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Zusammenfassung

In dieser Arbeit werden neue Erkenntnisse zur Modellierungund zur Spezifikation von Systemen mit
diskreten Zustandsräumen vorgestellt. Ein automatischesVerfahren erlaubt es, unter Berücksichtigung
verschiedener Systemeigenschaften, unerwünschte Zustände während der Modellierungsphase zu erken-
nen und auszuschließen. Das Verfahren besteht aus einer Kombination der Überwachersynthese und der
µ-Kalkül-basierten Modellprüfung. Die formale Darstellung der Systeme und deren Eigenschaften führt
zu fehlerfreien Ergebnissen, vorausgesetzt, die informalen Angaben, aus denen die formale Eingabe ent-
steht, wurden richtig interpretiert und in die formale Eingabe übersetzt. Den Entwicklern wird ein neues,
vorteilhaftes Werkzeug zur Verfügung gestellt, das sich schrittweise in bestehende Verfahren integrieren
lässt, ohne bisher praktizierte Entwicklungsprozesse zu beeinträchtigen.

1 Einleitung

Der Entwurf rechnergestützter Systeme ist eine komplexe Aufgabe, die durch die Anwendung geeigneter
Modellierungs- und Spezifikationstechniken erleichtert werden kann. Im Folgenden werden neue Erkennt-
nisse zur Modellierung und Spezifikation von Systemen mit diskreten Zustandsräumen vorgestellt, die häufig
als eingebettete Systeme anzutreffen sind. Ein automatisches Verfahren erlaubt es, unter Berücksichtigung
verschiedener Systemeigenschaften, unerwünschte Zustände während der Modellierungsphase zu erkennen
und auszuschließen. Das Verfahren besteht aus einer Kombination bewährter Techniken aus den Gebieten der
Überwachersynthese [6, 21, 22, 25, 26] und derµ-Kalkül-basierten Modellprüfung [1, 7, 9–14, 18–20, 23].

Überwachersynthese und Modellprüfung haben sich im Wesentlichen unabhängig voneinander entwickelt.
Beiden gemeinsam ist die formale Darstellung der Systeme und deren Eigenschaften. Demzufolge sind die
erzielten Ergebnisse immer dann fehlerfrei, wenn die informalen Angaben, aus denen die formale Eingabe
entsteht, richtig interpretiert und in die formale Eingabeübersetzt wurden. Ansonsten unterscheiden sich
beide Verfahren sowohl in der Herkunft, als auch in der Modellierung der Systeme und in der Zielsetzung
bei der Problemstellung, wodurch sich unterschiedliche Vor- und Nachteile ergeben. In derverallgemeiner-
ten Überwachersynthese[30] ergänzen sich nun beide Verfahren gegenseitig, so dassdie unterschiedlichen
Vorteile gemeinsam genutzt werden können und wesentliche Nachteile wegfallen. Den Entwicklern wird da-
mit ein neues Werkzeug zur Verfügung gestellt, das viele Vorteile mit sich bringt und sich schrittweise in
bestehende Verfahren integrieren lässt, ohne vorhandene Entwicklungsprozesse zu beeinträchtigen.

Im nächsten Abschnitt wird auf die Eigenschaften der angesprochenen Systeme und auf wichtige Aspekte
des Systementwurfs genauer eingegangen. Abschnitt 3 fasstdie Nachteile des konventionellen Entwicklungs-
prozesses zusammen, denen mit Hilfe der in Abschnitt 4 vorgestellten Überwachersynthese entgegengewirkt
werden kann. Abschnitt 5 stellt die besonderen Vorteile dieser Methode heraus und Abschnitt 6 skizziert die
damit verbundenen Veränderungen des Entwicklungsprozesses.



2 Diskrete Systeme

Die hier angesprochenen Systeme sind durch den diskreten Charakter ihres Zustandsraumes gekennzeich-
net. Beispielsweise kann die Anzahl der noch verbleibendenTeile in einem Lager nur ein ganzzahliger Wert
sein, wodurch sich ein diskreter Zustandsraum ergibt. Außerdem ist der Verlauf der Zeit allein nicht ausrei-
chend, um in solchen Systemen einen Zustandswechsel herbeizuführen. Vielmehr wird hierfür ein Ereignis
benötigt, so dass vonereignisgesteuertenSystemen die Rede ist. Im Falle des Lagers wird z.B. der Zustand
durch die Entnahme oder das Hinzufügen von Teilen verändert. In dieser Arbeit sind mit dem WortSystem
ereignisgesteuerte Systeme mit diskretem Zustandsraum gemeint. Sie werden kurzdiskrete Systemegenannt.

