ON THE SUPREMAL L-CONTROLLABLE SUBLANGUAGE
OF A NON PREFIX-CLOSED LANGUAGE

Roberto M. Ziller and Jos€ E. R. Cury

LCMI - EEL - UFSC

88040-900 - Floriandpolis - SC -- Brazil
e-mail: ziller@lcmi.ufsc.br

ABSTRACT

In the Ramadge-Wonham framework for Discrete Event Systems modeling, supervisor

synthesis problems are formulated and solved using languages and automata theory.
Computing solutions to a class of synthesis problems amounts to find the supremal L, -

closed and L-controllable sublanguage of the language that represents the target system
behavior. The computation of the supremal L-controllable sublanguage of a given
language is therefore a fundamental issue in supervisor synthesis. It has been extensively
discussed in the literature; formulas and algorithms to calculate this language in the
particular case of prefix-closed specifications have been found, and an iterative operator is
given in [WR87] for the general case where the languages involved need not be prefix-
closed. This paper presents a formula for the general case and outlines its computer

implementation.

Keywords. Discrete Event Systems, Supervisory Control, Language and Automata Theory

1 INTRODUCTION

In the last ten years, the Ramadge-Wonham
framework for Discrete Event Systems modeling,
analysis and controller (supervisor) synthesis has
advanced to an important position among the
various models suggested in this research field.

In the basic RW-model, both the system to be
controlled and the desired closed-loop behavior are
specified through the use of languages. Solving a
synthesis problem amounts to find a controller -
caled supervisor - that restricts the physically
possible behavior of the system to be controlled -
caled plant - to the desired one. Necessary and
sufficient conditions for the existence of such a
supervisor were presented in [RW87], and the
solution of the basic synthesis problem is stated in
terms of the supremal L, (G)-closed and L(G)-
controllable sublanguage of the language
representing the target behavior, where L, (G) and
L(G) are languages associated with an automaton
G representing the plant.

As shown in [Zill93] and [ZC94], the
computation of this language can be done in two

steps, first taking the supremal L, (G)-closed
sublanguage of the target language and then taking
the supremal L (G)-controllable sublanguage - from
this point on abbreviated by supC - of the result.

The computation of supC is hence a
fundamental issue in supervisor synthesis. It has
been discussed in [WR87], [Rudi88], [LVW8S],
[BGK*90] and [KGM91]. The methods to find
supC can be divided into two classes, namely those
applicable only when the languages involved are
prefix-closed ([LVW88], [BGK™90], [KGM91])
and those that apply to both prefix-closed and non
prefix-closed languages ([WR87], [Rudi88]). For
prefix-closed languages, [LVW88] and [KGM91]
present algorithms and [BGK™90] gives a formula
for supC; for the general case when the languages
are not necessarily prefix-closed, [WR87] presents
an operator which leads to an iterative algorithm
implemented in [Rudi88]. As far as the authors
know, no formula in the sense of an expression for
supC like the one presented in [BGK90] is known
for the general case.

In this paper we modify the operator Q given
in [WR87] o that it will always converge at the

first iteration, thus obtaining a formula for the
supremal L(G)-controllable sublanguage which is
valid in the general case.

The paper is organized as follows. sections 2
and 3 recall the results needed from RW-theory;
section 4 recalls the Q operator from [WR87] and
presents the new formula for supC, which we call
Q"; section 5 outlines an algorithm to compute it.

2 PRELIMINARIES

In the Ramadge-Wonham framework, Discrete
Event Systems are modeled as generators of formal
languages. A detailed description of this mode is
given in [RW87] and related articles, the reader
being referred to these sources for background
knowledge. In the present paper, we only recal
some facts needed to present our contribution.

System behavior is represented by a 5-tuple
G=1[%,Q,9,q,,Q,Ocalled generator, where Z is a
set of event labds, also called the event alphabet, Q
isaset of states, and 8:ZxQ — Q is a (generally
partial) transition function defined at each g 0Q for
asubset of the o X sothat g’ =&(0,q) represents
the state transition q% q', meaning that the
occurrence of event o takes the system from state g
to state g'. ¢, 0Q istheinitial stateand Q, 0 Q is
a set of marker states. These are used to mark the
termination of certain event sequences, representing
the completion of atask by the system.

