
ABSTRACT
We define building systems as systems that not only
consist of the load bearing building structure and its
environment, the service systems (installations), and
the control systems, but also include building usage
and users. Our ultimate goal is a virtual building labo-
ratory for the concurrent simulation of all components
of such building systems. This will be an extension of
performance simulators. In this paper we focus on an
efficient modeling process for deriving object-orient-
ed structural models for virtual building laboratories,
with the specialization towards the development, test,
and maintenance of integrated control systems. We
also focus on control systems that support individual
user environments and that can easily be adapted to
changes in the use of building systems. For the pur-
pose of efficient modeling, we divide the building sys-
tem domain into five domains, called building,
service, control, functional unit, and user role domain.
We present corresponding domain models that pre-
define domain dependent modeling primitives for
project specific building system models. All models
are based on the notion of space and matter. In each
domain, spaces have special semantics and build ag-
gregation hierarchies, which we call “backbones”. The
backbones of the domain models are linked by require-
ment and spatial relations, thus composing one inte-
grated building system model.

INTRODUCTION
Nowadays, building simulation is mainly used during
the planning process for improving energy efficiency.
For this purpose, specific models have been developed
for computing heat flow, gains, and losses. This kind
of simulation is called performance simulation. More
advanced models allow the simulation of long wave-
length radiation, light, sound, air flow and service sys-
tems for heating and air conditioning. Simulators
based on these advanced models can also be used for
planning and improving the internal environment for
work places or living spaces and for testing building
control systems.

Performance simulators do not include the inhabitants
of buildings, more precisely the organization of the us-
ers and the user activities. New modeling approaches
have included these entities, but only for the purpose
of requirements descriptions and not for simulation.

Also, only very simple building control algorithms
have been included in performance simulators.

Control systems in contemporary buildings are more
complex than what is available in performance simu-
lators. There is a demand for even more complex inte-
grated building automation systems. We have shown
how such control systems can be efficiently developed
(Queins et al., 2002). One of the difficulties that has to
be solved by control systems is the increasing and
changing demand of the users to take part in the con-
trol of their individual personal environment. Another
difficulty is the fact that the use of commercial build-
ings frequently changes and control systems have to be
flexible enough or easy to adjust to allow for such
changes.

During the development and maintenance of building
control systems that support individually controllable
environments and change of building use, we need an
environment for validation (“Do we build the right
system?”) and verification (“Do we build the system
right?”). This requires more than performance simula-
tion. It requires a view of a buildings as a system, in-
cluding the building itself (the load bearing structure),
the service systems (installations), the functional units
(work places, activity spaces), and the inhabitants or
users themselves (organization). To complete the
building as a system, in short building system, we in-
clude the control system. Because of the differences of
these five components of a building system, we define
five corresponding domains.

The result of our current work, which we present in
this paper, is a modeling approach that supports the
process of deriving models in each of the five domains
and of connecting the five models by relations. Models
are derived on a project by project basis and thus the
modeling process has to be very efficient.

Since the goal is an environment for validating and
verifying control systems by prototyping, all models
have to be transformed into computer programs.
Therefore, we use model notations that can automati-
cally be transformed into executable programs. With
additional features that support experimentation, the
envisioned simulation environment will become a vir-
tual building laboratory (Mahdavi et al., 2002). Be-
sides the testing of control systems, such a virtual
laboratory can also be used for virtual construction

MODELING THE BUILDING AS A SYSTEM

Gerhard Zimmermann
University of Kaiserslautern

67653 Kaiserslautern

Eighth International IBPSA Conference
Eindhoven, Netherlands

August 11-14, 2003

- 1475 -- 1483 -

tasks, as defined in (Clark, 2001). This is a great chal-
lenge because during the design of buildings, changes
in all domains can occur and consistency has to be
maintained. At the moment we only envision a fixed
building design with changing usage. We can also see
a useful application of our approach in the support of
the architectural programming process.

Our object-oriented modeling approach is mainly
based on separation of concerns, hierarchical struc-
tures, and the notion of space and matter. Separation of
concerns is achieved by dividing building system
models into five domain specific models. Domain ex-
perts can derive these models in parallel and the prop-
agation of changes can be minimized. In each domain
a hierarchical backbone of spaces is defined. The se-
mantics of the spaces is domain dependent, but all are
geometric entities that are related to matter entities.
The spaces in the different domains are related by re-
quirements and spatial relations.

