An Application of Generalized Supervisor Synthesis
to the Control of a Call Center

Roberto Ziller
University of Karlsruhe
Institute of Computer Science and Engineering
Prof. Dr. D. Schmid
P.O. Box 6980, 76128 Karlsruhe, Germany
E-Mail: ziller@informatik.uni-karlsruhe.de

Abstract

The Ramadge-Wonham model for the control of discrete systems is a powerful formal design
tool for a large class of systems. Its main feature is the ability to synthesize a supervisor for a
system, so that the behavior of the latter is confined according to a given specification under
minimal restrictions. Until now, the allowed specifications were limited to safety and liveness
properties. However, it is not uncommon to also find persistence and fairness properties in
the description of reactive systems. The present paper shows an application of a generalized
synthesis approach that is able to deal with all these properties in a uniform way. Theoretical
aspects are kept short in order to make room for the thorough description of an example,
originally solved by means of conventional supervisor synthesis. The original solution does
not ensure fairness and can thus be improved with the new approach.

1 Introduction

The results herein come from a larger work by the same author [Zil05], in which an application
example of supervisor synthesis by Seidl et al. [SKWP02| was improved by means of a new
approach to the synthesis problem. The main theoretical aspects of this approach were also
described in |ZS03b, ZS03a, ZS05|. These three publications show how supervisor synthesis |CL99,
RW87, RW89, Won04, WR87| and p-calculus model checking [AC88, CE81, CGP99, ECS80,
Koz82, Koz83, Pra81, Sch03| can be combined in order to give origin to a new and more powerful
synthesis tool. Due to lack of space, however, they do not contain a larger application example.
This paper aims to close this gap — at the cost of a brief exposition of the theory. Readers not
familiar with supervisor synthesis and model checking are invited to look at the above references.

The following classification of system properties [MP88, MP90, Sch03] is important to evaluate
the capabilities of a formal synthesis approach:

e Safety properties describe restrictions to be obeyed whenever the system is running. These
properties are expressed in terms of forbidden states, like for example the state in which
the traffic lights at a road crossing are green at the same time.

e Liveness properties require that some given state is reachable, no matter how often. This
can be used to identify the accomplishment of a task by the system.

e Persistence properties are related to stabilization, e.g. requiring that a buffer in a manu-
facturing cell does not become empty once a certain production stage has been reached.

e Fuairness properties require that some states remain reachable, independently of how often
they are visited. An example is the requirement that the users of some system should always
be able to log in.

Modern verification methods allow designers to check a given specification for properties like
the above. In order to do this, the designer specifies a model of the system and writes down an
expression for each property to be verified. A model checking algorithm then either confirms a
desired property or else delivers a counterexample for it. In the latter case, the designer modifies
the specification and ideally reaches a correct design after some iterations. As implied by this
description, verification methods are not concerned with the specification of the model for the
system, a task whose degree of difficulty should not be underestimated. Ideally, the specification
itself should be generated by a tool that takes high-level requirements and either outputs a
correct specification or rejects them if they cannot be enforced.

A solution that takes the latter approach is given by the Ramadge-Wonham model for supervisor
synthesis. The system is modeled by a finite automaton Ap called plant, whose transition relation
is only partially defined. It reflects exactly the event sequences that might occur in the system,
thus describing both wanted and unwanted features. A second automaton Ag, called specification,
is used to restrict the the system’s behavior to something useful. This is done by means of the
automata product, so that Ap x Ag¢ represents the desired behavior for the system. Ideally, the
control action is achieved by running the plant in parallel with the automaton Ap x Ag. The
latter watches the events occurring in the plant and tracks its state accordingly. After each
transition, the plant is told the set of events for which a transition is defined in the state it just
entered by Ap x Ag. The plant is supposed to choose its next event from this set. The automaton
used to restrict the plant’s action in this case, Ap X Ag is called supervisor.

The model takes into account that not every event in the system can be prevented from occurring.
In general, commands, e.g. to turn something on or off or to set a timer, can be inhibited by the
supervisor in order to avoid unwanted states. However, messages originating from the system, like
sensor or alarm signals and timeouts, cannot be prevented from occurring. Accordingly, the model
distinguishes between controllable and uncontrollable events. It is therefore not always possible
to use Ap x Ag as a supervisor. This happens when some state (p,q) from Ap x Ag does not
define a transition for an uncontrollable event that might occur in state p of Ap. Such states are
called bad states. If an automaton with bad states were used as a supervisor, an uncontrollable
event could happen unexpectedly in a bad state, and it would lose control of the system.