2.1 Systemeigenschaften

Die Eigenschaften, die in Spezifikationen diskreter Systeme anzutreffen sind, können unterschiedlicher Natur
sein. Folgende Klassifikation der Eigenschaften ist auf Manna und Pnueli [16, 17] zurückzuführen:

• Sicherheitseigenschaftenformulieren Einschränkungen, die während der gesamten Laufzeit eingehal-
ten werden müssen. Sie werden auf Systemzustände zurückgeführt, die niemals betreten werden dür-
fen, wie z.B. der Zustand, in dem die Ampeln an zwei sich kreuzenden Straßen gleichzeitig grün
leuchten.

• Lebendigkeitseigenschaftenstellen die Erreichbarkeit bestimmter Zustände eines Systems sicher. Da-
bei wird nicht festgelegt, wie lange es dauern kann, bis ein gegebener Zustand erreicht wird. Es spielt
auch keine Rolle, wie oft zu diesem Zustand zurückgekehrt werden kann. Ein Beispiel dafür ist die
Forderung, dass die Initialisierung eines Systems irgendwann beendet ist.

• Fortdauereigenschaftenbeziehen sich auf Merkmale die, einmal erreicht, stabil bleiben. Ein Beispiel
dazu ist ein Zwischenlager für gefertigte Teile in einer Manufaktur, das ab einer bestimmten Phase der
Produktion nicht mehr leer werden darf.

• Fairnesseigenschaftenfordern, dass Zustände mit bestimmten Eigenschaften stetserreichbar bleiben
müssen, unabhängig davon, wie oft sie betreten werden. Diese Eigenschaften sind besonders für die
Spezifikation reaktiver Systeme nützlich. Damit kann z.B. ausgedrückt werden, dass sich ein Benutzer
bei einem System beliebig oft anmelden können soll.

Es sind nicht alle Verfahren in der Lage, mit allen Systemeigenschaften umzugehen. Zum Beispiel kann
die konventionelle Überwachersynthese – gemeint ist die aus der Literatur bekannte Synthese, ohne die
hier vorgestellte Verallgemeinerung – nur mit Sicherheits- und Lebendigkeitseigenschaften umgehen. Die
verallgemeinerte Synthese ist hingegen in der Lage, alle Eigenschaften gleichermaßen zu behandeln [30].

2.2 Systementwurf

Die Bedingung für den korrekten Entwurf eines diskreten Systems lässt sich auf abstrakter Ebene relativ
einfach formulieren. Es genügt, dass die Spezifikation für jeden erreichbaren Zustand und jedes Ereignis,
das dort stattfinden kann, eine angemessene Reaktion vorsieht. Diese Aufgabe ist nicht schwierig, solange
die Anzahl der zu berücksichtigen Zustände klein bleibt. Aber gerade dies ist in der Praxis normalerweise
nicht der Fall. So kann beispielsweise die Tatsache, dass eseinen Unterschied macht, in welcher Reihenfolge
die verschiedenen Ereignisse eintreten, zu dem bekannten Problem derZustandsexplosionführen.

Aus diesem Grund wurden formale Methoden, die sich zum Ziel setzten,alle erreichbaren Zustände eines
Systems zu behandeln, oft sehr skeptisch betrachtet. Seit den Arbeiten von Burch et al. [3–5] und auch
Berthet, Coudert und Madre [2] hat man in dersymbolischen Darstellungder Zustandsräume jedoch auch
für dieses Problem ein relativ effektives Mittel gefunden. Die symbolische Darstellung wurde zum Standard-
werkzeug derµ-Kalkül-basierten Modellprüfung und ermöglichte die Verifikation mehrerer Protokolle und



Schaltungen, wobei auch in bereits veröffentlichten Richtlinien noch subtile Fehler gefunden wurden [8]. Die
symbolische Darstellung lässt sich auch in der Überwachersynthese einsetzen [27, 28, 31–33]. Sie ist Teil
der Verallgemeinerung in [30] und ermöglicht es, Zustandsräume zu behandeln, die vorher auf Grund ihrer
Größe nicht im Speicher eines Rechners darstellbar waren.

