Finding Bad States during Symbolic Supervisor Synthesis

Roberto M. Ziller*

University of Karlsruhe, Department of Computer Science
Institute for Computer Design and Fault Tolerance (Prof. Dr. D. Schmid)
P.O. Box 6980, 76128 Karlsruhe, Germany
email: ziller@ira.uka.de
http://goethe.ira.uka.de/fmg

Abstract

This paper is about supervisor synthesis, a central issue in solving control problems within
the Ramadge-Wonham framework for Discrete Event Systems. As most automata-based methods,
this framework is subject to the state explosion problem. The impact of state explosion has been
considerably reduced in the area of formal verification through the introduction of symbolic rep-
resentation techniques, which can also be used in supervisor synthesis. However, the efficiency of
a solution is very sensitive to the way the symbolic structures are manipulated at each processing
step. This paper explores in detail one such step, namely finding the set of bad states at the start of
the synthesis algorithm. Comparing the results for three particular implementations illustrates the
importance of a careful choice between different solutions.

Introduction

Supervisor synthesis, introduced by the Ramadge-Wonham framework for Discrete Event Systems
[RW87, WR88, ZW90, WW96, BTV97, WW98], can be extremely useful in modern system mod-
elling, especially in combination with formal verification techniques. However, being based on finite
automata, the framework is subject to the state explosion problem. Enumerative state space repre-
sentation often allows solving only problems much smaller than those encountered in real world ap-
plications. The successful introduction of symbolic methods to represent the state space in formal
verification problems [BCM90] has motivated other authors to consider them for supervisor synthe-
sis [HWT92, AMP95]. These approaches considered the formal aspects of symbolic synthesis, while
the present paper is more implementation-oriented.

The state explosion problem in the RW-framework was discussed briefly in [Zil0O1], which il-
lustrates the modelling of different problems using examples that are small enough to be solved by
traditional enumerative methods. This paper is a continuation of that work, focusing on the use of
symbolic methods to overcome the limits imposed by state explosion. It deals in particular with the
isolation of the bad states during synthesis, which has been found to be critical for efficiency. The
paper is organized as follows: section 1 is a review of the basic RW-Model; section 2 presents an
example that illustrates the synthesis process and also serves to explain the algorithms presented later;
section 3 introduces symbolic methods, and section 4 presents the main contribution, consisting of
three solutions for finding bad states in a specification and comparing their efficiency. The conclusion
comments the results and presents directions for future work.

*Work supported by the Deutsche Forschungsgemeinschaft (German Research Society) within the project Design and
Design Methodology of Embedded Systems



1 The Ramadge-Wonham Framework

This section recalls some basic concepts from the RW-framework presented originally in [RW87]; a
comprehensive coverage is given in [CL99]. The basic premise is that controlling a system amounts
to restrict its physically possible behaviour in such a way that only a subset of desired actions remains
executable. In the following, the system to be controlled will be calladt, and the desired behaviour
under control, apecificationfor that plant. The restrictive control action is applied to the plant by a
supervisoy an external agent which tracks the plant’s state by observing the events it generates and
enables or disables (some of) the events that could occur in each state, as illustrated in figure 1.

Figure 1 The interaction between plant and supervisor

Control action Events

Supervisor

Events are classified into two categories. Those which cannot be prevented from occurring, like
system failures, and sensor or alarm signals, are cafiedntrollable and those which can be disabled
by the supervisor, like the start of some process, are catiettollable Because of the presence of
uncontrollable events, not every specification can be implemented by a supervisor. The latter can not
be constructed when a specification allows the plant to reach a state in which uncontrollable events can
occur and, at the same time, forbids the occurrence of one or more of these events. Such specifications
are called uncontrollable, while implementable specifications are called controllable. Implementing a
supervisor for a controllable specification amounts to use the specification to track the plant’'s actions
and to disable, at each state, the events that appear in the plant but do not appear in the specification.

