
ABSTRACT

Classical building simulators are typically based on
global systems of differential equations that model the
physical reality and are numerically solved at runtime.
In this paper we propose a new approach. Physical
components of buildings, such as walls and spaces, are
modeled as computational objects that individually
solve the appropriate physical equations at runtime
and exchange changes of surface values, such as tem-
peratures, when necessary. Because the object struc-
ture is derived directly from the building structure and
because generic objects are reused, simulators can be
generated with very low effort. Based on object orient-
ed modeling and automatic code generation, new
physical effects can be easily integrated. As calcula-
tions are triggered by changes, very short real-time re-
sponses are achieved if necessary. Also, fast and
accurate responses to external events can be guaran-
teed. Both features are necessary for real-time tests of
building automation systems.

INTRODUCTION

Today, building simulators are more than just energy
consumption and efficiency calculators. The inclusion
of light, sound, and thermal comfort extend the possi-
ble applications for architects and building engineers
[Mahdavi 96]. Another application is prototyping and
test of building control systems, which typically are
distributed computer programs. Furthermore, simula-
tors can be part of such systems.

We examined existing building simulation approaches
in respect to the last two applications. We found simu-
lators based on numerical equation solvers [Dymola]
and list- or object-based front ends that translate the
building structure and its components into sets of
equations [Diehl and Litz, 99]. Some use object-ori-
ented programming [Mahdavi, 96]. None of them is
directly applicable to testing or can be used as a part of
building control systems because of missing control
interfaces and real-time features, insufficient time res-
olution, or problems with the integration of discrete
events, which are caused by inhabitants, failures, and
actions of the control system.

Going back to the physics of buildings we modeled
building components, such as wall elements, win-

dows, rooms, air volumes, radiators etc., as autono-
mous objects that have topological and aggregation
relations and that exchange value changes, e.g. of sur-
face temperatures, radiation, percentage of openings.
Changes are only transmitted when necessary. This
closely models what happens in reality. Within the au-
tonomous objects, physical effects are modeled in the
classical way by solving the physical equations nu-
merically, e.g. the Fourier equations for the heat flow
through a layered wall. No global system of differen-
tial equations as in “classical” building simulators has
to be solved at runtime. Instead, simple local calcula-
tions suffice. The problem we had to solve was the par-
titioning and modeling of a strongly coupled physical
system in such a way that stable and physically correct
solutions with minimal computational effort result. By
adjusting the minimal deltas for change propagation,
accuracy can be traded for speed. Time resolution is
dynamically adjusted to the first derivative of changes
and to guarantee numerical stability. This results in ex-
cellent dynamic responses to changes.

We can show that our approach works well for thermal
properties including simple air exchange and solar ra-
diation effects. We have also included simple daylight
and artificial lighting effects. The opening of doors
and windows and the action of switches and motion
detectors by persons are easily integrated into the sim-
ulator. Control system interfaces are provided by sock-
ets, based on the TCP/IP protocol. The simulation
approach has been tested for a floor with 27 rooms
with an occupancy controlled building automation
system for heating and lighting.

One major feature of our approach is the ability to gen-
erate a simulator program for a given building for the
specified physical effects from scratch in a very short
time. We have tried two approaches. In the first, the
building components and the structure are semi-auto-
matically mapped into Smalltalk classes. The func-
tionality of the classes (implemented by methods) is
realized by using design patterns from a simulation
specific pattern catalogue and by automatic code gen-
eration [Schütze et al., 99]. The result is a complete
Smalltalk program that simulates the given building.
The second approach is based on the abstract modeling
of building objects as processes and their functionality
as state transition diagrams. Simulated physical values

A NEW APPROACH TO BUILDING SIMULATION BASED ON COMMUNICATING
OBJECTS

Gerhard Zimmermann
University of Kaiserslautern

67653 Kaiserslautern, Germany

Seventh International IBPSA Conference
Rio de Janeiro, Brazil

August 13-15, 2001

- 707 -

are passed between components by signals with pa-
rameters. The modeling language is SDL [Olsen et al.,
94] and the models are automatically translated into
executable C-code for a runtime system that provides
process scheduling. This approach will be shown in
detail. With both approaches real-time execution with
the option to accelerate the execution 10 to 100 times
real-time was achieved. A sufficient time resolution
for continuous effects, ranging from 1s to 1h, for the
27 room floor was observed. Discrete events were
handled immediately.