Due to the large size of the state spaces, it is not uncommon that Ap x Ag ends up with some
bad states, even if the specification Ag is apparently sound. In this case, a supervisor synthesis
procedure takes the automata Ap and Ap x Ag and computes a third automaton Ag from them
by eliminating the bad states. The procedure also prevents livelocks and deadlocks by eliminating
states that do not have a path to an accepting state. The result corresponds to the largest non-
blocking solution that does not violate the desired behavior. The idea is that Ag can be used as a
supervisor, provided that the restrictions imposed by the synthesis procedure are still tolerable.

In spite of these advantages, the synthesis approach also has some limitations. Among them
is the fact that specifications are restricted to safety and liveness properties, while persistency
and fairness are often needed in reactive systems. The generalization of supervisor synthesis
introduced in |ZS03a, ZS05, Zil05] treats all these properties uniformly.

In the sequel, Section 2 presents the generalization of the synthesis approach. The main section
is Section 3, which is based on an application of supervisor synthesis to the control of a call
center due to Seidl et al. [SKWP02|. A thorough analysis of their solution shows that it cannot
always ensure that users will be granted access to the system as expected. This problem can be
eliminated by adding a fairness property to the specification for the system’s desired behavior.
This makes the problem an instance of the generalized supervisor synthesis problem, which can
be solved with the new synthesis approach'.

'This fact does not exclude the possibility of solving the problem by making modifications to the system
model, still using conventional supervisor synthesis. The solution presented here is an alternative that illustrates
the power of the new synthesis approach.

2 Generalized Supervisor Synthesis

The generalization of the synthesis procedure is achieved by translating the synthesis algorithm
into the p-calculus, as illustrated in Figure 1. In a first step, a Kripke structure is derived from
the automaton Ap x Ag. The synthesis algorithm is replaced by a p-calculus equation system,
whose solution is the set of states that corresponds to the supervisor on the Kripke structure.
Finally, a projection of this state set onto Ap x Ag yields the state set of the supervisor.

) Synthesis based on equation system (
Kripke structure ICAprgJ >L Set of states
A
Transformation ifjictl‘o: onto
Y

Conventional algorithm

[Automaton Ap x Ag] >[Supervisor As]

Figure 1: Translation of Supervisor Synthesis into Model Checking

The following definitions specify the translation of the automaton Ap x Ag into a Kripke struc-
ture.

Definition 1 (Labeling of Ap x Ag) Given an automaton A := Ap x Ag with state set Q 4,
let V* = {xp_1,...,20} and VY = {yx_1,...,40} be two sets of Boolean variables such that
k> [logs (|Qa|)]. Further, let A* : Qq — 2Y° and NV : Qq — 2Y" be unique labelings of the
states of Q4 with the variables of V* and VY, respectively. The function L4 : Qq — 2YA then
labels each state q € Q4 with the variables from V4 := VU W U {xy, s}, according to the
following:

Y {zm} ifqeM {zp} if q is a bad state
Lalg) =X {a)UA(@) Y { {Zm} elsqe Y { {EZ} elsqe.

Definition 2 (Kripke structure of an automaton) Let A= (%,Q,6,¢", M) be an automa-
ton whose states have been labeled according to Definition 1, and let ¥, C X be the set of
uncontrollable events. Then K4 := (S,Z,R,L) is the Kripke structure associated to A, with:

o S:=Q x{0,1} e R((q,1),(¢',1)) =& Jo € X.6(q,0,q)
o 7:={(¢",0),(¢" 1)} o L((q,0)) == Lalq) U {zu}
e R((¢,0),(¢',0)) = Jo € £,.0(q, 0,¢") e L((q,1)) == Lalq).

