;

13 int {32768} x3;

14 int {32768} x4;

15

16 x1 = 1.0;

17 x2 = 2.0;

18 x3 = 1;

19 x4 = 2;

20 pause;

21

22 loop{

23 immediate await(EI);

24

25 x01 = x1 + x2;

26 x02 = x1 - x2;

27 x03 = x1 * x2;

28 x04 = x1 / x2;

29 x05 = exp(x1, x2);

30 x06 = x3 % x4;

31

32 emit(EO); pause;

33 }

34 }

Listing C.5: Quartz Model: ST OP ARITH

1 module ST_OP_BOOL(

2 event bool ?EI,

3 event bool !EO){

4

5 bool x01;

260

Appendix C: Resulting ST-Based Quartz Models

6 bool x02;

7 bool x03;

8 bool x04;

9 bool x1;

10 bool x2;

11

12 x1 = true;

13 x2 = false;

14 pause;

15

16 loop{

17 immediate await(EI);

18

19 x01 = !(x1);

20 x02 = x1 & x2;

21 x03 = x1 | x2;

22 x04 = x1 ^ x2;

23

24 emit(EO); pause;

25 }

26 }

Listing C.6: Quartz Model: ST OP BOOL

1 module ST_COMPENS(

2 event bool ?EI,

3 event bool !EO){

4

5 real rQ;

6 bool xQ1;

7 bool xQ2;

8 bool xQ3;

9

10 rQ = 1500.0;

11 pause;

12

13 loop{

14 immediate await(EI);

15

16 if(rQ < 1000.0){

17 xQ3 = false;

18 xQ2 = false;

19 xQ1 = false;

20 }

21

22 if(rQ >= 1000.0){

23 xQ3 = false;

24 xQ2 = false;

25 xQ1 = true;

26 }

27

28 if(rQ >= 2000.0){

29 xQ3 = false;

30 xQ2 = true;

31 xQ1 = true;

32 }

33

34 if(rQ > 3000.0){

35 xQ3 = true;

36 xQ2 = true;

37 xQ1 = true;

38 }

39

40 emit(EO); pause;

41 }

261

Appendix C: Resulting ST-Based Quartz Models

42 }

Listing C.7: Quartz Model: ST COMPENS

1 module ST_COND(

2 event bool ?EI,

3 event bool !EO){

4

5 bool x0;

6 bool x1;

7 bool x2;

8

9 x1 = true;

10 x2 = true;

11 pause;

12

13 loop{

14 immediate await(EI);

15

16 if(x1){

17 x2 = true;

18 }

19

20 if(x1){

21 x0 = true;

22 }else{

23 x0 = false;

24 }

25

26 emit(EO); pause;

27 }

28 }

Listing C.8: Quartz Model: ST COND

1 module ST_DATATYPES(

2 event bool ?EI,

3 event bool !EO){

4

5 bool A1;

6 bool A2;

7 bv{16} A3;

8 bv{32} A4;

9 int {32768} A5;

10 int {32768} A6;

11 int {2147483648} A7;

12 int {2147483648} A8;

13 nat {65536} A9;

14 nat {65536} A10;

15 nat {4294967296} A11;

16 nat {4294967296} A12;

17 real A13;

18 real A14;

19 nat A15;

20 nat A16;

21 [3] bool A17;

22 [3]bv{16} A18;

23 [3]bv{32} A19;

24 [3] int {32768} A20;

25 [3] int {2147483648} A21;

26 [3] nat {65536} A22;

27 [3] nat {4294967296} A23;

28 [3] real A24;

29 [3] nat A25;

30

262

Appendix C: Resulting ST-Based Quartz Models

31 A2 = true;

32 A6 = 2;

33 A8 = 2;

34 A10 = 2;

35 A12 = 2;

36 A14 = 1.23;

37 A16 = 5000;

38 pause;

39

40 loop{

41 immediate await(EI);

42 emit(EO); pause;

43 }

44 }

Listing C.9: Quartz Model: ST DATATYPES

1 import TON.*;

2 import SR.*;

3

4 module ST_DEBOUNCE(

5 event bool ?EI,

6 event bool !EO,

7 nat ?CLK,

8 bool ?IN,

9 nat ?DB_TIME,

10 bool !OUT,

11 nat !ET_OFF){

12

13 event bool DB_ON_EI;

14 event bool DB_ON_EO;

15 event bool DB_OFF_EI;

16 event bool DB_OFF_EO;

17 event bool DB_FF_EI;

18 event bool DB_FF_EO;

19

20 bool DB_ON_Q;

21 bool DB_OFF_Q;

22 bool DB_FF_Q1;

23 nat DB_ON_ET;

24 nat DB_OFF_ET;

25

26 loop{

27 immediate await(EI);

28

29 emit(DB_ON_EI);

30 immediate await(DB_ON_EO);

31

32 emit(DB_OFF_EI);

33 immediate await(DB_OFF_EO);

34

35 ET_OFF = DB_OFF_ET;

36

37 emit(DB_FF_EI);

38 immediate await(DB_FF_EO);

39

40 OUT = DB_FF_Q1;

41

42 emit(EO);

43 pause;

44 }

45 || DB_ON:TON(DB_ON_EI, DB_ON_EO, CLK,

46 IN, DB_TIME,

47 DB_ON_Q, DB_ON_ET);

48 || DB_OFF:TON(DB_OFF_EI, DB_OFF_EO, CLK,

49 !(IN),

263

Appendix C: Resulting ST-Based Quartz Models

50 DB_TIME,

51 DB_OFF_Q, DB_OFF_ET);

52 || DB_FF:SR(DB_FF_EI, DB_FF_EO,

53 DB_ON_Q,

54 DB_OFF_Q, DB_FF_Q1);

55 }

Listing C.10: Quartz Model: ST DEBOUNCE

1 module ST_ASS_DEL(

2 event bool ?EI,

3 event bool !EO){

4

5 int {32768} x0;

6 int {32768} y0;

7

8 x0 = 2;

9 y0 = 1;

10 pause;

11

12 loop{

13 immediate await(EI);

14

15 next(y0) = y0 + x0;

16 pause;

17

18 emit(EO); pause;

19 }

20 }

Listing C.11: Quartz Model: ST ASS DEL

1 module ST_OP_IN_EQ(

2 event bool ?EI,

3 event bool !EO){

4

5 bool x0;

6 bool x1;

7 bool x2;

8

9 x1 = true;

10 x2 = false;

11 pause;

12

13 loop{

14 immediate await(EI);

15

16 x0 = x1 == x2;

17 pause;

18 x0 = x1 != x2;

19

20 emit(EO); pause;

21 }

22 }

Listing C.12: Quartz Model: ST OP IN EQ

1 module ST_LOOP_FOOT(

2 event bool ?EI,

3 event bool !EO,

4 int {32768} !y){

5

6 int {32768} x0;

7 int {32768} x1;

8 int {32768} x2;

264

Appendix C: Resulting ST-Based Quartz Models

9 int {32768} i;

10 int {32768} i0;

11 int {32768} i1;

12

13 x0 = 0;

14 x1 = 1;

15 x2 = 2;

16 i0 = 0;

17 i1 = 10;

18 pause;

19

20 loop{

21 immediate await(EI);

22

23 i = i0;

24 do{

25 y = x0;

26 next(i) = i + x2;

27 pause;

28 }while (!(i > i1));

29 y = x1;

30

31 emit(EO); pause;

32 }

33 }

Listing C.13: Quartz Model: ST LOOP FOOT

1 module ST_LOOP_HEAD(

2 event bool ?EI,

3 event bool !EO,

4 int {32768} !y){

5

6 int {32768} x1;

7 int {32768} x2;

8 int {32768} i;

9 int {32768} i0;

10 int {32768} i1;

11

12 x1 = 1;

13 x2 = 2;

14 i0 = 0;

15 i1 = 10;

16 pause;

17

18 loop{

19 immediate await(EI);

20

21 i = i0;

22 while(i <= i1){

23 y = i;

24 next(i) = i + x2;

25 pause;

26 }

27 y = x1;

28

29 emit(EO); pause;

30 }

31 }

Listing C.14: Quartz Model: ST LOOP HEAD

1 module ST_ASS_IMM1(

2 event bool ?EI,

3 event bool !EO){

265

Appendix C: Resulting ST-Based Quartz Models

4

5 int {32768} x;

6 int {32768} y;

7 int {32768} x0;

8 int {32768} y0;

9 int {32768} y1;

10 int {32768} x1;

11

12 x = 2;

13 y = 2;

14 x0 = 2;

15 pause;

16

17 loop{

18 immediate await(EI);

19

20 y = x;

21 y0 = x0;

22 y1 = x1;

23

24 emit(EO); pause;

25 }

26 }

Listing C.15: Quartz Model: ST ASS IMM1

1 module ST_ASS_IMM2(

2 event bool ?EI,

3 event bool !EO){

4

5 int {32768} x0;

6 int {32768} x1;

7 int {32768} x2;

8 int {32768} y0;

9 int {32768} y1;

10 int {32768} y2;

11

12 x0 = 2;

13 x1 = 2;

14 x2 = 2;

15 y2 = 2;

16 pause;

17

18 loop{

19 immediate await(EI);

20

21 y0 = x0;

22 y1 = x1;

23 pause;

24 y0 = x2;

25

26 y2 = x0;

27 pause;

28 y2 = x1;

29

30 y0 = x0;

31 pause;

32 x0 = y0 + x1;

33

34 emit(EO); pause;

35 }

36 }

Listing C.16: Quartz Model: ST ASS IMM2

266

Appendix C: Resulting ST-Based Quartz Models

1 module ST_ASS_IMM_OUT(

2 int {32768} ?x,

3 int {32768} !y,

4 bool !ST_ASS_IMM_OUT){

5

6 y = x;

7 ST_ASS_IMM_OUT = true;

8 }

Listing C.17: Quartz Model: ST ASS IMM OUT

1 import ST_ASS_IMM_OUT .*;

2

3 module ST_ASS_IMM3(

4 event bool ?EI,

5 event bool !EO){

6

7 int {32768} y1;

8 bool y2;

9 int {32768} ST_ASS_IMM_OUT_y_l1;

10 bool ST_ASS_IMM_OUT_l1;

11

12 loop{

13 immediate await(EI);

14

15 ST_ASS_IMM_OUT (4, ST_ASS_IMM_OUT_y_l1, ST_ASS_IMM_OUT_l1);

16 y1 = ST_ASS_IMM_OUT_y_l1;

17 y2 = ST_ASS_IMM_OUT_l1;

18

19 emit(EO); pause;

20 }

21 }

Listing C.18: Quartz Model: ST ASS IMM3

1 module ST_LEFT1(

2 bool ?xSENSOR_L,

3 bool ?xSENSOR_R,

4 bool !ST_LEFT1){

5

6 ST_LEFT1 = (xSENSOR_L & !(xSENSOR_R));

7 }

Listing C.19: Quartz Model: ST LEFT1

1 module ST_OP_NUM_REL(

2 event bool ?EI,

3 event bool !EO){

4

5 bool x0;

6 int {32768} x1;

7 int {32768} x2;

8

9 x1 = 1;

10 x2 = 2;

11 pause;

12

13 loop{

14 immediate await(EI);

15

16 x0 = x1 < x2;

17 pause;

18 x0 = x1 <= x2;

19 pause;

20 x0 = x1 > x2;

267

Appendix C: Resulting ST-Based Quartz Models

21 pause;

22 x0 = x1 >= x2;

23

24 emit(EO); pause;

25 }

26 }

Listing C.20: Quartz Model: ST OP NUM REL

1 module ST_TOF(

2 event bool ?EI,

3 event bool !EO,

4 nat ?CLK,

5 bool ?IN,

6 nat ?PT,

7 bool !Q1,

8 nat !ET){

9

10 nat ETTIME;

11 nat TSTART;

12 bool LASTIN;

13 bool Q1_Temp1;

14

15 Q1 = false;

16 pause;

17

18 loop{

19 immediate await(EI);

20

21 if(IN != LASTIN){

22 next(LASTIN) = IN;

23 pause;

24 if(IN){

25 TSTART = CLK;

26 }else{

27 TSTART = 0;

28 }

29 Q1_Temp1 = true;

30 Q1 = Q1_Temp1;

31 ET = 0;

32 }

33 else{

34 if(!(IN) & Q1_Temp1){

35 ETTIME = CLK - TSTART;

36 if(ETTIME < PT){

37 ET = ETTIME;

38 }else{

39 next(Q1_Temp1) = false;

40 pause;

41 Q1 = Q1_Temp1;

42 ET = PT;

43 }

44 }

45 }

46

47 emit(EO); pause;

48 }

49 }

Listing C.21: Quartz Model: ST TOF

1 module ST_TON(

2 event bool ?EI,

3 event bool !EO,

4 nat ?CLK,

268

Appendix C: Resulting ST-Based Quartz Models

5 bool ?IN,

6 nat ?PT,

7 bool !Q1,

8 nat !ET){

9

10 nat ETTIME;

11 nat TSTART;

12 bool LASTIN;

13 bool Q1_Temp1;

14

15 Q1 = false;

16 pause;

17

18 loop{

19 immediate await(EI);

20

21 if(IN != LASTIN){

22 next(LASTIN) = IN;

23 pause;

24 if(IN){

25 TSTART = CLK;

26 }else{

27 TSTART = 0;

28 }

29 Q1_Temp1 = false;

30 Q1 = Q1_Temp1;

31 ET = 0;

32 }

33 else{

34 if(IN & !(Q1_Temp1)){

35 ETTIME = CLK - TSTART;

36 if(ETTIME < PT){

37 ET = ETTIME;

38 }else{

39 next(Q1_Temp1) = true;

40 pause;

41 Q1 = Q1_Temp1;

42 ET = PT;

43 }

44 }

45 }

46

47 emit(EO); pause;

48 }

49 }

Listing C.22: Quartz Model: ST TON

1 module ST_RS(

2 event bool ?EI,

3 event bool !EO,

4 bool ?SET,

5 bool ?RESET1,

6 bool !Q1){

7

8 bool Q1_Tmp;

9

10 loop{

11 immediate await(EI);

12

13 next(Q1_Tmp) = (SET | Q1_Tmp) & !(RESET1);

14 pause;

15 Q1 = Q1_Tmp;

16

17 emit(EO); pause;

18 }

269

Appendix C: Resulting ST-Based Quartz Models

19 }

Listing C.23: Quartz Model: ST RS

1 module ST_RIGHT1(

2 bool ?xSENSOR_L,

3 bool ?xSENSOR_R,

4 bool !ST_RIGHT1){

5

6 ST_RIGHT1 = (!(xSENSOR_L) & xSENSOR_R);

7 }

Listing C.24: Quartz Model: ST RIGHT1

1 module ST_SR(

2 event bool ?EI,

3 event bool !EO,

4 bool ?SET1,

5 bool ?RESET,

6 bool !Q1){

7

8 bool Q1_Tmp;

9

10 loop{

11 immediate await(EI);

12

13 next(Q1_Tmp) = SET1 | (Q1_Tmp & !(RESET));

14 pause;

15 Q1 = Q1_Tmp;

16

17 emit(EO); pause;

18 }

19 }

Listing C.25: Quartz Model: ST SR

1 module ST_SIMPLE_FUN(

2 real ?A1,

3 real ?B1,

4 real ?C1,

5 int {32768} COUNT,

6 real !ST_SIMPLE_FUN){

7

8 int {32768} COUNTP1;

9

10 COUNTP1 = COUNT +1;

11 pause;

12 COUNT = COUNTP1;

13 ST_SIMPLE_FUN = (A1*B1)/C1;

14 }

Listing C.26: Quartz Model: ST SIMPLE FUN

1 import ST_DEBOUNCE .*;

2 import ST_SIMPLE_FUN .*;

3

4 module ST_SIMPLE_PRG1(

5 event bool ?EI,

6 event bool !EO,

7 nat ?CLK,

8 bool ?PRG_IN,

9 real ?PRG_A,

10 real ?PRG_B,

11 real ?PRG_C,

270

Appendix C: Resulting ST-Based Quartz Models

12 bool !PRG_OUT1,

13 nat !PRG_ET_OFF,

14 real !PRG_OUT2){

15

16 int {32768} PRG_COUNT;

17

18 event bool DEBOUNCE_01_EI;

19 event bool DEBOUNCE_01_EO;

20

21 bool DEBOUNCE_01_OUT;

22 nat DEBOUNCE_01_ET_OFF;

23

24 real ST_SIMPLE_FUN_l1;

25

26 PRG_COUNT = 4;

27 pause;

28

29 loop{

30 immediate await(EI);

31

32 emit(DEBOUNCE_01_EI);

33 immediate await(DEBOUNCE_01_EO);

34

35 PRG_OUT1 = DEBOUNCE_01_OUT;

36 PRG_ET_OFF = DEBOUNCE_01_ET_OFF;

37

38 ST_SIMPLE_FUN(

39 PRG_A + 2.0,

40 PRG_B, PRG_C,

41 PRG_COUNT, ST_SIMPLE_FUN_l1);

42

43 PRG_OUT2 = ST_SIMPLE_FUN_l1;

44

45 emit(EO);

46 pause;

47 }

48 || DEBOUNCE_01:ST_DEBOUNCE(DEBOUNCE_01_EI, DEBOUNCE_01_EO, CLK,

49 PRG_IN,

50 2000,

51 DEBOUNCE_01_OUT, DEBOUNCE_01_ET_OFF);

52 }

Listing C.27: Quartz Model: ST SIMPLE PRG1

1 module ST_TANK_CTRL(

2 event bool ?EI,

3 event bool !EO){

4

5 bool S1;

6 bool B1;

7 bool B2;

8 bool P1;

9 bool M1;

10 bool M2;

11

12 loop{

13 immediate await(EI);

14

15 P1 = S1;

16 if(!(B1)){

17 M1 = true;

18 M2 = true;

19 }

20 if(B2 | !(S1)){

21 pause;

22 M1 = false;

271

Appendix C: Resulting ST-Based Quartz Models

23 M2 = false;

24 }

25

26 emit(EO); pause;

27 }

28 }

Listing C.28: Quartz Model: ST TANK CTRL

1 import ST_ALARM .*;

2 import ST_LEFT1 .*;

3 import ST_RIGHT1 .*;

4

5 module ST_TRACK_CORR(

6 event bool ?EI,

7 event bool !EO,

8 bool ?B1,

9 bool ?B2,

10 bool ?B3,

11 bool !P1_Alarm,

12 bool !K1_Left,

13 bool !K2_Right){

14

15 bool Tmp1;

16 bool Tmp2;

17 bool Tmp3;

18

19 bool ST_ALARM_l1;

20 bool ST_LEFT1_l1;

21 bool ST_RIGHT1_l1;

22

23 loop{

24 immediate await(EI);

25

26 ST_ALARM(B1, B2, B3,

27 ST_ALARM_l1);

28 Tmp1 = ST_ALARM_l1;

29 P1_Alarm = Tmp1;

30

31 ST_LEFT1(B1, B3,

32 ST_LEFT1_l1);

33 Tmp2 = ST_LEFT1_l1;

34 K1_Left = Tmp2;

35

36 ST_RIGHT1(B1, B3,

37 ST_RIGHT1_l1);

38 Tmp3 = ST_RIGHT1_l1;

39 K2_Right = Tmp3;

40

41 emit(EO); pause;

42 }

43 }

Listing C.29: Quartz Model: ST TRACK CORR

1 module ST_TWO_PCTRL(

2 event bool ?EI,

3 event bool !EO){

4

5 nat {65536} usiS;

6 nat {65536} usiH;

7 nat {65536} usiOn;

8 nat {65536} usiOff;

9 bool xOut;

10

272

Appendix C: Resulting ST-Based Quartz Models

11 usiS = 150;

12 usiH = 200;

13 pause;

14

15 loop{

16 immediate await(EI);

17

18 if((usiS > 200) | (usiS < 100)){

19 usiS = 150;

20 }

21 usiOn = usiS - 25;

22 usiOff = usiS + 25;

23

24 if(usiH > usiOff){

25 xOut = false;

26 }

27 if(usiH < usiOn){

28 xOut = true;

29 }

30

31 emit(EO); pause;

32 }

33 }

Listing C.30: Quartz Model: ST TWO PCTRL (USINT data type designed as UINT)

273

Appendix D
Resulting SCL Models

1 module ST_TWO_OF_THREE{

2 input bool EI;

3 output bool EO;

4 input bool xB1_Temp;

5 input bool xB2_Temp;

6 input bool xB3_Temp;

7 output bool xP1_Temp;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13

14 xP1_Temp = ((xB1_Temp & xB2_Temp) | (xB1_Temp & xB3_Temp) | (

xB2_Temp & xB3_Temp));

15

16 EO = true;

17 pause;

18 EO = false;

19 goto loop;

20 }

Listing D.1: SCL Model: ST TWO OF THREE

1 module ST_ALARM{

2 input bool EI;

3 output bool EO;

4 input bool xSENSOR_L;

5 input bool xSENSOR_M;

6 input bool xSENSOR_R;

7 output bool ST_ALARM;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13 ST_ALARM = false;

14

15 ST_ALARM = (!(xSENSOR_L) & !(xSENSOR_M) & !(xSENSOR_R)) | (xSENSOR_L

& xSENSOR_R);

16

17 EO = true;

18 pause;

19 EO = false;

20 goto loop;

275

Appendix D: Resulting SCL Models

21 }

Listing D.2: SCL Model: ST ALARM

1 module ST_SCALE{

2 input bool EI;

3 output bool EO;

4 input int iX;

5 input float rY_MAX;

6 input float rY_MIN;

7 output bool ST_SCALE;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13 ST_SCALE = false;

14

15 ST_SCALE = (rY_MAX - rY_MIN) / 32760.0 * iX + rY_MIN;

16

17 EO = true;

18 pause;

19 EO = false;

20 goto loop;

21 }

Listing D.3: SCL Model: ST SCALE

1 module ST_OP_ARITH{

2 input bool EI;

3 output bool EO;

4 output int y;

5 float x01;

6 float x02;

7 float x03;

8 float x04;

9 float x05;

10 float x06;

11 float x1 = 1.0;

12 float x2 = 2.0;

13 int x3 = 1;

14 int x4 = 2;

15

16 loop:

17 while(!EI){

18 pause;

19 }

20

21 x01 = x1 + x2;

22 x02 = x1 - x2;

23 x03 = x1 * x2;

24 x04 = x1 / x2;

25 x06 = x3 % x4;

26

27 EO = true;

28 pause;

29 EO = false;

30 goto loop;

31 }

Listing D.4: SCL Model: ST OP ARITH

1 module ST_OP_BOOL{

2 input bool EI;

3 output bool EO;

276

Appendix D: Resulting SCL Models

4 output int y;

5 bool x01;

6 bool x02;

7 bool x03;

8 bool x04;

9 bool x1 = true;

10 bool x2 = false;

11

12 loop:

13 while(!EI){

14 pause;

15 }

16

17 x01 = !(x1);

18 x02 = x1 & x2;

19 x03 = x1 | x2;

20 x04 = x1 ^ x2;

21

22 EO = true;

23 pause;

24 EO = false;

25 goto loop;

26 }

Listing D.5: SCL Model: ST OP BOOL

1 module ST_COMPENS{

2 input bool EI;

3 output bool EO;

4 float rQ = 1500.0;

5 bool xQ1;

6 bool xQ2;

7 bool xQ3;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13

14 if(rQ < 1000.0){

15 xQ3 = false;

16 xQ2 = false;

17 xQ1 = false;