THE SIMULATION MODEL
Buildings are composed of a relatively small number
of different types of components. In our experience
this number is less than 100. In a large building many
instantiations of those components with different pa-
rameter settings are composed. Depending on the
component type, specific physical models for heat and
humidity flow and storage, air flow, radiation and
sound transmission and reflection apply.

Some components such as luminaires, fans, valves,
windows, or shades can be controlled manually or au-
tomatically. These are the actuators. Other compo-
nents, the sensors, measure physical quantities. Both
types build the interface to control systems.

All components together form a coupled physical sys-
tem. In reality, coupling only occurs between adjacent
components. Thus the topology of the building deter-
mines the physical relations between components.

Coupling is achieved by interface variables. Interfaces
are typically related to those surfaces of components
that are directed towards adjacent ones. For example,
a wall element has surface temperature and heat flow
through the surface as thermal variables. Similar vari-
ables can be defined for radiation, humidity, or sound.
Physical laws determine which variables of adjacent
components correspond to each other.

If we enforce that corresponding interface variables of
adjacent components have the same value at all times,
we arrive at the typical mathematical model of one
system of coupled equations that is solved numerically
at given time intervals.

If, on the other hand, we allow for temporarily diverg-
ing values, we arrive at an iterative approach. The nor-
mally simple component models are solved separately,
using the last known interface values of all adjacent
components as inputs. The iteration continues during a
time interval until the interface values converge. Itera-
tive approaches are also used in classical numerical
equation system solvers in the case of nonlinear equa-
tions.

In a third approach, convergence is not enforced. The
procedure is the same as in the iterative approach, but
no iterations take place during a time interval. New

values are only calculated at every time step, using in-
terface values of the last time step. This occurs in ex-
plicit numerical methods for solving systems of
parabolic differential equations. By making the time
intervals small enough, the errors can be made small
and instabilities can be avoided.

The third method can be seen as a delayed interface
value exchange. Such delays are not unnatural. If, for
example, we model an air volume by a homogeneous
average air temperature, a delayed change of the sur-
face temperature on one side as a reaction to a change
at the opposite side of the volume would even enhance
the models dynamic accuracy.

This example shows that the accurate numerical solu-
tion of a model does not guarantee correct results if the
model does not reflect important details of the reality.
The question of accuracy will be treated in the secti-
non after the next.

All three solution methods are used in our object based
approach. Especially the latter two methods show how
the physical models and the mathematical solutions
can be assigned to components or objects in the com-
putational models. The exchange of interface values
between objects can be achieved in different ways. We
have chosen asynchronous message passing between
autonomous objects. In the next chapter we will ex-
plain how this is realized.

One important aspect of simulators is the treatment of
time. Most input and output variables are time depen-
dent. For energy calculation it is sufficient to incre-
ment time during simulation according to the speed of
the computation. Increments typically correspond to
one hour intervals. This results in the possibility to
simulate a whole year in the order of hours, depending
on the complexity of the simulated object.

For the test of control systems we need a better control
of time. Real-time in this context means that the simu-
lation advances time synchronously to wall clock
time. In addition, sufficient time resolution is required.
For building control a resolution up to 1ms might be
required. Only by meeting real-time requirements, the
correct reaction of control systems can be tested. Test-
ing speed can be enhanced if the control system can
execute with accelerated real-time. This is possible in
many cases by running the control system during tests
on much faster computers than the target hardware.
For this purpose, the building simulator must execute
with exactly the same accelerated real-time.Therefore,
the upper limit of possible acceleration factors is one
of the properties we have to determine.

SIMULATOR OBJECT STRUCTURE
One of the features of objects in our object-based ap-
proach is information hiding. Most of what occurs
within an object is not visible or accessible to its envi-

- 708 -

ronment. This is true for real building components as
well. Interfaces clearly define the access to objects.
Therefore, we quite naturally assign building compo-
nents to objects and component types to object types
(also called classes).

