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1  Introduction

In the last ten years, the Ramadge-Wonham framework for Discrete Event Systems modeling, analysis and

controller (supervisor) synthesis has advanced to an important position among the various models suggested in

this research field.

In the basic RW-model, both the system to be controlled and the desired   behavior are specified

through the use of languages. Solving a synthesis problem amounts to find a controller - called supervisor - that

restricts the physicall y possible behavior of the system to be controlled - called plant - to the desired one. Solu-

tions are stated in terms of the supremal Lm-closed and L-controllable sublanguage of the language

representing the target behavior. While several authors have contributed to the computation of the supremal L-

controllable sublanguage (see especiall y [WR87] and also [Rudi88], [LVW88], [BGK+90] and [KGM91]), no

algorithms or formulas for the supremal Lm-closed and the supremal Lm-closed and L-controllable sublanguages

of a given language could be found in the surveyed literature.

In this paper we present formulas for these sublanguages. Section 2 recalls some results from RW-

theory, section 3 presents the formulas; computational complexity is analyzed in section 4, and an example is

given in section 5.

2  Preliminaries

A detailed description of the Ramadge-Wonham framework is given in [RW87] and related articles, the reader

being referred to these sources for background knowledge. We only recall some facts needed to present our

contribution.
System behavior is represented by a 5-tuple G Q q Qm= 〈 〉Σ, , , ,δ 0  called generator, where Σ is a set of

event labels, also called the event alphabet, Q is a set of states, and δ:Σ × →Q Q  is a (generall y partial)

transition function defined at each q Q∈  for a subset of the σ ∈Σ  so that ′ =q qδ σ( , ) represents the state

transition q qσ → ′ , meaning that the occurrence of event σ takes the system from state q to state ′q . q Q0 ∈  is

the initial state and Q Qm ⊆  is a set of marker states. These are used to mark the termination of certain event

sequences, representing the completion of a task by the system.
Each generator G has two associated languages: L G( ) , the language generated by G, and L Gm ( ) , the

language marked by G. These are sets of words formed with symbols of Σ . L G( )  represents the physicall y
possible behavior of the system, while L Gm ( )  stands for the tasks it is able to complete.

The alphabet Σ  is partitioned into controllable and uncontrollable events  according to Σ Σ Σ= c u

�
and Σ Σc u

�
= ∅. Control action is performed by an external agent called supervisor, which observes the events

generated by the plant and applies a control input γ ⊆ Σ  to the system in response to them. The events in γ are

those specified to be enabled by the supervisor.

This control action restricts the system generated and marked languages. The languages representing

the physicall y possible behavior and the tasks the system may complete under supervision are denoted by
L S G( / )  and L S Gc ( / ), respectively.

The prefix-closure K  of a language K is the set of all prefixes (initial segments) of strings in K. K is
said to be prefix-closed iff K K= . Given two arbitrary languages K L, ⊆ ∗Σ  and a partition Σ Σ Σ= c u

�
, K is

said to be L-closed iff  K K L=
�

; K said to be L-controllable iff K L KuΣ
�

⊆ .



The main synthesis problem in the RW-model can be stated as follows:
Supervisory Control Problem (SCP): Given a plant G, a target language E L Gm⊆ ( )  and a minimal

acceptable language A E⊆ , construct a proper supervisor S for G such that
A L S G Ec⊆ ⊆( / ) .

The language E is interpreted as the desired behavior under supervision, while A stands for the

minimal closed-loop behavior that is still acceptable.
It is shown in [RW87] that the class C E( )  of all L G( )-controllable sublanguages of E and the class

F E( )  of all L Gm ( ) -closed sublanguages of E are both non empty and closed under arbitrary unions.

Consequently, these classes contain the supremal elements sup ( )C E  and sup ( )F E , called supremal L G( )-

controllable sublanguage of E and supremal L Gm ( ) -closed sublanguage of E, respectively. The same applies

to the class CF E C E F E( ) ( ) ( )= � , so there also exists sup ( )CF E , the supremal L G( )-controllable and L Gm ( ) -

closed sublanguage of E.