18 }

19 if(rQ >= 1000.0){

20 xQ3 = false;

21 xQ2 = false;

22 xQ1 = true;

23 }

24 if(rQ >= 2000.0){

25 xQ3 = false;

26 xQ2 = true;

27 xQ1 = true;

28 }

29 if(rQ > 3000.0){

30 xQ3 = true;

31 xQ2 = true;

32 xQ1 = true;

33 }

34

35 EO = true;

36 pause;

37 EO = false;

38 goto loop;

277

Appendix D: Resulting SCL Models

39 }

Listing D.6: SCL Model: ST COMPENS

1 module ST_COND{

2 input bool EI;

3 output bool EO;

4 bool x0;

5 bool x1 = true;

6 bool x2 = true;

7

8 loop:

9 while(!EI){

10 pause;

11 }

12

13 if(x1){

14 x2 = true;

15 }

16 if(x1){

17 x0 = true;

18 }else{

19 x0 = true;

20 }

21

22 EO = true;

23 pause;

24 EO = false;

25 goto loop;

26 }

Listing D.7: SCL Model: ST COND

1 module ST_DATATYPES{

2 input bool EI;

3 output bool EO;

4 bool A1;

5 bool A2 = true;

6 int A5;

7 int A6 = 2;

8 int A7;

9 int A8 = 2;

10 int A9;

11 int A10 = 2;

12 float A13;

13 float A14 = 1.23;

14 int A15;

15 int A16 = 5000;

16 bool A17 [3];

17 int A20 [3];

18 int A21 [3];

19 int A22 [3];

20 float A24 [3];

21 int A25 [3];

22

23 loop:

24 while(!EI){

25 pause;

26 }

27

28 EO = true;

29 pause;

30 EO = false;

31 goto loop;

278

Appendix D: Resulting SCL Models

32 }

Listing D.8: SCL Model: ST DATATYPES

1 module ST_ASS_DEL{

2 input bool EI;

3 output bool EO;

4 int x0 = 2;

5 int y0 = 1;

6

7 loop:

8 while(!EI){

9 pause;

10 }

11

12 y0 = y0 + x0;

13

14 EO = true;

15 pause;

16 EO = false;

17 goto loop;

18 }

Listing D.9: SCL Model: ST ASS DEL

1 module ST_OP_IN_EQ{

2 input bool EI;

3 output bool EO;

4 output int y;

5 bool x0;

6 bool x1 = true;

7 bool x2 = false;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13

14 x0 = x1 == x2;

15 x0 = x1 != x2;

16

17 EO = true;

18 pause;

19 EO = false;

20 goto loop;

21 }

Listing D.10: SCL Model: ST OP IN EQ

1 module ST_LOOP_FOOT{

2 input bool EI;

3 output bool EO;

4 output int y;

5 int x0 = 0;

6 int x1 = 1;

7 int x2 = 2;

8 int i;

9 int i0 = 0;

10 int i1 = 10;

11

12 loop:

13 while(!EI){

14 pause;

15 }

16

279

Appendix D: Resulting SCL Models

17 i = i0;

18 do:

19 y = x0;

20 i = i + x2;

21 pause;

22 if(!(i > i1)){

23 goto do;

24 }

25 y = x1;

26

27 EO = true;

28 pause;

29 EO = false;

30 goto loop;

31 }

Listing D.11: SCL Model: ST LOOP FOOT

1 module ST_LOOP_HEAD{

2 input bool EI;

3 output bool EO;

4 output int y;

5 int x1 = 1;

6 int x2 = 2;

7 int i;

8 int i0 = 0;

9 int i1 = 10;

10

11 loop:

12 while(!EI){

13 pause;

14 }

15

16 i = i0;

17 while(i <= i1){

18 y = i;

19 i = i + x2;

20 pause;

21 }

22 y = x1;

23

24 EO = true;

25 pause;

26 EO = false;

27 goto loop;

28 }

Listing D.12: SCL Model: ST LOOP HEAD

1 module ST_ASS_IMM1{

2 input bool EI;

3 output bool EO;

4 int x = 2;

5 int y = 2;

6 int x0 = 2;

7 int y0;

8 int y1;

9 int x1;

10

11 loop:

12 while(!EI){

13 pause;

14 }

15

16 y = x;

280

Appendix D: Resulting SCL Models

17 y0 = x0;

18 y1 = x1;

19

20 EO = true;

21 pause;

22 EO = false;

23 goto loop;

24 }

Listing D.13: SCL Model: ST ASS IMM1

1 module ST_ASS_IMM2{

2 input bool EI;

3 output bool EO;

4 int x0 = 2;

5 int x1 = 2;

6 int x2 = 2;

7 int y0;

8 int y1;

9 int y2 = 2;

10

11 loop:

12 while(!EI){

13 pause;

14 }

15

16 y0 = x0;

17 y1 = x1;

18 y0 = x2;

19

20 y2 = x0;

21 y2 = x1;

22

23 y0 = x0;

24 x0 = y0 + x1;

25

26 EO = true;

27 pause;

28 EO = false;

29 goto loop;

30 }

Listing D.14: SCL Model: ST ASS IMM2

1 module ST_ASS_IMM_OUT{

2 input bool EI;

3 output bool EO;

4 input int x;

5 output int y;

6 output bool ST_ASS_IMM_OUT;

7

8 loop:

9 while(!EI){

10 pause;

11 }

12 y = 0;

13 ST_ASS_IMM_OUT = false;

14

15 y = x;

16 ST_ASS_IMM_OUT = true;

17

18 EO = true;

19 pause;

20 EO = false;

21 goto loop;

281

Appendix D: Resulting SCL Models

22 }

Listing D.15: SCL Model: ST ASS IMM OUT

1 module ST_LEFT1{

2 input bool EI;

3 output bool EO;

4 input bool xSENSOR_L;

5 input bool xSENSOR_R;

6 output bool ST_LEFT1;

7

8 loop:

9 while(!EI){

10 pause;

11 }

12 ST_LEFT1 = false;

13

14 ST_LEFT1 = ((xSENSOR_L) & (!(xSENSOR_R)));

15

16 EO = true;

17 pause;

18 EO = false;

19 goto loop;

20 }

Listing D.16: SCL Model: ST LEFT1

1 module ST_OP_NUM_REL{

2 input bool EI;

3 output bool EO;

4 output int y;

5 bool x0;

6 int x1 = 1;

7 int x2 = 2;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13

14 x0 = x1 < x2;

15 x0 = x1 <= x2;

16 x0 = x1 > x2;

17 x0 = x1 >= x2;

18

19 EO = true;

20 pause;

21 EO = false;

22 goto loop;

23 }

Listing D.17: SCL Model: ST OP NUM REL

1 module ST_TOF{

2 input bool EI;

3 output bool EO;

4 input int CLK;

5 input bool IN;

6 input int PT;

7 output bool Q1 = false;

8 output int ET;

9 int ETTIME;

10 int TSTART;

11 bool LASTIN;

12 bool Q1_Temp1;

282

Appendix D: Resulting SCL Models

13

14 loop:

15 while(!EI){

16 pause;

17 }

18

19 if(IN != LASTIN){

20 LASTIN = IN;

21 if(IN){

22 TSTART = CLK;

23 }else{

24 TSTART = 0;

25 }

26 Q1_Temp1 = true;

27 Q1 = Q1_Temp1;

28 ET = 0;

29 }else{

30 if(!(IN) & Q1_Temp1){

31 ETTIME = CLK - TSTART;

32 if(ETTIME < PT){

33 ET = ETTIME;

34 }else{

35 Q1_Temp1 = false;

36 Q1 = Q1_Temp1;

37 ET = PT;

38 }

39 }

40 }

41

42 EO = true;

43 pause;

44 EO = false;

45 goto loop;

46 }

Listing D.18: SCL Model: ST TOF

1 module ST_TON{

2 input bool EI;

3 output bool EO;

4 input int CLK;

5 input bool IN;

6 input int PT;

7 output bool Q1 = false;

8 output int ET;

9 int ETTIME;

10 int TSTART;

11 bool LASTIN;

12 bool Q1_Temp1;

13

14 loop:

15 while(!EI){

16 pause;

17 }

18

19 if(IN != LASTIN){

20 LASTIN = IN;

21 if(IN){

22 TSTART = CLK;

23 }else{

24 TSTART = 0;

25 }

26 Q1_Temp1 = false;

27 Q1 = Q1_Temp1;

28 ET = 0;

29 }else{

283

Appendix D: Resulting SCL Models

30 if(IN & (!(Q1_Temp1))){

31 ETTIME = CLK - TSTART;

32 if(ETTIME < PT){

33 ET = ETTIME;

34 }else{

35 Q1_Temp1 = true;

36 Q1 = Q1_Temp1;

37 ET = PT;

38 }

39 }

40 }

41

42 EO = true;

43 pause;

44 EO = false;

45 goto loop;

46 }

Listing D.19: SCL Model: ST TON

1 module ST_RS{

2 input bool EI;

3 output bool EO;

4 input bool SET;

5 input bool RESET1;

6 output bool Q1;

7 bool Q1_Tmp;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13

14 Q1_Tmp = (SET | Q1_Tmp) & (!(RESET1));

15 Q1 = Q1_Tmp;

16

17 EO = true;

18 pause;

19 EO = false;

20 goto loop;

21 }

Listing D.20: SCL Model: ST RS

1 module ST_RIGHT1{

2 input bool EI;

3 output bool EO;

4 input bool xSENSOR_L;

5 input bool xSENSOR_R;

6 output bool ST_RIGHT1;

7

8 loop:

9 while(!EI){

10 pause;

11 }

12 ST_RIGHT1 = false;

13

14 ST_RIGHT1 = (!(xSENSOR_L) & (xSENSOR_R));

15

16 EO = true;

17 pause;

18 EO = false;

19 goto loop;

20 }

Listing D.21: SCL Model: ST RIGHT1

284

Appendix D: Resulting SCL Models

1 module ST_SR{

2 input bool EI;

3 output bool EO;

4 input bool SET1;

5 input bool RESET;

6 output bool Q1;

7 bool Q1_Tmp;

8

9 loop:

10 while(!EI){

11 pause;

12 }

13

14 Q1_Tmp = SET1 | (Q1_Tmp & (!(RESET)));

15 Q1 = Q1_Tmp;

16

17 EO = true;

18 pause;

19 EO = false;

20 goto loop;

21 }

Listing D.22: SCL Model: ST SR

1 module ST_SIMPLE_FUN{

2 input bool EI;

3 output bool EO;

4 input float A1;

5 input float B1;

6 input float C1 = 1.0;

7 input output int COUNT;

8 output float ST_SIMPLE_FUN;

9 int COUNTP1;

10

11 loop:

12 while(!EI){

13 pause;

14 }

15 ST_SIMPLE_FUN = false;

16

17 COUNTP1 = COUNT + 1;

18 COUNT = COUNTP1;

19 ST_SIMPLE_FUN = ((A1 * B1) / C1);

20

21 EO = true;

22 pause;

23 EO = false;

24 goto loop;

25 }

Listing D.23: SCL Model: ST SIMPLE FUN

1 module ST_TANK_CTRL{

2 input bool EI;

3 output bool EO;

4 bool S1;

5 bool B1;

6 bool B2;

7 bool P1;

8 bool M1;

9 bool M2;

10

11 loop:

12 while(!EI){

13 pause;

285

Appendix D: Resulting SCL Models

14 }

15

16 P1 = S1;

17 if(!(B1)){

18 M1 = true;

19 M2 = true;

20 }

21 if(B2 | !(S1)){

22 M1 = false;

23 M2 = false;

24 }

25

26 EO = true;

27 pause;

28 EO = false;

29 goto loop;

30 }

Listing D.24: SCL Model: ST TANK CTRL

1 module ST_TWO_PCTRL{

2 input bool EI;

3 output bool EO;

4 int usiS = 150;

5 int usiH= 200;

6 int usiOn;

7 int usiOff;

8 bool xOut;

9

10 loop:

11 while(!EI){

12 pause;

13 }

14

15 if((usiS > 200)|(usiS < 100)){

16 usiS = 150;

17 }

18 usiOn = usiS - 25;

19 usiOff = usiS + 25;

20 if(usiH > usiOff){

21 xOut = false;

22 }

23 if(usiH < usiOn){

24 xOut = true;

25 }

26

27 EO = true;

28 pause;

29 EO = false;

30 goto loop;

31 }

Listing D.25: SCL Model: ST TWO PCTRL (USINT data type designed as UINT)

286

Appendix E
FBD Examples

1 PROGRAM FBD_TWO_OF_THREE

2 VAR_INPUT

3 xB1_Temp : BOOL;

4 xB2_Temp : BOOL;

5 xB3_Temp : BOOL;

6 END_VAR

7 VAR_OUTPUT

8 xP1_Temp : BOOL;

9 END_VAR

10

11 END_PROGRAM

Listing E.1: FBD: FBD TWO OF THREE

1 FUNCTION_BLOCK FBD_AIR_COND_CTRL

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 IN5: BOOL;

8 IN6: BOOL;

9 IN7: BOOL;

10 IN8: BOOL;

11 IN9: BOOL;

12 END_VAR

13 VAR_OUTPUT

14 OUT1: BOOL;

15 OUT2: BOOL;

16 END_VAR

287

Appendix E: FBD Examples

17 VAR

18 RS0: RS;

19 END_VAR

20

21 END_FUNCTION_BLOCK

Listing E.2: FBD: FBD AIR COND CTRL

1 FUNCTION FBD_ALARM : BOOL

2 VAR_INPUT

3 xSENSOR_L : BOOL;

4 xSENSOR_M : BOOL;

5 xSENSOR_R : BOOL;

6 END_VAR

7

8 END_FUNCTION

Listing E.3: FBD: FBD ALARM

1 FUNCTION_BLOCK FBD_ANTIVALENCE

2 VAR_INPUT

3 IN0: BOOL;

4 IN1: BOOL;

5 IN2: BOOL;

6 END_VAR

7 VAR_OUTPUT

8 OUT1: BOOL;

9 END_VAR

288

Appendix E: FBD Examples

10

11 END_FUNCTION_BLOCK

Listing E.4: FBD: FBD ANTIVALENCE

1 FUNCTION_BLOCK FBD_OP_ARITH

2 VAR

3 x01 : REAL;

4 x02 : REAL;

5 x03 : REAL;

6 x04 : REAL;

7 x05 : REAL;

8 x06 : REAL;

9 x1 : REAL := 1.0;

10 x2 : REAL := 2.0;

11 x3 : INT := 1;

12 x4 : INT := 2;

13 END_VAR

289

Appendix E: FBD Examples

14

15 END_FUNCTION_BLOCK

Listing E.5: FBD: FBD OP ARITH

1 FUNCTION_BLOCK FBD_BENDING

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 END_VAR

7 VAR_OUTPUT

8 OUT1: BOOL;

9 OUT2: BOOL;

10 OUT3: BOOL;

11 END_VAR

12 VAR

13 PT5s: TIME;

14 PT05s: TIME;

15 PT1s: TIME;

16 TON0: TON;

17 TON1: TON;

18 TON2: TON;

19 TON3: TON;

20 TOF0: TON;

21 RS0: RS;

22 END_VAR

290

Appendix E: FBD Examples

23

24 END_FUNCTION_BLOCK

Listing E.6: FBD: FBD BENDING

1 FUNCTION_BLOCK FBD_OP_BOOL

2 VAR

3 x01 : BOOL;

4 x02 : BOOL;

5 x03 : BOOL;

6 x04 : BOOL;

7 x1 : BOOL := TRUE;

8 x2 : BOOL := FALSE;

9 END_VAR

10

11 END_FUNCTION_BLOCK

Listing E.7: FBD: FBD OP BOOL

1 FUNCTION_BLOCK FBD_CYLINDER

2 VAR_INPUT

3 INa1: BOOL;

4 INa0: BOOL;

5 INS: BOOL;

6 INb1: BOOL;

7 INc0: BOOL;

8 INc1: BOOL;

9 INb0: BOOL;

10 END_VAR

11 VAR_OUTPUT

291

Appendix E: FBD Examples

12 OUTBp: BOOL;

13 OUTAp: BOOL;

14 OUTAm: BOOL;

15 OUTCp: BOOL;

16 END_VAR

17 VAR

18 ME1: BOOL;

19 ME2: BOOL;

20 END_VAR

21

22 END_FUNCTION_BLOCK

Listing E.8: FBD: FBD CYLINDER

1 FUNCTION_BLOCK FBD_DATATYPES

2 VAR

3 A1 : BOOL;

4 A2 : BOOL := TRUE;

5 A3 : BYTE;

6 A4 : WORD;

7 A5 : INT;

8 A6 : INT := 2;

9 A7 : DINT;

10 A8 : DINT := 2;

11 A9 : UINT;

12 A10 : UINT := 2;

13 A11 : UDINT;

14 A12 : UDINT := 2;

15 A13 : REAL;

16 A14 : REAL := 1.23;

17 A15 : TIME;

18 A16 : TIME := T#5000 MS;

19 A17 : ARRAY [0..2] OF BOOL;

20 A18 : ARRAY [0..2] OF BYTE;

21 A19 : ARRAY [0..2] OF WORD;

22 A20 : ARRAY [0..2] OF INT;

23 A21 : ARRAY [0..2] OF DINT;

24 A22 : ARRAY [0..2] OF UINT;

292

Appendix E: FBD Examples

25 A23 : ARRAY [0..2] OF UDINT;

26 A24 : ARRAY [0..2] OF REAL;

27 A25 : ARRAY [0..2] OF TIME;

28 END_VAR

29 END_FUNCTION_BLOCK

Listing E.9: FBD: FBD DATATYPES

1 FUNCTION_BLOCK FBD_DEBOUNCE

2 VAR_INPUT

3 IN: BOOL;

4 DB_TIME: TIME;

5 END_VAR

6 VAR_OUTPUT

7 OUT: BOOL;

8 ET_OFF: TIME;

9 END_VAR

10 VAR

11 DB_ON: TON;

12 DB_OFF: TON;

13 DB_FF: SR;

14 END_VAR

15

16 END_FUNCTION_BLOCK

Listing E.10: FBD: FBD DEBOUNCE

1 FUNCTION_BLOCK FBD_DICE

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUTa: BOOL;

10 OUTb: BOOL;

11 OUTc: BOOL;

12 OUTd: BOOL;

13 OUTe: BOOL;

14 OUTf: BOOL;

15 OUTg: BOOL;

16 OUTh: BOOL;

17 OUTi: BOOL;

18 END_VAR

293

Appendix E: FBD Examples

19

20 END_FUNCTION_BLOCK

Listing E.11: FBD: FBD DICE

1 FUNCTION_BLOCK FBD_KV_DIAG

2 VAR_INPUT

3 INa: BOOL;

4 INb: BOOL;

5 INc: BOOL;

6 INd: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUT1: BOOL;

10 OUT2: BOOL;

11 END_VAR

294

Appendix E: FBD Examples

12

13 END_FUNCTION_BLOCK

Listing E.12: FBD: FBD KV DIAG

1 FUNCTION FBD_LEFT_DET: BOOL

2 VAR_INPUT

3 xSENSOR_L : BOOL;

4 xSENSOR_R : BOOL;

5 END_VAR

6

7 END_FUNCTION

Listing E.13: FBD: FBD LEFT DET

1 FUNCTION_BLOCK FBD_POLL

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

295

Appendix E: FBD Examples

6 END_VAR

7 VAR_OUTPUT

8 OUT1: BOOL;

9 OUT2: BOOL;

10 OUT3: BOOL;

11 END_VAR

12

13 END_FUNCTION_BLOCK

Listing E.14: FBD: FBD POLL

1 FUNCTION_BLOCK FBD_RES_CTRL1

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUTP1: BOOL;

10 OUTP2: BOOL;

11 OUTP3: BOOL;

12 OUTH: BOOL;

13 END_VAR

296

Appendix E: FBD Examples

14

15 END_FUNCTION_BLOCK

Listing E.15: FBD: FBD RES CTRL1

1 FUNCTION_BLOCK FBD_RES_CTRL2

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUTP1: BOOL;

10 OUTP2: BOOL;

11 OUTP3: BOOL;

12 OUTQ: BOOL;

13 END_VAR

297

Appendix E: FBD Examples

14

15 END_FUNCTION_BLOCK

Listing E.16: FBD: FBD RES CTRL2

1 FUNCTION_BLOCK FBD_ROLL_DOWN

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 IN5: BOOL;

8 IN6: BOOL;

9 TIME14: BOOL;

10 TIME4: BOOL;

11 END_VAR

12 VAR_OUTPUT

13 OUT1: BOOL;

14 OUT2: BOOL;

15 END_VAR

16

17 END_FUNCTION_BLOCK

Listing E.17: FBD: FBD ROLL DOWN

1 FUNCTION_BLOCK FBD_CABLE_WINCH

298

Appendix E: FBD Examples

2 VAR_INPUT

3 INS1: BOOL;

4 INB1: BOOL;

5 INB2: BOOL;

6 END_VAR

7 VAR_OUTPUT

8 OUT1: BOOL;

9 OUT2: BOOL;

10 END_VAR

11 VAR

12 ME1: BOOL;

13 ME2: BOOL;

14 END_VAR

15

16 END_FUNCTION_BLOCK

Listing E.18: FBD: FBD CABLE WINCH

1 FUNCTION_BLOCK FBD_SEVEN_SEG

2 VAR_INPUT

3 IN0: BOOL;

4 IN1: BOOL;

5 IN2: BOOL;

6 IN3: BOOL;

7 IN4: BOOL;

8 END_VAR

9 VAR_OUTPUT

10 OUTa: BOOL;

11 OUTb: BOOL;

12 OUTc: BOOL;

13 OUTd: BOOL;

14 OUTe: BOOL;

15 OUTf: BOOL;

16 OUTg: BOOL;

17 END_VAR

299

Appendix E: FBD Examples

18

19

20 END_FUNCTION_BLOCK

Listing E.19: FBD: FBD SEVEN SEG

1 FUNCTION_BLOCK FBD_SHOP_WINDOW

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 TIME3: BOOL;

8 END_VAR

9 VAR_OUTPUT

10 OUT1: BOOL;

11 OUT2: BOOL;

12 OUT3: BOOL;

13 OUT4: BOOL;

300

Appendix E: FBD Examples

14 END_VAR

15 VAR

16 TOF0: TOF;

17 TOF1: TOF;

18 PT1m: TIME;

19 END_VAR

20

21 END_FUNCTION_BLOCK

Listing E.20: FBD: FBD SHOP WINDOW

1 FUNCTION_BLOCK FBD_SILO_VALVE

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUT1: BOOL;

10 END_VAR

301

Appendix E: FBD Examples

11

12 END_FUNCTION_BLOCK

Listing E.21: FBD: FBD SILO VALVE

1 FUNCTION FBD_SIMPLE_FUN: REAL

2 VAR_INPUT

3 A1: REAL;

4 B1: REAL;

5 C1: REAL := 1.0;

6 END_VAR

7 VAR_IN_OUT

8 COUNT: INT;

9 END_VAR

10 VAR

11 COUNTP1: INT;

12 END_VAR

13

14 END_FUNCTION

Listing E.22: FBD: FBD SIMPLE FUN

1 PROGRAM FBD_SIMPLE_PRG1

2 VAR_INPUT

3 PRG_IN : BOOL;

4 PRG_A : REAL;

5 PRG_B : REAL;

6 PRG_C : REAL;

302

Appendix E: FBD Examples

7 END_VAR

8 VAR_OUTPUT

9 PRG_OUT1: BOOL;

10 PRG_OUT2: REAL;

11 PRG_ET_OFF: TIME;

12 END_VAR

13 VAR

14 PRG_COUNT: INT := 4;

15 DEBOUNCE_01: FBD_DEBOUNCE;

16 END_VAR

17

18 END_PROGRAM

Listing E.23: FBD: FBD SIMPLE PRG1

1 PROGRAM FBD_SIMPLE_PRG2

2 VAR

3 OUT: REAL;

4 ST_LOOP_HEAD0: ST_LOOP_HEAD;

5 END_VAR

6

7 END_PROGRAM

Listing E.24: FBD: FBD SIMPLE PRG2

1 FUNCTION_BLOCK FBD_SMOKE_DET

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUT1: BOOL;