A second feature, that is not strongly supported in
most object oriented environments, is object concur-
rency. In real buildings on the other hand, all compo-
nents act and react in parallel. In order to map the real
world as closely as possible into a computational mod-
el, we model all objects as autonomous processes that
communicate and synchronize each other by signals
with parameters. Every process can execute a physical
or administrative function at its own pace as necessary
to achieve correct results. A heavy concrete wall can
calculate heat transfer at much larger time intervals
than a light door. Elements without storage capaci-
tances or in equilibrium can remain passive until exter-
nal changes are signaled. Only stability requirements
of the numerical method can require calculations.
Thus, in such a system of autonomous objects, com-
puting can be reduced to a minimum. On the other
hand, reactions to sudden changes can be very fast.
Here, the question occurs, what will trigger a change
signal. This is related to simulation accuracy and we
will come back to it in the next chapter.

Another feature is aggregation. This concept relates
directly to the component structure of buildings. In the
same way as buildings are composed of storeys, com-
posed of spaces, composed of offices, composed of
workplaces etc., objects can be composed of objects in
a hierarchical fashion. This concept supports the man-
agement of complexity by partitioning the problem
into simple components or objects as for example a
homogeneous layer in a wall element and, on the other
hand, by allowing abstraction from unnecessary de-
tails by combining components to larger entities as for
example to express homogenous air pressure in a large
open space. Partitioning and abstraction support regu-
larity by introducing similar types (component or ob-
ject) at all levels of the hierarchy.

Partitioning and abstraction are both applied in our
simulation approach. Model calculations can be car-
ried out by objects at all levels of the aggregation hier-
archy.

Partitioning can follow two concepts. The first is the
topological structure, defining a compositional hierar-
chy. The second is the functional decomposition. For
example, the component window can either be com-
posed of frame, sash, and pane or be composed of heat,
thermal radiation, light, air, and sound transmission
objects. Both concepts are mixed in our simulators
with structural decomposition at higher and functional
decomposition at lower levels of the hierarchy.

Aggregation hierarchies are instance hierarchies,
building parts trees of all objects. These trees can be-

come rather large during modeling. A possible ab-
straction is the use of acyclic graphs of object types.
This representation is much more compact than the
tree but instance information is lost. We use a combi-
nation of both by annotating the arcs with instance
names. We call this a type-instance graph. Figure 1
shows an example.

In this simplified example, all wall segments are com-
posed of three windows, a door, and a wall element,
for example brick masonry. In real examples, different
wall segment types would be necessary.

In a simulator every object must be uniquely identifi-
able for the control and observation of variables. In the
type-instance graph the only requirement is that if a
type A is composed of several instances of the same
type, e.g. type B, the instances of B are named differ-
ently. With this condition, every instance can be
uniquely named by the concatenation of instance:type
pairs on the path from the root object to the object in
question. Subsets of all instances can be defined by in-
terpreting instance names as regular expressions.

The aggregation hierarchy does not model adjacen-
cies. To express adjacency relations we use the regular
expressions that identify individual objects or sets of
objects. A set can, for example, be used to describe the
adjacency of a long room (hallway) to all wall seg-
ments of the offices along the hallway with one ex-
pression. Signal paths have to be modeled for all these
adjacencies to exchange interface values during simu-
lation.

THE ERROR MODEL AND CHANGE
PROPAGATION

The purpose of simulation is to model and compute re-
ality as accurately as possible or, more precisely, as ac-
curately as necessary. The latter formulation is
important if the goal of simulation is real-time, accel-
erated real-time or just as fast as possible. The defini-
tion of accuracy strongly depends on the application.
In many applications, the total energy consumption
over a year with a standard weather file has to be with-

Floor

Radiator

Room WallSegm

Desk WallElem Window

Light

Door

AirHeatValve

r[1-5] w[1-15]

d[1-2] rd1

vl1

we1 wd[1-3] dr1

lt1 ht1 ht1 ht1 ai1 ai1

Fig.1: Object type-instance graph example. Types are rectan-
gles, r[1-5] means the instances r1, r2, .. ,r5

has_parts

TSensor
ts1 lt1

- 709 -

in a few percent. In other applications human comfort
has to be precisely calculated under all conditions. In
our application, the test of building automation sys-
tems, the dynamic response of the system as measured
by sensors and controlled by actuators and the building
environment has to be accurate within given limits.

