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tThe Ramadge-Wonham model for the 
ontrol of dis
rete systems is a powerful formal designtool for a large 
lass of systems. Its main feature is the ability to synthesize a supervisor for asystem, so that the behavior of the latter is 
on�ned a

ording to a given spe
i�
ation underminimal restri
tions. Until now, the allowed spe
i�
ations were limited to safety and livenessproperties. However, it is not un
ommon to also �nd persisten
e and fairness properties inthe des
ription of rea
tive systems. The present paper shows an appli
ation of a generalizedsynthesis approa
h that is able to deal with all these properties in a uniform way. Theoreti
alaspe
ts are kept short in order to make room for the thorough des
ription of an example,originally solved by means of 
onventional supervisor synthesis. The original solution doesnot ensure fairness and 
an thus be improved with the new approa
h.1 Introdu
tionThe results herein 
ome from a larger work by the same author [Zil05℄, in whi
h an appli
ationexample of supervisor synthesis by Seidl et al. [SKWP02℄ was improved by means of a newapproa
h to the synthesis problem. The main theoreti
al aspe
ts of this approa
h were alsodes
ribed in [ZS03b, ZS03a, ZS05℄. These three publi
ations show how supervisor synthesis [CL99,RW87, RW89, Won04, WR87℄ and µ-
al
ulus model 
he
king [AC88, CE81, CGP99, EC80,Koz82, Koz83, Pra81, S
h03℄ 
an be 
ombined in order to give origin to a new and more powerfulsynthesis tool. Due to la
k of spa
e, however, they do not 
ontain a larger appli
ation example.This paper aims to 
lose this gap � at the 
ost of a brief exposition of the theory. Readers notfamiliar with supervisor synthesis and model 
he
king are invited to look at the above referen
es.The following 
lassi�
ation of system properties [MP88, MP90, S
h03℄ is important to evaluatethe 
apabilities of a formal synthesis approa
h:
• Safety properties des
ribe restri
tions to be obeyed whenever the system is running. Theseproperties are expressed in terms of forbidden states, like for example the state in whi
hthe tra�
 lights at a road 
rossing are green at the same time.
• Liveness properties require that some given state is rea
hable, no matter how often. This
an be used to identify the a

omplishment of a task by the system.
• Persisten
e properties are related to stabilization, e.g. requiring that a bu�er in a manu-fa
turing 
ell does not be
ome empty on
e a 
ertain produ
tion stage has been rea
hed.
• Fairness properties require that some states remain rea
hable, independently of how oftenthey are visited. An example is the requirement that the users of some system should alwaysbe able to log in.



Modern veri�
ation methods allow designers to 
he
k a given spe
i�
ation for properties likethe above. In order to do this, the designer spe
i�es a model of the system and writes down anexpression for ea
h property to be veri�ed. A model 
he
king algorithm then either 
on�rms adesired property or else delivers a 
ounterexample for it. In the latter 
ase, the designer modi�esthe spe
i�
ation and ideally rea
hes a 
orre
t design after some iterations. As implied by thisdes
ription, veri�
ation methods are not 
on
erned with the spe
i�
ation of the model for thesystem, a task whose degree of di�
ulty should not be underestimated. Ideally, the spe
i�
ationitself should be generated by a tool that takes high-level requirements and either outputs a
orre
t spe
i�
ation or reje
ts them if they 
annot be enfor
ed.A solution that takes the latter approa
h is given by the Ramadge-Wonham model for supervisorsynthesis. The system is modeled by a �nite automaton AP 
alled plant, whose transition relationis only partially de�ned. It re�e
ts exa
tly the event sequen
es that might o

ur in the system,thus des
ribing both wanted and unwanted features. A se
ond automaton AE , 
alled spe
i�
ation,is used to restri
t the the system's behavior to something useful. This is done by means of theautomata produ
t, so that AP ×AE represents the desired behavior for the system. Ideally, the
ontrol a
tion is a
hieved by running the plant in parallel with the automaton AP ×AE . Thelatter wat
hes the events o

urring in the plant and tra
ks its state a

ordingly. After ea
htransition, the plant is told the set of events for whi
h a transition is de�ned in the state it justentered by AP ×AE . The plant is supposed to 
hoose its next event from this set. The automatonused to restri
t the plant's a
tion � in this 
ase, AP ×AE � is 
alled supervisor.The model takes into a