10 OUT2: BOOL;

11 OUT3: BOOL;

12 END_VAR

303

Appendix E: FBD Examples

13

14 END_FUNCTION_BLOCK

Listing E.25: FBD: FBD SMOKE DET

1 FUNCTION_BLOCK FBD_SPORTS_HALL

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 TIME4: BOOL;

8 TIME9: BOOL;

9 TIME14: BOOL;

10 TIME18: BOOL;

11 END_VAR

12 VAR_OUTPUT

13 OUT1: BOOL;

14 OUT2: BOOL;

15 OUT3: BOOL;

16 OUT4: BOOL;

17 END_VAR

18 VAR

19 PT1m: TIME;

20 RS0: RS;

21 RS1: RS;

22 RS2: RS;

23 TON0: TON;

24 END_VAR

304

Appendix E: FBD Examples

25

26 END_FUNCTION_BLOCK

Listing E.26: FBD: FBD SPORTS HALL

1 FUNCTION_BLOCK FBD_THER_CODE

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUT1: BOOL;

10 OUT2: BOOL;

11 OUT3: BOOL;

12 END_VAR

305

Appendix E: FBD Examples

13

14 END_FUNCTION_BLOCK

Listing E.27: FBD: FBD THER CODE

1 FUNCTION_BLOCK FBD_TOGGLE_SWITCH

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUT1: BOOL;

10 END_VAR

306

Appendix E: FBD Examples

11

12 END_FUNCTION_BLOCK

Listing E.28: FBD: FBD TOGGLE SWITCH

1 FUNCTION_BLOCK FBD_VENT_CTRL

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 IN4: BOOL;

7 END_VAR

8 VAR_OUTPUT

9 OUT1: BOOL;

10 OUT2: BOOL;

11 OUT3: BOOL;

12 END_VAR

307

Appendix E: FBD Examples

13

14 END_FUNCTION_BLOCK

Listing E.29: FBD: FBD VENT CTRL

1 FUNCTION_BLOCK FBD_WIND_DIR

2 VAR_INPUT

3 IN1: BOOL;

4 IN2: BOOL;

5 IN3: BOOL;

6 END_VAR

7 VAR_OUTPUT

8 OUT1: BOOL;

9 OUT2: BOOL;

10 OUT3: BOOL;

11 OUT4: BOOL;

12 END_VAR

308

Appendix E: FBD Examples

13

14 END_FUNCTION_BLOCK

Listing E.30: FBD: FBD WIND DIR

309

Appendix F
Resulting FBD-Based Quartz
Models

1 module FBD_TWO_OF_THREE(

2 event bool ?EI,

3 event bool !EO,

4 bool ?xB1_Temp,

5 bool ?xB2_Temp,

6 bool ?xB3_Temp,

7 bool !xP1_Temp){

8

9 loop{

10 immediate await(EI);

11

12 xP1_Temp = ((xB1_Temp&xB2_Temp)|(xB1_Temp&xB3_Temp)|(xB2_Temp&

xB3_Temp));

13

14 emit(EO); pause;

15 }

16 }

Listing F.1: Quartz Model: FBD TWO OF THREE

1 import RS.*;

2

3 module FBD_AIR_COND_CTRL(

4 event bool ?EI,

5 event bool !EO,

6 bool ?IN1,

7 bool ?IN2,

8 bool ?IN3,

9 bool ?IN4,

10 bool ?IN5,

11 bool ?IN6,

12 bool ?IN7,

13 bool ?IN8,

14 bool ?IN9,

15 bool !OUT1,

16 bool !OUT2){

17

18 event bool RS0_EI;

19 event bool RS0_EO;

20 bool RS0_Q1;

21

22 loop{

311

Appendix F: Resulting FBD-Based Quartz Models

23 immediate await(EI);

24

25 emit(RS0_EI);

26 immediate await(RS0_EO);

27

28 OUT2 = RS0_Q1;

29 emit(EO); pause;

30 }

31 || RS0:RS(RS0_EI, RS0_EO,

32 (IN1|IN2|IN3|IN4),

33 ((!(IN5)|!(IN6)|!(IN7)|!(IN8))|!(IN9)),

34 RS0_Q1);

35 }

Listing F.2: Quartz Model: FBD AIR COND CTRL

1 module FBD_ALARM(

2 bool ?xSENSOR_L,

3 bool ?xSENSOR_M,

4 bool ?xSENSOR_R,

5 bool !FBD_ALARM){

6

7 FBD_ALARM = (!(xSENSOR_L)&!(xSENSOR_M)&!(xSENSOR_R))|(xSENSOR_L&

xSENSOR_R);

8 }

Listing F.3: Quartz Model: FBD ALARM

1 module FBD_ANTIVALENCE(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN0,

5 bool ?IN1,

6 bool ?IN2,

7 bool !OUT1){

8

9 loop{

10 immediate await(EI);

11 OUT1 = ((!(IN0)&!(IN1)&IN2)|(!(IN0)&!(IN2)&IN1)|(!(IN1)&!(IN2)&

IN0));

12 emit(EO); pause;

13 }

14 }

Listing F.4: Quartz Model: FBD ANTIVALENCE

1 module FBD_OP_ARITH(

2 event bool ?EI,

3 event bool !EO){

4

5 real x01;

6 real x02;

7 real x03;

8 real x04;

9 real x05;

10 real x06;

11 real x1;

12 real x2;

13 int {32768} x3;

14 int {32768} x4;

15

16 x1 = 1.0;

17 x2 = 2.0;

18 x3 = 1;

19 x4 = 2;

312

Appendix F: Resulting FBD-Based Quartz Models

20 pause;

21

22 loop{

23 immediate await(EI);

24

25 x01 = x1 + x2;

26 x02 = x1 - x2;

27 x03 = x1 * x2;

28 x04 = x1 / x2;

29 x05 = exp(x1, x2);

30 x06 = x3 % x4;

31

32 emit(EO); pause;

33 }

34 }

Listing F.5: Quartz Model: FBD OP ARITH

1 import TON.*;

2 import TOF.*;

3 import RS.*;

4

5 module FBD_BENDING(

6 event bool ?EI,

7 event bool !EO,

8 nat ?CLK,

9 bool ?IN1,

10 bool ?IN2,

11 bool ?IN3,

12 bool !OUT1,

13 bool !OUT2,

14 bool !OUT3){

15

16 nat PT5s;

17 nat PT05s;

18 nat PT1s;

19

20 event bool TON0_EI;

21 event bool TON0_EO;

22 event bool TON1_EI;

23 event bool TON1_EO;

24 event bool TON2_EI;

25 event bool TON2_EO;

26 event bool TOF0_EI;

27 event bool TOF0_EO;

28 event bool TON3_EI;

29 event bool TON3_EO;

30 event bool RS0_EI;

31 event bool RS0_EO;

32

33 bool TON0_Q;

34 nat TON0_ET;

35 bool TON1_Q;

36 nat TON1_ET;

37 bool TON2_Q;

38 nat TON2_ET;

39 bool TOF0_Q;

40 nat TOF0_ET;

41 bool TON3_Q;

42 nat TON3_ET;

43 bool RS0_Q1;

44

45

46 loop{

47 immediate await(EI);

48

313

Appendix F: Resulting FBD-Based Quartz Models

49 emit(TON0_EI);

50 immediate await(TON0_EO);

51

52 emit(TON1_EI);

53 immediate await(TON1_EO);

54

55 emit(TON2_EI);

56 immediate await(TON2_EO);

57

58 emit(TOF0_EI);

59 immediate await(TOF0_EO);

60

61 OUT1 = (IN1&TON0_Q)&!((TON1_Q&TON2_Q))&!(((!(TON2_Q)&TOF0_Q)&IN3

));

62 OUT2 = (!(((!(TON2_Q)&TOF0_Q)&IN3))&(!(TON2_Q)&TOF0_Q));

63

64 emit(TON3_EI);

65 immediate await(TON3_EO);

66

67 emit(RS0_EI);

68 immediate await(RS0_EO);

69

70 OUT3 = RS0_Q1;

71

72 emit(EO); pause;

73 }

74 || TON0:TON(TON0_EI, TON0_EO, CLK,

75 IN1,

76 PT1s,

77 TON0_Q, TON0_ET);

78 || TON1:TON(TON1_EI, TON1_EO, CLK,

79 (IN1&TON0_Q),

80 PT1s,

81 TON1_Q, TON1_ET);

82 || TON2:TON(TON2_EI, TON2_EO, CLK,

83 IN2,

84 PT05s,

85 TON2_Q, TON2_ET);

86 || TOF0:TOF(TOF0_EI, TOF0_EO, CLK,

87 (IN1&TON0_Q),

88 PT1s,

89 TOF0_Q, TOF0_ET);

90 || TON3:TON(TON3_EI, TON3_EO, CLK,

91 !(IN1),

92 PT5s,

93 TON3_Q, TON3_ET);

94 || RS0:RS(RS0_EI, RS0_EO,

95 ((IN1&TON0_Q)|TON3_Q),

96 (TON1_Q&TON2_Q),

97 RS0_Q1);

98 }

Listing F.6: Quartz Model: FBD BENDING

1 module FBD_OP_BOOL(

2 event bool ?EI,

3 event bool !EO){

4

5 bool x01;

6 bool x02;

7 bool x03;

8 bool x04;

9 bool x1;

10 bool x2;

11

12 x1 = true;

314

Appendix F: Resulting FBD-Based Quartz Models

13 x2 = false;

14 pause;

15

16 loop{

17 immediate await(EI);

18

19 x01 = !(x1);

20 x02 = x1 & x2;

21 x03 = x1 | x2;

22 x04 = x1 ^ x2;

23

24 emit(EO); pause;

25 }

26 }

Listing F.7: Quartz Model: FBD OP BOOL

1 module FBD_CYLINDER(

2 event bool ?EI,

3 event bool !EO,

4 bool ?INa1,

5 bool ?INa0,

6 bool ?INS,

7 bool ?INb1,

8 bool ?INc0,

9 bool ?INc1,

10 bool ?INb0,

11 bool !OUTBp,

12 bool !OUTAp,

13 bool !OUTAm,

14 bool !OUTCp){

15

16 bool ME1;

17 bool ME2;

18

19 loop{

20 immediate await(EI);

21

22 OUTAp = ((ME1|(INa0&INS))&!(INb1));

23 pause;

24 ME1 = ((ME1|(INa0&INS))&!(INb1));

25 OUTBp = (INa1 &((ME1|(INa0&INS))&!(INb1)));

26 ME2 = ((ME2|INb1)&!(INc1));

27 OUTAm = (!(((ME1|(INa0&INS))&!(INb1)))&INc0 &!(((ME2|INb1)&!(INc1

))));

28 OUTCp = (((ME2|INb1)&!(INc1))&INb0);

29

30 emit(EO); pause;

31 }

32 }

Listing F.8: Quartz Model: FBD CYLINDER

1 module FBD_DATATYPES(

2 event bool ?EI,

3 event bool !EO){

4

5 bool A1;

6 bool A2;

7 bv{16} A3;

8 bv{32} A4;

9 int {32768} A5;

10 int {32768} A6;

11 int {2147483648} A7;

12 int {2147483648} A8;

315

Appendix F: Resulting FBD-Based Quartz Models

13 nat {65536} A9;

14 nat {65536} A10;

15 nat {4294967296} A11;

16 nat {4294967296} A12;

17 real A13;

18 real A14;

19 nat A15;

20 nat A16;

21 [3] bool A17;

22 [3]bv{16} A18;

23 [3]bv{32} A19;

24 [3] int {32768} A20;

25 [3] int {2147483648} A21;

26 [3] nat {65536} A22;

27 [3] nat {4294967296} A23;

28 [3] real A24;

29 [3] nat A25;

30

31 A2 = true;

32 A6 = 2;

33 A8 = 2;

34 A10 = 2;

35 A12 = 2;

36 A14 = 1.23;

37 A16 = 5000;

38 pause;

39

40 loop{

41 immediate await(EI);

42 emit(EO); pause;

43 }

44 }

Listing F.9: Quartz Model: FBD DATATYPES

1 import TON.*;

2 import SR.*;

3

4 module FBD_DEBOUNCE(

5 event bool ?EI,

6 event bool !EO,

7 nat ?CLK,

8 bool ?IN,

9 nat ?DB_TIME,

10 bool !OUT,

11 nat !ET_OFF){

12

13 event bool DB_ON_EI;

14 event bool DB_ON_EO;

15 event bool DB_OFF_EI;

16 event bool DB_OFF_EO;

17 event bool DB_FF_EI;

18 event bool DB_FF_EO;

19

20 bool DB_ON_Q;

21 bool DB_OFF_Q;

22 bool DB_FF_Q1;

23 nat DB_ON_ET;

24 nat DB_OFF_ET;

25

26 loop{

27 immediate await(EI);

28

29 emit(DB_ON_EI);

30 immediate await(DB_ON_EO);

31

316

Appendix F: Resulting FBD-Based Quartz Models

32 emit(DB_OFF_EI);

33 immediate await(DB_OFF_EO);

34

35 ET_OFF = DB_OFF_ET;

36

37 emit(DB_FF_EI);

38 immediate await(DB_FF_EO);

39

40 OUT = DB_FF_Q1;

41

42 emit(EO);

43 pause;

44 }

45 || DB_ON:TON(DB_ON_EI, DB_ON_EO, CLK,

46 IN, DB_TIME,

47 DB_ON_Q, DB_ON_ET);

48 || DB_OFF:TON(DB_OFF_EI, DB_OFF_EO, CLK,

49 !(IN),

50 DB_TIME,

51 DB_OFF_Q, DB_OFF_ET);

52 || DB_FF:SR(DB_FF_EI, DB_FF_EO,

53 DB_ON_Q,

54 DB_OFF_Q, DB_FF_Q1);

55 }

Listing F.10: Quartz Model: FBD DEBOUNCE

1 module FBD_DICE(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUTa,

9 bool !OUTb,

10 bool !OUTc,

11 bool !OUTd,

12 bool !OUTe,

13 bool !OUTf,

14 bool !OUTg,

15 bool !OUTh,

16 bool !OUTi){

17

18 loop{

19 immediate await(EI);

20

21 OUTa = ((IN3 &!(IN4)&!(IN2))|(IN2&!(IN4)&!(IN1))|(IN4&!(IN2)&!(

IN3)));

22 OUTb = ((IN2&IN3 &!(IN4))|(IN4&!(IN2)&!(IN3)));

23 OUTc = ((IN3 &!(IN4))|(IN4 &!(IN2)&!(IN3))|(IN1&IN2 &!(IN4)));

24 OUTd = ((IN4 &!(IN2)&!(IN3))|(IN1&IN2&IN3 &!(IN4)));

25 OUTe = ((IN1 &!(IN4))|(IN1 &!(IN3)&!(IN2)));

26 OUTf = ((IN4 &!(IN2)&!(IN3))|(IN1&IN2&IN3 &!(IN4)));

27 OUTh = ((IN2&IN3 &!(IN4))|(IN4&!(IN2)&!(IN3)));

28 OUTg = ((IN3 &!(IN4))|(IN4 &!(IN2)&!(IN3))|(IN1&IN2 &!(IN4)));

29 OUTi = ((IN3 &!(IN4)&!(IN2))|(IN2&!(IN4)&!(IN1)&!(IN3))|(IN4&!(

IN2)&!(IN3)));

30

31 emit(EO); pause;

32 }

33 }

Listing F.11: Quartz Model: FBD DICE

317

Appendix F: Resulting FBD-Based Quartz Models

1 module FBD_KV_DIAG(

2 event bool ?EI,

3 event bool !EO,

4 bool ?INa,

5 bool ?INb,

6 bool ?INc,

7 bool ?INd,

8 bool !OUT1,

9 bool !OUT2){

10

11 loop{

12 immediate await(EI);

13

14 OUT1 = ((!(INa)&INb)|(INa &!(INb)&INc));

15 OUT2 = (((INa==INb&INc)|(!(INa)&!(INc)&INb))&!(INd));

16

17 emit(EO); pause;

18 }

19 }

Listing F.12: Quartz Model: FBD KV DIAG

1 module FBD_LEFT_DET(

2 bool ?xSENSOR_L,

3 bool ?xSENSOR_R,

4 bool !FBD_LEFT_DET){

5

6 FBD_LEFT_DET = (xSENSOR_L & !(xSENSOR_R));

7 }

Listing F.13: Quartz Model: FBD LEFT DET

1 module FBD_POLL(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool !OUT1,

8 bool !OUT2,

9 bool !OUT3){

10

11 loop{

12 immediate await(EI);

13

14 OUT1 = ((!(IN3)&!(IN2)&IN1)|(!(IN3)&IN2 &!(IN1))|(IN3&!(IN2)&!(

IN1)));

15 OUT2 = ((!(IN3)&IN2&IN1)|(IN3&!(IN2)&IN1)|(IN3&IN2&!(IN1)));

16 OUT3 = (IN1&IN2&IN3);

17

18 emit(EO); pause;

19 }

20 }

Listing F.14: Quartz Model: FBD POLL

1 module FBD_RES_CTRL1(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUTP1,

9 bool !OUTP2,

318

Appendix F: Resulting FBD-Based Quartz Models

10 bool !OUTP3,

11 bool !OUTH){

12

13 loop{

14 immediate await(EI);

15

16 OUTP1 = ((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1));

17 OUTP2 = (((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1))|(!(IN3)&IN2&!(IN1

)));

18 OUTP3 = ((!(IN4)&!(IN3)&!(IN2))|(IN4&!(IN3)&IN2)|(!(IN3)&IN2 &!(

IN1))|(!(IN4)&IN3&IN2&IN2));

19 OUTH = ((IN3 &!(IN1))|(IN4 &!(IN2)));

20

21 emit(EO); pause;

22 }

23 }

Listing F.15: Quartz Model: FBD RES CTRL1

1 module FBD_RES_CTRL2(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUTP1,

9 bool !OUTP2,

10 bool !OUTP3,

11 bool !OUTQ){

12

13 loop{

14 immediate await(EI);

15

16 OUTP3 = ((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1));

17 OUTP2 = (((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1))|(!(IN3)&IN2&!(IN1

)));

18 OUTP1 = ((!(IN4)&!(IN3)&!(IN2))|(IN4&!(IN3)&IN2&IN1)|(!(IN3)&IN2

&!(IN1))|(!(IN4)&IN3&IN2&IN1));

19 OUTQ = ((IN3 &!(IN1))|(IN4 &!(IN2)));

20

21 emit(EO); pause;

22 }

23 }

Listing F.16: Quartz Model: FBD RES CTRL2

1 module FBD_ROLL_DOWN(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool ?IN5,

9 bool ?IN6,

10 bool ?TIME14,

11 bool ?TIME4,

12 bool !OUT1,

13 bool !OUT2){

14

15 loop{

16 immediate await(EI);

17

18 OUT1 = (((TIME4&IN6)|(!(IN6)&IN2))&IN4);

319

Appendix F: Resulting FBD-Based Quartz Models

19 OUT2 = ((((TIME4&IN6)|(!(IN6)&IN2))&IN4)==(IN5&((IN6&IN1&!(

TIME14))|(IN3&!(IN6))))&(IN5 &((IN6&IN1 &!(TIME14))|(IN3&!(IN6

)))));

20

21 emit(EO); pause;

22 }

23 }

Listing F.17: Quartz Model: FBD ROLL DOWN

1 module FBD_CABLE_WINCH(

2 event bool ?EI,

3 event bool !EO,

4 bool ?INS1,

5 bool ?INB1,

6 bool ?INB2,

7 bool !OUT1,

8 bool !OUT2){

9

10 bool ME1;

11 bool ME2;

12

13 loop{

14 immediate await(EI);

15

16 OUT1 = ((ME1|INS1 |!(INB2))&!((!(INB1)|!(INS1)|ME2)));

17 pause;

18 ME1 = ((ME1|INS1 |!(INB2))&!((!(INB1)|!(INS1)|ME2)));

19 OUT2 = ((ME2 |!(INB1))&!((!(INB2)|!(INS1)|ME1)));

20 pause;

21 ME2 = ((ME2|!(INB1))&!((!(INB2)|!(INS1)|ME1)));

22

23 emit(EO); pause;

24 }

25 }

Listing F.18: Quartz Model: FBD CABLE WINCH

1 module FBD_SEVEN_SEG(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN0,

5 bool ?IN1,

6 bool ?IN2,

7 bool ?IN3,

8 bool ?IN4,

9 bool !OUTa,

10 bool !OUTb,

11 bool !OUTc,

12 bool !OUTd,

13 bool !OUTe,

14 bool !OUTf,

15 bool !OUTg){

16

17 loop{

18 immediate await(EI);

19

20 OUTa = ((!(IN3)&IN1)|(IN2&IN1)|(!(IN2)&!(IN1)&IN3)|(!(IN3)&!(IN2

)&!(IN0))|(!(IN3)&IN1&IN0));

21 OUTb = ((!(IN3)&!(IN2))|(!(IN2)&!(IN1))|(!(IN3)&IN1&IN0)|(IN3&!(

IN1)&IN0)|(!(IN3)&!(IN1)&!(IN0)));

22 OUTc = ((!(IN3)&!(IN1))|(!(IN3)&IN0)|(!(IN2)&IN3)|(!(IN3)&IN2)

|(!(IN1)&IN0));

23 OUTd = ((!(IN2)&IN1)|(!(IN2)&!(IN0))|(IN1&!(IN0))|(IN3&!(IN1)&

IN2)|(IN2&!(IN1)&IN0));

320

Appendix F: Resulting FBD-Based Quartz Models

24 OUTe = ((!(IN2)&!(IN0))|(IN3&IN1)|(IN3&IN2)|(IN2 &!(IN0)&IN1));

25 OUTf = ((IN3&IN2&IN1)|(!(IN3)&IN2&!(IN1))|(!(IN3)&IN2 &!(IN0))|(

IN3 &!(IN2)&IN0)|(!(IN2)&!(IN1)&!(IN0)));

26 OUTg = (IN3 |(!(IN0)&IN2)|(!(IN2)&IN0)|(!(IN1)&IN2));

27

28 emit(EO); pause;

29 }

30 }

Listing F.19: Quartz Model: FBD SEVEN SEG

1 import TOF.*;

2

3 module FBD_SHOP_WINDOW(

4 event bool ?EI,

5 event bool !EO,

6 nat ?CLK,

7 bool ?IN1,

8 bool ?IN2,

9 bool ?IN3,

10 bool ?IN4,

11 bool ?TIME3,

12 bool !OUT1,

13 bool !OUT2,

14 bool !OUT3,

15 bool !OUT4){

16

17 nat PT1m;

18

19 event bool TOF0_EI;

20 event bool TOF0_EO;

21 event bool TOF1_EI;

22 event bool TOF1_EO;

23

24 bool TOF0_Q;

