
ON THE SUPREMAL L-CONTROLLABLE SUBLANGUAGE
OF A NON PREFIX-CLOSED LANGUAGE

Roberto M. Ziller and José E. R. Cury

LCMI - EEL - UFSC

88040-900 - Florianópolis - SC -- Brazil

e-mail: ziller@lcmi.ufsc.br

ABSTRACT

In the Ramadge-Wonham framework for Discrete Event Systems modeling, supervisor

synthesis problems are formulated and solved using languages and automata theory.
Computing solutions to a class of synthesis problems amounts to find the supremal Lm -

closed and L-controllable sublanguage of the language that represents the target system

behavior. The computation of the supremal L-controllable sublanguage of a given

language is therefore a fundamental issue in supervisor synthesis. It has been extensively

discussed in the literature; formulas and algorithms to calculate this language in the

particular case of prefix-closed specifications have been found, and an iterative operator is

given in [WR87] for the general case where the languages involved need not be prefix-

closed. This paper presents a formula for the general case and outlines its computer

implementation.

Keywords: Discrete Event Systems, Supervisory Control, Language and Automata Theory

1 INTRODUCTION

In the last ten years, the Ramadge-Wonham

framework for Discrete Event Systems modeling,

analysis and controller (supervisor) synthesis has

advanced to an important position among the

various models suggested in this research field.

In the basic RW-model, both the system to be

controlled and the desired closed-loop behavior are

specified through the use of languages. Solving a

synthesis problem amounts to find a controller -

called supervisor - that restricts the physically

possible behavior of the system to be controlled -

called plant - to the desired one. Necessary and

sufficient conditions for the existence of such a

supervisor were presented in [RW87], and the

solution of the basic synthesis problem is stated in
terms of the supremal L Gm () -closed and L G()-

controllable sublanguage of the language
representing the target behavior, where L Gm () and

L G() are languages associated with an automaton

G representing the plant.

As shown in [Zill93] and [ZC94], the

computation of this language can be done in two

steps, first taking the supremal L Gm () -closed

sublanguage of the target language and then taking
the supremal L G()-controllable sublanguage - from

this point on abbreviated by supC - of the result.

The computation of supC is hence a

fundamental issue in supervisor synthesis. It has

been discussed in [WR87], [Rudi88], [LVW88],

[BGK+90] and [KGM91]. The methods to find

supC can be divided into two classes, namely those

applicable only when the languages involved are

prefix-closed ([LVW88], [BGK+90], [KGM91])

and those that apply to both prefix-closed and non

prefix-closed languages ([WR87], [Rudi88]). For

prefix-closed languages, [LVW88] and [KGM91]

present algorithms and [BGK+90] gives a formula

for supC; for the general case when the languages

are not necessarily prefix-closed, [WR87] presents

an operator which leads to an iterative algorithm

implemented in [Rudi88]. As far as the authors

know, no formula in the sense of an expression for

supC like the one presented in [BGK+90] is known

for the general case.

In this paper we modify the operator Ω given

in [WR87] so that it will always converge at the

first iteration, thus obtaining a formula for the
supremal L G()-controllable sublanguage which is

valid in the general case.

The paper is organized as follows: sections 2

and 3 recall the results needed from RW-theory;

section 4 recalls the Ω operator from [WR87] and

presents the new formula for supC, which we call

Ω∗ ; section 5 outlines an algorithm to compute it.

2 PRELIMINARIES

In the Ramadge-Wonham framework, Discrete

Event Systems are modeled as generators of formal

languages. A detailed description of this model is

given in [RW87] and related articles, the reader

being referred to these sources for background

knowledge. In the present paper, we only recall

some facts needed to present our contribution.