The translation of the conventional synthesis algorithm into the p-calculus leads to the equation
system [Zil05]

u, = (Que V T @y) A Ueg
Ug = Oug A Zpxy, A K (uc) (1)
Ucg = & (ug)

Here, the state set represented by u., corresponds to the states of the supervisor, seen on the
Kripke structure. The projection of this state set back onto the automaton Ap x Ag¢ is as follows:

Definition 3 (Projection of a Kripke structure onto an automaton) Given an automa-
ton A with state set Q 4, as well as its associated Kripke structure K4 = (S,Z,R,L) and a set
P € S, the projection of P onto Q4 is

{e€Qal(g,0) e PVg,1) € P}.

It is important to note that, as usual with model checking, the automata Ap and Ap x Ag, as well
as the Kripke structure K 4,x 4., can be constructed using symbolic representation [BCM90a,
BCM™90b]. The same applies to the synthesis process. This allows to deal with state spaces
much larger than those treated by conventional synthesis algorithms. In spite of this advantage,
the specification properties are still limited to safety and liveness, because the requirements
for controllability and blocking freedom are fixed in the Ramadge-Wonham approach. While
controllability is always needed, blocking freedom can be enhanced by other properties specified
by the designer.

The main result in [Zil05, ZS05] states that the synthesis process can be enhanced to deal with all
specification properties in the same way. Because this includes blocking freedom, the enhanced
approach is a generalization of the original one. This is achieved by allowing the designer to specify
any desired property expressible in the p-calculus. Since it may be difficult to do this directly,
temporal logics like CTL, CTL*, or LTL can be used as an intermediate step. Any expression in
these logics can be translated into an equation system of the form [Dam94, Sch03|:

a.
u, = &,

g
Ui =L (1)1.

This translation of the user-defined requirements can then be integrated in Equation System 2,
whose solution is then projected onto Ap x Ag according to Definition 3. This yields a supervisor
that ensures controllability as well as the requirements specified by the designer.

Uy, B Dy AT Az
Ul z P ANT N2 (2)
u, = Oug A Tpry Ak (ur)
14
\ z = ’%(ug)

3 Application Example

The example presented below is based on work from Seidl et al. [SKWP02|, who used conventional
supervisor synthesis to derive a controller for the coordination of different components of a call
center. Their publication contains the automata used to compute one of the supervisors employed.
That way, it is possible to reproduce their results with the p-calculus based supervisor synthesis
outlined in Section 1. By construction, the system under supervision is non-blocking in the sense
that it can always reach a marker (accepting) state. However, it is possible to show that this
condition is not sufficient to guarantee that an operator of the call center will be able to log
in to the system under all circumstances. This problem can be eliminated by adding a fairness
property to the specification of the system’s desired behavior. The new synthesis problem can
then be solved with the generalized synthesis approach described above.

|

|

|

: Controller

|

|

|

|

SWCON Interactlve

A B | voice recorder

|

: Telephone

I switch

' Pa

S S el e Y

Telephone network

Figure 2: Representation of the call center

3.1 System Description

A call center consists of a number of inquiry desks, each of which is handled by an operator
who receives calls from the public telephone network. These calls enter the call center through a
telephone switch, as shown in Figure 2.

The tasks that have to be accomplished in the call center are not limited to connecting the two
participants of a conversation. It is also necessary to keep track of the state of each operator,
so that the switch can always know to which inquiry desks it can send new incoming calls. To
this end, each operator has to log in to the system at the beginning of his shift and to log out
before leaving. This is accomplished through login and logout requests sent from the operator to
the switch, which has to acknowledge these requests. Moreover, the operator is allowed to switch
between the states ready and not ready for short breaks. These state changes are also initiated
by requests sent from the operator to the switch and acknowledged by the latter. Moreover, the
automata used to model the system also lead to the conclusion that an operator in the not ready
state can be made ready by the switch without a previous request. This could be used for example
to automatically activate an operator right after login. The switch may only send incoming calls
to an operator that is logged in and ready. In order to ensure a correct functionality of the system,
the communication between operator and switch goes through a controller, which is obtained
through supervisor synthesis.