Trotz dieser Fortschritte ist die Anwendung formaler Methoden, insbesondere der Überwachersynthese, noch
wenig verbreitet. Dies mag mehrere Gründe haben, die nicht zuletzt in der langen Einarbeitungszeit im
Vergleich zu informalen Entwicklungsprozessen liegen. Esist aber auch ein Problem kultureller Natur. Bei
dem Softwareentwurf greifen beispielsweise Entwickler inaller Regel auf ihre Erfahrung zurück oder bauen
auf bereits vorhandene Lösungen auf, die auf ähnliche Weiseentstanden sind. Wenn ein Programm sich dann
jedoch nicht immer wie erwartet verhält, kann der Entwickler mit dem Verständnis nicht nur der Kollegen,
sondern sogar der Anwender rechnen, denn die einschlägigenProbleme werden allgemein als schwer zu
lösen eingestuft.

Dieser Sachverhalt ist nicht nur in der Programmierung, sondern auch in den früheren Phasen der System-
entwicklung anzutreffen. Insbesondere spielt auch bei der Erstellung der Spezifikation, nach der ein System
später zu bauen ist, die Erfahrung des Entwicklers eine große Rolle. Da dies für Hardware- und Softwa-
respezifikationen gleichermaßen gilt, können auch Hardwareschaltungen Fehler enthalten, selbst wenn die
Umsetzung einer gegebenen Spezifikation in Hardware besserdurch automatisierte Verfahren unterstützt
wird als die Erstellung von Software. Der folgende Abschnitt listet mögliche Problemquellen auf, die dazu
führen, dass komplexe Systeme in der Regel nicht fehlerfreierstellt werden.

3 Nachteile des informalen Systementwurfs

Der allgemeine Entwicklungsprozess, der hier angesprochen werden soll, besteht aus einer Analyse- und
einer Spezifikationsphase, auf welche die Implementierungund eine Testphase folgen. Von letzterer wird
erwartet, dass möglichst viele Fehler, die in vorangegangenen Phasen unentdeckt blieben, noch vor der Sy-
stemfreigabe abgefangen werden. In diesem Zusammenhang sind folgende Nachteile zu erkennen:

• Der Aufwand, der mit der Behebung spät entdeckter Fehler verbunden ist, kann bekanntlich hoch
sein und Projekte in Verzug geraten lassen. Dadurch werden oft noch unvollständig getestete Systeme
freigegeben, um Termine einzuhalten.

• Manche Probleme sind im Voraus schwer zu erkennen, beispielsweise die Schwierigkeiten, die bei der
Kommunikation zwischen verschiedenen Softwareteilen entstehen, wenn diese von unterschiedlichen
Entwicklern entworfen worden sind und dabei die Spezifikation nicht immer identisch interpretiert
wurde. Dann wird aus der Testphase eine letzte Implementierungsphase mit unerwartet hohem Auf-
wand.

• In vielen Fällen werden bereits während der Spezifikationsphase Testszenarien oderuse casesentwor-
fen, die einerseits zu einem besseren Verständnis des Sachverhalts führen, andererseits die Überprü-
fung bestimmter Funktionen sicherstellen sollen. Testszenarien werden meistens mit dem Ziel entwor-
fen, ein erwartetes Verhalten des Systems zu bestätigen. Dadas System aber gerade mit Blick auf das
erwartete Verhalten aufgebaut wurde, ist erstens die Wahrscheinlichkeit, dass der Test positiv ausfällt,
relativ groß. Zweitens orientiert sich die Behebung eventuell gefundener Fehler an dem gescheiterten
Test. In beiden Fällen sind die Sicht des Testers und die des Entwicklers eingeengt, weil sie sich auf
einen konkreten Fall und nicht auf das gesamte System konzentrieren. Fehler, die auf außergewöhnli-
che Ereignisse zurückzuführen sind, bleiben dadurch oft verborgen.

• Komplexe Systeme können nicht erschöpfend getestet werden, weil ihr Zustandsraum viel zu groß ist,
als dass alle Zustände während der Tests durchlaufen werdenkönnten. Jeder nicht getestete Ablauf ist
jedoch eine potentielle Fehlerquelle. In einem System, in dem esm verschiedene Ereignisse gibt, ist
die Anzahl der möglichen Folgen von Ereignissen bestehend aus jeweilsn Ereignissen gleichmn. Die
Wahrscheinlichkeit, einen Fehler zu finden, der erst nach mehreren Ereignissen ab dem Initialzustand



auftreten kann, nimmt infolgedessen rapide ab. Jedoch ist nicht auszuschließen, dass sich nach dem
Einsatz des Systems beim Kunden gerade derartige Fehler zeigen.

• Um die Übersicht über das gesamte System nicht zu verlieren,ist es wichtig, auch die Änderungen,
die zur Fehlerbehebung gemacht wurden, effizient und leicht verständlich zu dokumentieren. Dies ist
insbesondere für spätere Änderungen und Erweiterungen desSystems wichtig. Dennoch stehen die
Entwickler nicht selten unter so großem Zeitdruck, dass dieDokumentation vernachlässigt und damit
zur Quelle neuer Fehler wird. Dies kann u.U. dazu führen, dass die Behebung eines Fehlers einen
anderen hervorruft.