System behavior is represented by a 5-tuple
G Q q Qm= 〈 〉Σ, , , ,δ 0 called generator, where Σ is a

set of event labels, also called the event alphabet, Q
is a set of states, and δ:Σ × →Q Q is a (generally

partial) transition function defined at each q Q∈ for

a subset of the σ ∈Σ so that ′ =q qδ σ(,) represents

the state transition q qσ → ′ , meaning that the

occurrence of event σ takes the system from state q
to state ′q . q Q0 ∈ is the initial state and Q Qm ⊆ is

a set of marker states. These are used to mark the

termination of certain event sequences, representing

the completion of a task by the system.

The set of all strings that can be formed by any

number of symbols from Σ, plus the empty string ε
is denoted by Σ∗ . The transition function is

extended to process strings from Σ∗ in the following

natural way:

δ
δ ε
δ σ δ σ δ

:
(,)

(,) (, (,)).
Σ∗ × → =

=
=

%
&
'

Q Q
q q

s q s q

A state q Q∈ is said to be accessible iff there

exists some string s ∈ ∗Σ such that δ(,)s q q0 = ;

state q Q∈ is coaccessible iff there exists some

string s ∈ ∗Σ such that δ(,)s q Qm∈ . A generator G

is (co)accessible iff all its states are (co)accessible;

G is trim iff it is accessible and coaccessible.

Each generator G has two associated
languages: L G() , the language generated by G,
and L Gm () , the language marked by G. These are

sets of words formed with symbols of Σ . L G()

represents the physically possible behavior of the
system, while L Gm () stands for the tasks it is able

to complete.

The alphabet Σ is partitioned into controllable
and uncontrollable events according to Σ Σ Σ= c u�

and Σ Σc u� = ∅ . Control action is performed by an

external agent called supervisor which observes the

events generated by the plant and applies a control
input γ ⊆ Σ to the system in response to them. The

events in γ are those specified to be enabled by the

supervisor.

This control action restricts the system

generated and marked languages. The languages

representing the physically possible behavior and

the tasks the system may complete under
supervision are denoted by L S G(/) and L S Gc (/),

respectively.

The prefix-closure K of a language K is the set

of all prefixes (initial segments) of strings in K. K is
said to be prefix-closed iff K K= . L G() is always
prefix-closed, while L Gm () does not need to be.

Given two arbitrary languages K L, ⊆ ∗Σ and a
partition Σ Σ Σ= c u� , K is said to be L-closed iff

K K L= � ; K said to be L-controllable iff
K L KuΣ � ⊆ .

A supervisor is said to be complete iff it is

always able to follow the events generated by the

plant; non rejecting iff the closed-loop system never

enters a state from which it is no longer able to

recognize any completed task as such; and non

blocking iff the closed-loop system is never kept

from terminating a task (i.e., kept from reaching a

marker state). A proper supervisor is a supervisor

that is complete, non rejecting and non blocking.

3 SUPERVISOR SYNTHESIS PROBLEMS

The languages presented in section 2 allow the

formulation of several abstract supervisor synthesis

problems. In the approach chosen in [RW87] the

system to be controlled is represented by a plant G.

The target behavior is specified as a language
E L Gm⊆ () , representing the tasks desired to be

executable under supervision, and the problem

objective is to find (if possible) a proper supervisor

S for G such that the closed-loop behavior satisfies
the equality L S G Ec (/) = .

As shown in [RW87], there exists a proper
supervisor such that L S G Ec (/) = iff E is both

L Gm ()-closed and L G()-controllable. These

conditions are not always satisfied, since the desired

behavior for a system is not necessarily related to

that what can actually be achieved. Therefore, the

abstract supervisor synthesis problem is formulated

in the following way:

Supervisory Control Problem (SCP): Given a
plant G, a target language E L Gm⊆ () and a

minimal acceptable language A E⊆ , construct a

proper supervisor for G such that
A L S G Ec⊆ ⊆(/) .