ount that not every event in the system 
an be prevented from o

urring.In general, 
ommands, e.g. to turn something on or o� or to set a timer, 
an be inhibited by thesupervisor in order to avoid unwanted states. However, messages originating from the system, likesensor or alarm signals and timeouts, 
annot be prevented from o

urring. A

ordingly, the modeldistinguishes between 
ontrollable and un
ontrollable events. It is therefore not always possibleto use AP ×AE as a supervisor. This happens when some state (p, q) from AP ×AE does notde�ne a transition for an un
ontrollable event that might o

ur in state p of AP . Su
h states are
alled bad states. If an automaton with bad states were used as a supervisor, an un
ontrollableevent 
ould happen unexpe
tedly in a bad state, and it would lose 
ontrol of the system.Due to the large size of the state spa
es, it is not un
ommon that AP ×AE ends up with somebad states, even if the spe
i�
ation AE is apparently sound. In this 
ase, a supervisor synthesispro
edure takes the automata AP and AP ×AE and 
omputes a third automaton AS from themby eliminating the bad states. The pro
edure also prevents livelo
ks and deadlo
ks by eliminatingstates that do not have a path to an a

epting state. The result 
orresponds to the largest non-blo
king solution that does not violate the desired behavior. The idea is that AS 
an be used as asupervisor, provided that the restri
tions imposed by the synthesis pro
edure are still tolerable.In spite of these advantages, the synthesis approa
h also has some limitations. Among themis the fa
t that spe
i�
ations are restri
ted to safety and liveness properties, while persisten
yand fairness are often needed in rea
tive systems. The generalization of supervisor synthesisintrodu
ed in [ZS03a, ZS05, Zil05℄ treats all these properties uniformly.In the sequel, Se
tion 2 presents the generalization of the synthesis approa
h. The main se
tionis Se
tion 3, whi
h is based on an appli
ation of supervisor synthesis to the 
ontrol of a 
all
enter due to Seidl et al. [SKWP02℄. A thorough analysis of their solution shows that it 
annotalways ensure that users will be granted a

ess to the system as expe
ted. This problem 
an beeliminated by adding a fairness property to the spe
i�
ation for the system's desired behavior.This makes the problem an instan
e of the generalized supervisor synthesis problem, whi
h 
anbe solved with the new synthesis approa
h1.1This fa
t does not ex
lude the possibility of solving the problem by making modi�
ations to the systemmodel, still using 
onventional supervisor synthesis. The solution presented here is an alternative that illustratesthe power of the new synthesis approa
h.



2 Generalized Supervisor SynthesisThe generalization of the synthesis pro
edure is a
hieved by translating the synthesis algorithminto the µ-
al
ulus, as illustrated in Figure 1. In a �rst step, a Kripke stru
ture is derived fromthe automaton AP ×AE . The synthesis algorithm is repla
ed by a µ-
al
ulus equation system,whose solution is the set of states that 
orresponds to the supervisor on the Kripke stru
ture.Finally, a proje
tion of this state set onto AP ×AE yields the state set of the supervisor.
Automaton AP ×AE

Kripke stru
ture KAP×AE

Supervisor AS

Set of statesTransformation Synthesis based on equation system Proje
tion onto
AP ×AEConventional algorithmFigure 1: Translation of Supervisor Synthesis into Model Che
kingThe following de�nitions spe
ify the translation of the automaton AP ×AE into a Kripke stru
-ture.De�nition 1 (Labeling of AP ×AE) Given an automaton A := AP ×AE with state set QA,let Vx := {xk−1, . . . , x0} and Vy := {yk−1, . . . , y0} be two sets of Boolean variables su
h that

k ≥ ⌈log2 (|QA|)⌉. Further, let λx : QA → 2V
x and λy : QA → 2V

y be unique labelings of thestates of QA with the variables of Vx and Vy, respe
tively. The fun
tion LA : QA → 2VA thenlabels ea
h state q ∈ QA with the variables from VA := Vx ∪ Vy ∪ {xm, xb}, a

ording to thefollowing:
LA(q) := λx(q) ∪ λy(q) ∪

{

{xm} if q ∈ M

{x̄m} else ∪

{

{xb} if q is a bad state
{x̄b} else.De�nition 2 (Kripke stru
ture of an automaton) Let A = 〈Σ, Q, δ, q0,M〉 be an automa-ton whose states have been labeled a

ording to De�nition 1, and let Σu ⊆ Σ be the set ofun
ontrollable events. Then KA := 〈S,I,R,L〉 is the Kripke stru
ture asso
iated to A, with:

• S := Q × {0, 1}

• I := {(q0, 0), (q0, 1)}

• R((q, 0), (q′, 0)) :⇔ ∃σ ∈ Σu.δ(q, σ, q′)

• R((q, 1), (q′, 1)) :⇔ ∃σ ∈ Σ.δ(q, σ, q′)

• L((q, 0)) := LA(q) ∪ {xu}

• L((q, 1)) := LA(q).The translation of the 
onventional synthesis algorithm into the µ-
al
ulus leads to the equationsystem [Zil05℄










uc
µ
= (♦uc ∨ xmx̄u) ∧ ucg

ug
ν
= �ug ∧ x̄bxu ∧ κ (uc)

ucg
ν
= κ (ug)

(1)Here, the state set represented by ucg 
orresponds to the states of the supervisor, seen on theKripke stru
ture. The proje
tion of this state set ba
k onto the automaton AP ×AE is as follows:



De�nition 3 (Proje
tion of a Kripke stru
ture onto an automaton) Given an automa-ton A with state set QA, as well as its asso
iated Kripke stru
ture KA = 〈S,I,R,L〉 and a set
P ∈ S, the proje
tion of P onto QA is

{q ∈ QA | (q, 0) ∈ P ∨ (q, 1) ∈ P} .It is important to note that, as usual with model 
he
king, the automata AP andAP ×AE , as wellas the Kripke stru
ture KAP×AE
, 
an be 
onstru
ted using symboli
 representation [BCM90a,BCM+90b℄. The same applies to the synthesis pro
ess. This allows to deal with state spa
esmu
h larger than those treated by 
onventional synthesis algorithms. In spite of this advantage,the spe
i�
ation properties are still limited to safety and liveness, be
ause the requirementsfor 
ontrollability and blo
king freedom are �xed in the Ramadge-Wonham approa
h. While
ontrollability is always needed, blo
king freedom 
an be enhan
ed by other properties spe
i�edby the designer.The main result in [Zil05, ZS05℄ states that the synthesis pro
ess 
an be enhan
ed to deal with allspe
i�
ation properties in the same way. Be
ause this in
ludes blo
king freedom, the enhan
edapproa
h is a generalization of the original one. This is a
hieved by allowing the designer to spe
ifyany desired property expressible in the µ-
al
ulus. Sin
e it may be di�
ult to do this dire
tly,temporal logi
s like CTL, CTL∗, or LTL 
an be used as an intermediate step. Any expression inthese logi
s 
an be translated into an equation system of the form [Dam94, S
h03℄:











un
σn= Φn...

u1

σ1= Φ1.This translation of the user-de�ned requirements 
an then be integrated in Equation System 2,whose solution is then proje
ted onto AP ×AE a

ording to De�nition 3. This yields a supervisorthat ensures 
ontrollability as well as the requirements spe
i�ed by the designer.






























un
σn= Φn ∧ x̄u ∧ z...

u1

σ1= Φ1 ∧ x̄u ∧ z

ug
ν
= �ug ∧ x̄bxu ∧ κ (u1)

z
ν
= κ (ug)

(2)
3 Appli
ation ExampleThe example presented below is based on work from Seidl et al. [SKWP02℄, who used 
onventionalsupervisor synthesis to derive a 
ontroller for the 
oordination of di�erent 
omponents of a 
all
enter. Their publi
ation 
ontains the automata used to 
ompute one of the supervisors employed.That way, it is possible to reprodu
e their results with the µ-
al
ulus based supervisor synthesisoutlined in Se
tion 1. By 
onstru
tion, the system under supervision is non-blo
king in the sensethat it 
an always rea
h a marker (a

epting) state. However, it is possible to show that this
ondition is not su�
ient to guarantee that an operator of the 
all 
enter will be able to login to the system under all 
ir
umstan
es. This problem 
an be eliminated by adding a fairnessproperty to the spe
i�
ation of the system's desired behavior. The new synthesis problem 
anthen be solved with the generalized synthesis approa
h des
ribed above.
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Figure 2: Representation of the 
all 
enter3.1 System Des
riptionA 
all 
enter 
onsists of a number of inquiry desks, ea
h of whi
h is handled by an operatorwho re
eives 
alls from the publi
 telephone network. These 
alls enter the 
all 
enter through atelephone swit
h, as shown in Figure 2.The tasks that have to be a