3.2 System Modeling

The system as viewed by the controller consists of the two interfaces named ID (inquiry desk)
and SWCON (switch control). The state space of the problem remains small with respect to
the size of the whole system, because it is only necessary to consider one operator for each call.
Moreover, it turns out that the event set concerning the administrative tasks described above has
no elements in common with the event set related to the switching tasks. The controller for each
operator can therefore be split into two independent supervisors, which run simultaneously and
independently from each other. In [SKWP02| the authors give the automata used to synthesize
the supervisor for the administrative tasks, so that it is possible to reproduce these results. The
automata for the coordination of the switching activities are not given completely in their paper
and will receive no further attention here.

The interface ID between the controller and the inquiry desk is modeled by the automaton on
the left side of Figure 3. Commands from the controller to the inquiry desk (shown in italics in
the picture) are controllable, while requests sent by the operator are not. The interpretation of
the events is as follows:

The

idLoginReq : request from an operator to log in to the system.

idLogin : command from the controller to log in the operator and set it not ready.
idReadyReq : request from an operator to get ready.

idReady : command from the controller to change the operator’s state to ready.
idNotReadyReq : request from an operator to get not ready.

idNotReady : command from the controller to change the operator’s state to not ready.
idLogoutReq : request from an operator to log out of the system.

idLogout : command from the controller to change the operator’s state to logged out.

idEOS (End of Service): request issued by an operator for long-term deactivation.

swlogOut

SH

SwDeactivate swNotReady
swNotReady

clupeﬁﬁoqm

idNotReady
idLogoutReq idLogoutReq
idNotReadyReq idReadyReq

Figure 3: The interfaces ID and SWCON used to model the system

interface SWCON is modelled by the automaton given on the right side of Figure 3. Com-

mands from the controller to the switch are controllable, while the reactions of the latter are not.

The

The

interpretation of the events is as follows:

swlLogln : command from the controller to change an operator’s state to logged in.
swlLoggedIn : acknowledgment of the login command.

swActivate : command from the controller to change an operator’s state to ready.
swReady : acknowledgment of activation command.

swDeactivate: command from the controller to change an operator’s state to not ready.
swNotReady : acknowledgment of deactivation command.

swlLogOut : command from the controller to change an operator’s state to logged out.
swLoggedOut : acknowledgment of logout command.

swDeregister: command from the controller to completely deactivate an operator.

plant automaton Ap is the result of the parallel composition of the automata for the in-

terfaces ID and SWCON. The resulting automaton has 32 states and 152 transitions. Since the
plant has to model all physically possible event sequences, this automaton allows not only the
correct ones, but also many others that are of no use. For example, there could be an idLogout as
a reaction to an idReadyReq, or an idLoginReq immediately followed by an idLogin, without the
controller informing the switch of the login with the events swLogin and swLoggedIn in between.

In [SKWPO02], five other automata specify the system’s desired behavior. The first four, EA1l
to EA4, are shown in Figure 4. EA1 and EA2 restrict the communication possibilities from the
operator towards the switch. Similarly, EA3 and EA4 impose restrictions on the communication
in the opposite direction. EA1 and EA3 are concerned with the event sequences for logging in and
out, while EA2 and EA4 are related to activation and deactivation. Apart from the transitions
shown on the figure, each automaton has also selfloops in all states, labeled with the events that
do not appear explicitly on the other transitions. This is necessary in order not to block these

events in the product of the automata.

idNotReadyReq
idReadyReq
idNotReadyReq

EA2:
idReadyReq

idLogoutReq
idNotReadyReq

swDeactivate

swlogOut
31 ={idLoginReq, idLogoutReq, swLogln, swLogOut} 32 ={idReadyReq, idNotReadyReq, swActivate, swDeactivate}

swNotReady

swLoggedOut

EA3:
swLoggedOut

swLoggedIn

idNotReady

idLogout

33 ={swLoggedIn, swLoggedOut, idLogin, idLogout} Y4 ={swReady, swNotReady, idReady, idNotReady}

Figure 4: Specification automata EAl to EA4: enforcing communication rules

The fifth automaton, EA5, is the one reproduced in Figure 5. It states that the events swlLogln,
swActivate, and swDeactivate are no longer allowed after an idEOS request. Consequently, the only
possible action following that event is a complete deactivation of the operator with swDeregister.
Resetting the inquiry desk to the initial state is not part of the modeling and assumes some pro-
cedure not described in the paper. As before, each state has selfloops labeled with all transitions

that do not appear explicitly.

swDeactivate
swActivate
swlLogln

0 idEOS \m steregister\@

Selfloops: 3\ {swLogln, swActivate, swDeactivate, swDeregister, idEOS}

Figure 5: Specification EA5: allowed behavior after event idEOS

The specification automaton Ag consists of the product of the automata EA1 to EA5. Next, the
product Ap x Ag is formed. The result is an automaton with 286 states and 1160 transitions. It
turns out to have 23 bad states. Ap x Ag is therefore not useful as a supervisor, and supervisor
synthesis is in order to compute its largest implementable subset.