The language E is interpreted as the desired

behavior under supervision, while A stands for the

minimal closed-loop behavior that is still

acceptable. Now, if it is not possible to construct a
supervisor such that L S G Ec (/) = (because E is

not L Gm () -closed and L G()-controllable), one can

try to find a more restrictive solution, so that
L S G Ec (/) ⊂ which would be accepted provided

L S G Ac (/) ⊇ . It is desirable to find an optimal

solution in the sense of restricting the closed-loop

behavior only as much as necessary to satisfy the

supervisor existence conditions. Such an optimal

solution exists. It is shown in [RW87] that the class
C E() of all L G()-controllable sublanguages of E
and the class F E() of all L Gm () -closed

sublanguages of E are both non empty and closed

under arbitrary unions. Consequently, these classes
contain the supremal elements sup ()C E and

sup ()F E , called supremal L G()-controllable

sublanguage of E and supremal L Gm () -closed

sublanguage of E, respectively. The same applies to
the class CF E() = C E F E() ()� , so there also
exists sup ()CF E , the supremal L G()-controllable

and L Gm () -closed sublanguage of E.

The solution to SCP is then given by the

following theorem ([RW87], theorem 7.1, part (ii)):
Theorem 3.1: SCP is solvable iff

sup ()CF E A⊇ . ♦

It is clear from theorem 3.1 that an algorithm
for sup ()CF E is needed in order to compute

solutions to SCP in the general case. The following

lemma states that sup ()CF E can be computed by

first obtaining sup ()F E and then by applying an

algorithm for supC to the result. From this point on,
we abbreviate L G() by L and L Gm () by Lm where

no confusion is possible.
Lemma 3.1: Given a language E Lm⊆ ,

sup () sup sup ()CF E C F E= .

Proof: See [Zill93] (proposition 5.6) or [ZC94]
(lemma 3). ♦

A formula for sup ()F E is given in [ZC94];

from this point on we concentrate on the

computation of supC. In the next section we recall

the Ω operator for supC introduced in [WR87] and

present our extension to it.

4 FROM OPERATOR TO FORMULA

The operator defined in [WR87] (with some

changes for notation uniformity) is given by

Definition 4.1: Let Ω Σ Σ: ∗ ∗→ be the operator

Ω Σ Σ() sup : () ,K E T T T T T L G Ku= ⊆ ∧ = ∧ ⊆∗
� �

where

E L G⊆ () is an arbitrary (not necessarily

prefix-closed) target language,
Σu is the set of uncontrollable events and

K ⊆ ∗Σ . ♦

It is shown in [WR87] that the sequence of
languages K j given by

K E K K jj j0 1 0= = ≥+, (),Ω

converges to sup ()C E in a finite number of

iterations.

We define the new operator Ω∗ as follows:

Definition 4.2: Let Ω Σ Σ∗ ∗ ∗→: be the operator

Ω Σ Σ∗ ∗ ∗= ⊆ ∧ = ∧ ⊆() sup : () ,K E T T T T T L G Ku� �> C
where

E L G⊆ () is an arbitrary (not necessarily

prefix-closed) target language,
Σu

∗ is the set of all words that can be formed

with symbols from Σu and

K ⊆ ∗Σ . ♦

The following equivalent formulation will be

useful:

Lemma 4.1:
Ω Σ∗ ∗= ∈ ∧ ⊆() : ()K t t E t L G Ku �> C .

Proof: Immediate from definition 4.2. ♦

We also need the following lemma to extend the

definition of controllability:

Lemma 4.2: Let K be an arbitrary (not
necessarily prefix-closed) sublanguage of L G() . K

is controllable if and only if K L G KuΣ∗ ⊆� () .

Proof:
(If): Assume that K L G KuΣ∗ ⊆� () . Since

Σ Σu u⊆ ∗ , K L G K L G Ku uΣ Σ� �() ()⊆ ⊆∗ .