The process of deriving models is based on several
levels of model abstraction, ranging from very general
models to project specific models. The more abstract
models define domain specific model primitives and
are presented in this paper. In a project, these primi-
tives are used to create specific models with a high de-
gree of reuse capabilities. Examples are shown in
Figure 5 and Figure 10.

Our approach has been tested in several case studies in
the control domain (Queins et al., 2002) and in one
case study in the building simulation domain (Zim-
mermann, 2002). Case studies in other domains are in
progress.

RELATED WORK
Many individual aspects of our approach have already
been published and used in the computer science and
in the building simulation communities. Here, we will
only refer to a selection.

Object-oriented modeling has a long history in com-
puter science, especially for data bases and in software
engineering, and has been widely adopted with the in-
troduction of the UML (Booch et al., 1999). In our
work, we use UML class diagrams to specify the sys-
tem structure and SDL state transition diagrams for
modeling behavior (Olsen et al., 1997). Telelogic’s
Tau SDL Suite (Telelogic) is used to generate execut-
able C-code from SDL models, including a real-time
runtime environment. It has been successfully used in
the mentioned case studies.

Building simulators can be partitioned into three parts
and classified regarding object-orientation: The input
of building data can be object-oriented (o) or not (n)
and will be called the interface model. For example,
drawing tools can either enter and manipulate building
objects (o) or geometric primitives (n). The internal
data representation is called the data model, also either
(o) or (n). The simulation itself, called the execution

model, is typically based on the numerical solution of
large systems of equations (n), but can also be based
on assigning physical properties to objects and calcu-
lations hidden in these objects (o). With this classifica-
tion, we can describe the degree of object-orientation
of simulation environments. (ooo) would describe a
fully object-oriented environment.

The prototype of an (nnn) environment is DOE-2
(DOE-2). But there are several examples of building
simulation environments with object-oriented inter-
face models; e.g., ESP-r (ESP-r). COMBINE (Com-
bine), IDEA+ (Hendricx, 1997), and SEMPER
(Mahdavi, 1996) use object oriented data models. The
importance and a clear definition of space in data mod-
els is given in (Eastman et al, 1995; Ekholm et al.,
2000). The latter also gives a good overview over oth-
er data models. The model that we present in this paper
is fully object-oriented and is closely related to the
aforementioned models.

Object-oriented execution models have been the goal
of the Energy Kernel System (Clarke et al., 1993). We
understand this as a mixture between distributed prob-
lem solving and central numerical solvers. A fully dis-
tributed (object-oriented) execution model has been
shown by Riegel (Riegel et al., 1997), using design
patterns to create simulators from scratch very effi-
ciently. Another fully object-oriented execution model
has been demonstrated by the author (Zimmermann,
2001), using automatic code generation. Both ap-
proaches can be called (ooo).

Clarke (Clarke, 2001) has pointed out the importance
of integrating different effects in simulation environ-
ments. Current practice is still based on reentering or
reformatting the input data for different simulation en-
vironments. The Building Design Advisor (Papam-
ichael et al., 1997), the ESP-r, and the SEMPER
environment provide all or a subset of thermal, light,
air flow, sound, and HVAC-system simulation. We go
beyond these approaches by also integrating the simu-
lation of functional units and of users.

Functional units, also called activity spaces, have been
formally modeled by (Eastman et al., 1995) and
(Ekholm et al., 2000) to represent requirements of the
organization that will occupy a building. Activities
and organization, representing persons, are combined
in one model. Functional units are also modeled in
SEED (Flemming et al., 1995) for the generation of
space programs. In all cases, no simulation was intend-
ed. In our approach we construct models that can be
transformed into executable software for the purpose
of dynamic simulation. We also assign functional units
and users to separate domains to be more flexible in re-
action to changes of building use.

Executable models of inhabitants of buildings are
equally rare. Human figure models that can move au-
tonomously (Armstrong et al., 1987) are good for vir-
tual reality purposes, but not in our context of testing

- 1476 -- 1484 -

control systems. More to the point are abstractions of
users, as for example route analyses (Koutamanis et
al., 2001). Post-occupancy analysis is a useful method
to define user behavior.

Several projects are concerned with the design process
itself and its modeling. The COMBINE project uses
Combi Nets to model the control of the process. The
M.E.R.O.DE development method (Hendricx, 1997)
is a way for producing a central computer model for all
data involved in the architectural design process.

MODEL ABSTRACTIONS
Computer science has a long history in abstract mod-
eling of complex systems. Physics is strong in model-
ing real world entities and relations. On the basis of
both sciences we express the relation of the physical
entities space, time, matter, and energy with computer
science models.