The set of al strings that can be formed by any
number of symbols from X, plus the empty string €
is denoted by =". The transition function is
extended to process strings from X" in the following

natural way:
0(e,0) =q

.50 —
oExQ-Q {6(so.q) = 80, &s.)).

A state g JQ is said to be accessible iff there
exigs some string sO2" such that 3(s,q,) =Q;
state g JQ is coaccessible iff there exists some
string sOX" such that 8(s,q) 0Q,,. A generator G
is (co)accessible iff all its states are (co)accessible;
G istrimiff it is accessible and coaccessible.

Each generator G has two associated
languages: L(G), the language generated by G,
and L, (G), the language marked by G. These are

sets of words formed with symbols of Z. L(G)
represents the physically possible behavior of the
system, while L, (G) stands for the tasks it is able
to complete.

The aphabet X~ is partitioned into controllable
and uncontrollable events accordingto ¥ =>_UZ,

and Z.(1Z, = 0. Control action is performed by an
external agent called supervisor which observes the
events generated by the plant and applies a control
input y (> to the system in response to them. The
events in y are those specified to be enabled by the
supervisor.

This control action restricts the system
generated and marked languages. The languages
representing the physically possible behavior and
the tasks the system may complete under
supervision are denoted by L(S/G) and L. (S/G),
respectively.

The prefix-closure K of a language K is the set
of all prefixes (initial segments) of stringsin K. K is
said to be prefix-closed iff K =K. L(G) is always
prefix-closed, while L, (G) does not need to be.

Given two arbitrary languages K,L 0 2" and a
partition ¥ =3>_UZ,, K is said to be L-closed iff
K=KNL; K said to be L-controllable iff
KZ,NLOK.

A supervisor is said to be complete iff it is
always able to follow the events generated by the
plant; non rejecting iff the closed-loop system never
enters a state from which it is no longer able to
recognize any completed task as such; and non
blocking iff the closed-loop system is never kept
from terminating a task (i.e., kept from reaching a
marker state). A proper SUpervisor is a supervisor
that is complete, non rejecting and non blocking.

3 SUPERVISOR SYNTHESISPROBLEMS

The languages presented in section 2 alow the
formulation of several abstract supervisor synthesis
problems. In the approach chosen in [RwW87] the
system to be controlled is represented by a plant G.
The target behavior is specified as a language
E O L,(G), representing the tasks desired to be
executable under supervision, and the problem
objective is to find (if possible) a proper supervisor

Sfor G such that the closed-loop behavior satisfies
the equality L.(S/G) =E.

As shown in [RW87], there exists a proper
supervisor such that L. (S/G)=E iff E is both
L, (G)-closed and L(G)-controllable. These
conditions are not always satisfied, since the desired
behavior for a system is not necessarily related to
that what can actually be achieved. Therefore, the
abstract supervisor synthesis problem is formulated
in the following way:

Supervisory Control Problem (SCP): Given a
plant G, a target language E O L, (G) and a
minimal acceptable language A O E, construct a
proper supervisor for G such that

AOL/(S/GH E.

The language E is interpreted as the desired
behavior under supervision, while A stands for the
minimal closed-loop behavior that is ill
acceptable. Now, if it is not possible to construct a
supervisor such that L. (S/G)=E (because E is
not L.,(G)-closed and L(G)-controllable), one can
try to find a more restrictive solution, so that
L.(S/G) O E which would be accepted provided
L.(S/G) O A. It is desirable to find an optimal

solution in the sense of restricting the closed-loop
behavior only as much as necessary to satisfy the
supervisor existence conditions. Such an optimal
solution exists. It is shown in [RW87] that the class
C(E) of al L(G)-controllable sublanguages of E
and the cass F(E) of al L,(G)-closed
sublanguages of E are both non empty and closed

under arbitrary unions. Consequently, these classes
contain the supremal edements supC(E) and

supF(E), caled supremal L(G)-controllable
sublanguage of E and supremal L, (G)-closed
sublanguage of E, respectively. The same applies to
the class CF(E)= C(E)NF(E), so there aso
exists supCF (E), the supremal L(G)-controllable
and L, (G) -closed sublanguage of E.