25 nat TOF0_ET;

26 bool TOF1_Q;

27 nat TOF1_ET;

28

29 loop{

30 immediate await(EI);

31

32 emit(TOF0_EI);

33 immediate await(TOF0_EO);

34

35 OUT1 = ((TIME3|TOF0_Q)&IN2);

36 OUT2 = (IN2 &((((TIME3|TOF0_Q)&IN2)&IN1)|TOF0_Q));

37 OUT3 = (IN2 &((IN1 &!(((TIME3|TOF0_Q)&IN2)))|TOF0_Q));

38

39 emit(TOF1_EI);

40 immediate await(TOF1_EO);

41

42 OUT4 = (IN2&(TOF0_Q|TOF1_Q));

43

44 emit(EO); pause;

45 }

46 || TOF0:TOF(TOF0_EI, TOF0_EO, CLK,

47 IN3,

48 PT1m,

49 TOF0_Q, TOF0_ET);

50 || TOF1:TOF(TOF1_EI, TOF1_EO, CLK,

51 IN4,

52 PT1m,

53 TOF1_Q, TOF1_ET);

321

Appendix F: Resulting FBD-Based Quartz Models

54 }

Listing F.20: Quartz Model: FBD SHOP WINDOW

1 module FBD_SILO_VALVE(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUT1){

9

10 loop{

11 immediate await(EI);

12

13 OUT1 = ((!(IN3)&!(IN2)&IN1)|(!(IN3)&IN2 &!(IN1))|(IN3&!(IN2)&!(

IN1))|(IN3&IN2&IN1));

14

15 emit(EO); pause;

16 }

17 }

Listing F.21: Quartz Model: FBD SILO VALVE

1 module FBD_SIMPLE_FUN(

2 real ?A1,

3 real ?B1,

4 real ?C1,

5 int {32768} COUNT,

6 real !FBD_SIMPLE_FUN){

7

8 int {32768} COUNTP1;

9

10 COUNTP1 = COUNT +1;

11 pause;

12 COUNT = COUNTP1;

13 FBD_SIMPLE_FUN = (A1*B1)/C1;

14 }

Listing F.22: Quartz Model: FBD SIMPLE FUN

1 import FBD_DEBOUNCE .*;

2 import FBD_SIMPLE_FUN .*;

3

4 module FBD_SIMPLE_PRG1(

5 event bool ?EI,

6 event bool !EO,

7 nat ?CLK,

8 bool ?PRG_IN,

9 real ?PRG_A,

10 real ?PRG_B,

11 real ?PRG_C,

12 bool !PRG_OUT1,

13 nat !PRG_ET_OFF,

14 real !PRG_OUT2){

15

16 int {32768} PRG_COUNT;

17

18 event bool DEBOUNCE_01_EI;

19 event bool DEBOUNCE_01_EO;

20

21 bool DEBOUNCE_01_OUT;

22 nat DEBOUNCE_01_ET_OFF;

23

322

Appendix F: Resulting FBD-Based Quartz Models

24 real FBD_SIMPLE_FUN_l1;

25

26 PRG_COUNT = 4;

27 pause;

28

29 loop{

30 immediate await(EI);

31

32 emit(DEBOUNCE_01_EI);

33 immediate await(DEBOUNCE_01_EO);

34

35 PRG_OUT1 = DEBOUNCE_01_OUT;

36 PRG_ET_OFF = DEBOUNCE_01_ET_OFF;

37

38 FBD_SIMPLE_FUN(

39 PRG_A + 2.0,

40 PRG_B, PRG_C,

41 PRG_COUNT, FBD_SIMPLE_FUN_l1);

42

43 PRG_OUT2 = FBD_SIMPLE_FUN_l1;

44

45 emit(EO);

46 pause;

47 }

48 || DEBOUNCE_01:FBD_DEBOUNCE(DEBOUNCE_01_EI, DEBOUNCE_01_EO, CLK,

49 PRG_IN,

50 2000,

51 DEBOUNCE_01_OUT, DEBOUNCE_01_ET_OFF);

52 }

Listing F.23: Quartz Model: FBD SIMPLE PRG1

1 import ST_LOOP_HEAD .*;

2

3 module FBD_SIMPLE_PRG2(

4 event bool ?EI,

5 event bool !EO){

6

7 event bool ST_LOOP_HEAD0_EI;

8 event bool ST_LOOP_HEAD0_EO;

9

10 int {32768} ST_LOOP_HEAD0_y;

11 int {32768} OUT;

12

13 loop{

14 immediate await(EI);

15

16 emit(ST_LOOP_HEAD0_EI);

17 immediate await(ST_LOOP_HEAD0_EO);

18

19 OUT = ST_LOOP_HEAD0_y;

20

21 emit(EO); pause;

22 }

23 || ST_LOOP_HEAD0:ST_LOOP_HEAD(ST_LOOP_HEAD0_EI, ST_LOOP_HEAD0_EO,

24 ST_LOOP_HEAD0_y);

25 }

Listing F.24: Quartz Model: FBD SIMPLE PRG2

1 module FBD_SMOKE_DET(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

323

Appendix F: Resulting FBD-Based Quartz Models

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUT1,

9 bool !OUT2,

10 bool !OUT3){

11

12 loop{

13 immediate await(EI);

14

15 OUT1 = (!(IN1)|!(IN2)|!(IN3)|!(IN4));

16 OUT2 = (((!(IN1)&!(IN2))|(!(IN1)&!(IN3)))|(!(IN1)&!(IN4)&(!(IN3)

&!(IN2))&(!(IN2)&!(IN4))&(!(IN3)&!(IN4))));

17 OUT3 = (!(IN1)&!(IN2)&!(IN3)&!(IN4));

18

19 emit(EO); pause;

20 }

21 }

Listing F.25: Quartz Model: FBD SMOKE DET

1 import RS.*;

2 import TON.*;

3

4 module FBD_SPORTS_HALL(

5 event bool ?EI,

6 event bool !EO,

7 nat ?CLK,

8 bool ?IN1,

9 bool ?IN2,

10 bool ?IN3,

11 bool ?IN4,

12 bool ?TIME4,

13 bool ?TIME9,

14 bool ?TIME14,

15 bool ?TIME18,

16 bool !OUT1,

17 bool !OUT2,

18 bool !OUT3,

19 bool !OUT4){

20

21 nat PT1m;

22

23 event bool RS0_EI;

24 event bool RS0_EO;

25 event bool RS1_EI;

26 event bool RS1_EO;

27 event bool RS2_EI;

28 event bool RS2_EO;

29 event bool TON0_EI;

30 event bool TON0_EO;

31

32 bool RS0_Q1;

33 bool RS1_Q1;

34 bool RS2_Q1;

35 bool TON0_Q;

36 nat TON0_ET;

37

38 loop{

39 immediate await(EI);

40

41 emit(RS0_EI);

42 immediate await(RS0_EO);

43

44 OUT1 = ((RS0_Q1 &!(IN4))|IN3);

45

46 emit(RS1_EI);

324

Appendix F: Resulting FBD-Based Quartz Models

47 immediate await(RS1_EO);

48

49 OUT2 = ((RS1_Q1 &!(IN4))|IN3);

50

51 emit(TON0_EI);

52 immediate await(TON0_EO);

53

54 OUT4 = (TIME18 == TON0_Q &((RS0_Q1 &!(IN4))|IN3)&((RS1_Q1 &!(IN4))|

IN3));

55

56 emit(RS2_EI);

57 immediate await(RS2_EO);

58

59 OUT3 = ((RS2_Q1 &!(IN4))|IN3);

60

61 emit(EO); pause;

62 }

63 || RS0:RS(RS0_EI, RS0_EO,

64 IN1,

65 TIME4,

66 RS0_Q1);

67 || RS1:RS(RS1_EI, RS1_EO,

68 IN1,

69 TIME9,

70 RS1_Q1);

71 || TON0:TON(TON0_EI, TON0_EO, CLK,

72 TIME18,

73 PT1m,

74 TON0_Q, TON0_ET);

75 || RS2:RS(RS2_EI, RS2_EO,

76 IN2,

77 TIME14,

78 RS2_Q1);

79 }

Listing F.26: Quartz Model: FBD SPORTS HALL

1 module FBD_THER_CODE(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUT1,

9 bool !OUT2,

10 bool !OUT3){

11

12 loop{

13 immediate await(EI);

14

15 OUT1 = (IN1|IN2|IN3);

16 OUT2 = ((IN1&IN2 &!(IN3))|(IN1&!(IN2)&IN3)|(!(IN1)&IN2&IN3)|(IN1&

IN2&IN3));

17 OUT3 = (IN1&IN2&IN3);

18

19 emit(EO); pause;

20 }

21 }

Listing F.27: Quartz Model: FBD THER CODE

1 module FBD_TOGGLE_SWITCH(

2 event bool ?EI,

3 event bool !EO,

325

Appendix F: Resulting FBD-Based Quartz Models

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUT1){

9

10 loop{

11 immediate await(EI);

12

13 OUT1 = (((IN1&!(IN2)&!(IN3)&!(IN4))|(!(IN1)&IN2&!(IN3)&!(IN4))

|(!(IN1)&!(IN2)&IN3 &!(IN4))|(IN1&IN2&IN3&!(IN4)))|((!(IN1)

&!(IN2)&!(IN3)&IN4)|(IN1&IN2&!(IN3)&IN4)|(IN1 &!(IN2)&IN3&IN4

)|(!(IN1)&IN2&IN3&IN4)));

14

15 emit(EO); pause;

16 }

17 }

Listing F.28: Quartz Model: FBD TOGGLE SWITCH

1 module FBD_VENT_CTRL(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUT1,

9 bool !OUT2,

10 bool !OUT3){

11

12 loop{

13 immediate await(EI);

14

15 OUT1 = (!(IN1)&IN2&IN3&IN4);

16 OUT2 = ((IN2 &!(IN4)&!(IN1))|(IN4&!(IN3)&!(IN1))|(!(IN3)&IN2&!(

IN4))|(!(IN1)&IN3 &!(IN2))|(!(IN4)&IN1&!(IN2))|(!(IN3)&IN1&!(

IN2)));

17 OUT3 = ((IN1&IN3&IN4)|(IN1&IN2&IN3)|(IN1&IN2&IN4));

18

19 emit(EO); pause;

20 }

21 }

Listing F.29: Quartz Model: FBD VENT CTRL

1 module FBD_WIND_DIR(

2 event bool ?EI,

3 event bool !EO,

4 bool ?IN1,

5 bool ?IN2,

6 bool ?IN3,

7 bool ?IN4,

8 bool !OUT1,

9 bool !OUT2,

10 bool !OUT3,

11 bool !OUT4){

12

13 loop{

14 immediate await(EI);

15

16 OUT1 = ((IN1 &!(IN2)&!(IN3))|(!(IN1)&!(IN2)&!(IN3))|(!(IN1)&!(IN2

)&IN3));

17 OUT2 = ((!(IN1)&!(IN2)&IN3)|(IN1&!(IN2)&IN3)|(IN1&IN2&IN3));

18 OUT3 = ((IN1&IN2&IN3)|(!(IN1)&IN2&IN3)|(!(IN1)&IN2&!(IN3)));

326

Appendix F: Resulting FBD-Based Quartz Models

19 OUT4 = ((!(IN1)&IN2&!(IN3))|(IN1&IN2&!(IN3))|(IN1 &!(IN2)&!(IN3))

);

20

21 emit(EO); pause;

22 }

23 }

Listing F.30: Quartz Model: FBD WIND DIR

327

Appendix G
Resulting Data-Flow Oriented
SCCharts

1 import "MOVE_bool.sctx"

2

3 scchart FBD_TWO_OF_THREE{

4 input bool EI

5 output bool EO

6 input bool xB1_Temp

7 input bool xB2_Temp

8 input bool xB3_Temp

9 output bool xP1_Temp

10 ref MOVE_bool MOVE_01

11

12 dataflow:

13 MOVE_01 = {EI, ((xB1_Temp&xB2_Temp)|(xB1_Temp&xB3_Temp)|(xB2_Temp&

xB3_Temp))};

14 xP1_Temp = MOVE_01.OUT;

15 EO = MOVE_01.EO;

16 }

Listing G.1: SCChart: FBD TWO OF THREE

Figure G.1.: Visualized data-flow oriented SCChart: FBD TWO OF THREE

1 import "RS.sctx"

2 import "MOVE_bool.sctx"

3

4 scchart FBD_AIR_COND_CTRL{

5 input bool EI

6 output bool EO

329

Appendix G: Resulting Data-Flow Oriented SCCharts

7 input bool IN1

8 input bool IN2

9 input bool IN3

10 input bool IN4

11 input bool IN5

12 input bool IN6

13 input bool IN7

14 input bool IN8

15 input bool IN9

16 output bool OUT1

17 output bool OUT2

18 ref RS RS0

19 ref MOVE_bool MOVE_01

20 ref MOVE_bool MOVE_02

21

22 dataflow:

23 RS0={EI, (IN1|IN2|IN3|IN4),((!(IN5)|!(IN6)|!(IN7)|!(IN8))|!(IN9))};

24 MOVE_01 = {RS0.EO, RS0.Q1};

25 OUT1=MOVE_01.OUT;

26 MOVE_02 = {MOVE_01.EO, !(IN9)};

27 OUT2=MOVE_02.OUT;

28 EO = MOVE_02.EO;

29 }

Listing G.2: SCChart: FBD AIR COND CTRL

Figure G.2.: Visualized data-flow oriented SCChart: FBD AIR COND CTRL

1 import "MOVE_bool.sctx"

2

3 scchart FBD_ALARM{

4 input bool EI

5 output bool EO

6 input bool xSENSOR_L

7 input bool xSENSOR_M

8 input bool xSENSOR_R

9 output bool FBD_ALARM

10 ref MOVE_bool MOVE_01

11

12 dataflow:

13 MOVE_01 = {EI, (!(xSENSOR_L)&!(xSENSOR_M)&!(xSENSOR_R))|(xSENSOR_L&

xSENSOR_R)};

14 FBD_ALARM = MOVE_01.OUT;

15 EO = MOVE_01.EO;

16 }

Listing G.3: SCChart: FBD ALARM

1 import "MOVE_bool.sctx"

2

330

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.3.: Visualized data-flow oriented SCChart: FBD ALARM

3 scchart FBD_ANTIVALENCE{

4 input bool EI

5 output bool EO

6 input bool IN0

7 input bool IN1

8 input bool IN2

9 output bool OUT1

10 ref MOVE_bool MOVE_01

11

12 dataflow:

13 MOVE_01 = {EI, ((!(IN0)&!(IN1)&IN2)|(!(IN0)&!(IN2)&IN1)|(!(IN1)&!(

IN2)&IN0))};

14 OUT1 = MOVE_01.EO;

15 EO = MOVE_01.EO;

16 }

Listing G.4: SCChart: FBD ANTIVALENCE

Figure G.4.: Visualized data-flow oriented SCChart: FBD ANTIVALENCE

1 import "MOVE_float.sctx"

2 import "MOVE_int.sctx"

3

4 scchart FBD_OP_ARITH{

5 input bool EI

6 output bool EO

7 float x01

8 float x02

9 float x03

10 float x04

11 float x05

12 float x06

13 float x1 = 1.0

14 float x2 = 2.0

331

Appendix G: Resulting Data-Flow Oriented SCCharts

15 int x3 = 1

16 int x4 = 2

17 ref MOVE_float MOVE_01

18 ref MOVE_float MOVE_02

19 ref MOVE_float MOVE_03

20 ref MOVE_float MOVE_04

21 ref MOVE_int MOVE_05

22

23 dataflow:

24 MOVE_01 = {EI, x1 + x2};

25 x01 = MOVE_01.OUT;

26 MOVE_02 = {MOVE_01.EO, x1 - x2};

27 x02 = MOVE_02.OUT;

28 MOVE_03 = {MOVE_02.EO, x1 * x2};

29 x03 = MOVE_03.OUT;

30 MOVE_04 = {MOVE_03.EO, x1 / x2};

31 x04 = MOVE_04.OUT;

32 MOVE_05 = {MOVE_04.EO, x3 % x4};

33 x06 = MOVE_05.OUT;

34 EO = MOVE_05.EO;

35 }

Listing G.5: SCChart: FBD OP ARITH

Figure G.5.: Visualized data-flow oriented SCChart: FBD OP ARITH

1 import "MOVE_bool.sctx"

2 import "TON.sctx"

3 import "TOF.sctx"

4 import "RS.sctx"

5

6 scchart FBD_BENDING{

7 input bool EI

8 output bool EO

9 input int CLK

10 input bool IN1

11 input bool IN2

12 input bool IN3

13 output bool OUT1

14 output bool OUT2

15 output bool OUT3

16 int PT5s

17 int PT05s

18 int PT1s

19 ref TON TON0

20 ref TON TON1

21 ref TON TON2

22 ref TOF TOF0

23 ref TON TON3

24 ref RS RS0

25 ref MOVE_bool MOVE_01

26 ref MOVE_bool MOVE_02

332

Appendix G: Resulting Data-Flow Oriented SCCharts

27 ref MOVE_bool MOVE_03

28

29 dataflow:

30 TON0 = {EI,CLK,IN1,PT1s};

31 TON1 = {TON0.EO,CLK,(IN1&TON0.Q),PT1s};

32 TON2 = {TON1.EO,CLK, IN2,PT05s};

33 TOF0 = {TON2.EO,CLK, (IN1&TON0.Q),PT1s};

34 MOVE_01 = {TOF0.EO,(IN1&TON0.Q)&!((TON1.Q&TON2.Q))&!(((!(TON2.Q)&

TOF0.Q)&IN3))};

35 OUT1 = MOVE_01.OUT;

36 MOVE_02 = {MOVE_01.EO, (!(((!(TON2.Q)&TOF0.Q)&IN3))&(!(TON2.Q)&TOF0.

Q))};

37 OUT2 = MOVE_02.OUT;

38 TON3 = {MOVE_02.EO, CLK,!(IN1),PT5s};

39 RS0 = {TON3.EO,((IN1&TON0.Q)|TON3.Q),(TON1.Q&TON2.Q)};

40 MOVE_03 = {RS0.EO, RS0.Q1};

41 OUT3 = MOVE_03.OUT;

42 EO = MOVE_03.EO;

43 }

Listing G.6: SCChart: FBD BENDING

Figure G.6.: Visualized data-flow oriented SCChart: FBD BENDING

1 import "MOVE_bool.sctx"

2

3 scchart FBD_OP_BOOL{

4 input bool EI

5 output bool EO

6 bool x01

7 bool x02

8 bool x03

9 bool x04

10 bool x1 = true

11 bool x2 = false

12 ref MOVE_bool MOVE_01

13 ref MOVE_bool MOVE_02

14 ref MOVE_bool MOVE_03

15 ref MOVE_bool MOVE_04

16

17 dataflow:

18 MOVE_01 = {EI, !(x1)};

19 x01 = MOVE_01.OUT;

20 MOVE_02 = {MOVE_01.EO, x1 & x2};

21 x02 = MOVE_02.OUT;

22 MOVE_03 = {MOVE_02.EO, x1 | x2};

23 x03 = MOVE_03.OUT;

24 MOVE_04 = {MOVE_03.EO, x1 ^ x2};

25 x04 = MOVE_04.OUT;

26 EO = MOVE_04.EO;

27 }

Listing G.7: SCChart: FBD OP BOOL

333

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.7.: Visualized data-flow oriented SCChart: FBD OP BOOL

1 import "MOVE_bool.sctx"

2

3 scchart FBD_CYLINDER{

4 input bool EI

5 output bool EO

6 input bool INa1

7 input bool INa0

8 input bool INS

9 input bool INb1

10 input bool INc0

11 input bool INc1

12 input bool INb0

13 output bool OUTBp

14 output bool OUTAp

15 output bool OUTAm

16 output bool OUTCp

17 bool ME1

18 bool ME2

19 ref MOVE_bool MOVE_01

20 ref MOVE_bool MOVE_02

21 ref MOVE_bool MOVE_03

22 ref MOVE_bool MOVE_04

23 ref MOVE_bool MOVE_05

24 ref MOVE_bool MOVE_06

25

26 dataflow:

27 MOVE_01 = {EI,((ME1|(INa0&INS))&!(INb1))};

28 OUTAp=MOVE_01.OUT;

29 MOVE_02 = {MOVE_01.EO,((ME1|(INa0&INS))&!(INb1))};

30 ME1=MOVE_02.OUT;

31 MOVE_03 = {MOVE_02.EO, (INa1 &((ME1|(INa0&INS))&!(INb1)))};

32 OUTBp=MOVE_03.OUT;

33 MOVE_04 = {MOVE_03.EO,((ME2|INb1)&!(INc1))};

34 ME2=MOVE_04.OUT;

35 MOVE_05 = {MOVE_04.EO ,(!(((ME1|(INa0&INS))&!(INb1)))&INc0 &!(((ME2|

INb1)&!(INc1))))};

36 OUTAm=MOVE_05.OUT;

37 MOVE_06 = {MOVE_05.EO,(((ME2|INb1)&!(INc1))&INb0)};

38 OUTCp=MOVE_06.OUT;

39 EO = MOVE_06.EO;

40 }

Listing G.8: SCChart: FBD CYLINDER

1 scchart FBD_DATATYPES{

2 input bool EI

3 output bool EO

4 input bool INS1

5 bool A1

6 bool A2 = true

334

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.8.: Visualized data-flow oriented SCChart: FBD CYLINDER

7 int A5

8 int A6 = 2

9 int A7

10 int A8 = 2

11 int A9

12 int A10 = 2

13 float A13

14 float A14 = 1.23

15 int A15

16 int A16 = 5000

17 bool A17 [3]

18 int A20 [3]

19 int A21 [3]

20 int A22 [3]

21 float A24[3]

22 int A25 [3]

23

24 dataflow:

25 }

Listing G.9: SCChart: FBD DATATYPES

1 import "MOVE_int.sctx"

2 import "TON.sctx"

3 import "SR.sctx"

4

5 scchart FBD_DEBOUNCE{

6 input bool EI

7 output bool EO

8 input int CLK

9 input bool IN

10 input int DB_TIME = 2

11 output bool OUT

12 output int ET_OFF

13 ref TON DB_ON

14 ref TON DB_OFF

15 ref SR DB_FF

16 ref MOVE_int MOVE_01

17 ref MOVE_int MOVE_02

18

19 dataflow:

20 DB_ON = {EI, CLK, IN, DB_TIME };

21 DB_OFF = {DB_ON.EO, CLK, !(IN), DB_TIME };

22 MOVE_01 = {DB_OFF.EO, DB_OFF.ET};

23 ET_OFF = MOVE_01.OUT;

24 DB_FF = {MOVE_01.EO, DB_ON.Q, DB_OFF.Q};

25 MOVE_02 = {DB_FF.EO, DB_FF.Q1};

26 OUT = MOVE_02.OUT;

27 EO = MOVE_02.EO;

28 }

Listing G.10: SCChart: FBD DEBOUNCE

1 import "MOVE_bool.sctx"

335

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.9.: Visualized data-flow oriented SCChart: FBD DEBOUNCE

2

3 scchart FBD_DICE{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUTa

11 output bool OUTb

12 output bool OUTc

13 output bool OUTd

14 output bool OUTe

15 output bool OUTf

16 output bool OUTg

17 output bool OUTh

18 output bool OUTi

19 ref MOVE_bool MOVE_01

20 ref MOVE_bool MOVE_02

21 ref MOVE_bool MOVE_03

22 ref MOVE_bool MOVE_04

23 ref MOVE_bool MOVE_05

24 ref MOVE_bool MOVE_06

25 ref MOVE_bool MOVE_07

26 ref MOVE_bool MOVE_08

27 ref MOVE_bool MOVE_09

28

29 dataflow:

30 MOVE_01 = {EI,((IN3&!(IN4)&!(IN2))|(IN2 &!(IN4)&!(IN1))|(IN4&!(IN2)

&!(IN3)))};

31 OUTa = MOVE_01.OUT;

32 MOVE_02 = {MOVE_01.EO,((IN2&IN3&!(IN4))|(IN4 &!(IN2)&!(IN3)))};

33 OUTb = MOVE_02.OUT;

34 MOVE_03 = {MOVE_02.EO,((IN3&!(IN4))|(IN4&!(IN2)&!(IN3))|(IN1&IN2&!(

IN4)))};

35 OUTc = MOVE_03.OUT;

36 MOVE_04 = {MOVE_03.EO,((IN4&!(IN2)&!(IN3))|(IN1&IN2&IN3&!(IN4)))};

37 OUTd = MOVE_04.OUT;

38 MOVE_05 = {MOVE_04.EO,((IN1&!(IN4))|(IN1&!(IN3)&!(IN2)))};

39 OUTe = MOVE_05.OUT;

40 MOVE_06 = {MOVE_05.EO,((IN4&!(IN2)&!(IN3))|(IN1&IN2&IN3&!(IN4)))};

41 OUTf = MOVE_06.OUT;

42 MOVE_07 = {MOVE_06.EO,((IN2&IN3&!(IN4))|(IN4 &!(IN2)&!(IN3)))};

43 OUTh = MOVE_07.OUT;

44 MOVE_08 = {MOVE_07.EO,((IN3&!(IN4))|(IN4&!(IN2)&!(IN3))|(IN1&IN2&!(

IN4)))};

45 OUTg = MOVE_08.OUT;

46 MOVE_09 = {MOVE_08.EO,((IN3&!(IN4)&!(IN2))|(IN2&!(IN4)&!(IN1)&!(IN3)

)|(IN4 &!(IN2)&!(IN3)))};

47 OUTi = MOVE_09.OUT;

48 EO = MOVE_09.EO;

336

Appendix G: Resulting Data-Flow Oriented SCCharts

49 }

Listing G.11: SCChart: FBD DICE

Figure G.10.: Visualized data-flow oriented SCChart: FBD DICE

1 import "MOVE_bool.sctx"

2

3 scchart FBD_KV_DIAG{

4 input bool EI

5 output bool EO

6 input bool INa

7 input bool INb

8 input bool INc

9 input bool INd

10 output bool OUT1

11 output bool OUT2

12 ref MOVE_bool MOVE_01

13 ref MOVE_bool MOVE_02

14

15 dataflow:

16 MOVE_01 = {EI, ((!(INa)&INb)|(INa &!(INb)&INc))};

17 OUT1 = MOVE_01.OUT;

18 MOVE_02 = {MOVE_01.EO, (((INa==INb&INc)|(!(INa)&!(INc)&INb))&!(INd))

};

19 OUT2 = MOVE_02.OUT;

20 EO = MOVE_02.EO;

21 }

Listing G.12: SCChart: FBD KV DIAG

1 import "MOVE_bool.sctx"

2

3 scchart FBD_LEFT_DET{

4 input bool EI

5 output bool EO

337

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.11.: Visualized data-flow oriented SCChart: FBD KV DIAG

6 input bool xSENSOR_L

7 input bool xSENSOR_R

8 output bool FBD_LEFT_DET

9 ref MOVE_bool MOVE_01

10

11 dataflow:

12 MOVE_01 = {EI, (xSENSOR_L & !(xSENSOR_R))};

13 FBD_LEFT_DET = MOVE_01.OUT;

14 EO = MOVE_01.EO;

15 }

Listing G.13: SCChart: FBD LEFT DET

Figure G.12.: Visualized data-flow oriented SCChart: FBD LEFT DET

1 import "MOVE_bool.sctx"

2

3 scchart FBD_POLL{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 output bool OUT1

10 output bool OUT2

11 output bool OUT3

12 ref MOVE_bool MOVE_01

13 ref MOVE_bool MOVE_02

14 ref MOVE_bool MOVE_03

15

16 dataflow:

17 MOVE_01 = {EI,((!(IN3)&!(IN2)&IN1)|(!(IN3)&IN2&!(IN1))|(IN3&!(IN2)

&!(IN1)))};

18 OUT1 = MOVE_01.OUT;

19 MOVE_02 = {MOVE_01.EO, ((!(IN3)&IN2&IN1)|(IN3&!(IN2)&IN1)|(IN3&IN2

&!(IN1)))};

20 OUT2 = MOVE_02.OUT;

21 MOVE_03 = {MOVE_02.EO, (IN1&IN2&IN3)};

22 OUT3 = MOVE_03.OUT;

338

Appendix G: Resulting Data-Flow Oriented SCCharts

23 EO = MOVE_03.EO;

24 }

Listing G.14: SCChart: FBD POLL

Figure G.13.: Visualized data-flow oriented SCChart: FBD POLL

1 import "MOVE_bool.sctx"

2

3 scchart FBD_RES_CTRL1{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUTP1

11 output bool OUTP2

12 output bool OUTP3

13 output bool OUTH

14 ref MOVE_bool MOVE_01

15 ref MOVE_bool MOVE_02

16 ref MOVE_bool MOVE_03

17 ref MOVE_bool MOVE_04

18

19 dataflow:

20 MOVE_01 = {EI, ((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1))};

21 OUTP1 = MOVE_01.OUT;

22 MOVE_02 = {MOVE_01.EO, (((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1))|(!(IN3

)&IN2 &!(IN1)))};

23 OUTP2 = MOVE_02.OUT;

24 MOVE_03 = {MOVE_02.EO, ((!(IN4)&!(IN3)&!(IN2))|(IN4 &!(IN3)&IN2)|(!(

IN3)&IN2 &!(IN1))|(!(IN4)&IN3&IN2&IN2))};

25 OUTP3 = MOVE_03.OUT;

26 MOVE_04 = {MOVE_03.EO, ((IN3 &!(IN1))|(IN4&!(IN2)))};

27 OUTH = MOVE_04.OUT;

28 EO = MOVE_04.EO;

29 }

Listing G.15: SCChart: FBD RES CTRL1

1 import "MOVE_bool.sctx"

2

3 scchart FBD_RES_CTRL2{

4 input bool EI

5 output bool EO

339

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.14.: Visualized data-flow oriented SCChart: FBD RES CTRL1

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUTP1

11 output bool OUTP2

12 output bool OUTP3

13 output bool OUTQ

14 ref MOVE_bool MOVE_01

15 ref MOVE_bool MOVE_02

16 ref MOVE_bool MOVE_03

17 ref MOVE_bool MOVE_04

18

19 dataflow:

20 MOVE_01 = {EI, ((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1))};

21 OUTP3 = MOVE_01.OUT;

22 MOVE_02 = {MOVE_01.EO, (((!(IN4)&!(IN3))|(!(IN4)&!(IN2)&IN1))|(!(IN3

)&IN2 &!(IN1)))};

23 OUTP2 = MOVE_02.OUT;

24 MOVE_03 = {MOVE_02.EO, ((!(IN4)&!(IN3)&!(IN2))|(IN4 &!(IN3)&IN2&IN1)

|(!(IN3)&IN2&!(IN1))|(!(IN4)&IN3&IN2&IN1))};

25 OUTP1 = MOVE_03.OUT;

26 MOVE_04 = {MOVE_03.EO, ((IN3 &!(IN1))|(IN4&!(IN2)))};

27 OUTQ = MOVE_04.OUT;

28 EO = MOVE_04.EO;

29 }

Listing G.16: SCChart: FBD RES CTRL2

1 import "MOVE_bool.sctx"

2

340

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.15.: Visualized data-flow oriented SCChart: FBD RES CTRL2

3 scchart FBD_ROLL_DOWN{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 input bool IN5

11 input bool IN6

12 input bool TIME14

13 input bool TIME4

14 output bool OUT1

15 output bool OUT2

16 ref MOVE_bool MOVE_01

17 ref MOVE_bool MOVE_02

18

19 dataflow:

20 MOVE_01 = {EI, (((TIME4&IN6)|(!(IN6)&IN2))&IN4)};

21 OUT1 = MOVE_01.OUT;

22 MOVE_02 = {MOVE_01.EO, ((((TIME4&IN6)|(!(IN6)&IN2))&IN4)==(IN5&((IN6

&IN1&!(TIME14))|(IN3 &!(IN6))))&(IN5&((IN6&IN1&!(TIME14))|(IN3 &!(

IN6)))))};

23 OUT2 = MOVE_02.OUT;

24 EO = MOVE_02.EO;

25 }

Listing G.17: SCChart: FBD ROLL DOWN

1 import "MOVE_bool.sctx"

2

341

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.16.: Visualized data-flow oriented SCChart: FBD ROLL DOWN

3 scchart FBD_CABLE_WINCH{

4 input bool EI

5 output bool EO

6 input bool INS1

7 input bool INB1

8 input bool INB2

9 output bool OUT1

10 output bool OUT2

11 bool ME1

12 bool ME2

13 ref MOVE_bool MOVE_01

14 ref MOVE_bool MOVE_02

15 ref MOVE_bool MOVE_03

16 ref MOVE_bool MOVE_04

17

18 dataflow:

19 MOVE_01 = {EI, ((ME1|INS1 |!(INB2))&!((!(INB1)|!(INS1)|ME2)))};

20 OUT1 = MOVE_01.OUT;

21 MOVE_02 = {MOVE_01.EO, ((ME1|INS1 |!(INB2))&!((!(INB1)|!(INS1)|ME2)))

};

22 ME1 = MOVE_02.OUT;

23 MOVE_03 = {MOVE_02.EO, ((ME2 |!(INB1))&!((!(INB2)|!(INS1)|ME1)))};

24 OUT2 = MOVE_03.OUT;

25 MOVE_04 = {MOVE_03.EO, ((ME2 |!(INB1))&!((!(INB2)|!(INS1)|ME1)))};

26 ME2 = MOVE_04.OUT;

27 EO = MOVE_04.EO;

28 }

Listing G.18: SCChart: FBD CABLE WINCH

1 import "MOVE_bool.sctx"

2

3 scchart FBD_SEVEN_SEG{

4 input bool EI

5 output bool EO

6 input bool IN0

7 input bool IN1

8 input bool IN2

9 input bool IN3

10 input bool IN4

11 output bool OUTa

12 output bool OUTb

13 output bool OUTc

14 output bool OUTd

15 output bool OUTe

16 output bool OUTf

17 output bool OUTg

18 ref MOVE_bool MOVE_01

19 ref MOVE_bool MOVE_02

342

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.17.: Visualized data-flow oriented SCChart: FBD CABLE WINCH

20 ref MOVE_bool MOVE_03

21 ref MOVE_bool MOVE_04

22 ref MOVE_bool MOVE_05

23 ref MOVE_bool MOVE_06

24 ref MOVE_bool MOVE_07

25

26 dataflow:

27 MOVE_01 = {EI, ((!(IN3)&IN1)|(IN2&IN1)|(!(IN2)&!(IN1)&IN3)|(!(IN3)

&!(IN2)&!(IN0))|(!(IN3)&IN1&IN0))};

28 OUTa = MOVE_01.OUT;

29 MOVE_02 = {MOVE_01.EO, ((!(IN3)&!(IN2))|(!(IN2)&!(IN1))|(!(IN3)&IN1&

IN0)|(IN3&!(IN1)&IN0)|(!(IN3)&!(IN1)&!(IN0)))};

30 OUTb = MOVE_02.OUT;

31 MOVE_03 = {MOVE_02.EO, ((!(IN3)&!(IN1))|(!(IN3)&IN0)|(!(IN2)&IN3)

|(!(IN3)&IN2)|(!(IN1)&IN0))};

32 OUTc = MOVE_03.OUT;

33 MOVE_04 = {MOVE_03.EO, ((!(IN2)&IN1)|(!(IN2)&!(IN0))|(IN1&!(IN0))|(

IN3 &!(IN1)&IN2)|(IN2&!(IN1)&IN0))};

34 OUTd = MOVE_04.OUT;

35 MOVE_05 = {MOVE_04.EO, ((!(IN2)&!(IN0))|(IN3&IN1)|(IN3&IN2)|(IN2&!(

IN0)&IN1))};

36 OUTe = MOVE_05.OUT;

37 MOVE_06 = {MOVE_05.EO, ((IN3&IN2&IN1)|(!(IN3)&IN2&!(IN1))|(!(IN3)&

IN2 &!(IN0))|(IN3&!(IN2)&IN0)|(!(IN2)&!(IN1)&!(IN0)))};

38 OUTf = MOVE_06.OUT;

39 MOVE_07 = {MOVE_06.EO, (IN3 |(!(IN0)&IN2)|(!(IN2)&IN0)|(!(IN1)&IN2))

};

40 OUTg = MOVE_07.OUT;

41 EO = MOVE_07.EO;

42 }

Listing G.19: SCChart: FBD SEVEN SEG

1 import "MOVE_bool.sctx"

343

Appendix G: Resulting Data-Flow Oriented SCCharts

Figure G.18.: Visualized data-flow oriented SCChart: FBD SEVEN SEG

2 import "TOF.sctx"

3

4 scchart FBD_SHOP_WINDOW{

5 input bool EI

6 output bool EO

7 input int CLK

8 input bool IN1

9 input bool IN2

10 input bool IN3

11 input bool IN4

12 input bool TIME3

13 output bool OUT1

14 output bool OUT2

15 output bool OUT3

16 output bool OUT4

17 int PT1m

18 ref TOF TOF0

19 ref TOF TOF1

20 ref MOVE_bool MOVE_01

21 ref MOVE_bool MOVE_02

22 ref MOVE_bool MOVE_03

23 ref MOVE_bool MOVE_04

24

25 dataflow:

26 TOF0 = {EI, CLK, IN3, PT1m};

27 MOVE_01 = {TOF0.EO, ((TIME3|TOF0.Q)&IN2)};

28 OUT1 = MOVE_01.OUT;

29 MOVE_02 = {MOVE_01.EO, (IN2 &((((TIME3|TOF0.Q)&IN2)&IN1)|TOF0.Q))};

30 OUT2 = MOVE_02.OUT;

31 MOVE_03 = {MOVE_02.EO, (IN2&((IN1 &!(((TIME3|TOF0.Q)&IN2)))|TOF0.Q))

};

32 OUT3 = MOVE_03.OUT;

33 TOF1 = {MOVE_03.EO, CLK, IN4, PT1m};

34 MOVE_04 = {TOF1.EO, (IN2&(TOF0.Q|TOF1.Q))};

344

Appendix G: Resulting Data-Flow Oriented SCCharts

35 OUT4 = MOVE_04.OUT;

36 EO = MOVE_04.EO;

37 }

Listing G.20: SCChart: FBD SHOP WINDOW

Figure G.19.: Visualized data-flow oriented SCChart: FBD SHOP WINDOW

1 import "MOVE_bool.sctx"

2

3 scchart FBD_SILO_VALVE{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUT1

11 ref MOVE_bool MOVE_01

12

13 dataflow:

14 MOVE_01 = {EI, ((!(IN3)&!(IN2)&IN1)|(!(IN3)&IN2 &!(IN1))|(IN3&!(IN2)

&!(IN1))|(IN3&IN2&IN1))};

15 OUT1 = MOVE_01.OUT;

16 EO = MOVE_01.EO;

17 }

Listing G.21: SCChart: FBD SILO VALVE

Figure G.20.: Visualized data-flow oriented SCChart: FBD SILO VALVE

1 import "MOVE_int.sctx"

2 import "MOVE_float.sctx"

3

345

Appendix G: Resulting Data-Flow Oriented SCCharts

4 scchart FBD_SIMPLE_FUN{

5 input bool EI

6 output bool EO

7 input float A1

8 input float B1

9 input float C1 = 1.0

10 input output int COUNT

11 output float FBD_SIMPLE_FUN

12 int COUNTP1

13 ref MOVE_float MOVE_01

14 ref MOVE_int MOVE_02

15 ref MOVE_float MOVE_03

16

17 dataflow:

18 MOVE_01 = {EI, COUNT +1};

19 COUNTP1 = MOVE_01.OUT;

20 MOVE_02 = {MOVE_01.EO, COUNTP1 };

21 COUNT = MOVE_02.OUT

22 MOVE_03 = {MOVE_02.EO, (A1*B1)/C1};

23 FBD_SIMPLE_FUN = MOVE_03.OUT

24 EO = MOVE_03.EO;

25 }

Listing G.22: SCChart: FBD SIMPLE FUN

Figure G.21.: Visualized data-flow oriented SCChart: FBD SIMPLE FUN

1 import "MOVE_bool.sctx"

2 import "MOVE_int.sctx"

3 import "MOVE_float.sctx"

4 import "FBD_DEBOUNCE.sctx"

5 import "FBD_SIMPLE_FUN.sctx"

6

7 scchart FBD_SIMPLE_PRG1{

8 input bool EI

9 output bool EO

10 input bool PRG_IN

11 output bool PRG_OUT1

12 output float PRG_OUT2

13 output int PRG_ET_OFF

14 int PRG_COUNT = 4

15 float PRG_A

16 float PRG_B

17 float PRG_C

18

19 ref FBD_DEBOUNCE DEBOUNCE_01

20 ref FBD_SIMPLE_FUN FBD_SIMPLE_FUN_l1

21 ref MOVE_bool MOVE_01

22 ref MOVE_int MOVE_02

23 ref MOVE_float MOVE_03

24

25 dataflow:

26 DEBOUNCE_01 = {EI, PRG_IN, 2000};

27 MOVE_01 = {DEBOUNCE_01.EO, DEBOUNCE_01.OUT};

28 PRG_OUT1 = MOVE_01.OUT;

346

Appendix G: Resulting Data-Flow Oriented SCCharts

29 MOVE_02 = {MOVE_01.EO, DEBOUNCE_01.ET_OFF };

30 PRG_ET_OFF = MOVE_02.OUT;

31 FBD_SIMPLE_FUN_l1 = {MOVE_02.EO, PRG_A + 2, PRG_B, PRG_C, PRG_COUNT

};

32 MOVE_03 = {FBD_SIMPLE_FUN_l1.EO, FBD_SIMPLE_FUN_l1.FBD_SIMPLE_FUN };

33 PRG_OUT2 = MOVE_03.OUT;

34 EO = MOVE_03.EO;

35 }

Listing G.23: SCChart: FBD SIMPLE PRG1

Figure G.22.: Visualized data-flow oriented SCChart: FBD SIMPLE PRG1

1 import "MOVE_int.sctx"

2 import "ST_LOOP_HEAD_SCL.sctx"

3

4 scchart FBD_SIMPLE_PRG2{

5 input bool EI

6 output bool EO

7 int OUT

8 ref ST_LOOP_HEAD_SCL ST_LOOP_HEAD0

9 ref MOVE_int MOVE_01

10

11 dataflow:

12 ST_LOOP_HEAD0 = {EI}

13 MOVE_01 = {ST_LOOP_HEAD0.EO, ST_LOOP_HEAD0.y}

14 OUT = MOVE_01.OUT

15 EO = MOVE_01.EO

16 }

Listing G.24: SCChart: FBD SIMPLE PRG2

Figure G.23.: Visualized data-flow oriented SCChart: FBD SIMPLE PRG2

1 import "MOVE_bool.sctx"

2

3 scchart FBD_SMOKE_DET{

4 input bool EI

5 output bool EO

6 input bool IN1

347

Appendix G: Resulting Data-Flow Oriented SCCharts

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUT1

11 output bool OUT2

12 output bool OUT3

13 ref MOVE_bool MOVE_01

14 ref MOVE_bool MOVE_02

15 ref MOVE_bool MOVE_03

16

17 dataflow:

18 MOVE_01 = {EI, (!(IN1)|!(IN2)|!(IN3)|!(IN4))};

19 OUT1 = MOVE_01.OUT;

20 MOVE_02 = {MOVE_01.EO, (((!(IN1)&!(IN2))|(!(IN1)&!(IN3)))|(!(IN1)&!(

IN4)&(!(IN3)&!(IN2))&(!(IN2)&!(IN4))&(!(IN3)&!(IN4))))};

21 OUT2 = MOVE_02.OUT;

22 MOVE_03 = {MOVE_02.EO, (!(IN1)&!(IN2)&!(IN3)&!(IN4))};

23 OUT3 = MOVE_03.OUT;

24 EO = MOVE_03.EO;

25 }

Listing G.25: SCChart: FBD SMOKE DET

Figure G.24.: Visualized data-flow oriented SCChart: FBD SMOKE DET

1 import "MOVE_bool.sctx"

2 import "RS.sctx"

3 import "TON.sctx"

4

5 scchart FBD_SPORTS_HALL{

6 input bool EI

7 output bool EO

8 input int CLK

9 input bool IN1

10 input bool IN2

11 input bool IN3

12 input bool IN4

13 input bool TIME4

14 input bool TIME9

15 input bool TIME14

16 input bool TIME18

17 output bool OUT1

18 output bool OUT2

348

Appendix G: Resulting Data-Flow Oriented SCCharts

19 output bool OUT3

20 output bool OUT4

21 int PT1m

22 ref RS RS0

23 ref RS RS1

24 ref RS RS2

25 ref TON TON0

26 ref MOVE_bool MOVE_01

27 ref MOVE_bool MOVE_02

28 ref MOVE_bool MOVE_03

29 ref MOVE_bool MOVE_04

30

31 dataflow:

32 RS0 = {EI, IN1, TIME4};

33 MOVE_01 = {RS0.EO, ((RS0.Q1&!(IN4))|IN3)};

34 OUT1 = MOVE_01.OUT;

35 RS1 = {MOVE_01.EO, IN1,TIME9};

36 MOVE_02 = {RS1.EO, ((RS1.Q1&!(IN4))|IN3)};

37 OUT2 = MOVE_02.OUT;

38 TON0 = {MOVE_02.EO, CLK, TIME18,PT1m};

39 MOVE_03 = {TON0.EO, (TIME18 ==TON0.Q&((RS0.Q1&!(IN4))|IN3)&((RS1.Q1

&!(IN4))|IN3))};

40 OUT4 = MOVE_03.OUT;

41 RS2 = {MOVE_03.EO, IN2,TIME14 };

42 MOVE_04 = {RS2.EO, ((RS2.Q1&!(IN4))|IN3)};

43 OUT3 = MOVE_04.OUT;

44 EO = MOVE_04.EO;

45 }

Listing G.26: SCChart: FBD SPORTS HALL

Figure G.25.: Visualized data-flow oriented SCChart: FBD SPORTS HALL

1 import "MOVE_bool.sctx"

2

349

Appendix G: Resulting Data-Flow Oriented SCCharts

3 scchart FBD_THER_CODE{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUT1

11 output bool OUT2

12 output bool OUT3

13 ref MOVE_bool MOVE_01

14 ref MOVE_bool MOVE_02

15 ref MOVE_bool MOVE_03

16

17 dataflow:

18 MOVE_01 = {EI, (IN1|IN2|IN3)};

19 OUT1 = MOVE_01.OUT;

20 MOVE_02 = {MOVE_01.EO, ((IN1&IN2 &!(IN3))|(IN1&!(IN2)&IN3)|(!(IN1)&

IN2&IN3)|(IN1&IN2&IN3))};