Given an uncontrollable specification, it is always possible to compute its largest controllable sub-
set. This result can be used in place of the original specification, as long as it is still adequate for the
intended objective. Since a controllable specification contains all the information needed to build the
supervisor for a given plant, this computation is also referred gupsrvisor synthesis

Plants and specifications are represented through finite automata, alsogeaiéetors A gen-
erator is a 5-tupleG = (X,Q,4,q0, Qn), WhereX is a set of event labelg is a set of states,
0 : 3 x Q — Qis a (possibly partial) transition function, € @ is the initial state, and),,, C Q is a
set ofmarker stateslt is tacitly assumed that these are chosen so they mark the completion of some
task by the system. The event alphaBés partitioned according to the classification of the events: if
3. andy, are the sets of controllable and uncontrollable events, hen¥. U X, andX. N, = 0;
the transition function is extended in the natural way to process strings fim

It is also useful to define thactive event functiolr : Q — 2* as:

I'(q) = {0 € £ :6(q,0) is defined} (1)

There are two languages associated with a gene€atorhe set of all possible event sequences,
L(G), is called itsgenerated languagewhile the set of sequences that end up in a marker state,
L,,(G), is called itamarked languageand stands for the sequences that represent completed tasks. The
generated and marked languages of the specification are subsets of those of the plant. Therefore, it is
always possible to derive the specification from the product of the plant and some auxiliary automaton.
In what follows, let the state space of the plant be denote@ land that of the auxiliary automaton
by X. Hence the state space of the specification will be a subsgt>ofX. Moreover, there exists a
function



h:QxX—Q 2)

mapping each statgy, z) € @ x X to stateq € @ in such a way that the plant will be in stage
whenever the specification is in stdtg ). This state correspondence is needed to check whether the
specification is controllable. This will be the case if and only if every state in the specification allows
the occurence of all uncontrollable events defined in the corresponding state of the plant, that is (with
I" extended to the state spa@ex X)

(V(g,z) € @ x X) I'(g,z) N3y, 2 T'(h(g, 7)) N X (3)

States of the specification that fail to satisfy condition (3) are cdiled states The synthesis
procedure consists of iteratively removing these states and checking the result for controllability and
coaccessibility until a fixpoint is reached [WR87, CL99].

2 Synthesis Example

The following example illustrates the synthesis process. The steps described below are much the same
followed in an implementation of a synthesis algorithm using the enumerative approach. The reader
may want to contrast these with the symbolic methods used in section 4.

The example shows the synthesis of a winning strategy for the nim game modelled in [ZilO1]: given
the matches arranged as on the left side of figure 2, each player removes at least one match from one
of the rows in each turn. The goal is to force the opponent to take the last match. While the game can
be started with any number of rows, only the first two will be used next, in order to keep the automata
small enough for drawing. Figure 2 shows the automata used in the model, as well as the binary state
variablesry . . . 24 that will be used in sections 3 and 4. Our objective will be to find a winning strategy
for player 1 (the player who starts the game). Therefore, the moves of player 1 (odd-numbered events)
are assumed to be controllable, while those of player 0 (even) are not.

Figure 2 The nim game initial position and the automata for the game with two rows

110
ROM”'€><::>PIII)1IID>$O

T3 Ta

T —— Player 1

To Turn Win
RowJ ;Matches taken °

230,231
ij1 ijo ij1 ijo

| " ©-0 -0
T3 T4

T1To T1X2 r1To T1T2

_._._.
—_——-— —a
— — —
—_——

The synthesis algorithm requires a model of the plant and the specification. The plant is the par-
allel composition of the automata for the two rows and the auxiliary automaton Turn, which dictates
the players must alternate turns. The resulting automaton is shown on the left side of figure 3, where
the composite state numbers resulting from the parallel composition have been replaced by a straight
sequence. The specification is obtained by computing the product of the plant and the auxiliary au-
tomaton Win (which specifies that only player 0 may reach a marker state), and subsequent trimming.
The result is shown on the right side of figure 3. The state numbers resulting from the product were
maintained, so the first number in each state of the specification identifies the corresponding state of
the plant in the sense of expression (2).