(Only if): Let Σu
n be the set of all words of

length n formed with symbols of Σu . It will be

shown by induction that
K L G Ku

nΣ � () ⊆ for n = ∞0 1, ,� . Since K is

controllable by hypothesis, the above expression is

valid for n = 1. Assume that the inductive
hypothesis K L G Ku

iΣ � () ⊆ is valid for n i= . Then

K L Gu
iΣ +1
� () ⊆ K L Gu

i
uΣ Σ � ()

⊆ K L G L Gu
i

u uΣ Σ Σ� �() ()

⊆ K L G L Gu
i

uΣ Σ� �() ()

⊆ K L GuΣ � ()

⊆ K , so

K L G KuΣ∗ ⊆� () . ♦

The following proposition gives our main

result:
Proposition 4.1: The supremal L G()-

controllable sublanguage of a given arbitrary
language E L G⊆ () is given by

sup () () : ()*C E E t t E t L G Eu= = ∈ ∧ ⊆∗Ω Σ �> C.

Proof:
():⊇ Let the right member of the former

expression be denoted by Z. Since Z E⊆ by
definition, showing that sup ()C E Z⊇ amounts to

show that Z is controllable. Suppose the contrary.

Then, according to lemma 4.2,

∃ ∈ ∧ ∃ ∈ ∗u Z v uΣ such that

u Z uv L G uv Z∈ ∧ ∈ ∧ ¬ ∈() () .

Now Z t t E t L G Eu= ∈ ∧ ⊆∗: ()Σ �> C , so the above

statement becomes

u Z uv L G∈ ∧ ∈ ∧()

∧¬ ∈ ∈ ∧ ⊆∗uv t t E t L G Eu: ()Σ �> CJ L

∧¬ ∈ ∧ ⊆∗uv E uv L G EuΣ � ()> C

∧ ¬ ∈ ∨ ¬ ⊆∗() ()uv E uv L G EuΣ �J L

u Z uv L G uv E∈ ∧ ∈ ∧ ∉ ∨() ()

u Z uv L G uv L G Eu∈ ∧ ∈ ∧ ¬ ⊆∗() ()Σ �J L.

The first term of this expression gives

u t t E t L G E uv L G uv Eu∈ ∈ ∧ ⊆ ∧ ∈ ∧ ∉∗: () ()Σ �> C

u E u L G E uv L G uv Eu∈ ∧ ⊆ ∧ ∈ ∧ ∉∗Σ � () ()

u E u L G E uv L G uv Eu∈ ∧ ⊆ ∧ ∈ ∧ ∉∗Σ � () ()

u E uv L G E uv L G uv E∈ ∧ ⊆ ∧ ∈ ∧ ∉� () ()

u E uv E uv L G uv E∈ ∧ ∈ ∧ ∈ ∧ ∉() ,

a contradiction. The second term gives

u t t E t L G Eu∈ ∈ ∧ ⊆ ∧∗: ()Σ �> C

∧ ∈ ∧ ¬ ⊆∗uv L G uv L G Eu() ()Σ �

u E u L G Eu∈ ∧ ⊆ ∧∗Σ � ()

∧ ∈ ∧ ¬ ⊆∗uv L G uv L G Eu() ()Σ �

u E uv L G E∈ ∧ ⊆ ∧� ()

∧ ∈ ∧ ¬ ⊆∗uv L G uv L G Eu() ()Σ �

u E uv L G E∈ ∧ ⊆ ∧� ()

∧ ∈ ∧ ¬ ⊆∗uv L G uv L G Eu() ()Σ � ,

again a contradiction.

():⊆ Since sup ()C E E⊆ by definition, it is

sufficient to show that sup () ()C E t L G Eu⊆ ⊆∗Σ �> C.

Suppose the contrary. Then ∃ ∈ ∗u Σ such that

u C E u t t L G Eu∈ ∧ ¬ ∈ ⊆∗sup () (: ())Σ �> C

u C E u L G Eu∈ ∧ /⊆∗sup () (())Σ � .