The solution to SCP is then given by the

following theorem ([RW87], theorem 7.1, part (ii)):
Theorem 3.1: SCP is solvable iff
supCF(E) O A. .

It is clear from theorem 3.1 that an algorithm
for supCF(E) is needed in order to compute

solutions to SCP in the general case. The following

lemma states that supCF(E) can be computed by
first obtaining supF (E) and then by applying an
algorithm for supC to the result. From this point on,
we abbreviate L(G) by L and L,(G) by L, where
no confusion is possible.

Lemma3.1: Givenalanguage E O L,
supCF (E) = supC[supF (E)].

Proof: See [Zill93] (proposition 5.6) or [ZC94]
(lemma3). *

A formula for supF(E) is given in [ZC94];
from this point on we concentrate on the
computation of supC. In the next section we recall
the Q operator for supC introduced in [WR87] and
present our extension to it.

4 FROM OPERATOR TO FORMULA

The operator defined in [WR87] (with some
changes for notation uniformity) is given by

Definition 4.1: Let Q: 3" - 3 be the operator
Q(K) = Emsup[T:T OSHE T TI,NL(E) E],
where

EOL(G) is an arbitrary (not necessarily
prefix-closed) target language,

>, isthe set of uncontrollable events and

KOz .

It is shown in [WR87] that the sequence of
languages K given by

Ko =E.K,,; =Q(K;),j 20
converges to supC(E) in a finite number of
iterations.

We define the new operator Q" asfollows:

Definition 4.2: Let Q":3” . ¥ be the operator
Q%K)=Ensup{T:TOTD ® T TENL@ KJ,
where

EOL(G) is an arbitrary (not necessarily
prefix-closed) target language,

3, is the set of all words that can be formed
with symbolsfrom X, and

KOz .

The following equivalent formulation will be
useful:

Lemma4.1:

Q%K) ={tt 0B B2NL(GY K]

Proof: Immediate from definition 4.2. .

We also need the following lemma to extend the
definition of controllability:

Lemma 4.2 Let K be an arbitrary (not
necessarily prefix-closed) sublanguage of L(G). K
is controllable if and only if KZJNL(G) O K.

Proof:

(If): Assume that KZUNL(G)OK. Since
5, 020 KZ,NL(G) ODKZINLGH K.

(Only if): Let 5] be the set of al words of
length n formed with symbols of X,. It will be
shown by induction that

KZINL(G) O K for n=0,1,...00. Since K is
controllable by hypothesis, the above expression is

valid for n =1. A$unle that the inductive
hypothesis K=! N L(G) O K isvalid for n=i. Then

KZPNL(G) OKzZZ,NL(G)
OKZ 2, NL(G)Z,NL(G)
O [Rzm L(G)]Zuﬂ L(G)
OKZ,NL(G)
0K, 0

KZUNL(G) OK. N

The following proposition gives our main
result:

Proposition 4.1: The suprema L(G)-

controllable sublanguage of a given arbitrary
language E O L(G) isgiven by
supC(E) = QY(E) ={t:t DED T=;NL(GY EJ.
Proof:
(0O): Let the right member of the former

expression be denoted by Z. Since ZOE by
definition, showing that supC(E) 0 Z amounts to

show that Z is controllable. Suppose the contrary.
Then, according to lemma 4.2,

Q0 Z00v - =7 such that
udZD W L@ v Z).
Nowzz{t:t OB 2N L(GY E},sotheabove

statement becomes
udZl W L(G)
& {wo {tw (B &=2nLe) EN
= {w0 E wiNL(@G) EJ
D{—\ (W0 Ed [E/ZEQL(G) E]}
[uDZ] W L(G) @v EE)]