The first step of the synthesis process is to check controllability according to condition (3), which
reveals states (1,0) and (2,0) to be bad states. Hence the given specification cannot be used to imple-
ment a supervisor, but supervisor synthesis can be applied to find its largest controllable subset. In

3



Figure 3 Plant and specification for the nim game with two rows

the present case, removing states (1,0) and (2,0) does not expose new bad states, so the iteration stops.
States (8,1), (10,0), and (5,1) become inaccessible and can be cleaned up. The result is the automaton
with states (0,1), (4,0), and (7,1), from which the desired supervisor can be constructed.

The same procedure can also be used to solve larger problems. However, since parallel composition
and product appear frequently in the process, the state explosion problem rapidly comes into play. This
can be illustrated by adding more rows to the initial configuration of the game. Based on experimental
results, the author derived the following expressions for the number of states and transitions of the plant
and the specification with rows. The expressions are valid for> 2 unless otherwise indicated.

Plant Specification
#States 2ntlpl —2n 2"t (! — 1) (4)
#Transitions 2" (n!n? — @) 2" (nIn? —n(2n —1)),n >3

The state space grows so fast that it is not possible to solve the game for more than five rows
using enumerative methods on state-of-the-art personal computers. This problem is the main reason
for studying the applicability of symbolic methods to supervisor synthesis. There are several issues
which require attention when the states can no longer be handled explicitly, for example which form
the correspondence function (2) takes and how to find the bad states before starting iteration. These
are the subjects of the following sections.

3 Symbolic Representation of Automata

3.1 Sets and Characteristic Functions

Recall that each subsstof a given setd has an associateharacteristic functior¥’s : A — {0,1},
which evaluates to 1 if an elemeatec A is contained inS and to 0 otherwise. If the elements of
A are encoded using a number of Boolean variables, /saije characteristic function becomes a
Boolean functionfs : {0,1}* — {0,1}. This function can be written in disjunctive normal form, as
for example in

fs = Zox1Z2 + ToT1Z2, (%)

which represents the two elements encoded by the combinatigns (,z1 = 1,29 = 0) and @y =
1,71 = 1,z9 = 0) from a set with at most eight elements. This is calley@mbolic representation



3.2 Binary Decision Diagrams

Binary decision diagrams [Bry86], or BDDs for short, are acyclic graphs that represent binary func-
tions and can therefore represent any finite set through its Boolean characteristic function. The repre-
sentation is unique for a given ordering of the variables. Moreover, the usual operations on sets can
be performed directly on the BDDs representing them, allowing symbolic set manipulation. In many
applications, symbolic methods have proven to be much more efficient with respect to memory usage
and processing time than their enumerative counterparts.

One of the reasons why BDDs can be very compact is the presemtmndfcaresin the function
being represented. A variahtein a binary functionfs is said to be a don't care iff the evaluation faf
is the same regardless whetheis O or 1. For example, variable, is a don’t care in expression (5).
In what follows, we will need a notation that allows representing don’t cares. Drawing the BDDs
would be a very low-level and unpractical alternative. Set notation, on the other hand, is too abstract.
The natural choice to represent BDDs is therefore the disjunctive normal form of the characteristic
functiont, in which don't cares will be represented by a dash. For example, expression (5) becomes

fs = —x1Z9. (6)

Many operations on BDDs have been defined and implemented in different programming pack-
ages. Besides the traditional set operationseiigtential abstractiomf a variable plays an important
role in the sequel. The existential abstraction of variablerns a binary functiorf into

f, = f |x=0 +f |x=1a (7)

thus reintroducing a don't care for the variable

3.3 Symbolic Transition Relations

A transition relation can be represented symbolically by a characteristic function in which each transi-
tion appears as a minterm. Since a transition consists of an exit state, an event, and an entry state, there
will be two sets of variables, calledvars andy-vars, to encode the exit states and the entry states,
respectively. Another set of variables, callegars will be used to encode the events. Figure 2 shows
thez-vars used to encode the automata states for the nim game. The events are encoded in ascending
order fromege; es to egeres. They-vars have the same encoding as:thears.

Table 1 shows some transitions from the plant and the specification depicted in figure 3. Note that
in the encoding chosen in figure 2, each automaton has its own sesrd y-vars, while thee-vars
are common to all. This allows for an efficient representation of automata products. The states of the
components are placed side by side in the product, without interfering with each other. This makes the
correspondence given by (2) obvious: in order to find the state of a component that corresponds to a
given state of the product, it suffices to find, in the component, the state with the same encoding that
appears in the product. For example, in the plant state encoded yitlr, 23, automaton Rowl is in
state 1 £), automaton Row? is in state @4(z5), and automaton Turn is in state £s§.