• In anderen Fällen wird erst nach dem Abschluss der Testphaseeine Dokumentation erstellt, bei der
aber dann auf wichtige Details verzichtet werden muss, weilsie auf Grund ihrer Komplexität nicht
mehr genau nachvollziehbar sind. Auch damit wird die Dokumentation teilweise zur Last statt zum
Hilfsmittel, und bereits gemachte Fehler werden wiederholt.

4 Die verallgemeinerte Überwachersynthese

Mit Hilfe der Überwachersynthese wird die Erstellung einerkorrekten Spezifikation auf die Synthese einer
Steuerung für ein diskretes System zurückgeführt. Im Folgenden werden Modellierung, Syntheseverfahren
und -strategien beschrieben.

4.1 Modellierung

Das zu steuernde System wird als endlicher Automat betrachtet, in dem beliebig lange Folgen von Ereignis-
sen ablaufen können. Je nach dem, in welcher Reihenfolge dieEreignisse auftreten, werden unterschiedliche
Aufgaben vollendet. Allerdings ist es auch möglich, dass bestimmte Folgen von Ereignissen zu Verklem-
mungen oder anderen unerwünschten Situationen führen, unddiese gilt es mit Hilfe einer Steuerung zu
vermeiden. Wichtig ist, dass der Automat, mit dem das Systemmodelliert wird, sämtliche physikalisch mög-
lichen Ereignisfolgen darstellt, also auch die unerwünschten. Die übliche Bezeichnung für diesen Automaten
istAP.

Außer der SystembeschreibungAP wird eine Spezifikation für das gewünschte Verhalten benötigt. Auch
dieses wird mit Hilfe eines Automaten modelliert. Dazu wirdein HilfsautomatAE erstellt, und mit diesem
das Produkt mit dem AutomatenAP gebildet. Das ProduktAP ×AE ist die Spezifikation. Auf Grund der Ei-
genschaften des Produkts ist die Menge der möglichen Ereignisfolgen in der Spezifikation eine Untermenge
des physikalisch möglichen Verhaltens.

Der Grundgedanke des Ramadge-Wonham-Modells [21, 22, 25] ist es, das System mit Hilfe einesÜberwa-
cherswie in Abbildung 1 zu steuern. Der Überwacher ist ebenfalls ein endlicher Automat, der jedes Ereignis
im System verfolgt und darauf mit einer Steuerungsaktion reagiert. Die Steuerungsaktion besteht darin, dem
System nach jedem Zustandswechsel mitzuteilen, welche Ereignisse in dem neu betretenen Zustand des
Überwachers vorgesehen sind. Per Konstruktion ist dies stets eine Untermenge der Ereignisse, die von der
Spezifikation im aktuellen Zustand des Systems zugelassen sind. Unter der Voraussetzung, dass das System
das nächste Ereignis aus dieser Untermenge wählt, wird die Spezifikation für das gewünschte Systemverhal-
ten eingehalten.

System

Überwacher

EreignisseSteuerungsaktion

Abbildung 1: Die Überwachung eines diskreten Systems



4.2 Die Berechnung des Überwachers

Im Idealfall dient die SpezifikationAP ×AE selbst als Überwacher. Dies ist jedoch nicht immer möglich,
weil es Ereignisse gibt, die sich nicht unterbinden lassen.Beispiele hierfür sind der Ablauf eines Zeitglieds,
die Ankunft einer Meldung in einem Kommunikationssystem oder das Ansprechen eines Sensors. Hingegen
lassen sich beispielsweise Befehle zum Ein- und Ausschalten von Geräten oder zum Senden von Meldun-
gen falls notwendig verhindern. Dementsprechend werden die Ereignisse insteuerbarbzw. nicht steuerbar
unterteilt. Der Einsatz einer Spezifikation als Überwacherergibt folglich nur dann einen Sinn, wenn diese in
keinem Zustand versucht, ein nicht steuerbares Ereignis zuverhindern.

Es ist aber auch zu berücksichtigen, dass sowohl der AutomatAP als auchAP ×AE sehr große Zustands-
räume haben können. Sie werden in der Regel nicht in einem Guss erstellt, sondern mit Hilfe der parallelen
Komposition und des Produkts kleinerer, überschaubarer Automaten berechnet. Dabei geht der Überblick
über die einzelnen Zustände rasch verloren, und so ist es keine Seltenheit, dass Anforderungen, die keines-
wegs abwegig erscheinen, doch in einigen Zuständen versuchen, nicht steuerbare Ereignisse zu verhindern.
Diese Zustände der Spezifikation werdenverbotene Zuständegenannt.