Therefore, dynamic accuracy or dynamic errors have
to be defined. Let us assume a continuous process and
a known continuous output function f(t) as response to
a defined change. The output of the simulation of the
process is a series of values F(i) at discrete times t(i).

A simple error definition would be the deviation of
each calculated value F(i) from the correct value
f(t(i)):

The model is not useful because, as Figure 2 shows,
very few but accurate samples would result in no error
but violate the sampling theorem. On the other hand,
small time delays near a steep ascent (circle) can cause
very large errors. The latter problem can be reduced by
using the Euclidean distance from F(i) to the nearest
point of f(t) as error. But this does not mend the first
problem.

Therefore, we defined a more sophisticated error mod-
el. It assumes that the time series F(i) translates into a
step function in the continuos world. The error is de-
fined by the area between the step function and the
continuos correct curve:

The result is that small the time steps result in small er-
rors. It can be seen in Figure 2 that in the case of con-
stant time steps the error increases with the first
derivative of the function. This error model makes
sense for the assumed application. Fast changes will
cause larger reactions in a control system than slow
ones and therefore have to be modeled with smaller
time steps.

This observation directly results in the need for dy-
namic time step control. This is a known field of nu-
merics. Unfortunately, most methods require more
knowledge about the functions than is available during

real-time simulation. Therefore, we control the time
intervals such that the first derivatives of the interface
values of the computed function together determine
the calculation frequency, if this is higher than the fre-
quency of incoming signals.

By appropriate tuning, the error function defined
above can be kept within a small range, thus realizing
the demand for calculating new values only as often as
necessary. The tuning parameters also determine the
frequency in general and thus the error limit. This re-
sults in the possibility to trade accuracy against speed
of simulation.

This demand has another aspect. In order to also re-
duce the number of signals as far as possible, the send-
er of a change has to decide if the delta is large enough
to be necessary for the receiver to avoid errors larger
than the set limit. Although it would be easier for the
receiver to decide, this would cause unnecessary sig-
nals and also unnecessary wake ups of the receiver ob-
ject’s process. Once a process is running, the model
computation can be executed without much more ef-
fort. Therefore, every incoming signal results in a new
time step at the time of its occurrence.

One of the problems of this type of asynchronous
change propagation is that it may result in many input
signals at some objects with many adjacent objects
that all result from the same event and arrive at nearly
the same time. If each of these signals results in an in-
dividual computation, many unnecessary computa-
tions are performed and unnecessary change signals
are sent. The latter can result in a signal avalanche, de-
feating the goal of minimizing the computational ef-
fort. In this asynchronous world an object cannot
know how many signals to expect. As a solution in
such cases, the object just waits a short time for further
signals to arrive and then starts the computation.

As a consequence of this asynchronous behavior, sig-
nal bursts and thus computational demands can occur
that are larger than what can be handled in real-time or
accelerated real-time. In this case change signals may
be lost on purpose. As long as this loss results in a
small temporary reduction of accuracy it can be toler-
ated. We call this graceful degradation. We only have
to make sure that unique discrete events, such as a per-
son entering a room, are not lost. This mechanism can
also be used to automatically trade speed for accuracy
without changing the simulator.

THE OBJECT BASED MODELING
APPROACH
In our approach the object model with its relations and
functions is translated into formal computational mod-
els from which simulation code is generated automat-
ically. This is different from object oriented simulator
approaches with predefined classes where the object

Fig.2: Continuous function and discrete value approxima-
tion. The circle shows a small error in t resulting in a large
error in f(t)

t

f(t)

e i() F i() f t i()()–=

e i() F i() f t()– td
t i()

t i 1+()

�=

- 710 -

model is only used to generate the instances of the
classes. This makes our approach much more flexible
and easier to extent to new functionalities.

