Erstellung korrekter Spezifikationen fur diskrete Systeme

Roberto Ziller und Detlef Schmid
Universitat Karlsruhe
Institut fur Technische Informatik (ITEC)
Postfach 6980, 76128 Karlsruhe
E-Mail: {ziller,schmid}@informatik.uni-karlsruhe.de

Zusammenfassung

In dieser Arbeit werden neue Erkenntnisse zur Modellierund zur Spezifikation von Systemen mit
diskreten Zustandsrdumen vorgestellt. Ein automatisekegahren erlaubt es, unter Berticksichtigung
verschiedener Systemeigenschaften, unerwiinschte desté&hrend der Modellierungsphase zu erken-
nen und auszuschlieRen. Das Verfahren besteht aus eindsikation der Uberwachersynthese und der
u-Kalkil-basierten Modellprifung. Die formale Darstelfuder Systeme und deren Eigenschaften fiihrt
zu fehlerfreien Ergebnissen, vorausgesetzt, die infagmAhgaben, aus denen die formale Eingabe ent-
steht, wurden richtig interpretiert und in die formale Eabg Ubersetzt. Den Entwicklern wird ein neues,
vorteilhaftes Werkzeug zur Verfligung gestellt, das sidirifeveise in bestehende Verfahren integrieren
lasst, ohne bisher praktizierte Entwicklungsprozessesgintrachtigen.

1 Einleitung

Der Entwurf rechnergestiitzter Systeme ist eine komplexigahe, die durch die Anwendung geeigneter
Modellierungs- und Spezifikationstechniken erleichtegraen kann. Im Folgenden werden neue Erkennt-
nisse zur Modellierung und Spezifikation von Systemen rskrditen Zustandsraumen vorgestellt, die haufig
als eingebettete Systeme anzffea sind. Ein automatisches Verfahren erlaubt es, untercBsichtigung
verschiedener Systemeigenschaften, unerwiinschte dest@&hrend der Modellierungsphase zu erkennen
und auszuschliel3en. Das Verfahren besteht aus einer Katidnirbewdahrter Techniken aus den Gebieten der
Uberwachersynthese [6, 21, 22, 25, 26] undgétalkil-basierten Modellpriifung [1, 7, 9-14, 18-20, 23].

Uberwachersynthese und Modellpriifung haben sich im Wisleenn unabhangig voneinander entwickelt.
Beiden gemeinsam ist die formale Darstellung der Systerdedaeren Eigenschaften. Demzufolge sind die
erzielten Ergebnisse immer dann fehlerfrei, wenn die miden Angaben, aus denen die formale Eingabe
entsteht, richtig interpretiert und in die formale Eingali®ersetzt wurden. Ansonsten unterscheiden sich
beide Verfahren sowohl in der Herkunft, als auch in der Mibeleing der Systeme und in der Zielsetzung
bei der Problemstellung, wodurch sich unterschiedliche Mod Nachteile ergeben. In deerallgemeiner-
ten Uberwachersyntheg80] erganzen sich nun beide Verfahren gegenseitig, sodiassterschiedlichen
Vorteile gemeinsam genutzt werden kénnen und wesentligtuhgile wegfallen. Den Entwicklern wird da-
mit ein neues Werkzeug zur Verfiigung gestellt, das vieldeéder mit sich bringt und sich schrittweise in
bestehende Verfahren integrieren lasst, ohne vorhandemadklungsprozesse zu beeintrachtigen.

Im nachsten Abschnitt wird auf die Eigenschaften der amgesignen Systeme und auf wichtige Aspekte
des Systementwurfs genauer eingegangen. Abschnitt ifadstachteile des konventionellen Entwicklungs-

prozesses zusammen, denen mit Hilfe der in Abschnitt 4 goetieen Uberwachersynthese entgegengewirkt
werden kann. Abschnitt 5 stellt die besonderen Vorteilsalidlethode heraus und Abschnitt 6 skizziert die
damit verbundenen Veranderungen des Entwicklungsprezess

2 Diskrete Systeme

Die hier angesprochenen Systeme sind durch den diskretarakitr ihres Zustandsraumes gekennzeich-
net. Beispielsweise kann die Anzahl der noch verbleibedd#e in einem Lager nur ein ganzzahliger Wert
sein, wodurch sich ein diskreter Zustandsraum ergibt. Add3e ist der Verlauf der Zeit allein nicht ausrei-
chend, um in solchen Systemen einen Zustandswechsel hefldgien. Vielmehr wird hierfir ein Ereignis
bendtigt, so dass voereignisgesteuerte8ystemen die Rede ist. Im Falle des Lagers wird z.B. der Adsta
durch die Entnahme oder das Hinzufligen von Teilen veranktedieser Arbeit sind mit dem Woystem
ereignisgesteuerte Systeme mit diskretem Zustandsraoeige Sie werden kurdiskrete Systengenannt.

2.1 Systemeigenschaften

Die Eigenschaften, die in Spezifikationen diskreter Systanrutré&en sind, konnen unterschiedlicher Natur
sein. Folgende Klassifikation der Eigenschaften ist aufidamd Pnueli [16, 17] zurtickzufihren:

¢ Sicherheitseigenschaftéormulieren Einschrédnkungen, die wahrend der gesamtefzééwingehal-
ten werden mussen. Sie werden auf Systemzustande zuriibkigefie niemals betreten werden diir-
fen, wie z.B. der Zustand, in dem die Ampeln an zwei sich keaden Stral3en gleichzeitig grin
leuchten.