21 OUT2 = MOVE_02.OUT;

22 MOVE_03 = {MOVE_02.EO,(IN1&IN2&IN3)};

23 OUT3 = MOVE_03.OUT;

24 EO = MOVE_03.EO;

25 }

Listing G.27: SCChart: FBD THER CODE

Figure G.26.: Visualized data-flow oriented SCChart: FBD THER CODE

1 import "MOVE_bool.sctx"

2

3 scchart FBD_TOGGLE_SWITCH{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUT1

11 ref MOVE_bool MOVE_01

12

13 dataflow:

350

Appendix G: Resulting Data-Flow Oriented SCCharts

14 MOVE_01 = {EI, (((IN1&!(IN2)&!(IN3)&!(IN4))|(!(IN1)&IN2&!(IN3)&!(IN4

))|(!(IN1)&!(IN2)&IN3&!(IN4))|(IN1&IN2&IN3 &!(IN4)))|((!(IN1)&!(

IN2)&!(IN3)&IN4)|(IN1&IN2&!(IN3)&IN4)|(IN1&!(IN2)&IN3&IN4)|(!(

IN1)&IN2&IN3&IN4)))};

15 OUT1 = MOVE_01.OUT;

16 EO = MOVE_01.EO;

17 }

Listing G.28: SCChart: FBD TOGGLE SWITCH

Figure G.27.: Visualized data-flow oriented SCChart: FBD TOGGLE SWITCH

1 import "MOVE_bool.sctx"

2

3 scchart FBD_VENT_CTRL{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 input bool IN4

10 output bool OUT1

11 output bool OUT2

12 output bool OUT3

13 ref MOVE_bool MOVE_01

14 ref MOVE_bool MOVE_02

15 ref MOVE_bool MOVE_03

16

17 dataflow:

18 MOVE_01 = {EI, (!(IN1)&IN2&IN3&IN4)};

19 OUT1 = MOVE_01.OUT;

20 MOVE_02 = {MOVE_01.EO, ((IN2 &!(IN4)&!(IN1))|(IN4&!(IN3)&!(IN1))|(!(

IN3)&IN2 &!(IN4))|(!(IN1)&IN3&!(IN2))|(!(IN4)&IN1&!(IN2))|(!(IN3)

&IN1&!(IN2)))};

21 OUT2 = MOVE_02.OUT;

22 MOVE_03 = {MOVE_02.EO, ((IN1&IN3&IN4)|(IN1&IN2&IN3)|(IN1&IN2&IN4))};

23 OUT3 = MOVE_03.OUT;

351

Appendix G: Resulting Data-Flow Oriented SCCharts

24 EO = MOVE_03.EO;

25 }

Listing G.29: SCChart: FBD VENT CTRL

Figure G.28.: Visualized data-flow oriented SCChart: FBD VENT CTRL

1 import "MOVE_bool.sctx"

2

3 scchart FBD_WIND_DIR{

4 input bool EI

5 output bool EO

6 input bool IN1

7 input bool IN2

8 input bool IN3

9 output bool OUT1

10 output bool OUT2

11 output bool OUT3

12 output bool OUT4

13 ref MOVE_bool MOVE_01

14 ref MOVE_bool MOVE_02

15 ref MOVE_bool MOVE_03

16 ref MOVE_bool MOVE_04

17

18 dataflow:

19 MOVE_01 = {EI, ((IN1&!(IN2)&!(IN3))|(!(IN1)&!(IN2)&!(IN3))|(!(IN1)

&!(IN2)&IN3))};

20 OUT1 = MOVE_01.OUT;

21 MOVE_02 = {MOVE_01.EO, ((!(IN1)&!(IN2)&IN3)|(IN1&!(IN2)&IN3)|(IN1&

IN2&IN3))};

22 OUT2 = MOVE_02.OUT;

23 MOVE_03 = {MOVE_02.EO, ((IN1&IN2&IN3)|(!(IN1)&IN2&IN3)|(!(IN1)&IN2

&!(IN3)))};

24 OUT3 = MOVE_03.OUT;

25 MOVE_04 = {MOVE_03.EO, ((!(IN1)&IN2&!(IN3))|(IN1&IN2 &!(IN3))|(IN1 &!(

IN2)&!(IN3)))};

26 OUT4 = MOVE_04.OUT;

27 EO = MOVE_04.EO;

352

Appendix G: Resulting Data-Flow Oriented SCCharts

28 }

Listing G.30: SCChart: FBD WIND DIR

Figure G.29.: Visualized data-flow oriented SCChart: FBD WIND DIR

353

Appendix H
Resulting Control-Flow Oriented
SCCharts

1 scchart ST_ALARM{

2 input bool xSENSOR_L

3 input bool xSENSOR_M

4 input bool xSENSOR_R

5 output bool ST_ALARM

6

7 region:

8 initial state S0

9 immediate do ST_ALARM = (!(xSENSOR_L) & !(xSENSOR_M) & !(xSENSOR_R))

| (xSENSOR_L & xSENSOR_R) go to S1

10 final state S1

11 }

Listing H.1: SCChart: ST ALARM

Figure H.1.: Visualized control-flow oriented SCChart: ST ALARM

1 scchart ST_LOOP_FOOT{

2 input signal bool EI

3 output signal bool EO

4 output int y

5 int x0

6 int x1

7 int x2

8 int i

9 int i0

10 int i1

11

12 region:

13 initial state S1

14 do x0 = 0; x1 = 1; x2 = 2; i0 = 0; i1 = 10 abort to S2

15

355

Appendix H: Resulting Control-Flow Oriented SCCharts

16 state S2{

17 initial state S1

18 immediate if EI do i = i0 abort to S2

19

20 state S2 {

21 initial state S1

22 immediate do y = x0 go to S2

23

24 state S2

25 do i = pre(i) + pre(x2) abort to S3

26

27 final state S3

28 immediate if !(i > i1) go to S1

29 }

30 immediate if (i > i1) do y = x1; EO join to S3

31

32 final state S3

33 abort to S1

34 }

35 }

Listing H.2: SCChart: ST LOOP FOOT

Figure H.2.: Visualized control-flow oriented SCChart: ST LOOP FOOT

1 scchart ST_LOOP_HEAD{

2 input signal bool EI

3 output signal bool EO

4 output int y

5 int x1

6 int x2

7 int i

8 int i0

9 int i1

10

11 region:

12 initial state S1

13 do x1 = 1; x2 = 2; i0 = 0; i1 = 10 abort to S2

14

15 state S2{

16 initial state S1

17 immediate if EI do i = i0 abort to S2

18

19 state S2 {

20 initial final state S1

21 immediate if (i <= i1) go to S2

22

23 state S2

24 do i = pre(i) + pre(x2) abort to S3

25

26 state S3

27 immediate go to S1

28 }

356

Appendix H: Resulting Control-Flow Oriented SCCharts

29 immediate if !(i <= i1) do y = x1; EO join to S3

30

31 state S3

32 abort to S1

33 }

34 }

Listing H.3: SCChart: ST LOOP HEAD

Figure H.3.: Visualized control-flow oriented SCChart: ST LOOP HEAD

1 scchart ST_OP_ARITH{

2 input signal bool EI

3 output signal bool EO

4 float x01

5 float x02

6 float x03

7 float x04

8 float x05

9 float x06

10 float x1

11 float x2

12 int x3

13 int x4

14

15 region:

16 initial state S1

17 immediate do x1 = 1.0; x2 = 2.0; x3 = 1; x4 = 2 abort to S2

18

19 state S2{

20 initial state S1

21 immediate if EI do x01 = x1 + x2; x02 = x1 - x2; x03 = x1 * x2;

x04 = x1 / x2; x06 = x3 % x4; EO abort to S2

22

23 state S2

24 abort to S1

25 }

26 }

Listing H.4: SCChart: ST OP ARITH

1 scchart ST_RS{

2 input signal bool EI

3 output signal bool EO

4 input bool SET

5 input bool RESET1

6 output bool Q1

7 bool Q1_Tmp

8

9 region:

10 initial state S1{

11 initial state S1

12 immediate if EI abort to S2

357

Appendix H: Resulting Control-Flow Oriented SCCharts

Figure H.4.: Visualized control-flow oriented SCChart: ST OP ARITH

13

14 state S2

15 do Q1_Tmp = (pre(SET) | pre(Q1_Tmp)) & !(pre(RESET1)); Q1 = Q1_Tmp

; EO abort to S3

16

17 state S3

18 abort to S1

19 }

20 }

Listing H.5: SCChart: ST RS

Figure H.5.: Visualized control-flow oriented SCChart: ST RS

1 scchart ST_TWO_OF_THREE{

2 input signal bool EI

3 output signal bool EO

4 input bool xB1_Temp

5 input bool xB2_Temp

6 input bool xB3_Temp

7 output bool xP1_Temp

8

9 region:

10 initial state S1{

11 initial state S1

12 immediate if EI do xP1_Temp = ((xB1_Temp&xB2_Temp)|(xB1_Temp&

xB3_Temp)|(xB2_Temp&xB3_Temp)); EO abort to S2

13

14 state S2

15 abort to S1

16 }

17 }

Listing H.6: SCChart: ST TWO OF THREE

358

Appendix H: Resulting Control-Flow Oriented SCCharts

Figure H.6.: Visualized control-flow oriented SCChart: ST TWO OF THREE

1 scchart FBD_OP_BOOL{

2 input signal bool EI

3 output signal bool EO

4 bool x01

5 bool x02

6 bool x03

7 bool x04

8 bool x05

9 bool x06

10 bool x1

11 bool x2

12

13 region:

14 initial state S1

15 do x1 = true; x2 = false abort to S2

16

17 state S2{

18 initial state S1

19 immediate if EI do x01 = !(x1); x02 = x1 & x2; x03 = x1 | x2; x04

= x1 ^ x2; EO abort to S2

20 state S2

21 abort to S1

22 }

23 }

Listing H.7: SCChart: FBD OP BOOL

Figure H.7.: Visualized control-flow oriented SCChart: FBD OP BOOL

1 scchart FBD_DATATYPES{

2 input signal bool EI

3 output signal bool EO

4 bool A1

359

Appendix H: Resulting Control-Flow Oriented SCCharts

5 bool A2

6 int A5

7 int A6

8 int A7

9 int A8

10 int A9

11 int A10

12 float A13

13 float A14

14 int A15

15 int A16

16 bool A17 [3]

17 int A20 [3]

18 int A21 [3]

19 int A22 [3]

20 float A24[3]

21 int A25 [3]

22

23 region:

24 initial state S1

25 do A2 = true; A6 = 2; A8 = 2; A10 = 2; A14 = 1.23; A16 = 5000 abort

to S2

26

27 state S2{

28 initial state S1

29 immediate if EI do EO abort to S2

30 state S2

31 abort to S1

32 }

33 }

Listing H.8: SCChart: FBD DATATYPES

Figure H.8.: Visualized control-flow oriented SCChart: FBD DATATYPES

1 scchart FBD_KV_DIAG{

2 input signal bool EI

3 output signal bool EO

4 input bool INa

5 input bool INb

6 input bool INc

7 input bool INd

8 output bool OUT1

9 output bool OUT2

10

11 region:

12 initial state S1{

13 initial state S1

14 immediate if EI do OUT1 = ((!(INa)&INb)|(INa&!(INb)&INc)); OUT2 =

(((INa==INb&INc)|(!(INa)&!(INc)&INb))&!(INd)); EO abort to S2

15 state S2

360

Appendix H: Resulting Control-Flow Oriented SCCharts

16 abort to S1

17 }

18 }

Listing H.9: SCChart: FBD KV DIAG

Figure H.9.: Visualized control-flow oriented SCChart: FBD KV DIAG

1 scchart FBD_LEFT_DET{

2 input signal bool EI

3 output signal bool EO

4 input bool xSENSOR_L

5 input bool xSENSOR_R

6 output bool FBD_LEFT_DET

7

8 region:

9 initial state S1{

10 initial state S1

11 immediate if EI do FBD_LEFT_DET = (xSENSOR_L & !(xSENSOR_R)); EO

abort to S2

12 state S2

13 abort to S1

14 }

15 }

Listing H.10: SCChart: FBD LEFT DET

Figure H.10.: Visualized control-flow oriented SCChart: FBD LEFT DET

1 scchart FBD_ROLL_DOWN{

2 input signal bool EI

3 output signal bool EO

4 input bool IN1

5 input bool IN2

6 input bool IN3

7 input bool IN4

361

Appendix H: Resulting Control-Flow Oriented SCCharts

8 input bool IN5

9 input bool IN6

10 input bool TIME14

11 input bool TIME4

12 output bool OUT1

13 output bool OUT2

14

15 region:

16 initial state S1{

17 initial state S1

18 immediate if EI do OUT1 = (((TIME4&IN6)|(!(IN6)&IN2))&IN4); OUT2 =

((((TIME4&IN6)|(!(IN6)&IN2))&IN4)==(IN5&((IN6&IN1&!(TIME14))

|(IN3&!(IN6))))&(IN5&((IN6&IN1&!(TIME14))|(IN3 &!(IN6))))); EO

abort to S2

19 state S2

20 abort to S1

21 }

22 }

Listing H.11: SCChart: FBD ROLL DOWN

Figure H.11.: Visualized control-flow oriented SCChart: FBD ROLL DOWN

1 scchart FBD_THER_CODE{

2 input signal bool EI

3 output signal bool EO

4 input bool IN1

5 input bool IN2

6 input bool IN3

7 input bool IN4

8 output bool OUT1

9 output bool OUT2

10 output bool OUT3

11

12 region:

13 initial state S1{

14 initial state S1

15 immediate if EI do OUT1 = (IN1|IN2|IN3); OUT2 = ((IN1&IN2&!(IN3))

|(IN1&!(IN2)&IN3)|(!(IN1)&IN2&IN3)|(IN1&IN2&IN3)); OUT3 = (IN1

&IN2&IN3); EO abort to S2

16 state S2

17 abort to S1

18 }

19 }

Listing H.12: SCChart: FBD THER CODE

1 scchart FBD_TOGGLE_SWITCH{

2 input signal bool EI

362

Appendix H: Resulting Control-Flow Oriented SCCharts

Figure H.12.: Visualized control-flow oriented SCChart: FBD THER CODE

3 output signal bool EO

4 input bool IN1

5 input bool IN2

6 input bool IN3

7 input bool IN4

8 output bool OUT1

9

10 region:

11 initial state S1{

12 initial state S1

13 immediate if EI do OUT1 = (((IN1 &!(IN2)&!(IN3)&!(IN4))|(!(IN1)&IN2

&!(IN3)&!(IN4))|(!(IN1)&!(IN2)&IN3&!(IN4))|(IN1&IN2&IN3 &!(IN4)

))|((!(IN1)&!(IN2)&!(IN3)&IN4)|(IN1&IN2&!(IN3)&IN4)|(IN1 &!(IN2

)&IN3&IN4)|(!(IN1)&IN2&IN3&IN4))); EO abort to S2

14 final state S2

15 abort to S1

16 }

17 }

Listing H.13: SCChart: FBD TOGGLE SWITCH

Figure H.13.: Visualized control-flow oriented SCChart: FBD TOGGLE SWITCH

363

Appendix I
ST-to-Quartz: Appendix

I.0.1. Data Types and Fields

Algorithm 37 Translate data type and field – ST-to-Quartz

Input: α[+](ωφ
st)

Output: α[+](ωqrz′)
Translation Function tαst↦qrz(α[+](ω

φ
st)):

α[+](ωqrz′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bool if α[+](ωφ
st) = αbool

bv (ω
φ
st)

bv{16} if α[+](ωφ
st) = α

byte
bv (ω

φ
st)

bv{32} if α[+](ωφ
st) = αword

bv (ωφ
st)

int{32768} if α[+](ωφ
st) = αint

i (ω
φ
st)

int{2147483648} if α[+](ωφ
st) = αdint

i (ωφ
st)

nat{65536} if α[+](ωφ
st) = αuint

i (ωφ
st)

nat{4294967296} if α[+](ωφ
st) = αudint

i (ωφ
st)

real if α[+](ωφ
st) ∈ Ar(ωφ

st)
nat if α[+](ωφ

st) ∈ Adur(ωφ
st)

[n(α[+](ωφ
st))+1]

tαst↦qrz(α[+](ω
φ
st))

if α[+](ωφ
st) ∈ A+(ω

φ
st)

365

Appendix I: ST-to-Quartz: Appendix

I.0.2. Expressions

Algorithm 38 Translate expression – ST-to-Quartz

Input: τ (ωφ
st)

Output: τ (ωqrz′)
Translation Function tτst↦qrz(τ (ω

φ
st)):

τ (ωqrz′) ←

⎧⎪⎪⎨⎪⎪⎩

value(τ (ωφ
st)) if τ (ωφ

st) = τ cstmisc(ω
φ
st)

id(τ (ωφ
st)) if τ (ωφ

st) = τ idmisc(ω
φ
st)

(tτst↦qrz(τ (ω
φ
st))) if τ (ωφ

st) = τ brmisc(ω
φ
st)

true if τ (ωφ
st) = τ truemisc(ω

φ
st)

false if τ (ωφ
st) = τ

false
misc (ω

φ
st)

x[n] if τ (ωφ
st) = τarrmisc(ω

φ
st)

x y if τ (ωφ
st) = τ invmisc(ω

φ
st)

(π1 == π2) if τ (ωφ
st) = τ

eq
comp(ωφ

st)
(π1 != π2) if τ (ωφ

st) = τnecomp(ω
φ
st)

(π1 > π2) if τ (ωφ
st) = τ

gt
comp(ωφ

st)
(π1 >= π2) if τ (ωφ

st) = τ
ge
comp(ωφ

st)
(π1 < π2) if τ (ωφ

st) = τ ltcomp(ω
φ
st)

(π1 <= π2) if τ (ωφ
st) = τ lecomp(ω

φ
st)

(η1 * η2) if τ (ωφ
st) = τmul

arith(ω
φ
st)

(η1 / η2) if τ (ωφ
st) = τdivarith(ω

φ
st)

(η1 + η2) if τ (ωφ
st) = τaddarith(ω

φ
st)

(η1 - η2) if τ (ωφ
st) = τ subarith(ω

φ
st)

exp(ηr1, η2) if τ (ωφ
st) = τ

expt
arith(ω

φ
st)

(ηi1 % ηi2) if τ (ωφ
st) = τmod

arith(ω
φ
st)

-(η1) if τ (ωφ
st) = τumarith(ω

φ
st)

λb ? π1 : π2 if τ (ωφ
st) = τ selcond(ω

φ
st)

(λ1 & ... & λn) if τ (ωφ
st) = τandbool(ω

φ
st), α(λ) = αbv

(λ1 | ... | λn) if τ (ωφ
st) = τ orbool(ω

φ
st), α(λ) = αbv

(λ1 ^ λ2) if τ (ωφ
st) = τxorbool(ω

φ
st)

!(λ1) if τ (ωφ
st) = τnotbool(ω

φ
st), α(λ) = αbv

366

Appendix J
ST-to-SCL: Appendix

J.0.1. Data Types and Fields

Algorithm 39 Translate data type and field – ST-to-SCL

Input: α[+](ωφ
st)

Output: α[+](ωscl′)
Translation Function tαst↦scl(α[+](ω

φ
st)):

α[+](ωscl′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bool if α[+](ωφ
st) = αbool

bv (ω
φ
st)

extern if α[+](ωφ
st) = α

byte
bv (ω

φ
st)

extern if α[+](ωφ
st) = αword

bv (ωφ
st)

int if α[+](ωφ
st) = αint

int(ω
φ
st)

int if α[+](ωφ
st) = αdint

int (ω
φ
st)

int if α[+](ωφ
st) = αuint

int (ω
φ
st)

extern if α[+](ωφ
st) = αudint

int (ω
φ
st)

float if α[+](ωφ
st) ∈ Ar(ωφ

st)
int if α[+](ωφ

st) ∈ Adur(ωφ
st)

tαst↦scl(α[+](ω
φ
st))

[n(α[+](ωφ
st))+1]

if α[+](ωφ
st) ∈ A+(ω

φ
st)

367

Appendix J: ST-to-SCL: Appendix

J.0.2. Expressions

Algorithm 40 Translate expression – ST-to-SCL

Input: τ (ωφ
st)

Output: τ (ωscl′)
Translation Function tτst↦scl(τ (ω

φ
st)):

τ (ωscl′) ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩

value(τ (ωφ
st)) if τ (ωφ

st) = τ cstmisc(ω
φ
st)

id(τ (ωφ
st)) if τ (ωφ

st) = τ idmisc(ω
φ
st)

tτst↦scl(τ (ω
φ
st)) if τ (ωφ

st) = τ
π,η,λ
misc (ω

φ
st)

(tτst↦scl(τ (ω
φ
st))) if τ (ωφ

st) = τ brmisc(ω
φ
st)

true if τ (ωφ
st) = τ truemisc(ω

φ
st)

false if τ (ωφ
st) = τ

false
misc (ω

φ
st)

x[n] if τ (ωφ
st) = τarrmisc(ω

φ
st)

extern if τ (ωφ
st) = τ invmisc(ω

φ
st)

(π1 == π2) if τ (ωφ
st) = τ

eq
comp(ωφ

st)
(π1 != π2) if τ (ωφ

st) = τnecomp(ω
φ
st)

(π1 > π2) if τ (ωφ
st) = τ

gt
comp(ωφ

st)
(π1 >= π2) if τ (ωφ

st) = τ
ge
comp(ωφ

st)
(π1 < π2) if τ (ωφ

st) = τ ltcomp(ω
φ
st)

(π1 <= π2) if τ (ωφ
st) = τ lecomp(ω

φ
st)

(η1 * η2) if τ (ωφ
st) = τmul

arith(ω
φ
st)

(η1 / η2) if τ (ωφ
st) = τdivarith(ω

φ
st)

(η1 + η2) if τ (ωφ
st) = τaddarith(ω

φ
st)

(η1 - η2) if τ (ωφ
st) = τ subarith(ω

φ
st)

extern if τ (ωφ
st) = τ

expt
arith(ω

φ
st)

(ηi1 % ηi2) if τ (ωφ
st) = τmod

arith(ω
φ
st)

-(η1) if τ (ωφ
st) = τumarith(ω

φ
st)

λb ? π1 : π2 if τ (ωφ
st) = τ selcond(ω

φ
st)

(λ1 & ... & λn) if τ (ωφ
fbd) = τ

and
bool(ω

φ
fbd), α(λ) = αbv

(λ1 | ... | λn) if τ (ωφ
fbd) = τ

or
bool(ω

φ
fbd), α(λ) = αbv

(λ1 ^ λ2) if τ (ωφ
fbd) = τ

xor
bool(ω

φ
fbd)

!(λ1) if τ (ωφ
fbd) = τ

not
bool(ω

φ
fbd), α(λ) = αbv

368

Appendix K
FBD-to-SCChart: Appendix

MOVE Selections Functions

1 scchart MOVE_bool {

2 input bool EI

3 output bool EO

4 input bool IN

5 output bool OUT

6

7 region region0 {

8 initial state state1

9 immediate go to state4

10

11 state state3

12 go to state4

13

14 state state4

15 immediate if !EI go to state3

16 immediate do OUT = IN; EO = true go to state6

17

18 state state6

19 do EO = false go to state4

20 }

21 }

Listing K.1: MOVE bool function derived from IEC 61131-3 [GDV14]

1 scchart MOVE_float {

2 input bool EI

3 output bool EO

4 input float IN

5 output float OUT

6

7 region region0 {

8 initial state state1

9 immediate go to state4

10

11 state state3

12 go to state4

13

14 state state4

15 immediate if !EI go to state3

16 immediate do OUT = IN; EO = true go to state6

17

18 state state6

369

Appendix K: FBD-to-SCChart: Appendix

19 do EO = false go to state4

20 }

21 }

Listing K.2: MOVE float function derived from IEC 61131-3 [GDV14]

1 scchart MOVE_int {

2 input bool EI

3 output bool EO

4 input int IN

5 output int OUT

6

7 region region0 {

8 initial state state1

9 immediate go to state4

10

11 state state3

12 go to state4

13

14 state state4

15 immediate if !EI go to state3

16 immediate do OUT = IN; EO = true go to state6

17

18 state state6

19 do EO = false go to state4

20 }

21 }

Listing K.3: MOVE int function derived from IEC 61131-3 [GDV14]

370

Appendix L
Formal Methods-Based
Optimization: Optimization Results

The optimization results include the optimization trace with the following
mapping:

• 0: Msmt

• 1: f3(f1(Msmv))
• 2: f3(f2(f1(Msmv))smt)
• 3: f3(Msmt)

Air Condition Control

1 # no-opt, var -opt [0, 0, 0, 0]

2 RS0(S⇒OR(IN1,IN2,IN3,IN4),R1⇒OR(OR(NOT(IN5),NOT(IN6),NOT(IN7),NOT(IN8))

,NOT(IN9)))

3 OUT1⇒RS0__Q1

4 OUT2⇒NOT(IN9)

5

6 # op-opt, edge -opt [0, 2, 0, 0]

7 RS0(S⇒OR(IN1,IN2,IN3,IN4),R1⇒OR(NOT(IN5),NOT(IN6),NOT(IN7),NOT(IN8),NOT

(IN9)))

8 OUT1⇒RS0__Q1

9 OUT2⇒NOT(IN9)

Antivalence 3x

1 # no-opt [0]

2 OUT1⇒OR(AND(NOT(IN0),NOT(IN1),IN2),AND(NOT(IN0),NOT(IN2),IN1),AND(NOT(

IN1),NOT(IN2),IN0))

3

4 # op-opt, edge -opt, var -opt [1]

5 OUT1⇒SEL(IN0,AND(NOT(IN1),NOT(IN2)),XOR(IN1,IN2))

371

Appendix L: Formal Methods-Based Optimization: Optimization Results

Bending Machine Control

1 # no-opt [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

2 TON0(IN⇒IN1,PT⇒PT1s)

3 TON1(IN⇒AND(IN1,TON0__Q),PT⇒PT1s)

4 TON2(IN⇒IN2,PT⇒PT05s)

5 TOF0(IN⇒AND(IN1,TON0__Q),PT⇒PT1s)

6 TON3(IN⇒NOT(IN1),PT⇒PT5s)

7 RS0(S⇒OR(AND(IN1,TON0__Q),TON3__Q),R1⇒AND(TON1__Q,TON2__Q))

8 OUT1⇒AND(AND(IN1,TON0__Q),NOT(AND(TON1__Q,TON2__Q)),NOT(AND(AND(NOT(

TON2__Q),TOF0__Q),IN3)))

9 OUT2⇒AND(NOT(AND(AND(NOT(TON2__Q),TOF0__Q),IN3)),AND(NOT(TON2__Q),

TOF0__Q))

10 OUT3⇒RS0__Q1

11

12 # op-opt, edge -opt [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0]

13 TON0(IN⇒IN1,PT⇒PT1s)

14 TON1(IN⇒AND(IN1,TON0__Q),PT⇒PT1s)

15 TON2(IN⇒IN2,PT⇒PT05s)

16 TOF0(IN⇒AND(IN1,TON0__Q),PT⇒PT1s)

17 TON3(IN⇒NOT(IN1),PT⇒PT5s)

18 RS0(S⇒OR(AND(IN1,TON0__Q),TON3__Q),R1⇒AND(TON1__Q,TON2__Q))

19 OUT1⇒AND(IN1,TON0__Q,NOT(AND(TON1__Q,TON2__Q)),NOT(AND(NOT(TON2__Q),

TOF0__Q,IN3)))

20 OUT2⇒AND(NOT(IN3),NOT(TON2__Q),TOF0__Q)

21 OUT3⇒RS0__Q1

22

23 # var -opt [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

24 TON0(IN⇒IN1,PT⇒PT1s)

25 TON1(IN⇒AND(IN1,TON0__Q),PT⇒PT1s)

26 TON2(IN⇒IN2,PT⇒PT05s)

27 TOF0(IN⇒AND(IN1,TON0__Q),PT⇒PT1s)

28 TON3(IN⇒NOT(IN1),PT⇒PT5s)

29 RS0(S⇒OR(AND(IN1,TON0__Q),TON3__Q),R1⇒AND(TON1__Q,TON2__Q))

30 OUT1⇒AND(AND(IN1,TON0__Q),NOT(AND(TON1__Q,TON2__Q)),NOT(AND(AND(NOT(

TON2__Q),TOF0__Q),IN3)))

31 OUT2⇒AND(AND(NOT(IN3),NOT(TON2__Q)),TOF0__Q)

32 OUT3⇒RS0__Q1

Cylinder Control System

1 # no-opt, var -opt [0, 0, 0, 0, 0, 0]

2 OUTBp⇒AND(INa1,AND(OR(ME1,AND(INa0,INS)),NOT(INb1)))

3 OUTAp⇒AND(OR(ME1,AND(INa0,INS)),NOT(INb1))

4 OUTAm⇒AND(NOT(AND(OR(ME1,AND(INa0,INS)),NOT(INb1))),INc0,NOT(AND(OR(ME2

,INb1),NOT(INc1))))

5 OUTCp⇒AND(AND(OR(ME2,INb1),NOT(INc1)),INb0)

6 ME2⇒AND(OR(ME2,INb1),NOT(INc1))

7 ME1⇒AND(OR(ME1,AND(INa0,INS)),NOT(INb1))

8

9 # op-opt

10 [2, 0, 2, 2, 0, 0]

11 OUTBp⇒AND(INa1,NOT(INb1),SEL(INa0,OR(INS,ME1),ME1))

12 OUTAp⇒AND(OR(ME1,AND(INa0,INS)),NOT(INb1))

13 OUTAm⇒AND(INc0,SEL(AND(INa0,INS),AND(INb1,INc1),SEL(INb1,INc1,AND(NOT(

ME1),OR(INc1,NOT(ME2))))))

14 OUTCp⇒AND(NOT(INc1),INb0,OR(INb1,ME2))

15 ME2⇒AND(OR(ME2,INb1),NOT(INc1))

16 ME1⇒AND(OR(ME1,AND(INa0,INS)),NOT(INb1))

17

18 # edge -opt [3, 0, 0, 2, 0, 0]

19 OUTBp⇒AND(INa1,OR(ME1,AND(INa0,INS)),NOT(INb1))

372

Appendix L: Formal Methods-Based Optimization: Optimization Results

20 OUTAp⇒AND(OR(ME1,AND(INa0,INS)),NOT(INb1))

21 OUTAm⇒AND(NOT(AND(OR(ME1,AND(INa0,INS)),NOT(INb1))),INc0,NOT(AND(OR(ME2

,INb1),NOT(INc1))))

22 OUTCp⇒AND(NOT(INc1),INb0,OR(INb1,ME2))

23 ME2⇒AND(OR(ME2,INb1),NOT(INc1))

24 ME1⇒AND(OR(ME1,AND(INa0,INS)),NOT(INb1))

Dice Numbers Indicator

1 # no-opt [0, 0, 0, 0, 0, 0, 0, 0, 0]

2 OUTa⇒OR(AND(IN3,NOT(IN4),NOT(IN2)),AND(IN2,NOT(IN4),NOT(IN1)),AND(IN4,

NOT(IN2),NOT(IN3)))

3 OUTb⇒OR(AND(IN2,IN3,NOT(IN4)),AND(IN4,NOT(IN2),NOT(IN3)))

4 OUTc⇒OR(AND(IN3,NOT(IN4)),AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,NOT(

IN4)))

5 OUTd⇒OR(AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

6 OUTe⇒OR(AND(IN1,NOT(IN4)),AND(IN1,NOT(IN3),NOT(IN2)))

7 OUTf⇒OR(AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

8 OUTh⇒OR(AND(IN2,IN3,NOT(IN4)),AND(IN4,NOT(IN2),NOT(IN3)))

9 OUTg⇒OR(AND(IN3,NOT(IN4)),AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,NOT(

IN4)))

10 OUTi⇒OR(AND(IN3,NOT(IN4),NOT(IN2)),AND(IN2,NOT(IN4),NOT(IN1),NOT(IN3)),

AND(IN4,NOT(IN2),NOT(IN3)))

11

12 # op-opt [1, 1, 1, 0, 0, 0, 1, 1, 1]

13 OUTa⇒SEL(IN1,AND(NOT(IN2),XOR(IN3,IN4)),XOR(OR(IN2,IN3),IN4))

14 OUTb⇒SEL(IN2,AND(IN3,NOT(IN4)),AND(NOT(IN3),IN4))

15 OUTc⇒SEL(IN1,XOR(OR(IN2,IN3),IN4),SEL(IN2,AND(IN3,NOT(IN4)),XOR(IN3,IN4

)))

16 OUTd⇒OR(AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

17 OUTe⇒OR(AND(IN1,NOT(IN4)),AND(IN1,NOT(IN3),NOT(IN2)))

18 OUTf⇒OR(AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

19 OUTh⇒SEL(IN2,AND(IN3,NOT(IN4)),AND(NOT(IN3),IN4))

20 OUTg⇒SEL(IN1,XOR(OR(IN2,IN3),IN4),SEL(IN2,AND(IN3,NOT(IN4)),XOR(IN3,IN4

)))

21 OUTi⇒SEL(IN1,AND(NOT(IN2),XOR(IN3,IN4)),SEL(IN2,AND(NOT(IN3),NOT(IN4)),

XOR(IN3,IN4)))

22

23 # edge -opt, var -opt [1, 1, 0, 0, 0, 0, 1, 0, 1]

24 OUTa⇒SEL(IN1,AND(NOT(IN2),XOR(IN3,IN4)),XOR(OR(IN2,IN3),IN4))

25 OUTb⇒SEL(IN2,AND(IN3,NOT(IN4)),AND(NOT(IN3),IN4))

26 OUTc⇒OR(AND(IN3,NOT(IN4)),AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,NOT(

IN4)))

27 OUTd⇒OR(AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

28 OUTe⇒OR(AND(IN1,NOT(IN4)),AND(IN1,NOT(IN3),NOT(IN2)))

29 OUTf⇒OR(AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,IN3,NOT(IN4)))

30 OUTh⇒SEL(IN2,AND(IN3,NOT(IN4)),AND(NOT(IN3),IN4))

31 OUTg⇒OR(AND(IN3,NOT(IN4)),AND(IN4,NOT(IN2),NOT(IN3)),AND(IN1,IN2,NOT(

IN4)))

32 OUTi⇒SEL(IN1,AND(NOT(IN2),XOR(IN3,IN4)),SEL(IN2,AND(NOT(IN3),NOT(IN4)),

XOR(IN3,IN4)))

KV Diagram optimized Chart

1 # no-opt [0, 0]

2 OUT1⇒OR(AND(NOT(INa),INb),AND(INa,NOT(INb),INc))

3 OUT2⇒AND(OR(AND(EQ(INa,INb),INc),AND(NOT(INa),NOT(INc),INb)),NOT(INd))

4

5 # op-opt, edge -opt, var -opt [1, 1]

6 OUT1⇒SEL(INa,AND(NOT(INb),INc),INb)

7 OUT2⇒AND(NOT(INd),SEL(INa,AND(INb,INc),XOR(INb,INc)))

373

Appendix L: Formal Methods-Based Optimization: Optimization Results

Pollutant Indicator

1 # no-opt [0, 0, 0]

2 OUT1⇒OR(AND(NOT(IN3),NOT(IN2),IN1),AND(NOT(IN3),IN2,NOT(IN1)),AND(IN3,

NOT(IN2),NOT(IN1)))

3 OUT2⇒OR(AND(NOT(IN3),IN2,IN1),AND(IN3,NOT(IN2),IN1),AND(IN3,IN2,NOT(IN1

)))

4 OUT3⇒AND(IN1,IN2,IN3)

5

6 # op-opt, edge -opt, var -opt [1, 1, 0]

7 OUT1⇒SEL(IN1,AND(NOT(IN2),NOT(IN3)),XOR(IN2,IN3))

8 OUT2⇒SEL(IN1,XOR(IN2,IN3),AND(IN2,IN3))

9 OUT3⇒AND(IN1,IN2,IN3)

Reservoirs Control System 1

1 # no-opt [0, 0, 0, 0]

2 OUTP1⇒OR(AND(NOT(IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

3 OUTP2⇒OR(OR(AND(NOT(IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1)),AND(NOT(

IN3),IN2,NOT(IN1)))

4 OUTP3⇒OR(AND(NOT(IN4),NOT(IN3),NOT(IN2)),AND(IN4,NOT(IN3),IN2),AND(NOT(

IN3),IN2,NOT(IN1)),AND(NOT(IN4),IN3,IN2,IN2))

5 OUTH⇒OR(AND(IN3,NOT(IN1)),AND(IN4,NOT(IN2)))

6

7 # op-opt [0, 1, 0, 0]

8 OUTP1⇒OR(AND(NOT(IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

9 OUTP2⇒SEL(IN1,AND(NOT(IN4),OR(NOT(IN2),NOT(IN3))),AND(NOT(IN3),OR(IN2,

NOT(IN4))))

10 OUTP3⇒OR(AND(NOT(IN4),NOT(IN3),NOT(IN2)),AND(IN4,NOT(IN3),IN2),AND(NOT(

IN3),IN2,NOT(IN1)),AND(NOT(IN4),IN3,IN2,IN2))

11 OUTH⇒OR(AND(IN3,NOT(IN1)),AND(IN4,NOT(IN2)))

12

13 # edge -opt, var -opt [0, 1, 1, 0]

14 OUTP1⇒OR(AND(NOT(IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

15 OUTP2⇒SEL(IN1,AND(NOT(IN4),OR(NOT(IN2),NOT(IN3))),AND(NOT(IN3),OR(IN2,

NOT(IN4))))

16 OUTP3⇒SEL(IN1,SEL(IN2,XOR(IN3,IN4),AND(NOT(IN3),NOT(IN4))),SEL(IN2,OR(

NOT(IN3),NOT(IN4)),AND(NOT(IN3),NOT(IN4))))

17 OUTH⇒OR(AND(IN3,NOT(IN1)),AND(IN4,NOT(IN2)))

Reservoirs Control System 2

1 # no-opt [0, 0, 0, 0]

2 OUTP3⇒OR(AND(NOT(IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

3 OUTP2⇒OR(OR(AND(NOT(IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1)),AND(NOT(

IN3),IN2,NOT(IN1)))

4 OUTP1⇒OR(AND(NOT(IN4),NOT(IN3),NOT(IN2)),AND(IN4,NOT(IN3),IN2,IN1),AND(

NOT(IN3),IN2,NOT(IN1)),AND(NOT(IN4),IN3,IN2,IN1))

5 OUTQ⇒OR(AND(IN3,NOT(IN1)),AND(IN4,NOT(IN2)))

6

7 # op-opt, edge -opt, var -opt [0, 1, 1, 0]

8 OUTP3⇒OR(AND(NOT(IN4),NOT(IN3)),AND(NOT(IN4),NOT(IN2),IN1))

9 OUTP2⇒SEL(IN1,AND(NOT(IN4),OR(NOT(IN2),NOT(IN3))),AND(NOT(IN3),OR(IN2,

NOT(IN4))))

10 OUTP1⇒SEL(IN1,SEL(IN2,XOR(IN3,IN4),AND(NOT(IN3),NOT(IN4))),AND(NOT(IN3)

,OR(IN2,NOT(IN4))))

11 OUTQ⇒OR(AND(IN3,NOT(IN1)),AND(IN4,NOT(IN2)))

374

Appendix L: Formal Methods-Based Optimization: Optimization Results

Roll Down Shutters

1 # no-opt [0, 0]

2 OUT1⇒AND(OR(AND(TIME4,IN6),AND(NOT(IN6),IN2)),IN4)

3 OUT2⇒AND(EQ(AND(OR(AND(TIME4,IN6),AND(NOT(IN6),IN2)),IN4),AND(IN5,OR(

AND(IN6,IN1,NOT(TIME14)),AND(IN3,NOT(IN6))))),AND(IN5,OR(AND(IN6,IN1

,NOT(TIME14)),AND(IN3,NOT(IN6)))))

4

5 # op-opt, edge -opt, var -opt [0, 2]

6 OUT1⇒AND(OR(AND(TIME4,IN6),AND(NOT(IN6),IN2)),IN4)

7 OUT2⇒AND(IN4,IN5,SEL(IN1,SEL(AND(IN2,IN3),OR(NOT(IN6),AND(NOT(TIME14),

TIME4)),AND(IN6,NOT(TIME14),TIME4)),AND(IN2,IN3,NOT(IN6))))

Cable winch

1 # no-opt [0, 0, 0, 0]

2 OUT1⇒AND(OR(ME1,INS1,NOT(INB2)),NOT(OR(NOT(INB1),NOT(INS1),ME2)))

3 OUT2⇒AND(OR(ME2,NOT(INB1)),NOT(OR(NOT(INB2),NOT(INS1),ME1)))

4 ME1⇒AND(OR(ME1,INS1,NOT(INB2)),NOT(OR(NOT(INB1),NOT(INS1),ME2)))

5 ME2⇒AND(OR(ME2,NOT(INB1)),NOT(OR(NOT(INB2),NOT(INS1),ME1)))

6

7 # op-opt, edge -opt [2, 2, 2, 2]

8 OUT1⇒AND(INS1,INB1,NOT(ME2))

9 OUT2⇒AND(INS1,INB2,NOT(ME1),OR(ME2,NOT(INB1)))

10 ME1⇒AND(INS1,INB1,NOT(ME2))

11 ME2⇒AND(INS1,INB2,NOT(ME1),OR(ME2,NOT(INB1)))

12

13 # var -opt [1, 0, 1, 0]

14 OUT1⇒AND(AND(INS1,INB1),NOT(ME2))

15 OUT2⇒AND(OR(ME2,NOT(INB1)),NOT(OR(NOT(INB2),NOT(INS1),ME1)))

16 ME1⇒AND(AND(INS1,INB1),NOT(ME2))

17 ME2⇒AND(OR(ME2,NOT(INB1)),NOT(OR(NOT(INB2),NOT(INS1),ME1)))

Seven Segment Display

1 # no-opt [0, 0, 0, 0, 0, 0, 0]

2 OUTa⇒OR(AND(NOT(IN3),IN1),AND(IN2,IN1),AND(NOT(IN2),NOT(IN1),IN3),AND(

NOT(IN3),NOT(IN2),NOT(IN0)),AND(NOT(IN3),IN1,IN0))

3 OUTb⇒OR(AND(NOT(IN3),NOT(IN2)),AND(NOT(IN2),NOT(IN1)),AND(NOT(IN3),IN1,

IN0),AND(IN3,NOT(IN1),IN0),AND(NOT(IN3),NOT(IN1),NOT(IN0)))

4 OUTc⇒OR(AND(NOT(IN3),NOT(IN1)),AND(NOT(IN3),IN0),AND(NOT(IN2),IN3),AND(

NOT(IN3),IN2),AND(NOT(IN1),IN0))

5 OUTd⇒OR(AND(NOT(IN2),IN1),AND(NOT(IN2),NOT(IN0)),AND(IN1,NOT(IN0)),AND(

IN3,NOT(IN1),IN2),AND(IN2,NOT(IN1),IN0))

6 OUTe⇒OR(AND(NOT(IN2),NOT(IN0)),AND(IN3,IN1),AND(IN3,IN2),AND(IN2,NOT(

IN0),IN1))

7 OUTf⇒OR(AND(IN3,IN2,IN1),AND(NOT(IN3),IN2,NOT(IN1)),AND(NOT(IN3),IN2,

NOT(IN0)),AND(IN3,NOT(IN2),IN0),AND(NOT(IN2),NOT(IN1),NOT(IN0)))

8 OUTg⇒OR(IN3,AND(NOT(IN0),IN2),AND(NOT(IN2),IN0),AND(NOT(IN1),IN2))

9

10 # op-opt, edge -opt [1, 1, 2, 2, 2, 1, 2]

11 OUTa⇒SEL(IN0,SEL(IN1,OR(IN2,NOT(IN3)),AND(NOT(IN2),IN3)),SEL(IN1,OR(IN2

,NOT(IN3)),NOT(IN2)))

12 OUTb⇒SEL(IN0,SEL(IN1,NOT(IN3),OR(NOT(IN2),IN3)),SEL(IN1,AND(NOT(IN2),

NOT(IN3)),OR(NOT(IN2),NOT(IN3))))

13 OUTc⇒SEL(IN0,OR(NOT(IN3),NOT(IN2),NOT(IN1)),SEL(IN1,XOR(IN3,IN2),OR(NOT

(IN2),NOT(IN3))))

14 OUTd⇒SEL(IN0,XOR(IN2,IN1),OR(IN1,IN3,NOT(IN2)))

15 OUTe⇒SEL(IN0,AND(IN3,OR(IN1,IN2)),OR(IN1,IN3,NOT(IN2)))

375

Appendix L: Formal Methods-Based Optimization: Optimization Results

16 OUTf⇒SEL(IN0,SEL(IN1,IN3,XOR(IN2,IN3)),SEL(IN1,IN2,OR(NOT(IN2),NOT(IN3)

)))

17 OUTg⇒SEL(IN0,OR(IN3,NOT(IN2),NOT(IN1)),OR(IN2,IN3))

18

19 # var -opt [1, 1, 1, 1, 1, 1, 1]

20 OUTa⇒SEL(IN0,SEL(IN1,OR(IN2,NOT(IN3)),AND(NOT(IN2),IN3)),SEL(IN1,OR(IN2

,NOT(IN3)),NOT(IN2)))

21 OUTb⇒SEL(IN0,SEL(IN1,NOT(IN3),OR(NOT(IN2),IN3)),SEL(IN1,AND(NOT(IN2),

NOT(IN3)),OR(NOT(IN2),NOT(IN3))))

22 OUTc⇒SEL(IN0,OR(NOT(IN1),OR(NOT(IN2),NOT(IN3))),SEL(IN1,XOR(IN2,IN3),OR

(NOT(IN2),NOT(IN3))))

23 OUTd⇒SEL(IN0,XOR(IN1,IN2),OR(IN1,OR(NOT(IN2),IN3)))

24 OUTe⇒SEL(IN0,AND(IN3,OR(IN1,IN2)),OR(IN1,OR(NOT(IN2),IN3)))

25 OUTf⇒SEL(IN0,SEL(IN1,IN3,XOR(IN2,IN3)),SEL(IN1,IN2,OR(NOT(IN2),NOT(IN3)

)))

26 OUTg⇒SEL(IN0,OR(NOT(IN1),OR(NOT(IN2),IN3)),OR(IN2,IN3))

Shop Window Lighting

1 # no-opt [0, 0, 0, 0, 0, 0, 0, 0]