We use the graph description language SDL [Olsen et
al., 94] and the tool set SDT [Telelogic] for editing,
code generation, testing, and as a runtime environ-
ment. SDL has the advantage of only three well de-
fined, integrated types of diagrams over UML’s nine.
Full code generation is mature and relatively efficient.

As a first task the type-instance graph of the building
to be simulated is transformed into SDL block type di-
agrams. In order to make this manual step efficient and
to support reuse at the modeling level, block type tem-
plates are used with very strict interfacing rules. Fig-
ure 3 shows the object type WallSegm with five
instances of three different object types, realizing a
part of the type-instance graph in Figure 1. A total of
eight similar block type diagrams would model the
complete aggregation hierarchy. Leaf nodes are mod-
eled as processes only.

At the top of the diagram the block WallSegm_ctrl re-
fers to a process which models the behavior of Wall-
Segm. Since the segment is composed of five different
areas, for example the brick WallElem with its own
heat transfer component Heat, WallSegm_ctrl only
computes the sum of all five heat transfers and an av-
erage surface temperature. For this purpose
WallSegm_ctrl communicates via parametrized sig-
nals through channels with the instance we1:WallElem
which communicates in the same way with ht1:Heat
where the heat transmission equation is solved. Wal-
lElem has the task to integrate radiation, convection
and conductance. This small example shows how the
computational tasks are distributed to the processes of
the different objects.

The processes are modeled as extended state transition
graphs. Actions model functionality, for example the
heat transfer calculation. Because of the distribution of
the tasks, the process models are quite simple and can
be reused to a large extent for the purpose of simula-
tion. In total, the example results in 13 different pro-
cesses. As mentioned in the previous chapter, all

processes either calculate their own rate of calcula-
tions or are triggered by changes from other objects. In
this paper we will not go into further details of process
modeling.

Figure 3 also shows the communication channels as
arcs. Only the process WallSegm_ctrl can communi-
cate with external objects. All internal instances of
WallSegm can only communicate with the process.
This restriction was introduced for the purpose of a
standard interface of all objects. The result is that
channels only exist between objects with a direct parts
relation, drawn as arcs in Figure 1. In the example, a
Room can only communicate with an adjacent Wall-
Segm by sending signals through Floor.

After all models have been entered in the editor of the
SDT toolbox, the C-code generator and compiler can
be started. This also generates a runtime environment
for the scheduling of all processes. In the example in
Figure 1, a process for each instance is created, 316 in
total. It is therefore very important for the execution
time that process scheduling is efficiently implement-
ed.

A SIMULATOR EXAMPLE

A medium size realistic example of a university top
floor as shown in Figure 4 with 27 offices and labs of
different sizes and three connected hallway sections
was used to show that the approach can be applied to
building simulation. Two large labs are modeled as
three rooms each. Wall types include heavy concrete
ceilings, insulating brick outdoor walls, and light-
weight plasterboard-mineral wool indoor walls. All 70
windows have Thermopane glass. The thirty doors are
of a heavy soundproof type. Heating is provided by 70
hot water radiators with motor valve actuators. All
rooms have electrical equipment as additional heat
sources. Total floor area is about 1000 m2.

The thermal environment is modeled by temperature
sensors for the outdoors, the adjacent staircases, the
floor beneath, and the radiator hot water supply. Solar
radiation is modeled by six sensors measuring the ra-

Fig.3: Block type example WallSegm

Block Type WallSegm

WallSegm_Ctrl

we1:WallElem

wd1:Window

wd2:Window

wd3:Window

dr1:Door

(WallSegmInp) (WallSegmOutp)

a.i1

a.i2

a.i3

a.i4

a.i5

b.i1

b.i2

b.i3

b.i4

b.i5

ig.4: Floor plan of building 32, floor 4

- 711 -

diation perpendicular to the six outdoor wall direc-
tions. All outdoor values have been taken from our
own recordings with a resolution of 2 minutes [http].
The four indoor temperatures have been set to constant
values.