¢ Lebendigkeitseigenschaftstellen die Erreichbarkeit bestimmter Zustande eineseByssicher. Da-
bei wird nicht festgelegt, wie lange es dauern kann, bis egegener Zustand erreicht wird. Es spielt
auch keine Rolle, wie oft zu diesem Zustand zuriickgekehrtderekann. Ein Beispiel dafir ist die
Forderung, dass die Initialisierung eines Systems irgandvbeendet ist.

¢ Fortdauereigenschaftebeziehen sich auf Merkmale die, einmal erreicht, stabiblele. Ein Beispiel
dazu ist ein Zwischenlager flr gefertigte Teile in einer Miaktur, das ab einer bestimmten Phase der
Produktion nicht mehr leer werden darf.

e Fairnesseigenschaftefordern, dass Zustande mit bestimmten Eigenschaften estetichbar bleiben
missen, unabhangig davon, wie oft sie betreten werdene Bggnschaften sind besonders fiir die
Spezifikation reaktiver Systeme ntzlich. Damit kann zuggedriickt werden, dass sich ein Benutzer
bei einem System beliebig oft anmelden kénnen soll.

Es sind nicht alle Verfahren in der Lage, mit allen Systemesghaften umzugehen. Zum Beispiel kann
die konventionelle Uberwachersynthese — gemeint ist deedau Literatur bekannte Synthese, ohne die
hier vorgestellte Verallgemeinerung — nur mit SicherhRaitsd Lebendigkeitseigenschaften umgehen. Die
verallgemeinerte Synthese ist hingegen in der Lage, afjertschaften gleichermaf3en zu behandeln [30].

2.2 Systementwurf

Die Bedingung fur den korrekten Entwurf eines diskretent&@ys lasst sich auf abstrakter Ebene relativ
einfach formulieren. Es genigt, dass die Spezifikationdden erreichbaren Zustand und jedes Ereignis,
das dort stattfinden kann, eine angemessene Reaktionhto@iese Aufgabe ist nicht schwierig, solange

die Anzahl der zu berticksichtigen Zustande klein bleibteAdperade dies ist in der Praxis normalerweise
nicht der Fall. So kann beispielsweise die Tatsache, dasises Unterschied macht, in welcher Reihenfolge
die verschiedenen Ereignisse eintreten, zu dem bekannbéelh derZustandsexplosiofiihren.

Aus diesem Grund wurden formale Methoden, die sich zum Agten,alle erreichbaren Zustande eines
Systems zu behandeln, oft sehr skeptisch betrachtet. SeiAdbeiten von Burch et al. [3-5] und auch
Berthet, Coudert und Madre [2] hat man in dgmbolischen Darstellunder Zustandsraume jedoch auch
fur dieses Problem ein relatiffektives Mittel gefunden. Die symbolische Darstellung veuzdm Standard-
werkzeug dep-Kalkll-basierten Modellprifung und ermdglichte die Wwtion mehrerer Protokolle und

Schaltungen, wobei auch in bereits @eitlichten Richtlinien noch subtile Fehler gefunden warffd. Die
symbolische Darstellung lasst sich auch in der Uberwaghthsse einsetzen [27, 28, 31-33]. Sie ist Teil
der Verallgemeinerung in [30] und erméglicht es, Zustaggisre zu behandeln, die vorher auf Grund ihrer
GroRRe nicht im Speicher eines Rechners darstellbar waren.

Trotz dieser Fortschritte ist die Anwendung formaler Mekio, insbesondere der Uberwachersynthese, noch
wenig verbreitet. Dies mag mehrere Griinde haben, die nidetzt in der langen Einarbeitungszeit im
Vergleich zu informalen Entwicklungsprozessen liegenisEaber auch ein Problem kultureller Natur. Bei
dem Softwareentwurf greifen beispielsweise Entwickleallar Regel auf ihre Erfahrung zurtick oder bauen
auf bereits vorhandene Ldsungen auf, die auf &hnliche Viéaistanden sind. Wenn ein Programm sich dann
jedoch nicht immer wie erwartet verhalt, kann der Entwickiet dem Verstandnis nicht nur der Kollegen,
sondern sogar der Anwender rechnen, denn die einschlagiggsieme werden allgemein als schwer zu
I6sen eingestulft.

Dieser Sachverhalt ist nicht nur in der Programmierungdsaomauch in den friheren Phasen der System-
entwicklung anzutren. Insbesondere spielt auch bei der Erstellung der Spataiik nach der ein System
spater zu bauen ist, die Erfahrung des Entwicklers eineegRflle. Da dies fur Hardware- und Softwa-
respezifikationen gleichermal3en gilt, kbnnen auch Harelsedwaltungen Fehler enthalten, selbst wenn die
Umsetzung einer gegebenen Spezifikation in Hardware bessenh automatisierte Verfahren untersttitzt
wird als die Erstellung von Software. Der folgende Absdhistet mogliche Problemquellen auf, die dazu
fuhren, dass komplexe Systeme in der Regel nicht fehlezfstellt werden.

3 Nachteile des informalen Systementwurfs

Der allgemeine Entwicklungsprozess, der hier angesproglerden soll, besteht aus einer Analyse- und
einer Spezifikationsphase, auf welche die Implementietwmd) eine Testphase folgen. Von letzterer wird

erwartet, dass mdaglichst viele Fehler, die in vorangegamgd®hasen unentdeckt blieben, noch vor der Sy-
stemfreigabe abgefangen werden. In diesem Zusammenhahtpkjende Nachteile zu erkennen:

e Der Aufwand, der mit der Behebung spat entdeckter Fehldsuelen ist, kann bekanntlich hoch
sein und Projekte in Verzug geraten lassen. Dadurch wertilemch unvollstandig getestete Systeme
freigegeben, um Termine einzuhalten.

e Manche Probleme sind im Voraus schwer zu erkennen, besggede die Schwierigkeiten, die bei der
Kommunikation zwischen verschiedenen Softwareteilestehen, wenn diese von unterschiedlichen
Entwicklern entworfen worden sind und dabei die Spezifdatnicht immer identisch interpretiert
wurde. Dann wird aus der Testphase eine letzte Implemantisphase mit unerwartet hohem Auf-
wand.

¢ Invielen Fallen werden bereits wahrend der Spezifikatibasp Testszenarien odese casesntwor-

fen, die einerseits zu einem besseren Verstandnis des &helts filhren, andererseits die Uberprii-
fung bestimmter Funktionen sicherstellen sollen. Tes@zen werden meistens mit dem Ziel entwor-
fen, ein erwartetes Verhalten des Systems zu bestatigeda®8ystem aber gerade mit Blick auf das
erwartete Verhalten aufgebaut wurde, ist erstens die \théndichkeit, dass der Test positiv ausfallt,
relativ grol3. Zweitens orientiert sich die Behebung evelhyefundener Fehler an dem gescheiterten
Test. In beiden Fallen sind die Sicht des Testers und die dasi¢klers eingeengt, weil sie sich auf
einen konkreten Fall und nicht auf das gesamte System kbierem. Fehler, die auf aul3ergewohnli-
che Ereignisse zurtickzuftihren sind, bleiben dadurch oftorgen.

e Komplexe Systeme kdnnen nicht erschopfend getestet weanagiihr Zustandsraum viel zu grol3 ist,
als dass alle Zustéande wahrend der Tests durchlaufen wkidteten. Jeder nicht getestete Ablauf ist
jedoch eine potentielle Fehlerquelle. In einem Systemgim @sm verschiedene Ereignisse gibt, ist
die Anzahl der mdglichen Folgen von Ereignissen bestehaesgesveilsn Ereignissen gleicim”. Die
Wahrscheinlichkeit, einen Fehler zu finden, der erst nadhrenen Ereignissen ab dem Initialzustand

auftreten kann, nimmt infolgedessen rapide ab. Jedoclidst auszuschlie3en, dass sich nach dem
Einsatz des Systems beim Kunden gerade derartige Fehdgmzei

e Um die Ubersicht iiber das gesamte System nicht zu verligseas wichtig, auch die Anderungen,
die zur Fehlerbehebung gemacht wurdefizient und leicht verstandlich zu dokumentieren. Dies ist
insbesondere fiir spatere Anderungen und ErweiterungeSyitems wichtig. Dennoch stehen die
Entwickler nicht selten unter so groRem Zeitdruck, dasddikumentation vernachlassigt und damit
zur Quelle neuer Fehler wird. Dies kann u.U. dazu filhrens ds Behebung eines Fehlers einen
anderen hervorruft.

¢ In anderen Fallen wird erst nach dem Abschluss der TestgkiaseDokumentation erstellt, bei der
aber dann auf wichtige Details verzichtet werden muss, gieilauf Grund ihrer Komplexitat nicht
mehr genau nachvollziehbar sind. Auch damit wird die Dokuotaigon teilweise zur Last statt zum
Hilfsmittel, und bereits gemachte Fehler werden wieddrhol

4 Die verallgemeinerte Uberwachersynthese

Mit Hilfe der Uberwachersynthese wird die Erstellung eikemrekten Spezifikation auf die Synthese einer
Steuerung fur ein diskretes System zuriickgefiihrt. Im Falga werden Modellierung, Syntheseverfahren
und -strategien beschrieben.

4.1 Modellierung

Das zu steuernde System wird als endlicher Automat bewgchtdem beliebig lange Folgen von Ereignis-
sen ablaufen kénnen. Je nach dem, in welcher Reihenfolderdignisse auftreten, werden unterschiedliche
Aufgaben vollendet. Allerdings ist es auch mdoglich, dasstibente Folgen von Ereignissen zu Verklem-
mungen oder anderen unerwiinschten Situationen fiihrendieséd gilt es mit Hilfe einer Steuerung zu
vermeiden. Wichtig ist, dass der Automat, mit dem das Systeatelliert wird, samtliche physikalisch méog-
lichen Ereignisfolgen darstellt, also auch die unerwitathDie Ubliche Bezeichnung fir diesen Automaten
ist Ap.

Auler der Systembeschreibutil> wird eine Spezifikation fiir das gewtinschte Verhalten bghdfiuch
dieses wird mit Hilfe eines Automaten modelliert. Dazu waid Hilfsautomat#g erstellt, und mit diesem
das Produkt mit dem Automatefiy, gebildet. Das Produkfly x Ag ist die Spezifikation. Auf Grund der Ei-
genschaften des Produkts ist die Menge der mdglichen Eséitgren in der Spezifikation eine Untermenge
des physikalisch mdglichen Verhaltens.

Der Grundgedanke des Ramadge-Wonham-Modells [21, 22sP86%j das System mit Hilfe eineberwa-
cherswie in Abbildung 1 zu steuern. Der Uberwacher ist ebenfatissadlicher Automat, der jedes Ereignis
im System verfolgt und darauf mit einer Steuerungsakti@agiegt. Die Steuerungsaktion besteht darin, dem
System nach jedem Zustandswechsel mitzuteilen, welchigritsee in dem neu betretenen Zustand des
Uberwachers vorgesehen sind. Per Konstruktion ist dig¢s stee Untermenge der Ereignisse, die von der
Spezifikation im aktuellen Zustand des Systems zugelassénlnter der Voraussetzung, dass das System
das nachste Ereignis aus dieser Untermenge wahlt, wirdpdizifiation fiir das gewilnschte Systemverhal-
ten eingehalten.

Steuerungsaktign Ereignisse

Uberwacher

Abbildung 1: Die Uberwachung eines diskreten Systems

4.2 Die Berechnung des Uberwachers

Im Idealfall dient die SpezifikatiotAp x Ag selbst als Uberwacher. Dies ist jedoch nicht immer moglich,
weil es Ereignisse gibt, die sich nicht unterbinden lasBeispiele hierfiir sind der Ablauf eines Zeitglieds,
die Ankunft einer Meldung in einem Kommunikationssystenerodas Ansprechen eines Sensors. Hingegen
lassen sich beispielsweise Befehle zum Ein- und Ausschatia Gerédten oder zum Senden von Meldun-
gen falls notwendig verhindern. Dementsprechend werdefEkignisse irsteuerbarbzw. nicht steuerbar
unterteilt. Der Einsatz einer Spezifikation als Uberwachgibt folglich nur dann einen Sinn, wenn diese in
keinem Zustand versucht, ein nicht steuerbares Ereignigrzundern.

Es ist aber auch zu bertcksichtigen, dass sowohl der Autgtpatls auchAp x Ag sehr grofle Zustands-
raume haben kdnnen. Sie werden in der Regel nicht in einera &stellt, sondern mit Hilfe der parallelen
Komposition und des Produkts kleinerer, iiberschaubaréomaten berechnet. Dabei geht der Uberblick
Uber die einzelnen Zusténde rasch verloren, und so ist e &sltenheit, dass Anforderungen, die keines-
wegs abwegig erscheinen, doch in einigen Zustanden veasuaitht steuerbare Ereignisse zu verhindern.
Diese Zusténde der Spezifikation werdembotene Zustandgenannt.

Es ist ebenso moglich, dass die Spezifikation Pfade enthélzu keiner vollendeten Aufgabe fihren. Dies
ist entweder dann der Fall, wenn noch keine Aufgabe vollemdede und keine weiteren Ereignisse mehr
maoglich sind(deadlock)oder dann, wenn das System sich nur noch innerhalb einealsnenge bewegen
kann, die zu keiner vollendeten Aufgabe flHrtdlocK).

Dariiber hinaus kann es noch Zusténde geben, von denen ansafiuein Teil der Aufgaben des Systems
vollendet werden kann, oder auch solche, von denen aus meibeigrenzte Anzahl von Wiederholungen
eines Vorgangs mdglich ist. Es gibt aber Vorgéange, die i@maft moglich sein sollten, wie z.B. das
Abschicken von Meldungen in einem Kommunikationssystegr die Anmeldung von Benutzern an einem
Rechner.

Aus dieser Beschreibung ist ersichtlich, dass die Spetitfikaflp x Ag allein nicht ausreicht, um zu einem
vollstandigen Uberwacher zu gelangen. Es ist jedoch miiigtiusAy x Ag einen Uberwacher zu berech-
nen. Dieser Vorgang wird aldberwachersyntheseezeichnet. Die konventionelle Uberwachersynthese be-
steht darin, verbotene oder zu Verklemmungen fihrendedddstausAy x Ag zu entfernen. Der Gedanke
dabei ist, den resultierenden Automaten als Uberwacheusdtzen, sofern die Einschrankungen, die der
Spezifikation durch den Syntheseprozess auferlegt wuadeeptabel sind.

Damit ist die konventionelle Synthese in der Lage, Sichishand Lebendigkeitseigenschaften zu bertick-
sichtigen, nicht aber Fortdauer- oder Fairnesseigensehader Unterschied zwischen der konventionellen
und der verallgemeinerten Uberwachersynthese besteht dass in der letzteren die Anforderungen an die
Berechnung des Uberwachers nicht mehr fest, sondern vomidkigr wahlbar sind. Verbotene Zusténde
werden nach wie vor entfernt, aber an die Stelle der Verklangsfreiheit konnen strengere Anforderungen
treten. So ist z.B. ein System, das nach einer bestimmtameBsgteit nur noch einen Teil seiner Aufgaben
erfullen kann, im Sinne der konventionellen Synthese imnoeth verklemmungsfrei. In dem verallgemei-
nerten Ansatz ist es aber moéglich, genau anzugeben, welatgaben stets noch zu vollenden sein missen,
damit das System als verklemmungsfrei gilt.