3.3 Reasons for the lack of controllability

The following analysis will be useful to explain the improvements made later on. An event
sequence that shows that Ap x Ag cannot be used as a supervisor can be found by picking out
a path that leads from its initial state to one of the bad states. Figure 6 shows one such state,
namely (10,196). In this state, the automata ID and SWCON on Figure 3 are in states 0 and 3,
while the automata EA1 to EA4 on Figure 4 are in states 0, 0, 1, and 1, respectively. Automaton
EA5 remains in state 0 and is not important here. Note that the uncontrollable event swReady can
occur in state 10 of the plant Ap, but is not present in state (10,196) of the product Ap x Ag.
This is also reflected in automaton EA4, which is in state 1 and cannot execute that event. This
is a violation of the controllability condition.

Figure 6: Parts of the automata Ap (left side) and Ap x Ag (right side)

State (10,196) can be reached by the event sequence depicted in Figure 7. The last event in the
time diagram is the swReady not present in state (10,196) of Ap x Ag¢ and in state 1 of EA4.

ID Controller SWCON
——dloginReq |
swlogin

swloggedin

(_/idLng/—é/szead_\k—
%\)

swlogQut
. swloggedOut —=
idLogout
%
swlogin
swlLoggedin

molj suil|

(_/szeadJ./—
Unexpected event —

Figure 7: Time diagram showing a counterexample for the controllability of Ap x Ag

The interpretation of the events in the time diagram is as follows: an operator sends a login request
idLoginReq to the controller, which then sends the command swlLogin to the switch. The switch
takes the appropriate measures to log the operator in and sends the acknowledgment swLoggedIn
to the controller. Suppose further that the switch is configured to automatically activate the
operator, so shortly after it also sends the event swReady. In the meantime, the controller has
instructed the inquiry desk to finish the login procedure with the command idLogin. For some
reason, the operator immediately wants to log out and sends the request idLogoutReq to the
controller. The controller reacts with a swLogOut command to the switch. The switch confirms
the operation with swLoggedOut, and the controller sends the command idLogout to the inquiry
desk. From the point of view of the operator, the system appears now to be back to the initial
state. However, not all automata are back to state 0. The exception is automaton EA4, which
remains in state 1, waiting for the event idReady.

Eventually, the operator issues a new login request idLoginReq. Because EA4 does not depart
from state 0, the controller will not visit the same states as before. After the event swlLogin and
the corresponding acknowledgment swlLoggedIn, the automata Ap and Ap x Ag are in the states
10 and (10,196) respectively, as shown in Figure 6. Automaton EA4 is still in state 1. Due to the
automatic activation, the next event is an unexpected swReady coming from the switch.

3.4 Synthesis

The supervisor obtained in [SKWP02| can be reproduced using the p-calculus based approach,
solving Equation System 1. The result is an automaton with 239 states and 969 transitions.
As the authors from [SKWPO02] note, the supervisor ensures that both interfaces are managed
correctly, no specifications are violated, and the restrictions to the system’s behavior are kept as
small as possible. Implementation of the controller can be done automatically, thereby increasing
flexibility when a change in the behavior is needed.