The action of persons was modeled by manually gen-
erated files with events for opening or closing win-
dows or doors. The control system events to control
the radiator valves were also inserted in this input file
for the purpose of testing the simulator stand-alone.

As an interesting detail, a radiators is modeled as heat
transport by water flow in a rectangular container with
heavy walls. The container is divided into sections
along the flow, resulting in a simple numerical solu-
tion. With this model temperature distribution and dy-
namic effects can be modeled more precisely than with
simple energy loss models. Together with the time re-
sponse of the motor driven valves, feedback control of
the water flow can be dynamically tested.

As the first step in a controlled software engineering
process, the component structure of the real building
floor was mapped into an object type-instance graph.
A root object was added for the communication with
the environment and for the interactive simulator con-
trol through Java graphical user interfaces (GUI). This
first step resulted in 34 object types. The instance
count resulted in 904 objects. This relation shows a
high degree of regularity.

The topological relations of the floor are represented
by regular expressions in a second step. Relations be-
tween objects with direct part-of relations have been
excluded, because due to the used SDL block type
templates, direct signal channels exist. Topological re-
lations exist between rooms and wall segments, but,
for example, also between sensors and actuators and
building components. Topological relations exist be-
tween individual instances. Therefore, unique instance
names are constructed as explained in chapter “Simu-
lator Object Structure”. By utilizing regularity and
wildcard tokens in the expression, the necessary num-
ber of expressions is 17.

In the third step the object graph was translated into
SDL block type diagrams by editing the template. This
mechanical work could be automated. Due to the sim-
ilarity of buildings, a high degree of reuse of models is
possible in future projects.

The last constructive step was the creation of the pro-
cesses. Processes define the behavior and the function
of the objects and are described by extended state tran-
sition graphs. A typical object is the heat transfer
through a layered wall element. States define the ini-
tialization and continuation phases of the simulation.
All calculations are done at transitions between states.
State transitions are either triggered by external sig-

nals, for example temperature changes in adjacent
rooms, or by internal timers.

The calculations implement the numerical solutions
for the physical models. Because of the simplicity of
the objects, very simple solutions as for example the
explicit method for the Fourier equation could be used.
All numerical solutions have first been tested with
Matlab, experimenting with different parameters for
time and space resolution.

Timers are controlled at runtime to implement the dy-
namic time-step control. The upper limit for time in-
tervals is set by the stability requirements of the
numerical solution for the object’s simulation func-
tion. Since external signals lead to immediate calcula-
tions, the next time interval starts at this event. Delays
to prevent change avalanches, as explained in the
chapter before the previous, are considered by addi-
tional timers.

Another task of the processes is signal distribution ac-
cording to the regular expressions that describe the to-
pological relations. This is a straightforward task that
could be automated.

In order to keep the number of different object types
and thus process types small, object parameters are
distributed before simulation starts. For the wall seg-
ment example, all dimensions, material properties, and
change propagation limits are parameters. Parametri-
zation could be extended to structural properties, for
example the number and order of layers in a wall seg-
ment. This was not implemented because it would
complicate the processes considerably. Instead, a li-
brary of wall structure types has been set up for reuse.

Reuse is used for all object types. By including option-
al components or functions in reusable types, reuse
can be extended. Unnecessary components or function
can simply be deleted or commented out during an ad-
aptation step to make objects more specific. As an ex-
ample, all indoor wall elements have doors and
windows in the reuse library. Due to this kind of reuse
the effort for the construction and testing of processes
was high for the first simulator, but is much smaller for
future projects.

After the process of constructing the SDL models, the
complete simulator code and runtime environment is
generated automatically by the SDT tool and compiled
into an executable simulator. This simulator exactly
models the building part of interest without redundan-
cy and integrates only the functions of interest. Never-
theless, the generated C-code consisted of 500,000
lines of code for our 27-room example. By setting
change propagation limits, speed and accuracy, espe-
cially dynamic accuracy, can be traded.