Es ist ebenso möglich, dass die Spezifikation Pfade enthält,die zu keiner vollendeten Aufgabe führen. Dies
ist entweder dann der Fall, wenn noch keine Aufgabe vollendet wurde und keine weiteren Ereignisse mehr
möglich sind(deadlock)oder dann, wenn das System sich nur noch innerhalb einer Zustandsmenge bewegen
kann, die zu keiner vollendeten Aufgabe führt (livelock).

Darüber hinaus kann es noch Zustände geben, von denen aus nurnoch ein Teil der Aufgaben des Systems
vollendet werden kann, oder auch solche, von denen aus nur eine begrenzte Anzahl von Wiederholungen
eines Vorgangs möglich ist. Es gibt aber Vorgänge, die unendlich oft möglich sein sollten, wie z.B. das
Abschicken von Meldungen in einem Kommunikationssystem oder die Anmeldung von Benutzern an einem
Rechner.

Aus dieser Beschreibung ist ersichtlich, dass die SpezifikationAP ×AE allein nicht ausreicht, um zu einem
vollständigen Überwacher zu gelangen. Es ist jedoch möglich, ausAP ×AE einen Überwacher zu berech-
nen. Dieser Vorgang wird alsÜberwachersynthesebezeichnet. Die konventionelle Überwachersynthese be-
steht darin, verbotene oder zu Verklemmungen führende Zustände ausAP ×AE zu entfernen. Der Gedanke
dabei ist, den resultierenden Automaten als Überwacher einzusetzen, sofern die Einschränkungen, die der
Spezifikation durch den Syntheseprozess auferlegt wurden,akzeptabel sind.

Damit ist die konventionelle Synthese in der Lage, Sicherheits- und Lebendigkeitseigenschaften zu berück-
sichtigen, nicht aber Fortdauer- oder Fairnesseigenschaften. Der Unterschied zwischen der konventionellen
und der verallgemeinerten Überwachersynthese besteht darin, dass in der letzteren die Anforderungen an die
Berechnung des Überwachers nicht mehr fest, sondern vom Entwickler wählbar sind. Verbotene Zustände
werden nach wie vor entfernt, aber an die Stelle der Verklemmungsfreiheit können strengere Anforderungen
treten. So ist z.B. ein System, das nach einer bestimmten Betriebszeit nur noch einen Teil seiner Aufgaben
erfüllen kann, im Sinne der konventionellen Synthese immernoch verklemmungsfrei. In dem verallgemei-
nerten Ansatz ist es aber möglich, genau anzugeben, welche Aufgaben stets noch zu vollenden sein müssen,
damit das System als verklemmungsfrei gilt.

Für die Verallgemeinerung der Überwachersynthese wurde in[30] eine Transformation definiert, mit der aus
dem AutomatenAP ×AE eine spezielle Kripke-StrukturKAP×AE erstellt wird. Zusätzlich wurde einer der
konventionellen Synthesealgorithmen in einµ-Kalkül-Gleichungssystem übersetzt. Die Lösung eines sol-
chen Gleichungssystems besteht aus einer Untermenge des Zustandsraums einer gegebenen Kripke-Struktur.
In diesem Fall sind die Kripke-StrukturKAP×AE und das Gleichungssystem so aufeinander abgestimmt, dass
dessen Lösung, wenn auf den AutomatenAP ×AE abgebildet, den gleichen Überwacher hervorbringt wie
der ursprüngliche Algorithmus. Dieser Zusammenhang wird in Abbildung 2 dargestellt.

Das Gleichungssystem hat außerdem die vorteilhafte Eigenschaft, dass die Forderungen nach Steuerbarkeit
und Verklemmungsfreiheit in getrennte Gleichungen zerfallen. Damit ist es möglich, an die Stelle der Glei-
chung für die Verklemmungsfreiheit beliebige andereµ-Kalkül-Gleichungen zu setzen. Der Anwender kann
die notwendigen Gleichungen mit Hilfe temporallogischer Ausdrücke erzeugen [23, 30] und damit die Kluft



Automat AP ×AE

Kripke-Struktur KAP×AE
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Transformation

Synthese über Gleichungssystem

Abbildung auf AP ×AE

Herkömmlicher Algorithmus

Abbildung 2: Die Übersetzung der Überwachersynthese in denµ-Kalkül

zwischen der menschlichen Intuition und der teilweise komplizierten Syntax derµ-Kalkül-Ausdrücke über-
brücken. Da derµ-Kalkül eine Obermenge gängiger Temporallogiken wieCTL, LTL und CTL∗ ist, werden
alle Systemeigenschaften, die in diesen Logiken ausdrückbar sind, gleichermaßen behandelt. Dies trifft ins-
besondere für Fortdauer- und Fairnesseigenschaften zu, die in der konventionellen Synthese nicht handhabbar
sind.