omplished in the 
all 
enter are not limited to 
onne
ting the twoparti
ipants of a 
onversation. It is also ne
essary to keep tra
k of the state of ea
h operator,so that the swit
h 
an always know to whi
h inquiry desks it 
an send new in
oming 
alls. Tothis end, ea
h operator has to log in to the system at the beginning of his shift and to log outbefore leaving. This is a

omplished through login and logout requests sent from the operator tothe swit
h, whi
h has to a
knowledge these requests. Moreover, the operator is allowed to swit
hbetween the states ready and not ready for short breaks. These state 
hanges are also initiatedby requests sent from the operator to the swit
h and a
knowledged by the latter. Moreover, theautomata used to model the system also lead to the 
on
lusion that an operator in the not readystate 
an be made ready by the swit
h without a previous request. This 
ould be used for exampleto automati
ally a
tivate an operator right after login. The swit
h may only send in
oming 
allsto an operator that is logged in and ready. In order to ensure a 
orre
t fun
tionality of the system,the 
ommuni
ation between operator and swit
h goes through a 
ontroller, whi
h is obtainedthrough supervisor synthesis.3.2 System ModelingThe system as viewed by the 
ontroller 
onsists of the two interfa
es named ID (inquiry desk)and SWCON (swit
h 
ontrol). The state spa
e of the problem remains small with respe
t tothe size of the whole system, be
ause it is only ne
essary to 
onsider one operator for ea
h 
all.Moreover, it turns out that the event set 
on
erning the administrative tasks des
ribed above hasno elements in 
ommon with the event set related to the swit
hing tasks. The 
ontroller for ea
hoperator 
an therefore be split into two independent supervisors, whi
h run simultaneously andindependently from ea
h other. In [SKWP02℄ the authors give the automata used to synthesizethe supervisor for the administrative tasks, so that it is possible to reprodu
e these results. Theautomata for the 
oordination of the swit
hing a
tivities are not given 
ompletely in their paperand will re
eive no further attention here.The interfa
e ID between the 
ontroller and the inquiry desk is modeled by the automaton onthe left side of Figure 3. Commands from the 
ontroller to the inquiry desk (shown in itali
s inthe pi
ture) are 
ontrollable, while requests sent by the operator are not. The interpretation ofthe events is as follows:



• idLoginReq : request from an operator to log in to the system.
• idLogin : 
ommand from the 
ontroller to log in the operator and set it not ready.
• idReadyReq : request from an operator to get ready.
• idReady : 
ommand from the 
ontroller to 
hange the operator's state to ready.
• idNotReadyReq : request from an operator to get not ready.
• idNotReady : 
ommand from the 
ontroller to 
hange the operator's state to not ready.
• idLogoutReq : request from an operator to log out of the system.
• idLogout : 
ommand from the 
ontroller to 
hange the operator's state to logged out.
• idEOS (End of Servi
e): request issued by an operator for long-term dea
tivation.0

12 3
idLoginReq

idLogoutReqidReadyReqidLogoutReqidNotReadyReq
idLoginidLogoutidReadyidNotReady

idLogout idEOS idEOSidEOS
ID: 0 12

3
4
5 6

7
swDeregisterswLogIn swLoggedInswLogOutswNotReadyswA
tivate

swLoggedOut
swReadyswLogOut swDea
tivateswReady swNotReady

SWCON:

Figure 3: The interfa
es ID and SWCON used to model the systemThe interfa
e SWCON is modelled by the automaton given on the right side of Figure 3. Com-mands from the 
ontroller to the swit
h are 
ontrollable, while the rea
tions of the latter are not.The interpretation of the events is as follows:
• swLogIn : 
ommand from the 
ontroller to 
hange an operator's state to logged in.
• swLoggedIn : a
knowledgment of the login 
ommand.
• swA
tivate : 
ommand from the 
ontroller to 
hange an operator's state to ready.
• swReady : a
knowledgment of a
tivation 
ommand.
• swDea
tivate: 
ommand from the 
ontroller to 
hange an operator's state to not ready.
• swNotReady : a
knowledgment of dea
tivation 
ommand.
• swLogOut : 
ommand from the 
ontroller to 
hange an operator's state to logged out.
• swLoggedOut : a
knowledgment of logout 
ommand.
• swDeregister: 
ommand from the 
ontroller to 
ompletely dea
tivate an operator.The plant automaton AP is the result of the parallel 
omposition of the automata for the in-terfa
es ID and SWCON. The resulting automaton has 32 states and 152 transitions. Sin
e theplant has to model all physi
ally possible event sequen
es, this automaton allows not only the
orre
t ones, but also many others that are of no use. For example, there 
ould be an idLogout asa rea
tion to an idReadyReq, or an idLoginReq immediately followed by an idLogin, without the
ontroller informing the swit
h of the login with the events swLogin and swLoggedIn in between.