- 712 -

SIMULATION RESULTS
Simulation was conducted with synthetic test files and
with 24 hour weather files as measured in Kaiserslau-
tern during February 2000. The weather files were
combined with activities of persons opening and clos-
ing doors and with assumed reactions of a control sys-
tem, opening and closing radiator valves. These
activities were used to test the dynamic reactions to
sudden events, in the same way step functions are used
to test linear devices in electrical engineering. Ex-
treme cases as for example opening of all 60 windows
at the same time were used to test for real-time limita-
tions. In the following chapter we will present some
interesting samples of in- and outputs.

As a first result simulated room temperatures of three
rooms in reaction to different constructed events are
shown in Figure 5. At time 0s the outdoor temperature
drops from 15 to -20°C and goes up to 20°C at 2000s.
All rooms react in a reasonable way. The radiator
valve in rm5 starts to open at 100s and is fully open at
500s. The nominal radiator power is 1000W at 20°C
room temperature. A slow increase in room tempera-
ture can be observed. More dramatic is the reaction to
opening the window in rm3 100% at 300s, closing to
20% at 900s and fully at 2000s. At 1000s additional
solar radiation of 100W enters all rooms. Rooms rm4
and rm5 show a small increase in temperature.

The experiment cannot prove the correctness of the
simulation. Proofs of correctness are very difficult in
building simulation. Our results so far can only show
results as they would be expected. Even if we had
measured room temperature values, we would not
have enough precise data for the building construc-
tion, for example the air leakage of windows and
doors. But the test demonstrates the expected dynamic
behavior. For most control applications this is suffi-

cient. Control algorithms have to be robust against pa-
rameter variations.

The next test looks at the dynamic behavior of a radi-
ator in more detail. Figure 6 shows three temperatures
and the heat gain. The delayed increase in the return
temperature and the time constant of the rise with mea-
surements at radiators at our floor. The marks show
when the object performed a calculation. After the
valve starts to open water flow changes rapidly and the
valve sends signals every two seconds to the radiator.
After the valve is open, calculation intervals drop to an
average of 60s. This is a nice example of dynamic time
step control.

As a test with real environment data Figure 7 shows
the influence of solar radiation on the room tempera-
ture. The strong fluctuations result from clouds pass-
ing the sun. The windows are facing SW. The heat

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

18

20

Simulated Room Temperatures

sec

°C

rm4rms1sec1 tRm
rm3rms1sec1 tRm
rm5rms1sec1 tRm

Fig.5: Simulated temperatures in rooms rm3 (bottom), rm4
(center), and rm5 (top) in group rms1 of section sec1

0 100 200 300 400 500 60 0 70 0 80 0 9 00 1000 110 0 120 0
2

4

6

8

10

12

14

16

sec

°C

Sim ulatio n w ith Ho t W ater Radiato r

rm 5rm s1sec1 tRm
wnd1rpo1 .. tsF

0 100 200 300 400 50 0 60 0 70 0 8 00 9 00 1000 110 0 120 0
0

2 0

4 0

6 0

8 0

sec

°C ra d1rm 5.. to ut

0 100 200 300 40 0 50 0 6 00 7 00 8 00 900 100 0 11 00 12 00
0

50 0

100 0

150 0

sec

W rad1rm 5. . hf

Fig.6: Radiator behavior for valve opening.
From the top: Room, window indoor surface, and hot water
return temperature, radiator heat gain

1 2 3 4 5 6 7 8

x 10
4

15

15.5

16

16.5

17

17.5

Solar Radiation Load

°C

tRm rm2rms2sec1

1 2 3 4 5 6 7 8

x 10
4

0

50

100

150

200

250

300

350

400

450

500

sec

W

hf wnd1rpo1rm2rms2sec1

Fig.7: Simulated room temperature (top) and heat flow
through the room windows (bottom) as reaction to mea-
sured horizontal solar radiation load

- 713 -

flow starts at 8:30 and ends at 17:00. The room tem-
perature decrease is delayed because of the heavy con-
crete floor and ceiling. The shown examples may be
sufficient to give confidence into the dynamic behav-
ior of the simulator.