4.3 Spezifikationsstrategien

Wie in Abschnitt 4.2 erwähnt, können auch dann verbotene Zustände in Spezifikationen entstehen, wenn die
Anforderungen, die an das System gestellt werden, auf den ersten Blick harmlos erscheinen. Als Beispiel sei
die Steuerung einer Telefonnummernauskunftzentrale(call center)[24] genannt, die in [29, 30] im Detail
analysiert wird.

In vielen Fällen werden unerwünschte Zustände auch absichtlich erzeugt. Oft ist es leicht, die Zustände
anzugeben, die ein System während des Betriebsnicht erreichen sollte, ohne jedoch absehen zu können,
welche Bedingungen dafür eingehalten werden müssen. Dies ist z.B. bei der Berechnung einer Gewinnstra-
tegie der Fall. Aus theoretischer Sicht kommt die Aufgabe, ein reaktives System so zu steuern, dass ein
bestimmter Zustand erreicht wird, der Anwendung einer Gewinnstrategie für ein Zweipersonenspiel gleich.
Der AutomatAP für die Systembeschreibung gibt dann alle möglichen Spielabläufe wieder. Darunter befin-
den sich welche, die zu dem gewünschten Zustand führen (die Steuerung „gewinnt“) und auch solche, die
zu unerwünschten Zuständen führen (die Steuerung „verliert“). Auf abstrakter Ebene lautet die Spezifika-
tion „die Steuerung soll nicht verlieren“. In der Spezifikation AP ×AE werden daraufhin die Zustände, in
denen die Steuerung „verlieren“ würde, absichtlich als Verklemmungen dargestellt. Die Syntheseprozedur
entfernt dann diese Verklemmungen und alle nicht steuerbaren Zustände, die dazu führen könnten. Übrig
bleibt die Gewinnstrategie für das „Spiel“, nach der das System zu steuern ist. Ein Beispiel für diese Art der
Anwendung ist die Synthese einer Gewinnstrategie für das Nim-Spiel in [28, 30].

Es genügt also, die Spezifikation so zu erstellen, dass unerwünschte Zustände entweder in dieser gar nicht
auftreten, oder aber so gekennzeichnet sind, dass sie von der Syntheseprozedur erkannt und ausgeschlossen
werden. In der Regel können Zustände, die eindeutig vermieden werden sollen, bereits bei der Erstellung der
Spezifikation ausgeschlossen werden. Hingegen werden Zustände, die an sich nicht unerwünscht sind, aber
Pfade zu solchen Zuständen besitzen, erst durch die Syntheseprozedur erkannt. Nach welchem Kriterium
dies genau geschieht, hängt von dem Gleichungssystem ab, das der Anwender für seine Zwecke erstellt.

5 Vorteile der Überwachersynthese

Der bedeutendste Vorteil der Überwachersynthese besteht in der Übersetzung abstrakter Spezifikationen, die
ein gewünschtes Verhalten des Systems beschreiben, in konkrete Baupläne. Dies kann mit den folgenden
Beispielen verdeutlicht werden.



Beispiel: Zu erstellen sei ein Kommunikationsprotokoll, mit dem Meldungen von einem Sender zu einem
Empfänger über ein verlustbehaftetes Medium zu übertragensind. Geht eine Meldung verloren, muss der
Sender sie wiederholen und gegebenenfalls mehrere Kopien einer Meldung abschicken. Die informale Spe-
zifikation des Protokolls wird deshalb vorschreiben, dass letztendlich keine Meldungen verloren gehen und
auch keine mehrfachen Kopien am Empfänger ankommen dürfen.Dies ist zwar eine präzise Definition von
dem, was gewünscht wird, aber wenig hilfreich, wenn es darumgeht, diese Regeln in eine Schaltung oder
in ein Programm umzusetzen. Der Einsatz der Überwachersynthese kann an dieser Stelle bedeutende Hilfe
leisten. Sender, Medium und Empfänger werden zunächst mit endlichen Automaten modelliert, so dass eine
Systembeschreibung entsteht, die alle möglichen Vorgängeenthält – also auch den Verlust und die mehrfache
Auslieferung einer Meldung. Die Spezifikation besagt dann,dass der Empfänger genau eine Kopie von jeder
Meldung empfangen muss. Daraus berechnet die Syntheseprozedur einen Überwacher, aus dessen Transi-
tionsrelation die zulässigen Ereignisse für jeden erreichbaren Zustand hervorgehen. Diese Information hat
nun die Form, die der Entwickler braucht, um Hardware oder Software zu erstellen.