Fur die Verallgemeinerung der Uberwachersynthese wurfg0ireine Transformation definiert, mit der aus
dem AutomaterAp, x Ag eine spezielle Kripke-Struktuk z, 4, erstellt wird. Zusatzlich wurde einer der
konventionellen Synthesealgorithmen in @iKalkil-Gleichungssystem Ubersetzt. Die Lésung eines sol
chen Gleichungssystems besteht aus einer Untermenge stesdsraums einer gegebenen Kripke-Struktur.
In diesem Fall sind die Kripke-Struktdt 4, ., und das Gleichungssystem so aufeinander abgestimmt, dass
dessen Losung, wenn auf den Automat@p x Ag abgebildet, den gleichen Uberwacher hervorbringt wie
der urspriingliche Algorithmus. Dieser Zusammenhang wirdbbildung 2 dargestellt.

Das Gleichungssystem hat au3erdem die vorteilhafte Eopaiffts dass die Forderungen nach Steuerbarkeit
und Verklemmungsfreiheit in getrennte Gleichungen zlenfalDamit ist es mdglich, an die Stelle der Glei-
chung fur die Verklemmungsfreiheit beliebige andesi€alkil-Gleichungen zu setzen. Der Anwender kann
die notwendigen Gleichungen mit Hilfe temporallogischersériicke erzeugen [23, 30] und damit die Kluft

Synthese Uber Gleichungssystem

[Kripke-Struktur a,.x]

A

Zustandsmenge]

Y
)

Transformation Abbildung auf Ap X Ag

Y

Y

] Herkémmlicher Algorithmus (
Automat Ap X Ag J k

Uberwacher]

Abbildung 2: Die Ubersetzung der Uberwachersynthese irueléalkiil

zwischen der menschlichen Intuition und der teilweise Kirigrsten Syntax dep-Kalkil-Ausdriicke tber-
briicken. Da dep-Kalkil eine Obermenge gangiger Temporallogiken @i, LTL und CTL* ist, werden
alle Systemeigenschaften, die in diesen Logiken ausdaiickihd, gleichermalien behandelt. Diefttins-
besondere fir Fortdauer- und Fairnesseigenschaftenezn, dier konventionellen Synthese nicht handhabbar
sind.

4.3 Spezifikationsstrategien

Wie in Abschnitt 4.2 erwahnt, kbnnen auch dann verboten¢éids in Spezifikationen entstehen, wenn die
Anforderungen, die an das System gestellt werden, auf dgéareBlick harmlos erscheinen. Als Beispiel sei
die Steuerung einer Telefonnummernauskunftzen{@dé center)[24] genannt, die in [29, 30] im Detail
analysiert wird.

In vielen Fallen werden unerwiinschte Zustande auch absfkchgrzeugt. Oft ist es leicht, die Zustdnde
anzugeben, die ein System wéahrend des Betnetist erreichen sollte, ohne jedoch absehen zu kdnnen,
welche Bedingungen dafiir eingehalten werden muissen. &ied8. bei der Berechnung einer Gewinnstra-
tegie der Fall. Aus theoretischer Sicht kommt die Aufgabe,reaktives System so zu steuern, dass ein
bestimmter Zustand erreicht wird, der Anwendung einer @astrategie flr ein Zweipersonenspiel gleich.
Der AutomatAyp fur die Systembeschreibung gibt dann alle méglichen Spliélée wieder. Darunter befin-
den sich welche, die zu dem gewiinschten Zustand fiihren {dieesing ,,gewinnt*) und auch solche, die
zu unerwinschten Zustanden fihren (die Steuerung ,V&Jli&uf abstrakter Ebene lautet die Spezifika-
tion ,die Steuerung soll nicht verlieren®. In der Spezifikat Ap x Ag werden daraufhin die Zustande, in
denen die Steuerung ,verlieren* wirde, absichtlich alkMenmungen dargestellt. Die Syntheseprozedur
entfernt dann diese Verklemmungen und alle nicht steuenbZustande, die dazu filhren kénnten. Ubrig
bleibt die Gewinnstrategie fur das ,Spiel, nach der dag&yszu steuern ist. Ein Beispiel fur diese Art der
Anwendung ist die Synthese einer Gewinnstrategie fur das8piel in [28, 30].

Es genigt also, die Spezifikation so zu erstellen, dass umschte Zustdnde entweder in dieser gar nicht
auftreten, oder aber so gekennzeichnet sind, dass sie v@ydtheseprozedur erkannt und ausgeschlossen
werden. In der Regel kénnen Zustande, die eindeutig veemigarden sollen, bereits bei der Erstellung der
Spezifikation ausgeschlossen werden. Hingegen werdedrtlestdie an sich nicht unerwiinscht sind, aber
Pfade zu solchen Zustanden besitzen, erst durch die Septtoeedur erkannt. Nach welchem Kriterium
dies genau geschieht, hdngt von dem GleichungssystemsabtedAnwender flr seine Zwecke erstellt.

5 Vorteile der Uberwachersynthese

Der bedeutendste Vorteil der Uberwachersynthese bestelet iUbersetzung abstrakter Spezifikationen, die
ein gewlnschtes Verhalten des Systems beschreiben, imdterBaupléane. Dies kann mit den folgenden
Beispielen verdeutlicht werden.