Note also that, because the plant does not use automaton Win, the positions corresponding to the
variablesz4 andy, appear as don’t cares in its transition relation. Strictly speaking, a minterm with
m/2 don'’t cares in the:-vars and in they-vars represent®™ transitions betwee®™/? exit states and
2/2 entry states. Therefore, the symbolic representation of the plant has more states than those shown
on figure 3, and can be seen as a refinement of the original plant containing all the states that can be
encoded with the don'’t cares. This is captured by the notation used in table 1 for the representation of

!Note that the disjunctive normal form is an enumerative representation used only to write about BDDs and is never
constructed in memory when manipulating them.



Table 1 Some transitions from the plant and specification of figure 3

Plant Specification
Transitions Symbolic encoding Transitions Symbolic encoding

(0,-),111,(1,-)| ZoZ1Z223 —€oe1e2y01%2¥3 — | (0,1),111,(1,0)| ZoZ1Z273248081€2Y0T1Y21374
(0,-),211,(2,-)| ToZ1T273 —eoereatoyr1y2ys — | (0,1),211,(2,0)| ToT1T2w324€0€1€2Y0Y1Y2Y3Y4
(1,-),210,(5,7)| z071Z273 — oe182y01y2y3 — | (1,0),210,(5,1)| 20Z1Z2T3Z4€0€182Y0T1Y2Y3Y4
(1,-),220,(6,-)| woT1T2T3 — €pe1E2Y0Y1Y2Y3 —

(1,-),230,(7,-)| z071Z273 — eoe12y0y1y2y3 — | (1,0),230,(7,1)| 20Z1Z2T3Z1e0€182Y0Y1Y2Y3Y4
(4,-),110,(7,-)| Zow12273 —€oe182y0y1Y2y3 — | (4,0),110,(7,1)| Zox 1227348081820y 1Y2Y3Y4

the plant’s transitions. The additional states can be ignored in operations that involve the plant only,
since the BDD would behave as if the unused variables did not exist. However, relating the plant to the
specification in section 4 will bring the additional states into play, because the specification contains
only a proper subset of them.

4 Finding Bad States

We introduce the problem with a visual approach based on figure 3. According to condition (3), only
the uncontrollable transitions shown in figure 4 are needed to decide whether a state is bad. The bad
states become apparent after subtracting the transitions of the specification from those of the plant: each
bad state will have some outgoing transition in the plant which was not matched in the corresponding
state of the specification. Note that state 3 will be erroneously be identified as a bad state. However,
since this cannot impact the result of subtracting the bad states from the specification later on, this kind
of state can be tolerated among the bad states.

Figure 4 The uncontrollable transitions from plant and specification

—)

220 @ 210

110

@ o)

(9

230

The proposed visual approach fails when the specification is refined in such a way that two or more
states correspond to the same state of the plant. In contrast, the information contained in the symbolic
transition relations will allow us to solve the problem in either case.

The algorithms that follow will start from the transition relations reduced to the uncontrollable
events, as shown in figure 4. These can be obtained by intersecting the transition relations with the
set of uncontrollable events. In table 1, this has the effect of preserving only the transitions with
even-numbered events. The latter will be used to illustrate how the algorithms work.



4.1 Exiting Transitions

Condition (3) is about which events leave a given state. Symbolically, it refers to the exit states and to
the events, while it does not matter into which entry state a transition is going. Hence the first step is:

1. Abstract ally-vars from the plant and from the specification.

The uncontrollable transitions from table 1 are thus modified as shown in table 2.