In [SKWP02℄, �ve other automata spe
ify the system's desired behavior. The �rst four, EA1to EA4, are shown in Figure 4. EA1 and EA2 restri
t the 
ommuni
ation possibilities from theoperator towards the swit
h. Similarly, EA3 and EA4 impose restri
tions on the 
ommuni
ationin the opposite dire
tion. EA1 and EA3 are 
on
erned with the event sequen
es for logging in andout, while EA2 and EA4 are related to a
tivation and dea
tivation. Apart from the transitionsshown on the �gure, ea
h automaton has also sel�oops in all states, labeled with the events thatdo not appear expli
itly on the other transitions. This is ne
essary in order not to blo
k theseevents in the produ
t of the automata.
0 1 23idLoginReqidLogoutReqidEOSswLogIn idLoginReqidLogoutReqidEOSswLogOut

idLoginReq idLogoutReqidEOS
Σ1

EA1:
Σ1 ={idLoginReq, idLogoutReq, swLogIn, swLogOut}

0 1 23idReadyReqidNotReadyReq
idEOSswA
tivate idReadyReqidNotReadyReqidEOSswDea
tivate

idReadyReq idNotReadyReqidEOS
Σ2

EA2:
Σ2 ={idReadyReq, idNotReadyReq, swActivate, swDeactivate}

0 1 23swLoggedInswLoggedOutidEOSidLogin swLoggedOutidEOSidLogout
swLoggedInidEOS

Σ3

EA3:
Σ3 ={swLoggedIn, swLoggedOut, idLogin, idLogout}

0 1 23swReadyswNotReadyidEOSidReady swNotReadyidEOSidNotReady
swReadyidEOS

Σ4

EA4:
Σ4 ={swReady, swNotReady, idReady, idNotReady}Figure 4: Spe
i�
ation automata EA1 to EA4: enfor
ing 
ommuni
ation rulesThe �fth automaton, EA5, is the one reprodu
ed in Figure 5. It states that the events swLogIn,swA
tivate, and swDea
tivate are no longer allowed after an idEOS request. Consequently, the onlypossible a
tion following that event is a 
omplete dea
tivation of the operator with swDeregister.Resetting the inquiry desk to the initial state is not part of the modeling and assumes some pro-
edure not des
ribed in the paper. As before, ea
h state has sel�oops labeled with all transitionsthat do not appear expli
itly. 0 1 2swDea
tivateswA
tivateswLogInidEOS swDeregisterSel�oops: Σ \ {swLogIn, swActivate, swDeactivate, swDeregister, idEOS}Figure 5: Spe
i�
ation EA5: allowed behavior after event idEOS



The spe
i�
ation automaton AE 
onsists of the produ
t of the automata EA1 to EA5. Next, theprodu
t AP ×AE is formed. The result is an automaton with 286 states and 1160 transitions. Itturns out to have 23 bad states. AP ×AE is therefore not useful as a supervisor, and supervisorsynthesis is in order to 
ompute its largest implementable subset.3.3 Reasons for the la
k of 
ontrollabilityThe following analysis will be useful to explain the improvements made later on. An eventsequen
e that shows that AP ×AE 
annot be used as a supervisor 
an be found by pi
king outa path that leads from its initial state to one of the bad states. Figure 6 shows one su
h state,namely (10,196). In this state, the automata ID and SWCON on Figure 3 are in states 0 and 3,while the automata EA1 to EA4 on Figure 4 are in states 0, 0, 1, and 1, respe
tively. AutomatonEA5 remains in state 0 and is not important here. Note that the un
ontrollable event swReady 
ano

ur in state 10 of the plant AP , but is not present in state (10,196) of the produ
t AP ×AE .This is also re�e
ted in automaton EA4, whi
h is in state 1 and 
annot exe
ute that event. Thisis a violation of the 
ontrollability 
ondition.49 1013 14 15 16 17
idLoginReqidEOS swLoggedInidLoginReqidLogin swA
tivateidEOS swLogOut swReady 4,1624,195 10,196 9,610,217 13,218 14,9

idLoginReq swLoggedIn idEOSidLoginReq idLogin idEOSFigure 6: Parts of the automata AP (left side) and AP ×AE (right side)State (10,196) 
an be rea
hed by the event sequen
e depi
ted in Figure 7. The last event in thetime diagram is the swReady not present in state (10,196) of AP ×AE and in state 1 of EA4.
Time�ow

idLoginReq swLoginswLoggedInidLoginidLogoutReq swReadyswLogOutswLoggedOutidLogoutidLoginReq swLoginswLoggedInswReady