3.5 An undesirable situation

In spite of these advantages, it is possible to find a subtle problem in the solution presented
in [SKWP02|. The problem can be explained with the aid of Figure 8, which shows part of the
supervisor’s transition relation. Assume the first nine events in the diagram in Figure 7 from
idLoginReq to idLogout — occur in the sequence depicted there. The system then returns to its
initial state, while the supervisor remains in state (0,93). This is again the situation in which the
automata ID, SWCON, and EA1 to EA3 are back to state 0, while EA4 remains in state 1.

idEOS

idReadyReq

bayinoSopi

idLoginReq

Figure 8: Part of the supervisor according to the original solution

From Section 3.3 we know that the automaton Ap x Ag would reach the bad state (10,196) in
Figure 6 after the remaining events in the time diagram. In order to avoid this, the supervisor in
Figure 8 inhibits the event swlLogin in state (0,93). This prevents the swLoggedIn before last in
the diagram from occurring, so the bad state becomes unreachable. However, inhibiting swlLogin
in state (0,93) also cuts off the path from this state back to the initial state. Since state (0,93)

still has a path to the marker state (8,4) through idEOS and swDeregister, it is not removed by the
synthesis algorithm. The operator, however, may not want to deregister, but rather to log in to
the system again. However, when trying to do so with no matter how many idLoginReq requests,
the supervisor gets trapped in the selfloop around state (0,132). The operator has the impression
of a livelock, and is forced to issue an idEOS request. It is then deactivated by swDeregister,
and returning to normal activity is only possible after a reset procedure that is not part of the
automata model.

This problem could be avoided if states like (0,93), which lose their path back to the initial state
during synthesis, were also removed. Within the conventional synthesis approach, however, such
requirements can be ensured only in very special cases, for example if the product Ap x Ag has
only one marker state. In this case, avoidance of blocking is enough to ensure that every state in
the supervisor retains a path back to that state. The automaton Ap x Ag, however, already has a
marker state, namely (8,4). Therefore, marking the initial state too would not force the synthesis
algorithm to remove state (0,93), because the latter has a path to state (8,4) and therefore fulfills
the non-blocking criterion.

3.6 Improving the supervisor

In order to avoid the problem described above, the synthesis procedure must remove those
states from Ap x Ag whose path back to the initial state cannot be kept due to controllability
reasons. Note, however, that it does not suffice to require that every state has a path to the
initial state. The automaton Ap x Ag has also some states that do not have such a path, which
are nevertheless needed to allow the deactivation through the idEOS request when appropriate.
Therefore, if a state that does not have a path to the initial state is found during synthesis, it has
to be removed if and only if it did have such a path at the beginning of the computations. For
all other states, it is enough to ensure absence of blocking in the sense of conventional synthesis.
Of course, controllability has also to be ensured for all states.

As shown in |Zil05], translation of this informal specification into temporal logics expressions and
then into a p-calculus equation system in the form of Equation System 2 is quite straightforward.
Solving the equation system and projecting the solution onto Ap X Ag according to Definition 3
results in a new supervisor for the call center, this time with 218 states and 894 transitions. As
could be expected, it is somewhat smaller than the former solution (239 states, 969 transitions),
because now states like (0,93) in Figure 8 are no longer present.

The behavior of the system under the new supervisor can be checked using the time diagram
in Figure 7 once more. Recall that, with the conventional solution, the first nine events lead
to state (0,93) of the supervisor in Figure 8, and that this state should be avoided by the
new supervisor. Figure 9 shows some states of the new supervisor to allow the comparison.
After the eighth event in the sequence, both supervisors reach state (1,64). However, the new
supervisor forbids the event idLogout in that state, thereby preventing states (0,93) and (0,132)
from being reached. Instead, the controller is forced to choose the command idReady to the
inquiry desk, which is the correct response to the swReady notification previously received. Only
then the supervisor enables the command idLogout. This way, the supervisor returns to the initial
state (0,0) through state (5,89), and the operator can log in to the system as often as needed.
The correctness of the behavior can also be checked with the automata on Figures 4 and 5.

To make sure that the new restrictions imposed to Ap x Ag are still acceptable, it suffices to
check whether a state in which the operator is logged in and active can be reached. This is clearly
the case, since the first events in the time diagram lead to such a state. Alternatively, this can
be confirmed by means of a simple model checking query on the Kripke structure.

idReadyReq

Figure 9: Part of the supervisor according to the improved solution

4 Conclusion

Conventional supervisor synthesis is limited to deal with specifications about safety and liveness
properties. While these properties are important for the specification of reactive systems, their
description may also involve requirements that translate to persitence and fairness properties.
Supervisor synthesis can be extended to handle such properties when combined with model
checking. As the example in this paper illustrates, the result is a powerful design tool for the
design of discrete, event-driven systems. The method allows an easy translation of informal
specifications given at the beginning of the design process into a formal representation. From
that point on, the synthesis of the controller can be done automatically. As the result is given in
form of a finite automaton, the designer is still free to chose between a software or a hardware
implementation.