Table 2 The uncontrollable transitions from table 1 after abstraction ofjthiars

Plant Specification
Transitions Symbolic encoding Transitions Symbolic encoding
(1,-),210,(—,-)| 2oT1T2T3 —€pe189 ————— (1,0),210,(—,-)| 2oT1T2T3T4€0C182 —————
(1,7),220,(—,-)| zoZ1Z2T3 —eg€16y —————
(1,-),230,(—,—)| 2oT1T2Z3 —epe189 ————— (1,0),230,(—,-)| £oZ1T2T3Tsc0e182 —————
(4,-),110,(—,-)| Tox122T3 —€p€1Ey ————— (4,0),110,(—,-)| Zox122T3T4€0€162 —————

It is tempting to abstract also variabig from the specification, because then none of the addi-
tional states encoded by the don't cares would appear after subtracting the specification from the plant.
Although this would work in the present example, becatgsappears only in negated form, it cannot
be done in the general case. If the specification were refined in such a way that some of its states used
x4 Without the negation, the refining information would be lost. We thus proceed with:

2. Subtract the modified specification transitions from those of the plant.

The result is shown in table 3. Note that the second line of table 2 has been split into two rows to
show the two exit states represented through the don'tcar€l,0), and (1,1). The latter is absent
in the specification, as is (4,1). The exit states of the transitions remaining after subtraction either do
not appear in the specification, or have a transition that could not be matched by the specification.
The latter are the bad states. The nonexistent states can be tolerated in this set, because they cannot
impact the result of subtracting the bad states from the specification in the continuation of the synthesis
process. The last step is to isolate the bad states (together with the nonexistent states):

3. Abstract the=-vars from the result of step 2.

Table 3 The result of the subtraction for the exiting transitions approach
Plant - Specification

Transitions Symbolic encoding
(1,1),210,(—,-)| 2oT1T2T3x4E0C182 —————
(1,0),220,(—,-)| zoZ1Z2T3T4e0€162 —————
(1,1),220,(—,-)| 2oT1ToT3x4€0E182 —————
(1,1),230,(—,-)| zoZ1Z2T3T4e0€162 —————
(4,1),110,(—,-)| Zox122T3T4€0€162 —————

This algorithm was used in an implementation of the synthesis process. The results for different
sizes of the nim game are shown in table 6. Although these are much better than those for enumerative
methods, it was noticeable that the abstraction ofjthiars in step 1 required large amounts of memory
and processing time. Somewhat surprisingly, the abstraction of-tlaes togetherwith the e-vars
requires comparatively few resources. The algorithm presented next was designed to take advantage
from this fact.



4.2 Delayed Abstraction

We start again with the situation of figure 4 and the uncontrollable transitions from table 1, and delay
the abstraction of thg-vars so it can be done simultaneously with ¢hears. The first step is:

1. Subtract the specification transitions from those of the plant.

The left side of table 4 shows the three transitions resulting from the subtraction (1,-),210,(5,-)
- (1,0),210,(5,1), as well as those coming from the expansion of the don’t cares in the unmatched
transition (1,-),220,(6,—). The exiting states so far are either bad or do not appeatr in the specification, as
it was the case in section 4.1. However, the result from the subtraction (4,-),110,(7,-) - (4,0),110,(7,1),
shown on the right side of the table, contains the exiting state (4,0), which would be erroneously
identified as a bad state if thevars andy-vars were all abstracted next. Instead, we continue with:

2. Abstract from the result of step 1 thevars together with thg-vars used in the plant.

This turns the term (4,0),110,(7,0) into (4,0),—,(—,0). States like this can be tolerated in the result,
because the alternation imposed by the automaton Win assures they do not exist in the specification.

Table 4 Some transitions resulting from the subtraction for the delayed abstraction approach

Plant - Specification
Transitions Symbolic encoding Transitions Symbolic encoding

(1,0),210,(5,0) ToT1T2T3T4€0€1€E2Y0Y1Y2Y3Y4 (4,0),110,(7,0) ToX1T2T3T4€0€1E2Y0Y1Y2Y3Y
(1,1),210,(5,0)| woT1T2T324€0€1€2Y0Y1Y2Y3Y4 | (4,1),110,(7,0) Zoz172T374€0€1E2Y0Y1Y2Y3Y4
(1,1),210,(5,1)| woZ1Z273z4€0€182Y0¥1Y2y3ya | (4,1),110,(7,1)] Zow122T37480€182Y0Y1Y2Y3Y4
(1,0),220,(6,0)| zoz1T2Z3T4€0€1E2Y0Y1Y2Y3Y4
(1,0),220,(6,1)| w0Z1Z273T4€0€1E2Y0Y1Y2Y3Y4
(1,1),220,(6,0)| zoz1T2Z3T4€0€1E2Y0Y1Y2Y3Y4
(1,1),220,(6,1)| zox1T2T3T4€0€1E2Y0Y1Y2Y3Y4