{u 021 W L(G) [K/zim L(G) E]}

Thefirst term of this expression gives
uo{tO B f2°NL(@) (E}Ow I(G) w E
uOE Uz)NL(Q) [E Ov IQGP w E
uOE uz!NL(Q) [(E Ov IQGP w E
udE uv(L(GY (E v LG uv E
uOE W [(E v IOGY w E,

a contradiction. The second term gives
uD{to B =5NL(G) [E)

Ol L(GR [E/zﬁm L(G) E]
uOE uz/NL(GY [E

OO L(GR [E/zﬁm L(G) E]
uOE GVvNL(GY [E

Ol L(GR [E/zﬁm L(G) E]
uOE wNL(Q)Y [E

OO L(GR [E/zﬁm L(G) E],
again a contradiction.

(0): Since supC(E) O E by definition, it is
sufficient to show that supC(E) 0 {fs2NL(GY EJ.
Suppose the contrary. Then (L0 =" such that

UOspC(Ex: @ {tf=9NL(B) EJ)

uOsupC(ED (T=NL(G) [E).

By lemma4.2,
uOsupC(EX] U=NL(G) E. Therefore the
above is aso a contradiction, and the proof is

complete. .
5 COMPUTERIMPLEMENTATION

In this section we develop an algorithm to
compute supC based on the formula given in
proposition 4.1. It is clear that any implementation
of an algorithm for supC (as the one in [Rudi88])
will compute Q". The implementation suggested
below differs from the one in [Rudi88] in that it
does the computation in one pass, without the need
of an auxiliary algorithm for the trim component of
the generator.

Given two generators G = [X,Q,9,q,,Q,,Jand
H=[X,X,§X,X,0 H is said to refine G if
L(H) O L(G) andfor dl s,t OL(G),

E(5.%) =&(t%) 0 3(s%¥ 8(t,%).

If H refines G then it is easy to show that there
exists a unique function h: X - Q satisfying

h[&(s,%,)] =8(s,0,) (5.2).

The following lemma will support our
algorithmic implementation:

Lemma 5.1 Let G=[%,Q,%,q,,Q,0 and
H =X, X,§,X,, X,,0be trim generators such that

i. G represents a plant;

ii. L,,(H) = E isatarget language;

iii. H refines G.

Let h:X - Q be the unique map satisfying
(5.1). Then wOsupC(E) iff wOE and
(OW W)X E(uxg) ZTh(ol0s, ¥ (%),
where 37(q) is the set of all strings s for which
0(s,q) isdefined.

Proof: From proposition 4.1 we have that
wOQ(E) iff
wOE Wz!NL(G) E
wOEQ i Wus!NLG) E
WwOBQu WY v X)wOL@) w E
WO u W v =78(u,q,)]NE)uww E
WOEIQ U W)Z8(u,q)] M, & [E(U,%)]
wOH]

D0U W E(usg) ZTh(QIMs, ¥ [x].
L4

The condition wOE implies WO E and so
each state x in the statement of lemma 5.1 has to be
coaccessible. The condition

Sh()INE, O [x] (5.2)
means that for an arbitrary state x of H, every path
of uncontrollable events dtarting from the
corresponding state h(x) in G must also be defined
starting from x in H. In view of these facts it is
possible to construct a generator for supC(E) by
removing those states from H that fail to satisfy
condition (5.2) and aso those states which become
not coaccessible due to the former operation.
(Initialy, all states are coaccessible, since H is trim
by hypothesis).

The algorithm outlined below uses a list of bad
states, which is a dynamic list containing the states

to be removed from H in order to construct a
generator for supC(E).