Beispiel: Zu erstellen sei ein Kommunikationsprotokollit dem Meldungen von einem Sender zu einem
Empfanger Uber ein verlustbehaftetes Medium zu Ubertrageh Geht eine Meldung verloren, muss der
Sender sie wiederholen und gegebenenfalls mehrere Kopieneldung abschicken. Die informale Spe-
zifikation des Protokolls wird deshalb vorschreiben, daetgéndlich keine Meldungen verloren gehen und
auch keine mehrfachen Kopien am Empféanger ankommen diDfen.ist zwar eine prazise Definition von
dem, was gewunscht wird, aber wenig hilfreich, wenn es dagaht, diese Regeln in eine Schaltung oder
in ein Programm umzusetzen. Der Einsatz der Uberwachérsyatkann an dieser Stelle bedeutende Hilfe
leisten. Sender, Medium und Empfanger werden zunachstrlichen Automaten modelliert, so dass eine
Systembeschreibung entsteht, die alle méglichen Vorgéntigilt — also auch den Verlust und die mehrfache
Auslieferung einer Meldung. Die Spezifikation besagt dalmss der Empfanger genau eine Kopie von jeder
Meldung empfangen muss. Daraus berechnet die Syntheseproginen Uberwacher, aus dessen Transi-
tionsrelation die zulassigen Ereignisse fir jeden erkeiokn Zustand hervorgehen. Diese Information hat
nun die Form, die der Entwickler braucht, um Hardware odétw&oe zu erstellen.

Weiteres Beispiel: Der Gewinn an Information, den die Ulsamersynthese mit sich bringt, kann auch
anhand der in Abschnitt 4.3 beschriebenen Synthese eingin@&rategie verdeutlicht werden. Die An-
forderung ,die Steuerung soll nicht verlieren® ist zu abktr als dass sie direkt in eine Schaltung bzw. in
ein Programm umgesetzt werden konnte. Hingegen enthali/loerwacher genaue Anweisungen, wie die
Ldsung zu implementieren ist.

Das Ergebnis der Synthese ist ein endlicher Automat, dekdnfsdariiber gibtwaseigentlich zu implemen-
tieren ist. Es gibt verschiedene Mdglichkeiten, dieserimition zu nutzen. Diese reichen von dem einfachen
Auslesen der Transitionsrelation, um die manuelle Progremng zu unterstiitzen, bis zur voll automati-
sierten Ubersetzung des Uberwachers in Hardware oder &eftid/5]. Dadurch wird eine schrittweise und
risikoarme Einfuhrung der Uberwachersynthese in besth&mtwicklungsprozesse ermoglicht.

Dartber hinaus ergeben sich noch andere Vorteile:

e Nahe zur informalen Sprache: Am Beginn eines jeden Entwigdprozesses steht normalerweise
eine Beschreibung des Systems in natirlicher Sprache QeBtsch oder Englisch). Die darin ent-
haltenen Anforderungen muissen ins Formale Ubersetzt wetoel von diesem Schritt hangt die
Korrektheit des Ergebnisses ab. Durch die Mdglichkeit,ohkdérungen zunachst in temporallogische
Ausdriicke und dann in denKalkiil zu ibersetzen, kann die verallgemeinerte Uberaesymthese
nahtlos an die informale Spezifikation ankntpfen.

e GroRere Flexibilitat: Anderungen an den SpezifikationeB, mm auf neue Wiinsche des Auftrag-
gebers einzugehen, konnen mit geringem Zeitaufwand urtejeserden. Ist der gesamte Prozess
automatisiert, kann eine neue Version des gesamten Syptarksiopfdruck erstellt werden.

e \erringerte Testzeit: Es besteht keine Notwendigkeit,alssdem Uberwacher abgeleitete System auf
Eigenschaften zu testen, die in die Synthese eingeflosednBamit verlagert sich der Testschwer-
punkt auf die Ubereinstimmung der informalen Anforderumgmit der realisierten Funktionalitat.
Werden Unstimmigkeiten festgestellt, werden die Automdigw. das Gleichungssystem angepasst
und ein neues System generiert. Das Testen bleibt auf emerd&bene beschrankt.

¢ Auswirkungen von spateren Anderungen: In der traditi@me$ystementwicklung sind spat entdeckte
Fehler in der Regel mit hohen Kosten verbunden. Mit der aatmierten Synthese wird jede Ande-
rung auf der Ebene der Automaten und des Gleichungssystgasnommen und danach das gesamte
System neu erstellt. Alle Abhéngigkeiten werden autorolatiseriicksichtigt, so dass sich keine Fol-
gefehler einschleichen kbnnen.

e Steigerung der Qualitat: Der Entwicklungsprozess wirchhiaur agiler, sondern auch zuverlassi-
ger. Durch die Einbeziehung des gesamten Zustandsraunaenveehler bei der Implementierung
ausgeschlossen. Als mdgliche Fehlerquellen bleiben mer faische Interpretation der anfanglichen
Systembeschreibung und Hardwarefehler zur Laufzeit tibrig

6 Auswirkungen auf den Entwicklungsprozess

Eine Umstellung des Entwicklungsprozesses auf die vobhraatisierte Uberwachersynthese wiirde einen
tiefen Einschnitt in die traditionellen Entwicklungsmetten mit sich bringen. Bekanntlich ist es bereits
schwierig, jemanden, der sich in einer bestimmten Progransprache oder mit einem bestimmten Pro-
grammsystem gut auskennt, von einem Wechsel zu UberzeDgenJmstieg auf eine vollig andere Ent-
wicklungsmethode ist deshalb nur schrittweise durchfiihrbm die Einfilhrung der Uberwachersynthese
zu erleichtern, kann sie zunéchst nur als Hilfswerkzeugigezogen werden. Der Entwickler entschei-
det dann anhand der Transitionsrelation des Uberwaclaszu implementieren ist. Die Implementierung
selbst kann davon zunachst unberihrt bleiben und erstrspittamatisiert werden. Durch die gesammelten
Erfahrungen sollte eine Eigendynamik entstehen, die desaEi der neuen Methoden steuert und das Ver-
trauen in sie starkt. Aul3er der in Abschnitt 5 beschriebé®fagerung der Testschwerpunkte wiirden dann
Merkmale wie die folgenden den veranderten Entwicklungspss kennzeichnen:

e Systementwurf auf hoherer Ebene: Ahnlich wie bei dem Ubeggaon Assembler auf héhere Pro-
grammiersprachen findet ein Ubergang von diesen auf eineré@@bene statt. Programme oder auch
Hardwarebeschreibungen werden zum Zwischenformat, dashenicht mehr von Hand erstellt wird.
Sie bleiben trotzdem noch lesbar, was anfangs ein wichkigktor zur Vertrauensbildung sein kann.
Es ist jedoch vorstellbar, dass dieses Bedurfnis nach uod werschwindet, genauso wie es heute
kaum noch einen Grund dazu gibt, den Assemblercode zu untess, der von einem Ubersetzer
(compiler)erzeugt wurde.

¢ Die Rolle der Dokumentation: Kommentare in Programmen kéinentweder automatisch mit einge-
figt werden oder ganz wegfallen, besonders wenn diese zuodgnZwischenformat werden. Viel
wichtiger ist es, festzuhaltemie die verwendeten Automaten und Gleichungssysteme enistElae
hier eine organisierte Vorgehensweise klare Vorteile ot bringt, wird die Dokumentation zu einem
nitzlichen Werkzeug, dass inshesondere wahrend des khingsprozesses eingesetzt und gepflegt
wird — im Gegensatz zur Programmdokumentation, die nicliérserst nach der Fertigstellung des
Systems geschrieben wird.

e Werkzeuge und SchulungsmalBhahmen: Es entsteht ein Bedagugn Programmen zur Unterstt-
zung der Synthese. Denkbar sind auch Bibliotheken mit Lgsnrgangiger Teilprobleme sowie die
Integration mit weiteren Spezifikationsverfahren wie statechart©oder UML. Entsprechend wirden
sich auch die Schulungen zur Entwicklertatigkeit verander

7 Zusammenfassung

In dem konventionellen Entwicklungsprozess fir Hard- unéare ist die Umsetzung einer Spezifikation
in ein testbares Produkt mit hohem Aufwand verbunden. In&&gigkeit der Fehler, die in der Testpha-
se entdeckt werden, muss diese Umsetzung mehrmals widtdedrden. Dadurch entstehen verschiedene
Nachteile, die erhebliche Verzégerungen und Qualitéhsster zur Folge haben kénnen. Mit der verallgemei-
nerten Uberwachersynthese lasst sich ein neuer Entwigkpunzess realisieren, in dem die Arbeit sich auf
héhere Abstraktionsebenen konzentriert und Anderungeimesaind &izient durchzufiihren sind. Das neue
Verfahren knipft an die informalen Anforderungen an, dieBeginn des Entwicklungsprozesses stehen.
Sind diese formal erfasst, geschieht der restliche Ablatdraatisch. Programme und Hardwarebeschrei-
bungen auf héherer Ebene werden zum Zwischenformat undrgédestaufwand als auch Anderungen am
System konzentrieren sich auf die Ubereinstimmung zwisahi@rmaler und formaler Darstellung der An-
forderungen.

Der neue Entwicklungsablauf erfordert ein tiefgreifentesdenken, das nicht schlagartig zu erreichen ist.
Eine schrittweise Einfuihrung der Uberwachersynthesedkigh mdglich, indem die formal erzeugten Spezi-
fikationen zunachst nur als Hilfsmittel herangezogen uredgehabt umgesetzt werden. Dies ist auch deshalb

angebracht, weil sich nicht jedes Problem mit formalen Mdé#mn I6sen I&sst. Es sollte sich fiur jeden An-
wender Schritt fir Schritt herausstellen, wie die Uberveasyinthese im Einklang mit anderen Methoden
einzusetzen ist. Ziel dieser Arbeit ist es, solche Uberlggn zu unterstiitzen und zu erleichtern.

Literatur

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Arnold and P. Crubille. A linear algorithm to solve fidgoint equations on transition systems.
Information Processing Letter29(2):57—-66, 1988.

C. Berthet, O. Coudert, and J.C. Madre. New ideas on syimbwnipulations of finite state machines.
In International Conference on Computer Design (ICCPages 224-227. IEEE Computer Society,
1990.

J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Spiential circuit verification using symbolic
model checking. IlDesign Automation Conference (DA@ages 46-51, Los Alamitos, CA, June 1990.
ACM.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and LJ. Hwang. Symbolic model checking: 20
states and beyond. Bymposium on Logic in Computer Science (LI@8yes 1-33, Washington, D.C.,
June 1990. IEEE Computer Society.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and LJ. Hwang. Symbolic model checking: 20
states and beyondnformation and Computatiqrd8(2):142—-170, June 1992.

C.G. Cassandras and S. Laforturietroduction to Discrete Event System@uwer Academic Publis-
hers, Boston, U.S.A., 1999. ISBN 0-7923-8609-4.

E.M. Clarke and E.A. Emerson. Design and synthesis otlsgaonization skeletons using branching
time temporal logic. In D. Kozen, edito¥Workshop on Logics of Programgolume 131 ofLNCS
pages 52-71, Yorktown Heights, New York, May 1981. Springer

E.M. Clarke, O. Grumberg, and D.A. Peledlodel CheckingMIT, London, England, 1999.

R. Cleaveland, M. Klein, and B. Sten. Faster model checking for the mogatalculus. In G.v.
Bochmann and D. Probst, editoSpnference on Computer Aided Verification (CAlume 663 of
LNCS pages 410-422, Montreal, Juhaly 1992. Springer.

R. Cleaveland and B. Sten. A linear-time model checking algorithm for the alteromtfree u-
calculus. In K.G. Larsen and A. Skou, editodpnference on Computer Aided Verification (CAV)
volume 575 ofLNCS pages 48-58, Aalborg, Denmark, July 1991. Springer.

A. Dicky. An algebraic and algorithmic method of anahg transition systemslheoretical Computer
Science46:285-303, 1986.

E.A. Emerson and C.-L. Lei. fRcient model checking in fragments of the propositionalalculus.

In Symposium on Logic in Computer Science (LI@@pes 267-278, Washington, D.C., 1986. IEEE
Computer Society.

D. Kozen. Results on the propositionakalculus. InColloquium on Automata, Languages and Pro-
gramming (ICALP)pages 348-359, 1982.

D. Kozen. Results on the propositionaicalculus. Theoretical Computer Scienc7:333—-354, De-
cember 1983.

P. Malik. From Supervisory Control to Nonblocking Controllers forsbiete Event Systeni3hD thesis,
Universitat Kaiserslautern, 2003.

[16] Z. Manna and A. Pnueli. The anchored version of the taaddcamework. InLinear Time, Branching
Time and Partial Order in Logics and Models for Concurreneglume 354 olLNCS pages 428-437,
Noordwigherhout, Netherland, M&june 1988. Springer.

[17] Z. Manna and A. Pnueli. A hierarchy of temporal propestiinSymposium on Principles of Distributed
Computing pages 377-408, 1990.

[18] V. Pratt. A decidableg:-calculus. InSymposium on Foundations of Computer Science (FOtzgEs
421-427, New York, 1981. IEEE Computer Society.

[19] J.P. Quielle and J. Sifakis. Specification and verifarabf concurrent systems in CESAR. Sympo-
sium in Programming1981.

[20] J.P. Quielle and J. Sifakis. Specification and verifarzabf concurrent systems in CESAR. Sympo-
sium in Programmingvolume 137 oLNCS pages 337-351, New York, 1982. Springer.

[21] P. J. Ramadge and W. M. Wonham. The control of discregémtesystemsProceedings of the IEEE
77(1):81-98, 1989.

[22] P.J. Ramadge and W.M. Wonham. Supervisory control dasscof discrete event processeslAM
Journal of Control and Optimizatiqr25(1):206—230, 1987.

[23] K. SchneiderVerification of Reactive Systems — Formal Methods and Algos Texts in Theoretical
Computer Science (EATCS Series). Springer, 2003. ISBNG&R296-0.

[24] M. Seidl, T. Kleinert, J. Wagner, and B. Plannerer. 8ystischer Steuerungsentwurf zur Kontrolle
lastintensiver Call-Centeat - Automatisierungstechnik0:19-27, June 2002.

[25] W. M. Wonham. Supervisory control of discrete-evensteyns. Technical report, Dept. of Elec-
trical and Computer Engineering, University of Toronto|. 2005. ECE 1636A637S 2005-06,
httpy//www.control.utoronto.¢g®ES.

[26] W.M. Wonham and P.J. Ramadge. On the supremal cortfellsublanguage of a given language.
SIAM Journal of Control and Optimizatio25(3):637-659, May 1987.

[27] Z.H. Zhang and W.M. Wonham. STCT: Arfeient algorithm for supervisory control design. In
Symposium on Supervisory Control of Discrete Event Syqe@OSDES)Paris, France, July 2001.

[28] R. Ziller. Finding bad states during symbolic supeovisynthesis. I'GINTG/GMM Workshop: Me-
thoden und Beschreibungssprachen zur Modellierung unifik#&tion von Schaltungen und Systemen
pages 209-218, Tubingen, Germany, 25-27 February 2002.

[29] R. Ziller. An Application of Generalized Supervisori8kesis to the Control of a Call Center.Farum
on Specification and Design Languagpages 429-440, Lausanne, Switzerland, September 2005.

[30] R. Ziller. Eine Verallgemeinerung der Uberwachersynthese mit Hiéfe dKalkiils [online]. Dis-
sertation, Universitat Karlsruhe, Fakultat fur InfornkatDeutschland, 2005.http://www.ubka.uni-
karlsruhe.de/cgi-bin/psview?document=2005/informatik/21.

[31] R.Zillerand K. Schneider. A generalized approach taesuisor synthesis. IRormal Methods and Mo-
dels for Codesign (MEMOCODEpages 217-226, Mont Saint-Michel, France, 2003. IEEE Qaenp
Society.

[32] R. Ziller and K. Schneider. Aw-calculus approach to supervisor synthesis. In R. Drechstétor,
GNTG/GMM Workshop: Methoden und Beschreibungssprachen zur IMedeg und Verifikation von
Schaltungen und System@ages 132—-143, Bremen, Germany, 24-26 February 2003eShak

[33] R. Ziller and K. Schneider. Combining Supervisor Sy#ils and Model CheckingACM Transactions
on Embedded Computing Systed(?):331-362, May 2005.