By lemma 4.2,

u C E u L G Eu∈ ⇒ ⊆∗sup () ()Σ � . Therefore the

above is also a contradiction, and the proof is

complete. ♦

5 COMPUTER IMPLEMENTATION

In this section we develop an algorithm to

compute supC based on the formula given in

proposition 4.1. It is clear that any implementation

of an algorithm for supC (as the one in [Rudi88])

will compute Ω∗ . The implementation suggested

below differs from the one in [Rudi88] in that it

does the computation in one pass, without the need

of an auxiliary algorithm for the trim component of

the generator.

Given two generators G Q q Qm= 〈 〉Σ, , , ,δ 0 and

H X x X m= 〈 〉Σ, , , ,ξ 0 , H is said to refine G if

L H L G() ()⊆ and for all s t L G, (),∈
ξ ξ δ δ(,) (,) (,) (,)s x t x s x t x0 0 0 0= ⇒ = .

If H refines G then it is easy to show that there
exists a unique function h X Q: → satisfying

h s x s q[(,)] (,)ξ δ0 0= (5.1).

The following lemma will support our

algorithmic implementation:
Lemma 5.1: Let G Q q Qm= 〈 〉Σ, , , ,δ 0 and

H X x X m= 〈 〉Σ, , , ,ξ 0 be trim generators such that

i. G represents a plant;
ii. L H Em () = is a target language;

iii. H refines G.
Let h X Q: → be the unique map satisfying

(5.1). Then w C E∈ sup () iff w E∈ and

() (,) [()] ()∀ ∈ ∈ ⇒ ⊆∗ ∗ ∗u w x u x h x xuξ 0 Σ Σ Σ� ,

where Σ∗ ()q is the set of all strings s for which

δ(,)s q is defined.

Proof: From proposition 4.1 we have that

w E∈ ∗Ω () iff

w E w L G Eu∈ ∧ ⊆∗Σ � ()

w E u w u L G Eu∈ ∧ ∀ ∈ ⊆∗() ()Σ �

w E u w v uv L G uv Eu∈ ∧ ∀ ∈ ∀ ∈ ∈ ⇒ ∈∗()() ()Σ
w E u w v u q uv Eu∈ ∧ ∀ ∈ ∀ ∈ ∈∗ ∗()([(,)])Σ Σδ 0 �

w E u w u q u xu∈ ∧ ∀ ∈ ⊆∗ ∗ ∗() [(,)] [(,)]Σ Σ Σδ ξ0 0�

w E∈ ∧
∧ ∀ ∈ = ⇒ ⊆∗ ∗ ∗() (,) [()] []u w x u x h x xuξ 0 Σ Σ Σ� .

♦

The condition w E∈ implies w E⊆ and so

each state x in the statement of lemma 5.1 has to be

coaccessible. The condition
Σ Σ Σ∗ ∗ ∗⊆[()] []h x xu� (5.2)

means that for an arbitrary state x of H, every path

of uncontrollable events starting from the

corresponding state h x() in G must also be defined

starting from x in H. In view of these facts it is

possible to construct a generator for sup ()C E by

removing those states from H that fail to satisfy

condition (5.2) and also those states which become

not coaccessible due to the former operation.

(Initially, all states are coaccessible, since H is trim

by hypothesis).

The algorithm outlined below uses a list of bad

states, which is a dynamic list containing the states

to be removed from H in order to construct a
generator for sup ()C E .