With a different set of tests we examined the real-time
and accelerated real-time features. As a worst case
scenario all windows and all radiator valves were
opened at time 500s. This, naturally, results in a burst
of change signals. At 600s the outdoor temperature
drops from 20 to -20°C, oscillates twice at 1s intervals
and stays constant at 0°C until at 1000s temperature
resumes measured outdoor values at about 8°C. Figure
8 shows that the measured signal frequency reaches
saturation at 2200 signals per second for a short time.
Since every signal causes a process switch and the sig-
nal monitoring causes some overhead, this is a reason-
able figure for the simulation platform HP-J5000 with
440MHz clock.

Saturation means that signal reaction may be delayed
or even suppressed. We therefore checked the simula-

tor output for a room temperature at different accelle-
rations. At factor 1 the output reacts normally as we
assume. At factors 2 and 4 the drop at 500s cannot be
distinguished from the one with factor 1, but the rise is
delayed, causing overshooting. Still, at 900s the be-
havior returns to normal. We call this behavior fault
tolerant with graceful degradation of accuracy.

Further tests have shown that with this example of
about 1000 building components modeled as indepen-
dent processes and with “normal” environment change
frequencies acceleration factors between 10 and 100
could be reached without degradation of dynamic be-
havior.

CONCLUSION
We have shown that building simulation based on
communicating objects is a viable alternative to equa-
tion solver based approaches. It has been shown that
the dynamical behavior correlates to the actual behav-
ior of buildings. We plan to compare our results to
those of other simulators as it was done by other au-
thors [Mahdavi et al., 96].

Advantages of our approach are clearly the adaptive
time resolution, resulting in small dynamic errors, the
fast reactions to events, and the simplicity to extend
and modify the functionality of the simulator and the
possibility to integrate simulation and control. This
simplicity is based on the fact that the simulator is
modeled at a very abstract object based level and code
is generated automatically. High reuse potentials fur-
ther simplify the modeling process.

REFERENCES
Mahdavi, A.: “SEMPER: A New Computational Environ-
ment for Simulation-based Building Design Assistance”,
Proceedings of the 1996 International Symposium of CIB
W67 (Energy and Mass Flows in the Life Cycle of Build-
ings). Vienna, Austria, 1996.
“Dymola: Dynamic Modeling Laboratory”, Dynasim AB,
Sweden, (http://www.dynasim.se/)
Diehl, A. and L. Litz: ”Object-Oriented Top-Down Model-
ing for Dynamic Simulation of Compression Plants”, Proc.
of the 20th International Congress of Refrigeration, IIR/IIF,
Sydney,1999.
Schütze, M., J. P. Riegel, and G. Zimmermann: “PSiGene -
A Pattern-Based Component Generator for Building Simula-
tion”, Journal Theory and Practice of Object Systems (TA-
POS), Vol. 5, No. 2, 1999.
Olsen, A. et al.:”Systems Engineering Using SDL-92”,
Elsevier Science B.V., 1994.
Telelogic AB, (http://www.telelogic.com)
(http://hauspc1.informatik.uni-kl.de/datalogs/)
Mahdavi, A., S. Lee, R. Brahme, S. Kumar, P. Mathew, and
V. Pal. “Computational Evaluation of Five Energy Simula-
tion Programs in View of Residential Applications,” Report
for the Susquehanna Project, Center for Building Perfor-
mance and Diagnostics, Carnegie Mellon University, Pitts-
burgh, PA, May 23, 1996.

0

500

1000

1500

2000

0 200 400 600 800 1000 1200

signal flow densitySignals/s

s

Fig.8: Signal frequency during real-time simulation of worst
case scenario (the time is about 70s ahead of real-time)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-5

0

5

10

15

sec

°C

Roomtemperature at Different Compression Factors

CompressionFactor 1
CompressionFactor 4
CompressionFactor 2

Fig.9: Simulated room temperature at different real-time
compression factors

- 714 -

	title: A New Approach to Building Simulation Based on Communicating Objects
	subject: Simulation Tools 5
	author: Gerhard Zimmermann
	keywords:

