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1 Introduction

In the last ten years, the Ramadge-Wonham framework for Discrete Event Systems modeling, analysis and
controller (supervisor) synthesis has advanced to an important position among the various models siggested in
this research field.

In the basic RW-model, bath the system to be ntrolled and the desired behavior are spedfied
through the use of languages. Solving a synthesis problem amounts to find a controll er - call ed supervisor - that
restricts the physically posshle behavior of the system to be @ntrolled - called plant - to the desired one. Solu-
tions are stated in terms of the supremal Lm-closed and L-controllable sublanguage of the language
representing the target behavior. Whil e several authors have @ntributed to the computation of the supremal L-
controll able sublanguage (see apedally [WR87] and also [Rudi8g], [LVW88], [BGKT90] and [KGM91]), no
algorithms or formulas for the supremal Lm-closed and the supremal Lm-closed and L-controll able sublanguages
of a given language could be found in the surveyed literature.

In this paper we present formulas for these sublanguages. Sedion 2 realls me results from RW-
theory, sedion 3 presents the formulas; computational complexity is analyzed in sedion 4, and an example is
given in section 5.

2 Preliminaries

A detail ed description of the Ramadge-Wonham framework is given in [RW87] and related articles, the reader
being referred to these sources for background knowledge. We only recll some facts needed to present our
contribution.

System behavior is represented by a 5-tuple G = [£,Q,,q,,Q,, Ucalled generator, where X is a set of
event labels, also caled the event alphabet, Q is a set of states, and 8:ZxQ - Q is a (generaly partia)
transition function defined at each g 0Q for a subset of the 0 0X so that ' =d(0,q) represents the state
transition q [If - g', meaning that the occurrence of event o takes the system from state q to state ' . g, JQ is
theinitial state and Q, [0 Q is a set of marker states. These are used to mark the termination of certain event
sequences, representing the completion of a task by the system.

Each generator G has two associated languages. L(G), the language generated by G, and L, (G), the
language marked by G. These are sets of words formed with symbds of ~. L(G) represents the physically
possble behavior of the system, while,(G) stands for the tasks it is able to complete.

The alphabet X is partitioned into controllable and uncontrollable events according to 2 =% UZ,
and X NZ, =0. Control action is performed by an external agent call ed supervisor, which observes the events
generated by the plant and applies a control input y O 2 to the system in response to them. The eventsiny are
those specified to be enabled by the supervisor.

This control action restricts the system generated and marked languages. The languages representing
the physically possble behavior and the tasks the syssem may complete under supervision are denoted by
L(S/G) andL.(S/G), respectively.

The prefix-closure K of a language K is the set of al prefixes (initial segments) of stringsin K. K is
said to be prefix-closed iff K = K. Given two arbitrary languages K,L 0 =" and a partition £ =3 UZ,, K is
said to be-closed iff K = K(L; K said to be_-controllableiff K=, NLOK.



The main synthesis problem in the RW-model can be stated as follows:
Supervisory Control Problem (SCP): Given aplant G, atarget language E O L, (G) and a minimal

acceptable languag& O E, construct a proper supervissfor G such that
AOL/(S/G)OE.

The language E is interpreted as the desired behavior under supervision, while A stands for the
minimal closed-loop behavior that is still acceptable.

It is hown in [RW87] that the dass C(E) of all L(G)-controllable sublanguages of E and the dass
F(E) of al L,(G)-closed sublanguages of E are bath non empty and closed under arbitrary unions.
Consequently, these dasses contain the supremal elements supC(E) and supF(E), called supremal L(G)-
controllable sublanguage of E and supremal L,,(G) -closed sublanguage of E, respedively. The same applies
to the dassCF (E) = C(E)NF(E), so there also exists supCF (E), the supremal L(G)-controllable and L, (G)-
closed sublanguage of E.

The solution to SCP is then given by the following theorem ([RW87], theorem 7.1, part (ii)):
Theorem 1: SCP is solvabldf supCF(E) O A.

3 Computing Solutions
In this dion we present formulas for bath the supremal L,,(G) -closed sublanguage and the supremal L,,(G) -
closed and L(G)-controll able sublanguage of a given language. From this point on, we abbreviate L(G) by L
and L, (G) by L, whenever no confusion is possible. We need the following lemmas:
Lemma 1: Given a languag& O L, if K =K, thenKNL, is L,-closed.
Proof: (0): KNL,OKNL, andKNL,OL,, soKNL, OKNL,NL,

(0): K=KO KOKNLy O KN Ly O KA Ly L. '
Lemma 2: Given a languag& O L, if Eis L, -closed, so isupC(E).
Proof: Let K be an arhitrary controllable (non necessarily L,,-closed) sublanguage of E, so K OC(E). Then
KOEO KOED KNL,OENL,=E.SinceKOK and KOE DL, it isalso true that KNL,, OK. By
lemma 1,KN L,, is L,,-closed. As shown below, this language is also controllable:
[Rm Lm}zu NL(G) O[KNL,|Z,NL(G) DK, NLG) DK DKNL,.
This means that, for every language K OC(E) that is not L, -closed, thereis an L, -closed and controllable
Ianguagel?ﬂ L,, O K that is also contained i@(E), and sosupC(E) is L,,-closed. .
Lemma 3: Given a languag€& O L, supCF (E) = supC[supF (E)].
Proof: By the definitions osupF (E) andsupCF (E) it follows that
SupCF (E) O supF (E), sosupCF (E) = supCF[supF(E)]. By lemma 2,
supC[supF (E)] = supCF[supF (E)], and the result is immediate. .

We amphasize that this result guarantees that computing the supremal L-controll able sublanguage of
the target language is sufficient to solve SCP when the target language is knowir), {oldesed.

In the following development let supP(K) denote the supremal prefix-closed sublanguage of K,
defined as supP(K) ={ssOK OS0O K}, where S stands for ﬁ the set of all prefixes of the word s. The
classof all prefix-closed sublanguages of K is clearly non empty (sincethe enpty language O is prefix-closed)
and closed under arbitrary unions, so the supremal element defined abowve is guaranteed to exist. For the
arbitrary language K let K - K denote the set-theoretic difference KNK°®, where K°® is the omplement of K
with respect ta".

The following proposition presents our main result:

Proposition 1: Given a language EO L, let M :supP[E—(E—E)ﬂ Lm]. Then supF(E)=MMNL, and
SUpCF(E) =supC(MNL,).
Proof: First part:supF (E) = MNL,,.




(i) supF(E) O M L,: demonstrating this relation amounts to show that ML, is L,-closed and that
ML, OE. MNL, isL-closed by lemma 1 and by the fact that= M ; ML, 0 E because

sOMNL, 0 sOsupP[E-(E-E)NL, L, 0 so[E-(E-E)nL,]nL, o

0 sDENL,-(E-E)NL,0 sDENL,D sOE.
(i) supF(E) O MNL,: demonstrating this relation amounts to show that
OssOEOSNL,=SNED sOMNL,

It is immediate that sOE O sOL,, since EOL,. To show sOM we start from the hypothesis

sOEOSNL,=SNE. Then
wOsNL, 0 wOSNED wOE-SNED (sNL,)N(E-SNE)=00

0 sn(E-sNE)NL, =0.
Now sOE O §OE, sos0E-(E-sNE)NL, DE-(E-E)NL, andsOM,
and thus supF(E) = MNL,. The second part of the proposition, namely supCF(E) =supC(MNL,), is
immediate by lemma 3, so the proof is complete. .

4 Computational Complexity

This ®dion presents an analysis of the omputational complexity of the agorithms needed to
determinesupF (E) andsupCF (E). It is based on the following results from [Rudi88]:

+ given two generators G, and G, of common alphabet Z, let |Z|=s, |Z,|=5, let n and g (i =1,2)
denote the number of states and transitions of generator G, respedively. Constructing a generator G such that
L.(G) is thesupremalL(G,) -controllablesublanguage of,(G,) is a task of complexitp(snn, +5e6e,);

. constructing a generator G such that L,(G)=L,(G)NL.(G,) is a task of complexity
Oo(nn, +eg);

- given G with n states, m marker states, e transitions and event set of cardinality s, constructing a
generator fof L,,(G)]° is a task of complexit@[ s(n+e€) + nm.

The abowe expressons can be simplified considering (i) that for any deterministic finite automaton,
e< sn and (ii) that s can be viewed as a parameter, rather than a variable which necessarily increases as does
the size of the state set. Also, m=an for some @nstant a. This gives the expressons O(nn,), O(nn,) and
O(n?) for the complexities of the three algorithms above, respectively.

It is easy to seethat, given a generator D = [, R,p, p,, R,0such that L, (D)= N, a generator for
supP(N) is
D' =Ac(Z,R,,pIZ X Ryl R, 0) if r,0OR,
andz, =[x,0,0,0,00 otherwise,
where Ac(.) denotes the accessible component of the operand apji=0 .

An algorithm that produces a generator $apC(K) is given in [WR87].

It is now easy to verify that the highest degree of complexity arising in the computation of supF (E)
and supCF (E) is O[max(n? ,ngn,, )], where n, and n, are the cardinaliti es of the state sets of the generators
G and H representing the plant and the target behavior, respedively. The mmputations are hence quadratic in
time.

5 Example

Figure 1 shows an imaginary generator G of aphabet {a,B,A,1}, where we assaume that ~, ={a,A} and
>, ={B,u} . Thetarget language crresponding to the desired closed-loap behavior is the language E marked

by generatoH shown in figure 2.



Fig. 1 - Generator G: the plant Fig. 2 - Generator H: desired behavior

A generator for supF (E) is gown in figure 3, where the "bad state" (state 3) that caused E not to be
L,,(G) -closed has been eliminated. The solution to SCP is given by the suprema L (G)-closed and L(G)-

controllablesublanguage dE. A generator for this language is shown in figure 4.

Fig. 3 - Generator for supF(E) Fig. 4 - Generator for supCF(E)

6 Conclusion

Computing a solution for the supervisory control problem (SCP) requires an algorithm for the supremal
L,,(G)-closed and L(G)-controllable sublanguage of the target language E. Only when E is already L, (G)-

closed the solution reduces to the computation of supC(E). The proposed formula for supCF(E) (based on
the computation o$upF (E)) allows solving SCP in the general case.
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