Algorithm 5.1:
Given generators G and H as in lemma 5.1, the

following steps transform H into a generator for
sup ()C E :

1. create a dynamic list of states called badlist and

initialize it with the states that fail to satisfy
Σ Σ Σ(()) ()h x xu� ⊆ ;

2. for each state xi in badlist:
• add the states x x xj u u i u j:() (,)∃ ∈ =σ ξ σΣ to

badlist;

• add the states
x x x x X xk c c i c k k m k:() (,) | ()|∃ ∈ = ∧ ∉ ∧ =σ ξ σΣ Σ 1

 to badlist;
• remove xi from badlist and from the generator,

together with its incoming and outgoing

transitions;

3. take the accessible component of the resulting

generator. ♦

Step 1 initializes the list of states to be

removed from H with those states in which an

uncontrollable event that is physically possible is

not defined. Step 2 both processes and increases this
list. For each state xi already in the list:

states x j that have an outgoing event σu u∈Σ
leading into xi are added to the list, implementing

condition (5.2);
states xk that have an outgoing event σc c∈Σ

leading into xi are added to the list iff xk is not a

marker state and σc is the only outgoing event from

xk .

The reader may verify that the second part of

step 2 preserves coaccessibility. Step 3 just removes

any states left inaccessible by the former operations.

6 CONCLUSION

The formula and the algorithm presented are

valid in the general case of non prefix-closed

languages. The algorithm preserves coaccessibility

at each step, thus avoiding the use of an auxiliary

algorithm to trim the generators obtained as

intermediate results.

REFERENCES

[BGK+90] Brandt, R. D.; Garg, V.; Kumar, R.;

Lin, F.; Marcus, S. I.; Wonham, W. M.:

"Formulas for Calculating Supremal

Controllable and Normal Sublanguages".

Systems & Control Letters, 15(2):111-117

(1990)

[KGM91] Kumar, R.; Garg, V.; Marcus, S. I.:

"On Controllability and Normality of Discrete

Event Dynamical Systems". Systems & Control

Letters, 17:157-168 (1991)

[LVW88] Lin, F.; Vaz, A. F.; Wonham, W. M.:

"Supervisor Specification and Synthesis for

Discrete Event Systems". Int. J. Control,

48(1):321-332 (1988)

[Rudi88] Rudie, Karen G.: "Software for the

Control of Discrete Event Systems: A

Complexity Study". M. A. Sc. Thesis,

Department of Electrical Engineering,

University of Toronto, Toronto, Canada (1988)

[RW87] Ramadge, P. J.; Wonham, W. M.:

"Supervisory Control of a Class of Discrete

Event Processes". SIAM J. Control and

Optimization, 25(1):206-230 (1987)

[WR87] Wonham, W. M.; Ramadge, P. J.: "On

the Supremal Controllable Sublanguage of a

Given Language". SIAM J. Control and

Optimization, 25(3):637-659 (1987)

[Zill93] Ziller, Roberto M.: "A Abordagem

Ramadge-Wonham no Controle de Sistemas a

Eventos Discretos: Contribuições à Teoria".

Dissertação de Mestrado, Departamento de

Engenharia Elétrica, Universidade Federal de

Santa Catarina, Florianópolis - SC, Brasil

(1993)

[ZC94] Ziller, Roberto M.; Cury, José E. R.:

"On the Supremal Lm-closed and the Supremal

Lm-closed and L-controllable Sublanguages of a

Given Language". Lecture Notes in Control and

Information Science 94, Springer Verlag (to

appear)

Note 1: This paper was published in the annals of the 10.º Congresso Brasileiro de Automática / 6.º Congresso

Latino-Americano de Controle Automático (Rio de Janeiro, Brazil, September 19-23, 1994), vol.1, pp. 260-265

(1994).

Note 2: While discussing algorithm 5.1 with the Discrete Subgroup of the University of Toronto, it has been

found that the resulting generator may not be trim if the generator specifying the desired behavior has one or

more second order bad states contained in a non-marker state loop. In order to assure the result is correct, step

3 should check for states that are either not accessible or not coaccessible. If there are any such states, they

should be added to the badlist and processing return to step 2.
Note 3: Line 4 of paragraph 2 in section 5 should read: ξ ξ δ δ(,) (,) (,) (,)s x t x s q t q0 0 0 0= ⇒ = .