The solution to SCP is then given by the following theorem ([RW87], theorem 7.1, part (ii)):
Theorem 1: SCP is solvable iff sup ( )CF E A⊇ .

3  Computing Solutions
In this section we present formulas for both the supremal L Gm ( ) -closed sublanguage and the supremal L Gm ( ) -

closed and L G( )-controllable sublanguage of a given language. From this point on, we abbreviate L G( )  by L
and L Gm ( )  by Lm  whenever no confusion is possible. We need the following lemmas:

Lemma 1: Given a language K L⊆ , if K K= , then K Lm

�
 is Lm -closed.

Proof: ( ):⊆  K L K Lm m

� �
⊆  and K L Lm m

�
⊆ , so K L K L Lm m m

� � �
⊆ .

( ):⊇  K K= ⇒ K K L K L K L Lm m m m⊇ ⇒ ⊇
� � � �

. ♦

Lemma 2: Given a language E Lm⊆ , if E is Lm -closed, so is sup ( )C E .

Proof: Let K be an arbitrary controllable (non necessaril y Lm -closed) sublanguage of E, so K C E∈ ( ) . Then

K E K E K L E L Em m⊆ ⇒ ⊆ ⇒ ⊆ =
� �

. Since K K⊆  and K E Lm⊆ ⊆ , it is also true that K L Km

�
⊇ . By

lemma 1, K Lm

�
 is Lm -closed. As shown below, this language is also controllable:

K L L G K L L Gm u m u

� � � ���� �	 

⊆Σ Σ( ) ( ) ⊆ ⊆ ⊆K L G K K Lu mΣ � �( ) .

 This means that, for every language K C E∈ ( )  that is not Lm -closed, there is an Lm -closed and controllable

language K L Km

�
⊇  that is also contained in C E( ) , and so sup ( )C E  is Lm -closed. ♦

Lemma 3: Given a language E Lm⊆ , sup ( ) sup sup ( )CF E C F E= .

Proof: By the definitions of sup ( )F E  and sup ( )CF E  it follows that

sup ( ) sup ( )CF E F E⊆ , so sup ( ) sup sup ( )CF E CF F E= . By lemma 2,

sup sup ( ) sup sup ( )C F E CF F E= , and the result is immediate. ♦

We emphasize that this result guarantees that computing the supremal L-controllable sublanguage of
the target language is sufficient to solve SCP when the target language is known to be Lm -closed.

In the following development let sup ( )P K  denote the supremal prefix-closed sublanguage of K,

defined as sup ( ) { : }P K s s K s K= ∈ ∧ ⊆ , where s  stands for { }s , the set of all prefixes of the word s. The

class of all prefix-closed sublanguages of K is clearly non empty (since the empty language ∅  is prefix-closed)

and closed under arbitrary unions, so the supremal element defined above is guaranteed to exist. For the

arbitrary language K let K K−  denote the set-theoretic difference K Kc�
, where Kc  is the complement of K

with respect to Σ∗.

The following proposition presents our main result:

Proposition 1: Given a language E Lm⊆ , let M P E E E Lm= − −sup � � �
. Then sup ( )F E M Lm=

�
 and

sup ( ) sup ( )CF E C M Lm=
�

.

Proof: First part: sup ( )F E M Lm=
�

.



(i) sup ( )F E M Lm⊇ 
 : demonstrating this relation amounts to show that M Lm
  is Lm -closed and that

M L Em
 ⊆ . M Lm
  is L-closed by lemma 1 and by the fact that M M= ; M L Em
 ⊆  because

s M Lm∈ 
 ⇒ ∈ − − ⇒s P E E E L Lm msup � � 
 
 s E E E L Lm m∈ − − ⇒� � 
 

⇒ ∈ − −s E L E E Lm m
 
� �

⇒ ∈s E Lm
 ⇒ ∈s E .