Table 6 shows that exchanging the algorithm from section 4.1 by the above one dramatically im-
proved performance. However, this solution is limited to cases exhibiting alternation, which rises the
question whether a general solution with similar efficiency can be found. Another noticeable fact is
that the result of the subtraction in step 1 has a large number of nonexistent transitions. While this
does not necessarily increase the size of the associated BDD, it leads naturally to ask whether the sub-
traction can produce a result without these transitions. The next section gives a positive answer to both
questions.

4.3 Relaxed and Refined Transitions
We start from the same point as in the preceding sections. The first step is:
1. Abstract from the specification thevars that are not used by the plant.

Although abstracting only-vars has proven inefficient in section 4.1, the above step is expected
not to have a serious impact on performance, because the number of variables used to refine the plant
is usually small compared to the total gfvars. As a result, don’t cares are introduced in the entry
states of the specification at the same point where there are don't cares in the plant’s transition relation.
Because of the interpretation given to don'’t cares as representing more than one transition, we call the
result therelaxed specification transitiong hese can be seen on the right half of table 5.

Next we isolate the exit states of the specification (recall that this was found to require compara-
tively few resources) and use them to refine the plant:

8



Table 5 Refined plant and relaxed specification transitions

Refined plant transitions Relaxed specification transitions

Transitions Symbolic encoding Transitions Symbolic encoding
(1,0),210,(5,-)| zoZ1Z273Z4€0€182Y01Y2y3 — | (1,0),210,(5,-) 20Z1Z273Z480€182Y0T1Y2Y3 —
(1,0),220,(6,-)| woZ1T2T3T4e0€1€2Y0Y1Y2Y3 —
(1,0),230,(7,7)| zoZ1Z2Z3T4e0€182Y0y1y2y3 — | (1,0),230,(7,-) z0T1Z2Z3Z4e0€1E2Y0Y1Y2Y3 —
(4,0),110,(7,-)| Tow122T3Z4€0€1€2Y0Y1%2Yy3 — | (4,0),110,(7,-) Tox122T3Z4€0€1E2Y0Y1Y2Y3 —

2. Create an auxiliary BDD by abstracting th&ars and they-vars from the specification.
3. Intersect the transition relation of the plant with the auxiliary BDD.

As a result, the exit states of the plant take on the refinement of the exit states of the specification.
The resulting transitions, called thefined plant transitionscan be seen on the left side of table 5.
Now, both sides have the same structure, so no spurious states appear when doing the subtraction.
Further, states like state 3 of the plant in figure 3, which do not have a counterpart in the specification,
are eliminated in step 3. Hence the result of the subtraction contains only transitions which start from
a bad state. Finally, these can be isolated, this time without being mixed with nonexistent states:

4. Subtract the relaxed specification transitions from the refined plant transitions.
5. Abstract the remaining-vars and the-vars from the result of step 4.

4.4 Experimental Results

Table 6 summarizes the experimental results obtained for different sizes of the nim game. The enu-
merative results were obtained with the TTAFogram. In this case, time was measured roughly and
memory usage could not be estimated. The other results are from programs written in C++ by the au-
thor, using the CUDD-2.3.1 packagand compiled under GNU'’s gcc—3.0. All experiments were done

on a personal computer running RedHat Linux 7.1, equipped with an 800 MHz Pentium Il processor
and 512 MB of RAM, except for the first case with eight rows, which was done on a similar machine
with 2 GB of RAM. Memory usage is given in the peak number of BDD nodes (1 node = 16 bytes),
and time is user time, given in seconds. A blank entry means the problem could not be solved within
2 GB of RAM. The ordering of the variables in the BDDs was such that eagdr, starting withz,

is followed by its corresponding-var; after them come thevars in ascending orderThe table also

gives the number of plant states according to equations (4).