Weiteres Beispiel: Der Gewinn an Information, den die Überwachersynthese mit sich bringt, kann auch
anhand der in Abschnitt 4.3 beschriebenen Synthese einer Gewinnstrategie verdeutlicht werden. Die An-
forderung „die Steuerung soll nicht verlieren“ ist zu abstrakt, als dass sie direkt in eine Schaltung bzw. in
ein Programm umgesetzt werden könnte. Hingegen enthält derÜberwacher genaue Anweisungen, wie die
Lösung zu implementieren ist.

Das Ergebnis der Synthese ist ein endlicher Automat, der Auskunft darüber gibt,waseigentlich zu implemen-
tieren ist. Es gibt verschiedene Möglichkeiten, diese Information zu nutzen. Diese reichen von dem einfachen
Auslesen der Transitionsrelation, um die manuelle Programmierung zu unterstützen, bis zur voll automati-
sierten Übersetzung des Überwachers in Hardware oder Software [15]. Dadurch wird eine schrittweise und
risikoarme Einführung der Überwachersynthese in bestehende Entwicklungsprozesse ermöglicht.

Darüber hinaus ergeben sich noch andere Vorteile:

• Nähe zur informalen Sprache: Am Beginn eines jeden Entwicklungsprozesses steht normalerweise
eine Beschreibung des Systems in natürlicher Sprache (z.B.Deutsch oder Englisch). Die darin ent-
haltenen Anforderungen müssen ins Formale übersetzt werden, und von diesem Schritt hängt die
Korrektheit des Ergebnisses ab. Durch die Möglichkeit, Anforderungen zunächst in temporallogische
Ausdrücke und dann in denµ-Kalkül zu übersetzen, kann die verallgemeinerte Überwachersynthese
nahtlos an die informale Spezifikation anknüpfen.

• Größere Flexibilität: Änderungen an den Spezifikationen, z.B. um auf neue Wünsche des Auftrag-
gebers einzugehen, können mit geringem Zeitaufwand umgesetzt werden. Ist der gesamte Prozess
automatisiert, kann eine neue Version des gesamten Systemsper Knopfdruck erstellt werden.

• Verringerte Testzeit: Es besteht keine Notwendigkeit, dasaus dem Überwacher abgeleitete System auf
Eigenschaften zu testen, die in die Synthese eingeflossen sind. Damit verlagert sich der Testschwer-
punkt auf die Übereinstimmung der informalen Anforderungen mit der realisierten Funktionalität.
Werden Unstimmigkeiten festgestellt, werden die Automaten bzw. das Gleichungssystem angepasst
und ein neues System generiert. Das Testen bleibt auf eine höhere Ebene beschränkt.

• Auswirkungen von späteren Änderungen: In der traditionellen Systementwicklung sind spät entdeckte
Fehler in der Regel mit hohen Kosten verbunden. Mit der automatisierten Synthese wird jede Ände-
rung auf der Ebene der Automaten und des Gleichungssystems vorgenommen und danach das gesamte
System neu erstellt. Alle Abhängigkeiten werden automatisch berücksichtigt, so dass sich keine Fol-
gefehler einschleichen können.

• Steigerung der Qualität: Der Entwicklungsprozess wird nicht nur agiler, sondern auch zuverlässi-
ger. Durch die Einbeziehung des gesamten Zustandsraums werden Fehler bei der Implementierung
ausgeschlossen. Als mögliche Fehlerquellen bleiben nur eine falsche Interpretation der anfänglichen
Systembeschreibung und Hardwarefehler zur Laufzeit übrig.