Algorithm 5.1:

Given generators G and H asin lemma 5.1, the
following steps transform H into a generator for
supC(E):

1. create adynamic list of states called badlist and

initialize it with the states that fail to satisfy

S(h(x))NZ, O Z(x);

2. for each state x, in badlist:

« add the dtates x;:(0o,0 Z,)% &(0,,x;) to
badlist;

+ add the states
X (Do Oz)& &(oe,x0 X X, [2xJ) 1
to badlist;

* remove x from badlist and from the generator,
together with its incoming and outgoing
transitions;

3. take the accessible component of the resulting
generator. ¢

Step 1 initializes the list of states to be
removed from H with those states in which an
uncontrollable event that is physically possible is
not defined. Step 2 both processes and increases this
list. For each state x; already in the list:

states x; that have an outgoing event o, (X
leading into x; are added to the list, implementing
condition (5.2);

states x, that have an outgoing event o, (X
leading into x; are added to the list iff x, isnot a
marker state and o is the only outgoing event from
X -

The reader may verify that the second part of
step 2 preserves coaccessibility. Step 3 just removes
any states |eft inaccessible by the former operations.

6 CONCLUSION

The formula and the algorithm presented are
valid in the general case of non prefix-closed
languages. The algorithm preserves coaccessibility
at each step, thus avoiding the use of an auxiliary
algorithm to trim the generators obtained as
intermediate results.

REFERENCES

[BGK+90] Brandt, R. D.; Garg, V.; Kumar, R;
Lin, F.; Marcus, S. |.; Wonham, W. M.
"Formulas for Calculating Supremal
Controllable and Normal Sublanguages'.
Systems & Control Letters, 15(2):111-117
(1990)

[KGM91] Kumar, R.; Garg, V.; Marcus, S. .
"On Controllability and Normality of Discrete
Event Dynamical Systems'. Systems & Control
Letters, 17:157-168 (1991)

[LVW88] Lin, F.; Vaz, A. F.; Wonham, W. M.:
"Supervisor Specification and Synthesis for
Discrete Event Systems'. Int. J. Control,
48(1):321-332 (1988)

[Rudi88] Rudie, Karen G.: "Software for the
Control of Discrete Event Systems. A
Complexity Study". M. A. Sc. Thesis,
Department of Electricll Engineering,
University of Toronto, Toronto, Canada (1988)

[RW87] Ramadge, P. J; Wonham, W. M.
"Supervisory Control of a Class of Discrete
Event Processes’. SIAM J. Control and
Optimization, 25(1):206-230 (1987)

[WR87] Wonham, W. M.; Ramadge, P. J.: "On
the Supremal Controllable Sublanguage of a
Given Language’. SAM J. Control and
Optimization, 25(3):637-659 (1987)

[Zill93] Ziller, Roberto M.: "A Abordagem
Ramadge-Wonham no Controle de Sistemas a
Eventos Discretos. Contribuicbes a Teorid'.
Dissertacdo de Mestrado, Departamento de
Engenharia Elétrica, Universidade Federa de
Santa Catarina, Floriandpolis - SC, Brasl
(1993)

[2C94] Ziller, Roberto M.; Cury, Jos¢ E. R.:
"On the Supremal Lm-closed and the Supremal
Lm-closed and L-controllable Sublanguages of a
Given Language'. Lecture Notes in Control and
Information Science 94, Springer Verlag (to

appear)

Note 1: This paper was published in the annals of the 10.° Congresso Brasileiro de Automatica/ 6.° Congresso
Latino-Americano de Controle Automatico (Rio de Janeiro, Brazil, September 19-23, 1994), vol.1, pp. 260-265

(1994).

Note 2: While discussing algorithm 5.1 with the Discrete Subgroup of the University of Toronto, it has been
found that the resulting generator may not be trim if the generator specifying the desired behavior has one or
more second order bad states contained in a non-marker state loop. In order to assure the result is correct, step
3 should check for states that are either not accessible or not coaccessible. If there are any such states, they

should be added to the badlist and processing return to step 2.
Note 3: Line 4 of paragraph 2 in section 5 should read: §(s,X,) =&(t,%,) O 8(s,9,F &(t,0,) -