Table 6 Experimental results

TTCT | Exiting transitions| Delayed abstraction Relaxed & refined

Rows| Plant stateg Time | Time | Node peak| Time | Node peak| Time | Node peak
4 752 | <1 0.09 22484 | 0.09 20440| 0.09 20440

5 7648 | 10 0.35 91980| 0.37 63364| 0.30 65408

6 92096 2.54 568232| 1.44 228928| 1.65 233016

7 1290112 27.7 | 4404820| 8.38 1089452| 8.09 1094562

8 20643584 404 | 67815832 120 2418052| 102 2398634

9 371588608 1164 2606100| 1151 2613454

10 || 7431781376 61726| 8850520| 61852| 8857674

2TTCT is developed by Prof. Wonham’s group at the Dept. of Electrical Engineering of the University of Toronto.
3CUDD is developed by Fabio Somenzi at the University of Colorado at Boulder.
“The variable ordering was rearranged in tables 1 to 5 to improve readability.

9



Conclusion

The paper shows how symbolic methods can be used for finding bad states in supervisor synthesis as
an effective measure to deal with the state explosion problem. While the first approach is probably
the worst in any case, the other two have a similar performance, and, as far as delayed abstraction
is applicable, which of them is the most appropriate depends on the problem being solved. Testing
the algorithms against real-world problems may give more information about this issue. The huge
performance differences between the first algorithm and the other two alert to the fact that, among
many correct implementations, technical details can make a big difference in the final result.

The same might be true for the continuation of the synthesis process, which could not be detailed
in the space available here. It involves eliminating the bad states from the specification, finding new
bad states thus exposed, and dealing with marker states. The results shown in the last section come
from an implementation obtained after testing more than thirty different versions, which nevertheless
still allows for improvement.

The size of a BDD is also known to be sensitive to the variable ordering. Although no extensive
reordering tests have been done so far, there is indication that the chosen ordering is at least close to
the optimum.

References
[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and timed systems.
In Hybrid Systems Jinumber 999 in LNCS. Springer Verlag, 1995.

[BCM*90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model-Checking:
10?° States and Beyond. IProc. LICS 1990.

[Bry86] R.E. Bryant. Graph-based Algorithms for Boolean Function ManipulatiB&E Trans. on Com-
puters C-35(8):677—691, August 1986.

[BTV97] N. Buhrke, W. Thomas, and J. Voge. Ein inkrementeller Ansatz zur effizienten Synthese von
Controllern aus Spezifikationen mit temporaler Logikoc. Formale Beschreibungstechniken fir
verteilte Systeme (A. Wolisz et al., edggdges 99-108, jun 1997.

[CL99] C. G. Cassandras and S. Lafortudetroduction to Discrete Event SystemKluwer Academic
Publishers, Boston, U.S.A., 1999. ISBN 0-7923-8609-4.

[HWT92] G. Hoffmann and H. Wong-Toi. Symbolic synthesis of supervisory controller®rdneedings of
the American Control Conferenc€hicago, IL, June 1992.

[RW87] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event pr@iéddes.
J. Control and Optimizatio25(1):206—230, 1987.

[WR87] W. M. Wonham and P. Ramadge. On the supremal controllable sulanguange of a given language.
SIAM J. Control and Optimizatiqr25(3):637—659, may 1987.

[WR88] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete event syistaths.
ematics of control of discrete event systefr{4):13—30, 1988.

[Ww96] K. C. Wong and W. M. Wonham. Hierarchical control of discrete—event syst@®iterete Event
Dynamic System$(3):241-273, 1996.

[Ww98] K. C. Wong and W. M. Wonham. Modular control and coordination of discrete—event systems.
Discrete Event Dynamic System3s241-273, 1998.

[Zil01] R. M. Ziller. System Modelling Using Marker States in the RW-Framework Mithoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systeinen
ume 1, pages 121-130. MoPress, 2001.

[ZW90] H. Zhong and W. M. Wonham. On the consistency of hierarchical supervision in discrete—event
systemslEEE Transactions on Automatic Conty@5(10):1125-1134, 1990.

10