(ii) sup ( )F E M Lm⊆ 
 : demonstrating this relation amounts to show that
∀ ∈ ∧ = ⇒ ∈s s E s L s E s M Lm m: 
 
 


It is immediate that s E s Lm∈ ⇒ ∈ , since E Lm⊆ . To show s M∈  we start from the hypothesis

s E s L s Em∈ ∧ =
 
 . Then

w s Lm∈ 
 ⇒ ∈w s E
 ⇒ ∉ −w E s E
 ⇒ − = ∅ ⇒s L E s Em
 
 
� � � �
⇒ − = ∅s E s E Lm
 
 
� �

.

Now s E s E∈ ⇒ ⊆ , so s E E s E L E E E Lm m⊆ − − ⊆ − −
 
 
� � � �
 and s M∈ ,

and thus sup ( )F E M Lm= 
 . The second part of the proposition, namely sup ( ) sup ( )CF E C M Lm= 
 , is

immediate by lemma 3, so the proof is complete. ♦

4  Computational Complexity

This section presents an analysis of the computational complexity of the algorithms needed to
determine sup ( )F E  and sup ( )CF E . It is based on the following results from [Rudi88]:

• given two generators G1 and G2  of common alphabet Σ, let | |Σ = s , | |Σu us= , let ni  and ei  ( , )i = 1 2

denote the number of states and transitions of generator Gi , respectively. Constructing a generator G such that

L Gm ( )  is the supremal L G( )1 -controllable sublanguage of L Gm ( )2  is a task of complexity O sn n s e eu( )1 2 1 2+ ;

• constructing a generator G such that L G L G L Gm m m( ) ( ) ( )= 1 2
  is a task of complexity

O n n e e( )1 2 1 2+ ;
• given G with n states, m marker states, e transitions and event set of cardinalit y s, constructing a

generator for [ ( )]L Gm
c  is a task of complexity O s n e nm[ ( ) ]+ + .

The above expressions can be simpli fied considering (i) that for any deterministic finite automaton,

e sn≤  and (ii ) that s can be viewed as a parameter, rather than a variable which necessaril y increases as does
the size of the state set. Also, m n= α  for some constant α. This gives the expressions O n n( )1 2 , O n n( )1 2  and

O n( )2  for the complexities of the three algorithms above, respectively.
It is easy to see that, given a generator D R p Rm= 〈 〉Σ, , , ,ρ 0  such that L D Nm ( ) = , a generator for

sup ( )P N  is

′ = 〈 × 〉D R R r Rm m mAc , , | , ,Σ Σρ 0

� �
if  r Rm0 ∈

and Σ Σ∅ = 〈 ∅ ∅ ∅ ∅〉, , , , otherwise,

where Ac(.) denotes the accessible component of the operand and L( )Σ∅ = ∅ .

An algorithm that produces a generator for sup ( )C K  is given in [WR87].

It is now easy to verify that the highest degree of complexity arising in the computation of sup ( )F E

and sup ( )CF E  is O n n nH G H[ max( , )]2 , where nG  and nH  are the cardinaliti es of the state sets of the generators

G and H representing the plant and the target behavior, respectively. The computations are hence quadratic in

time.

5  Example
Figure 1 shows an imaginary generator G of alphabet { , , , }α β λ µ , where we assume that Σc = { , }α λ  and

Σu = { , }β µ . The target language corresponding to the desired closed-loop behavior is the language E marked

by generator H shown in figure 2.
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Fig. 1 - Generator G: the plant
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Fig. 2 - Generator H:  desired behavior

A generator for sup ( )F E  is shown in figure 3, where the "bad state" (state 3) that caused E not to be

L Gm ( ) -closed has been eliminated. The solution to SCP is given by the supremal L Gm ( ) -closed and L G( )-

controllable sublanguage of E. A generator for this language is shown in figure 4.
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Fig. 3 - Generator for supF(E)
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Fig. 4 - Generator for supCF(E)

6  Conclusion

Computing a solution for the supervisory control problem (SCP) requires an algorithm for the supremal
L Gm ( ) -closed and L G( )-controllable sublanguage of the target language E. Only when E is already L Gm ( ) -

closed the solution reduces to the computation of sup ( )C E . The proposed formula for sup ( )CF E  (based on

the computation of sup ( )F E ) allows solving SCP in the general case.
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