ID Controller SWCON

Unexpe
ted event →Figure 7: Time diagram showing a 
ounterexample for the 
ontrollability of AP ×AE



The interpretation of the events in the time diagram is as follows: an operator sends a login requestidLoginReq to the 
ontroller, whi
h then sends the 
ommand swLogin to the swit
h. The swit
htakes the appropriate measures to log the operator in and sends the a
knowledgment swLoggedInto the 
ontroller. Suppose further that the swit
h is 
on�gured to automati
ally a
tivate theoperator, so shortly after it also sends the event swReady. In the meantime, the 
ontroller hasinstru
ted the inquiry desk to �nish the login pro
edure with the 
ommand idLogin. For somereason, the operator immediately wants to log out and sends the request idLogoutReq to the
ontroller. The 
ontroller rea
ts with a swLogOut 
ommand to the swit
h. The swit
h 
on�rmsthe operation with swLoggedOut, and the 
ontroller sends the 
ommand idLogout to the inquirydesk. From the point of view of the operator, the system appears now to be ba
k to the initialstate. However, not all automata are ba
k to state 0. The ex
eption is automaton EA4, whi
hremains in state 1, waiting for the event idReady.Eventually, the operator issues a new login request idLoginReq. Be
ause EA4 does not departfrom state 0, the 
ontroller will not visit the same states as before. After the event swLogin andthe 
orresponding a
knowledgment swLoggedIn, the automata AP and AP ×AE are in the states10 and (10,196) respe
tively, as shown in Figure 6. Automaton EA4 is still in state 1. Due to theautomati
 a
tivation, the next event is an unexpe
ted swReady 
oming from the swit
h.3.4 SynthesisThe supervisor obtained in [SKWP02℄ 
an be reprodu
ed using the µ-
al
ulus based approa
h,solving Equation System 1. The result is an automaton with 239 states and 969 transitions.As the authors from [SKWP02℄ note, the supervisor ensures that both interfa
es are managed
orre
tly, no spe
i�
ations are violated, and the restri
tions to the system's behavior are kept assmall as possible. Implementation of the 
ontroller 
an be done automati
ally, thereby in
reasing�exibility when a 
hange in the behavior is needed.3.5 An undesirable situationIn spite of these advantages, it is possible to �nd a subtle problem in the solution presentedin [SKWP02℄. The problem 
an be explained with the aid of Figure 8, whi
h shows part of thesupervisor's transition relation. Assume the �rst nine events in the diagram in Figure 7 � fromidLoginReq to idLogout � o

ur in the sequen
e depi
ted there. The system then returns to itsinitial state, while the supervisor remains in state (0,93). This is again the situation in whi
h theautomata ID, SWCON, and EA1 to EA3 are ba
k to state 0, while EA4 remains in state 1.1,641,81 5,89 1,92 0,93 0,132 2,2 8,4idReadyReqidReady idLogoutReq idLogout idEOSidEOS idEOSidLoginReq idLoginReq swDeregister
Figure 8: Part of the supervisor a

ording to the original solutionFrom Se
tion 3.3 we know that the automaton AP ×AE would rea
h the bad state (10,196) inFigure 6 after the remaining events in the time diagram. In order to avoid this, the supervisor inFigure 8 inhibits the event swLogin in state (0,93). This prevents the swLoggedIn before last inthe diagram from o

urring, so the bad state be
omes unrea
hable. However, inhibiting swLoginin state (0,93) also 
uts o� the path from this state ba
k to the initial state. Sin
e state (0,93)