2 TOF0(IN⇒IN3,PT⇒PT1m)

3 TOF1(IN⇒IN4,PT⇒PT1m)

4 OUT1⇒AND(OR(TIME3,TOF0__Q),IN2)

5 OUT2⇒AND(IN2,OR(AND(AND(OR(TIME3,TOF0__Q),IN2),IN1),TOF0__Q))

6 OUT3⇒AND(IN2,OR(AND(IN1,NOT(AND(OR(TIME3,TOF0__Q),IN2))),TOF0__Q))

7 OUT4⇒AND(IN2,OR(TOF0__Q,TOF1__Q))

8

9 # op-opt, edge -opt, var -opt [0, 0, 0, 0, 0, 1, 1, 0]

10 TOF0(IN⇒IN3,PT⇒PT1m)

11 TOF1(IN⇒IN4,PT⇒PT1m)

12 OUT1⇒AND(OR(TIME3,TOF0__Q),IN2)

13 OUT2⇒AND(IN2,SEL(IN1,OR(TIME3,TOF0__Q),TOF0__Q))

14 OUT3⇒AND(IN2,SEL(IN1,OR(NOT(TIME3),TOF0__Q),TOF0__Q))

15 OUT4⇒AND(IN2,OR(TOF0__Q,TOF1__Q))

Silo Valve Control System

1 # no-opt [0]

2 OUT1⇒OR(AND(NOT(IN3),NOT(IN2),IN1),AND(NOT(IN3),IN2,NOT(IN1)),AND(IN3,

NOT(IN2),NOT(IN1)),AND(IN3,IN2,IN1))

3

4 # op-opt, edge -opt, var -opt [2]

5 OUT1⇒SEL(IN1,EQ(IN2,IN3),XOR(IN3,IN2))

Smoke Detection System

1 # no-opt [0, 0, 0]

2 OUT1⇒OR(NOT(IN1),NOT(IN2),NOT(IN3),NOT(IN4))

3 OUT2⇒OR(OR(AND(NOT(IN1),NOT(IN2)),AND(NOT(IN1),NOT(IN3))),AND(NOT(IN1),

NOT(IN4),AND(NOT(IN3),NOT(IN2)),AND(NOT(IN2),NOT(IN4)),AND(NOT(IN3),

NOT(IN4))))

4 OUT3⇒AND(NOT(IN1),NOT(IN2),NOT(IN3),NOT(IN4))

5

6 # op-opt, edge -opt, var -opt [0, 1, 0]

7 OUT1⇒OR(NOT(IN1),NOT(IN2),NOT(IN3),NOT(IN4))

8 OUT2⇒AND(NOT(IN1),OR(NOT(IN2),NOT(IN3)))

9 OUT3⇒AND(NOT(IN1),NOT(IN2),NOT(IN3),NOT(IN4))

376

Appendix L: Formal Methods-Based Optimization: Optimization Results

Sports Hall Lighting

1 # no-opt, var -opt [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

2 RS0(S⇒IN1,R1⇒TIME4)

3 RS1(S⇒IN1,R1⇒TIME9)

4 RS2(S⇒IN2,R1⇒TIME14)

5 TON0(IN⇒TIME18,PT⇒PT1m)

6 OUT1⇒OR(AND(RS0__Q1,NOT(IN4)),IN3)

7 OUT2⇒OR(AND(RS1__Q1,NOT(IN4)),IN3)

8 OUT3⇒OR(AND(RS2__Q1,NOT(IN4)),IN3)

9 OUT4⇒AND(EQ(TIME18,TON0__Q),OR(AND(RS0__Q1,NOT(IN4)),IN3),OR(AND(

RS1__Q1,NOT(IN4)),IN3))

10

11 # op-opt, edge -opt [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]

12 RS0(S⇒IN1,R1⇒TIME4)

13 RS1(S⇒IN1,R1⇒TIME9)

14 RS2(S⇒IN2,R1⇒TIME14)

15 TON0(IN⇒TIME18,PT⇒PT1m)

16 OUT1⇒OR(AND(RS0__Q1,NOT(IN4)),IN3)

17 OUT2⇒OR(AND(RS1__Q1,NOT(IN4)),IN3)

18 OUT3⇒OR(AND(RS2__Q1,NOT(IN4)),IN3)

19 OUT4⇒SEL(IN3,EQ(TIME18,TON0__Q),AND(NOT(IN4),RS0__Q1,RS1__Q1,EQ(TIME18,

TON0__Q)))

Thermometer Code System

1 # no-opt [0, 0, 0]

2 OUT1⇒OR(IN1,IN2,IN3)

3 OUT2⇒OR(AND(IN1,IN2,NOT(IN3)),AND(IN1,NOT(IN2),IN3),AND(NOT(IN1),IN2,

IN3),AND(IN1,IN2,IN3))

4 OUT3⇒AND(IN1,IN2,IN3)

5

6 # op-opt, edge -opt, var -opt [0, 1, 0]

7 OUT1⇒OR(IN1,IN2,IN3)

8 OUT2⇒SEL(IN1,OR(IN2,IN3),AND(IN2,IN3))

9 OUT3⇒AND(IN1,IN2,IN3)

Toggle Switch 4x

1 # no-opt [0]

2 OUT1⇒OR(OR(AND(IN1,NOT(IN2),NOT(IN3),NOT(IN4)),AND(NOT(IN1),IN2,NOT(IN3

),NOT(IN4)),AND(NOT(IN1),NOT(IN2),IN3,NOT(IN4)),AND(IN1,IN2,IN3,NOT(

IN4))),OR(AND(NOT(IN1),NOT(IN2),NOT(IN3),IN4),AND(IN1,IN2,NOT(IN3),

IN4),AND(IN1,NOT(IN2),IN3,IN4),AND(NOT(IN1),IN2,IN3,IN4)))

3

4 # op-opt, edge -opt, var -opt [2]

5 OUT1⇒SEL(OR(AND(IN1,IN2),AND(NOT(IN1),NOT(IN2))),XOR(IN4,IN3),EQ(IN3,

IN4))

Ventilation Control System

1 # no-opt [0, 0, 0]

2 OUT1⇒AND(NOT(IN1),IN2,IN3,IN4)

3 OUT2⇒OR(AND(IN2,NOT(IN4),NOT(IN1)),AND(IN4,NOT(IN3),NOT(IN1)),AND(NOT(

IN3),IN2,NOT(IN4)),AND(NOT(IN1),IN3,NOT(IN2)),AND(NOT(IN4),IN1,NOT(

IN2)),AND(NOT(IN3),IN1,NOT(IN2)))

377

Appendix L: Formal Methods-Based Optimization: Optimization Results

4 OUT3⇒OR(AND(IN1,IN3,IN4),AND(IN1,IN2,IN3),AND(IN1,IN2,IN4))

5

6 # op-opt [0, 1, 0]

7 OUT1⇒AND(NOT(IN1),IN2,IN3,IN4)

8 OUT2⇒SEL(IN1,SEL(IN2,AND(NOT(IN3),NOT(IN4)),OR(NOT(IN3),NOT(IN4))),SEL(

IN2,OR(NOT(IN3),NOT(IN4)),OR(IN3,IN4)))

9 OUT3⇒OR(AND(IN1,IN3,IN4),AND(IN1,IN2,IN3),AND(IN1,IN2,IN4))

10

11 # edge -opt, var -opt [0, 1, 1]

12 OUT1⇒AND(NOT(IN1),IN2,IN3,IN4)

13 OUT2⇒SEL(IN1,SEL(IN2,AND(NOT(IN3),NOT(IN4)),OR(NOT(IN3),NOT(IN4))),SEL(

IN2,OR(NOT(IN3),NOT(IN4)),OR(IN3,IN4)))

14 OUT3⇒AND(IN1,SEL(IN2,OR(IN3,IN4),AND(IN3,IN4)))

Wind Direction Indicator

1 # no-opt [0, 0, 0, 0]

2 OUT1⇒OR(AND(IN1,NOT(IN2),NOT(IN3)),AND(NOT(IN1),NOT(IN2),NOT(IN3)),AND(

NOT(IN1),NOT(IN2),IN3))

3 OUT2⇒OR(AND(NOT(IN1),NOT(IN2),IN3),AND(IN1,NOT(IN2),IN3),AND(IN1,IN2,

IN3))

4 OUT3⇒OR(AND(IN1,IN2,IN3),AND(NOT(IN1),IN2,IN3),AND(NOT(IN1),IN2,NOT(IN3

)))

5 OUT4⇒OR(AND(NOT(IN1),IN2,NOT(IN3)),AND(IN1,IN2,NOT(IN3)),AND(IN1,NOT(

IN2),NOT(IN3)))

6

7 # op-opt, edge -opt, var -opt [1, 1, 1, 1]

8 OUT1⇒AND(NOT(IN2),OR(NOT(IN1),NOT(IN3)))

9 OUT2⇒AND(IN3,OR(IN1,NOT(IN2)))

10 OUT3⇒AND(IN2,OR(NOT(IN1),IN3))

11 OUT4⇒AND(NOT(IN3),OR(IN1,IN2))

378

Appendix M
Quartz-to-SCChart: Appendix

M.0.1. Data Types and Fields

Algorithm 41 Translate data type and field – Quartz-to-SCChart

Input: α[+](ωqrz)
Output: α[+](ωscc′)
Translation Function tαqrz↦scc(α[+](ωqrz)):

α[+](ωscc′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bool if α[+](ωqrz) = αbool
bv (ωqrz)

extern if α[+](ωqrz) = αbyte
bv (ωqrz)

extern if α[+](ωqrz) = αword
bv (ωqrz)

int if α[+](ωqrz) = int{32768}
int if α[+](ωqrz) = int{2147483648}
int if α[+](ωqrz) = nat{65536}
extern if α[+](ωqrz) = nat{4294967296}
float if α[+](ωqrz) ∈ Ar(ωqrz)
int if α[+](ωqrz) ∈ Adur(ωqrz)
[n(α[+](ωqrz))+1]
tαqrz↦scc(α[+](ωqrz))

if α[+](ωqrz) ∈ A+(ωqrz)

379

Appendix M: Quartz-to-SCChart: Appendix

M.0.2. Expressions

Algorithm 42 Translate expression – Quartz-to-SCChart

Input: τ (ωqrz)
Output: τ (ωscc′)
Translation Function tτqrz↦scc(τ (ωqrz)):

τ (ωscc′) ←

⎧⎪⎪⎨⎪⎪⎩

value(τ (ωqrz)) if emit()

value(τ (ωqrz)) if τ (ωqrz) = τ cstmisc(ωqrz)
id(τ (ωqrz)) if τ (ωqrz) = τ idmisc(ωqrz)
tτqrz↦scc(τ (ωqrz)) if τ (ωqrz) = τπ,η,λmisc (ωqrz)
(tτqrz↦scc(τ (ωqrz))) if τ (ωqrz) = τ brmisc(ωqrz)
true if τ (ωqrz) = τ truemisc(ωqrz)
false if τ (ωqrz) = τ falsemisc (ωqrz)
x[n] if τ (ωqrz) = τarrmisc(ωqrz)
extern if τ (ωqrz) = τ invmisc(ωqrz)
(π1 == π2) if τ (ωqrz) = τ eqcomp(ωqrz)
(π1 != π2) if τ (ωqrz) = τnecomp(ωqrz)
(π1 > π2) if τ (ωqrz) = τ gtcomp(ωqrz)
(π1 >= π2) if τ (ωqrz) = τ gecomp(ωqrz)
(π1 < π2) if τ (ωqrz) = τ ltcomp(ωqrz)
(π1 <= π2) if τ (ωqrz) = τ lecomp(ωqrz)
(η1 * η2) if τ (ωqrz) = τmul

arith(ωqrz)
(η1 / η2) if τ (ωqrz) = τdivarith(ωqrz)
(η1 + η2) if τ (ωqrz) = τaddarith(ωqrz)
(η1 - η2) if τ (ωqrz) = τ subarith(ωqrz)
extern if τ (ωqrz) = τ exptarith(ωqrz)
(ηi1 % ηi2) if τ (ωqrz) = τmod

arith(ωqrz)
-(η1) if τ (ωqrz) = τumarith(ωqrz)
λb ? π1 : π2 if τ (ωqrz) = τ selcond(ωqrz)
(λ1 & ... & λn) if τ (ωφ

fbd) = τ
and
bool(ω

φ
fbd)

(λ1 | ... | λn) if τ (ωφ
fbd) = τ

or
bool(ω

φ
fbd)

(λ1 ^ λ2) if τ (ωφ
fbd) = τ

xor
bool(ω

φ
fbd)

!(λ1) if τ (ωφ
fbd) = τ

not
bool(ω

φ
fbd), α(λ) = αbv

380

Appendix N
Curriculum Vitae

Berufserfahrung

seit 2023 Software & Control Engineer Team Leader
ALSTOM Transportation Germany GmbH, Mannheim

seit 2019 Lehrbeauftragter
Duale Hochschule Baden-Württemberg, Mannheim

2017–2023 Software Development & Test Engineer,
Software Verification & Test Leader
ALSTOM Transportation Germany GmbH (ehemals
Bombardier Transportation GmbH), Mannheim

2015–2017 Projektingenieur
Vision Machine Technic Bildverarbeitungssysteme GmbH,
Mannheim

2011–2012 Energieberater
Technische Werke Ludwigshafen AG, Ludwigshafen am Rhein

Akademische Ausbildung

2016–2019 Master of Science, Praktische Informatik (Note 1,4)
FernUniversität in Hagen, Hagen
Masterarbeit: Reengineering von IEC 61131-3-basierten Applikationslösungen

2012–2015 Bachelor of Engineering, Elektrotechnik (Note 2,1)
Duale Hochschule Baden-Württemberg, Mannheim ∣ ABB Training
Center GmbH & Co. KG, Heidelberg
Bachelorarbeit: Modeling and Hardware-in-the-Loop Simulation of Automation

Solutions

Berufliche Ausbildung

2007–2011 Elektroniker für Betriebstechnik
Technische Werke Ludwigshafen AG, Ludwigshafen am Rhein

381

Appendix N: Curriculum Vitae

Schulausbildung

2009–2010 Fachhochschulreife
Berufsbildende Schule Technik I, Ludwigshafen am Rhein

2001–2007 Mittlere Reife
Wilhelm-von-Humboldt Gymnasium, Ludwigshafen am Rhein

382

	Abstract
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Outline

	2 Background
	2.1 IEC 61131-3 Program Organization Units
	2.1.1 Textual Structured Text Models
	2.1.2 Graphical Function Block Diagrams

	2.2 The Averest-Framework
	2.2.1 Synchronous Quartz Models

	2.3 The KIELER-Framework
	2.3.1 Sequentially Constructive Language Models
	2.3.2 Control-Flow Oriented Sequentially Constructive Statecharts
	2.3.3 Data-Flow Oriented Sequentially Constructive Statecharts

	2.4 The PLCreX Project

	3 Syntax and Formal Semantics
	3.1 Preliminary Definitions
	3.2 IEC 61131-3 FBDs and ST Models
	3.2.1 POU Variants and Declaration
	3.2.2 POU Interfaces
	3.2.3 Local Variables in POUs
	3.2.4 Elementary IEC 61131-3 Data Types and Fields
	3.2.5 Expressions in POUs
	3.2.6 POU Invocations in POUs
	3.2.7 Assignments in POUs
	3.2.8 Conditions in ST Models
	3.2.9 Loops in ST Models
	3.2.10 Sequences in POUs

	3.3 Quartz Models
	3.4 SCL Models
	3.5 SCCharts

	4 Model Transformation of ST Models to Quartz Models
	4.1 High-Level Design Flow – ST-to-Quartz
	4.2 From ST Models to Quartz Models
	4.2.1 Model Declaration
	4.2.2 Interfaces
	4.2.3 Variables
	4.2.4 Data Types and Fields
	4.2.5 POU Imports
	4.2.6 Expressions
	4.2.7 POU Invocations
	4.2.8 Assignments
	4.2.9 Conditions
	4.2.10 Loops
	4.2.11 Sequences

	4.3 Experimental Results
	4.4 Summary

	5 Model Transformation of ST Models to SCL Models
	5.1 High-Level Design Flow – ST-to-SCL
	5.2 From ST Models to SCL Models
	5.2.1 Model Declaration
	5.2.2 Interfaces
	5.2.3 Variables
	5.2.4 Data Types and Fields
	5.2.5 Expressions
	5.2.6 Assignments
	5.2.7 Conditions
	5.2.8 Loops
	5.2.9 Sequences

	5.3 Experimental Results
	5.4 Summary

	6 Model Transformation of FBDs to Quartz Models
	6.1 High-Level Design Flow – FBD-to-Quartz
	6.2 From FBDs to Quartz Models
	6.2.1 Model Declaration
	6.2.2 Interfaces
	6.2.3 Variables
	6.2.4 Data Types and Fields
	6.2.5 POU Imports
	6.2.6 Expressions
	6.2.7 POU Invocations
	6.2.8 Assignments
	6.2.9 Sequences

	6.3 Experimental Results
	6.4 Summary

	7 Model Transformation of FBDs to Data-Flow Oriented SCCharts
	7.1 High-Level Design Flow – FBD-to-SCChart
	7.2 From FBDs to Data-Flow Oriented SCCharts
	7.2.1 Model Declaration
	7.2.2 Interfaces
	7.2.3 Variables
	7.2.4 Data Types and Fields
	7.2.5 POU Imports
	7.2.6 Expressions
	7.2.7 POU Invocations
	7.2.8 Assignments
	7.2.9 Sequences

	7.3 Experimental Results
	7.4 Summary

	8 Formal Methods-Based Optimization of Data-Flow Models
	8.1 High-Level Design Flow – Optimization
	8.2 Optimization of Data-Flow Models
	8.2.1 Operators
	8.2.2 From Graphical Data-Flow Models to Textual Models
	8.2.3 Identification of Submodels
	8.2.4 From Submodels M to SMV Formulas Msmv
	8.2.5 f1-Simplification of Msmv
	8.2.6 From f1(Msmv)' to SMV Formulas f1(Msmv)
	8.2.7 Equivalence Check of Msmv and f1(Msmv)
	8.2.8 From Submodels M to SMT Formulas Msmt
	8.2.9 f2-Simplification of Msmt
	8.2.10 From f1(Msmv) to SMT Formulas (f1(Msmv))smt
	8.2.11 f2-Simplification of (f1(Msmv))smt
	8.2.12 Pattern-Based Formula Refactoring
	8.2.13 Selection of Optimized SMT Formulas
	8.2.14 Equivalence Check of Msmt and smt
	8.2.15 From smt to Initial Submodels M'
	8.2.16 Reconstruct Software Model

	8.3 Experimental Results
	8.4 Summary

	9 Control-Flow Oriented SCCharts of POU-Based Quartz Models
	9.1 High-Level Design Flow – Quartz-to-SCChart
	9.2 Pattern-based Quartz Code Refactoring
	9.3 From Quartz Models to SCCharts
	9.3.1 Model Declaration
	9.3.2 Interfaces
	9.3.3 Variables
	9.3.4 Data Types and Fields
	9.3.5 Expressions
	9.3.6 Immediate Transitions
	9.3.7 Await
	9.3.8 Pause
	9.3.9 Assignments
	9.3.10 Synchronous Concurrency
	9.3.11 Loops
	9.3.12 Halt
	9.3.13 Abort
	9.3.14 Conditions
	9.3.15 Sequences

	9.4 SCChart Optimization
	9.4.1 Flattening Hierarchy
	9.4.2 Removing States

	9.5 Experimental Results
	9.6 Summary

	10 Conclusions
	Bibliography
	A Detailed Syntax and Semantics
	A.1 IEC 61131-3 FBDs and ST Models
	A.1.1 POU Variants and Declaration
	Syntax of POU elements
	Semantics of POU elements

	A.1.2 POU Interfaces
	Syntax of POU interfaces
	Semantics of POU interfaces

	A.1.3 Local Variables in POUs
	Syntax of local variables in POUs
	Semantics of local variables in POUs

	A.1.4 Elementary IEC 61131-3 Data Types and Fields
	Syntax of elementary IEC 61131-3 data types and fields
	Semantics of elementary IEC 61131-3 data types and fields

	A.1.5 Expressions in POUs
	Syntax of expressions in POUs
	Type system of expressions in POUs
	Semantics of expressions in POUs
	SOS transition rules of expressions in POUs

	A.1.6 Conditions in ST Models
	Syntax of conditions in ST models
	SOS transition rules of conditions in ST models

	A.1.7 Loops in ST Models
	Syntax of loops in ST models
	SOS transition rules of loops in ST models

	A.2 Quartz Models
	A.2.1 Quartz Variants and Declaration
	A.2.2 Module Imports
	A.2.3 Quartz Interfaces
	A.2.4 Local Variables in Quartz Models
	A.2.5 Elementary Quartz Data Types and Fields
	A.2.6 Expressions in Quartz Models
	A.2.7 Abortions in Quartz Models
	A.2.8 Assignments in Quartz Models
	A.2.9 Await Statements in Quartz Models
	A.2.10 Synchronous Concurrency in Quartz Models
	A.2.11 Conditions in Quartz Models
	A.2.12 Halt Statements in Quartz Models
	A.2.13 Module Invocations in Quartz Models
	A.2.14 Loops in Quartz Models
	A.2.15 Nothing Statements in Quartz Models
	A.2.16 Pause Statements in Quartz Models
	A.2.17 Sequences in Quartz Models

	A.3 SCL Models
	A.3.1 SCL Variants and Declaration
	A.3.2 SCL Interfaces
	A.3.3 Local Variables in SCL Models
	A.3.4 Elementary SCL Data Types and Fields
	A.3.5 Expressions in SCL Models
	A.3.6 Assignments in SCL Models
	A.3.7 Conditions in SCL Models
	A.3.8 Loops in SCL Models
	A.3.9 Pause Statements in SCL Models
	A.3.10 Sequences in SCL Models

	A.4 Data-Flow Oriented SCCharts
	A.4.1 Data-Flow Oriented SCCharts Declaration
	A.4.2 Local Variables in SCCharts
	A.4.3 SCChart Imports
	A.4.4 Synchronous Concurrency in Data-Flow Oriented SCCharts
	A.4.5 Module Invocations in Data-Flow Oriented SCCharts
	A.4.6 Sequences in Data-Flow Oriented SCCharts

	A.5 Control-Flow Oriented SCCharts
	A.5.1 Control-Flow Oriented SCCharts Declaration
	A.5.2 Abortions in control-flow oriented SCCharts
	A.5.3 Await Transitions in control-flow oriented SCCharts
	A.5.4 Synchronous Concurrency in control-flow oriented SCCharts
	A.5.5 Conditions in control-flow oriented SCCharts
	A.5.6 Halt Statements in control-flow oriented SCCharts
	A.5.7 Loops in control-flow oriented SCCharts
	A.5.8 Immediate Transitions in control-flow oriented SCCharts
	A.5.9 Pause Statements in control-flow oriented SCCharts
	A.5.10 Sequences in control-flow oriented SCCharts

	B ST Model Examples
	C Resulting ST-Based Quartz Models
	D Resulting SCL Models
	E FBD Examples
	F Resulting FBD-Based Quartz Models
	G Resulting Data-Flow Oriented SCCharts
	H Resulting Control-Flow Oriented SCCharts
	I ST-to-Quartz: Appendix
	I.0.1 Data Types and Fields
	I.0.2 Expressions

	J ST-to-SCL: Appendix
	J.0.1 Data Types and Fields
	J.0.2 Expressions

	K FBD-to-SCChart: Appendix
	L Formal Methods-Based Optimization: Optimization Results
	M Quartz-to-SCChart: Appendix
	M.0.1 Data Types and Fields
	M.0.2 Expressions

	N Curriculum Vitae