References

[AC8S| A. Arnold and P. Crubille. A linear algorithm to solve fixed-point equations on
transition systems. Information Processing Letters, 29(2):57 66, 1988.

[BCM90a] C. Berthet, O. Coudert, and J.C. Madre. New ideas on symbolic manipulations of
finite state machines. In International Conference on Computer Design (ICCD),
pages 224-227. IEEE Computer Society, 1990.

[BCM190b] J.R. Burch, EMM. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 10?° states and beyond. In Symposium on Logic in Computer Science
(LICS), pages 1-33, Washington, D.C., June 1990. IEEE Computer Society.

|CE81]| E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In D. Kozen, editor, Workshop on Logics of
Programs, volume 131 of LNCS, pages 52-71, Yorktown Heights, New York, May
1981. Springer.

[CGP99| E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT, London, Eng-
land, 1999.

[CL99] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, Boston, U.S.A., 1999. ISBN 0-7923-8609-4.

[Dam94| M. Dam. Temporal logic, automata, and classical theories - an introduction. Notes
for the Sixth Summer School in Logic, Language, and Information, 1994.

[EC80] E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel
programs as fixpoints. In Colloguium on Automata, Languages and Programming
(ICALP), volume 85 of LNCS, pages 169-181, Berlin, 1980. Springer.

[Koz82]|

[Koz83)

[MP8S]

[MP90)

[Pra81]

[RWS7]

[RW8Y]

[Sch03]

[SKWP02]

[Won04]

[WRS7]

[Zi105]

[ZS03a]

ZS03b|

2505

D. Kozen. Results on the propositional p-calculus. In Colloguium on Automata,
Languages and Programming (ICALP), pages 348-359, 1982.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354, December 1983.

7. Manna and A. Pnueli. The anchored version of the temporal framework. In Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency,
volume 354 of LNCS, pages 428-437, Noordwigherhout, Netherland, May/June
1988. Springer.

7. Manna and A. Pnueli. A hierarchy of temporal properties. In Symposium on
Principles of Distributed Computing, pages 377 408, 1990.

V. Pratt. A decidable p-calculus. In Symposium on Foundations of Computer
Science (FOCS), pages 421-427, New York, 1981. IEEE Computer Society.

P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206-230, 1987.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81 98, 1989.

K. Schneider. Verification of Reactive Systems — Formal Methods and Algorithms.
Texts in Theoretical Computer Science (EATCS Series). Springer, 2003. ISBN 3-
540-00296-0.

M. Seidl, T. Kleinert, J. Wagner, and B. Plannerer. Systematischer Steuerungsen-
twurf zur Kontrolle lastintensiver Call-Center. at - Automatisierungstechnik, 50:19
27, June 2002.

W. M. Wonham. Supervisory control of discrete-event systems. Technical report,
Dept. of Electrical and Computer Engineering, University of Toronto, Jul. 2004.
ECE 1636F /1637S 2004-05, http://www.control.utoronto.ca/DES.

W.M. Wonham and P.J. Ramadge. On the supremal controllable sublanguage of
a given language. SIAM Journal of Control and Optimization, 25(3):637-659, May
1987.

R. Ziller. Eine Verallgemeinerung der Uberwachersynthese mit Hilfe des p-Kalkiils.
Dissertation, Universitdt Karlsruhe, 2005.

R. Ziller and K. Schneider. A generalized approach to supervisor synthesis. In
Formal Methods and Models for Codesign (MEMOCODE), pages 217-226, Mont
Saint-Michel, France, 2003. IEEE Computer Society.

R. Ziller and K. Schneider. A p-calculus approach to supervisor synthe-
sis. In R. Drechsler, editor, GI/ITG/GMM Workshop: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen,
pages 132 143, Bremen, Germany, 24-26 February 2003. Shaker.

R. Ziller and K. Schneider. Combining Supervisor Synthesis and Model Checking.
ACM Transactions on Embedded Computing Systems, 4(2):331-362, May 2005.