still has a path to the marker state (8,4) through idEOS and swDeregister, it is not removed by thesynthesis algorithm. The operator, however, may not want to deregister, but rather to log in tothe system again. However, when trying to do so with no matter how many idLoginReq requests,the supervisor gets trapped in the sel�oop around state (0,132). The operator has the impressionof a livelo
k, and is for
ed to issue an idEOS request. It is then dea
tivated by swDeregister,and returning to normal a
tivity is only possible after a reset pro
edure that is not part of theautomata model.This problem 
ould be avoided if states like (0,93), whi
h lose their path ba
k to the initial stateduring synthesis, were also removed. Within the 
onventional synthesis approa
h, however, su
hrequirements 
an be ensured only in very spe
ial 
ases, for example if the produ
t AP ×AE hasonly one marker state. In this 
ase, avoidan
e of blo
king is enough to ensure that every state inthe supervisor retains a path ba
k to that state. The automaton AP ×AE , however, already has amarker state, namely (8,4). Therefore, marking the initial state too would not for
e the synthesisalgorithm to remove state (0,93), be
ause the latter has a path to state (8,4) and therefore ful�llsthe non-blo
king 
riterion.3.6 Improving the supervisorIn order to avoid the problem des
ribed above, the synthesis pro
edure must remove thosestates from AP ×AE whose path ba
k to the initial state 
annot be kept due to 
ontrollabilityreasons. Note, however, that it does not su�
e to require that every state has a path to theinitial state. The automaton AP ×AE has also some states that do not have su
h a path, whi
hare nevertheless needed to allow the dea
tivation through the idEOS request when appropriate.Therefore, if a state that does not have a path to the initial state is found during synthesis, it hasto be removed if and only if it did have su
h a path at the beginning of the 
omputations. Forall other states, it is enough to ensure absen
e of blo
king in the sense of 
onventional synthesis.Of 
ourse, 
ontrollability has also to be ensured for all states.As shown in [Zil05℄, translation of this informal spe
i�
ation into temporal logi
s expressions andthen into a µ-
al
ulus equation system in the form of Equation System 2 is quite straightforward.Solving the equation system and proje
ting the solution onto AP ×AE a

ording to De�nition 3results in a new supervisor for the 
all 
enter, this time with 218 states and 894 transitions. As
ould be expe
ted, it is somewhat smaller than the former solution (239 states, 969 transitions),be
ause now states like (0,93) in Figure 8 are no longer present.The behavior of the system under the new supervisor 
an be 
he
ked using the time diagramin Figure 7 on
e more. Re
all that, with the 
onventional solution, the �rst nine events leadto state (0,93) of the supervisor in Figure 8, and that this state should be avoided by thenew supervisor. Figure 9 shows some states of the new supervisor to allow the 
omparison.After the eighth event in the sequen
e, both supervisors rea
h state (1,64). However, the newsupervisor forbids the event idLogout in that state, thereby preventing states (0,93) and (0,132)from being rea
hed. Instead, the 
ontroller is for
ed to 
hoose the 
ommand idReady to theinquiry desk, whi
h is the 
orre
t response to the swReady noti�
ation previously re
eived. Onlythen the supervisor enables the 
ommand idLogout. This way, the supervisor returns to the initialstate (0,0) through state (5,89), and the operator 
an log in to the system as often as needed.The 
orre
tness of the behavior 
an also be 
he
ked with the automata on Figures 4 and 5.To make sure that the new restri
tions imposed to AP ×AE are still a

eptable, it su�
es to
he
k whether a state in whi
h the operator is logged in and a
tive 
an be rea
hed. This is 
learlythe 
ase, sin
e the �rst events in the time diagram lead to su
h a state. Alternatively, this 
anbe 
on�rmed by means of a simple model 
he
king query on the Kripke stru
ture.
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1,641,81 5,89 1,92 2,2 8,4idReadyReqidReady idLogoutReqidEOS swDeregisteridLogoutFigure 9: Part of the supervisor a

ording to the improved solution4 Con
lusionConventional supervisor synthesis is limited to deal with spe
i�
ations about safety and livenessproperties. While these properties are important for the spe
i�
ation of rea
tive systems, theirdes
ription may also involve requirements that translate to persiten
e and fairness properties.Supervisor synthesis 
an be extended to handle su
h properties when 
ombined with model
he
king. As the example in this paper illustrates, the result is a powerful design tool for thedesign of dis
rete, event-driven systems. The method allows an easy translation of informalspe
i�
ations given at the beginning of the design pro
ess into a formal representation. Fromthat point on, the synthesis of the 
ontroller 
an be done automati
ally. As the result is given inform of a �nite automaton, the designer is still free to 
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