6 Auswirkungen auf den Entwicklungsprozess

Eine Umstellung des Entwicklungsprozesses auf die voll automatisierte Überwachersynthese würde einen
tiefen Einschnitt in die traditionellen Entwicklungsmethoden mit sich bringen. Bekanntlich ist es bereits
schwierig, jemanden, der sich in einer bestimmten Programmiersprache oder mit einem bestimmten Pro-
grammsystem gut auskennt, von einem Wechsel zu überzeugen.Der Umstieg auf eine völlig andere Ent-
wicklungsmethode ist deshalb nur schrittweise durchführbar. Um die Einführung der Überwachersynthese
zu erleichtern, kann sie zunächst nur als Hilfswerkzeug herangezogen werden. Der Entwickler entschei-
det dann anhand der Transitionsrelation des Überwachers,waszu implementieren ist. Die Implementierung
selbst kann davon zunächst unberührt bleiben und erst später automatisiert werden. Durch die gesammelten
Erfahrungen sollte eine Eigendynamik entstehen, die den Einsatz der neuen Methoden steuert und das Ver-
trauen in sie stärkt. Außer der in Abschnitt 5 beschriebenenVerlagerung der Testschwerpunkte würden dann
Merkmale wie die folgenden den veränderten Entwicklungsprozess kennzeichnen:

• Systementwurf auf höherer Ebene: Ähnlich wie bei dem Übergang von Assembler auf höhere Pro-
grammiersprachen findet ein Übergang von diesen auf eine höhere Ebene statt. Programme oder auch
Hardwarebeschreibungen werden zum Zwischenformat, das jedoch nicht mehr von Hand erstellt wird.
Sie bleiben trotzdem noch lesbar, was anfangs ein wichtigerFaktor zur Vertrauensbildung sein kann.
Es ist jedoch vorstellbar, dass dieses Bedürfnis nach und nach verschwindet, genauso wie es heute
kaum noch einen Grund dazu gibt, den Assemblercode zu untersuchen, der von einem Übersetzer
(compiler)erzeugt wurde.

• Die Rolle der Dokumentation: Kommentare in Programmen können entweder automatisch mit einge-
fügt werden oder ganz wegfallen, besonders wenn diese zu demo.g. Zwischenformat werden. Viel
wichtiger ist es, festzuhalten,wie die verwendeten Automaten und Gleichungssysteme entstehen. Da
hier eine organisierte Vorgehensweise klare Vorteile mit sich bringt, wird die Dokumentation zu einem
nützlichen Werkzeug, dass insbesondere während des Entwicklungsprozesses eingesetzt und gepflegt
wird – im Gegensatz zur Programmdokumentation, die nicht selten erst nach der Fertigstellung des
Systems geschrieben wird.

• Werkzeuge und Schulungsmaßnahmen: Es entsteht ein Bedarf an neuen Programmen zur Unterstüt-
zung der Synthese. Denkbar sind auch Bibliotheken mit Lösungen gängiger Teilprobleme sowie die
Integration mit weiteren Spezifikationsverfahren wie z.B.statechartsoder UML. Entsprechend würden
sich auch die Schulungen zur Entwicklertätigkeit verändern.

7 Zusammenfassung

In dem konventionellen Entwicklungsprozess für Hard- und Software ist die Umsetzung einer Spezifikation
in ein testbares Produkt mit hohem Aufwand verbunden. In Abhängigkeit der Fehler, die in der Testpha-
se entdeckt werden, muss diese Umsetzung mehrmals wiederholt werden. Dadurch entstehen verschiedene
Nachteile, die erhebliche Verzögerungen und Qualitätsverluste zur Folge haben können. Mit der verallgemei-
nerten Überwachersynthese lässt sich ein neuer Entwicklungsprozess realisieren, in dem die Arbeit sich auf
höhere Abstraktionsebenen konzentriert und Änderungen sauber und effizient durchzuführen sind. Das neue
Verfahren knüpft an die informalen Anforderungen an, die amBeginn des Entwicklungsprozesses stehen.
Sind diese formal erfasst, geschieht der restliche Ablauf automatisch. Programme und Hardwarebeschrei-
bungen auf höherer Ebene werden zum Zwischenformat und sowohl Testaufwand als auch Änderungen am
System konzentrieren sich auf die Übereinstimmung zwischen informaler und formaler Darstellung der An-
forderungen.

Der neue Entwicklungsablauf erfordert ein tiefgreifendesUmdenken, das nicht schlagartig zu erreichen ist.
Eine schrittweise Einführung der Überwachersynthese ist jedoch möglich, indem die formal erzeugten Spezi-
fikationen zunächst nur als Hilfsmittel herangezogen und wie gehabt umgesetzt werden. Dies ist auch deshalb



angebracht, weil sich nicht jedes Problem mit formalen Methoden lösen lässt. Es sollte sich für jeden An-
wender Schritt für Schritt herausstellen, wie die Überwachersynthese im Einklang mit anderen Methoden
einzusetzen ist. Ziel dieser Arbeit ist es, solche Überlegungen zu unterstützen und zu erleichtern.
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