Building system models deal with different types of
information and we have to communicate with experts
from different domains. Therefore, we use textual,
geometric, topological, object type, process graph,
state transition, and mathematical models, whatever is
most suitable. The first three are used to describe inter-
face models, the last four describe the data and execu-
tion models. In this paper, we concentrate on object
type models.

Object types are abstractions of sets of instances (ob-
jects). As a suitable notation, we chose UML class di-
agrams (Booch et al., 1999). Consequently, in the
following object type diagrams, boxes denote types,
lines with a ∆ denote generalization relations, lines
with a ◊ denote aggregation relations, and normal
lines denote other relations. Names can be assigned to
relations and directed by filled arrowheads.

Throughout this paper we will abbreviate key words in
graphical representations and tables and use the full
words in running text. Both representations are linked
by using bold and normal fonts, as for example Bld-
SpaceT and Building Space Type.

Figure 1 shows the model hierarchy. The three top lev-
els, the system level, the domain level, and the applica-
tion domain level, define types of object types (grey
boxes). All entities in models that are types of types
have names with the postfix Type or T. In principle,
these models define a notation for object type models
at the project level. For all entities at the three top lev-
els semantics are defined. These semantics can have
the form of physical equations or of behavioral mod-
els, for example. Thus, they form a repository of reus-
able development products.

At the system level, the Building System Model (see
Figure 2) defines entities and basic relations that are
specialized in the next two levels. At the domain level,
five different domain models (e.g., Figure 4) are de-
fined. At the application domain level, further special-
izations for application domains are defined, the

application domain models (e.g., Table 1). The project
level shows project models. One example is a Tax
Company project. Figure 5 shows an example. The
project models are composed of object types specific
for the project building system. They are instantiations
of types of object types of the domain and the applica-
tion domain models.

To simplify the graphical representation of the models,
the generalization relations of entities at the domain
and the application domain levels to entities at the sys-
tem level are denoted by «Type». In Tables we call
this relation System Type.

THE BUILDING SYSTEM MODEL
The model in Figure 2 shows the requires and ful-
filledBy relations between the two major Artifact
types SystemObjectType and Requirement. It has to
be pointed out that Requirement is not a type of types
and thus is inherited by all models below the system
model. Requirement mainly occurs between entities
of different project model domains, thus linking the
domains to each other. The meaning is that one object
type has a requirement that is fulfilled by another ob-
ject type. In further stages of the design of the virtual
laboratory these relations will lead to spatial or com-
munication relationships.

As the model shows, all object types of SystemOb-
jectType are either a specialization of SpaceType or
MatterType. Energy and time are features of the be-
havior that is not considered at this point. In regard to
the five domain models, the SpaceType object types
have different semantics and are realizedBy different
MatterType object types. These semantics are ex-
plained in the corresponding five domain chapters.
Common to all domains is that spaces define abstract

Figure 1 Model hierarchy. The grey boxes denote domain
specific models, the white boxes project models. At the ap-
plication domain and the project level only examples for the

building domain are shown.

BuildingSystemModel

Building
Domain
Model

Service
Domain
Model

Control
Domain
Model

FctUnit
Domain
Model

UsrRole
Domain
Model

Office
Building
Domain
Model

TaxCom
Building
Model

Home
Building
Domain
Model

University
Building
Model

system level

application domain level

project level

domain level

- 1477 -- 1485 -

volumes. In the case of the building domain this in-
cludes areas (BuildingAreaType). Following the defi-
nition in (Ekholm et al., 2000), we distinguish factual
space, which is precisely defined by enclosing matter,
and experiential space, which is defined by observa-
tion and interpretation.

As we will see in the domain models, spaces build ag-
gregation hierarchies, the “backbones” of the models.
The spatialRelation of SpaceType connects the back-
bones of different domain models.

Before we go into the details of the domain models, we
look at the requirements engineering process that cre-
ates project models.

THE PROCESS
In this paper we regard requirements engineering as
the process of creating a problem description with a
customer and of translating the problem description
into a requirements specification for a building sys-
tem. The first phase of the translation process is the
definition of the structure and the assignment of re-
quirements to object types of this structure. This phase
is closely related to the architectural programming
process and our modeling approach can be used to
support and formalize this process.The functional pro-
gram would relate to the FunctionalUnitModel, the
space program to the BuildingModel. The second
phase is the modeling of the behavior of object types

to realize the requirements. The third phase is the gen-
eration of an executable prototype of the system. In
this paper, we are concerned with the first phase.

Figure 3 shows the principal dependencies in the pro-
cess. The arrows are a symbol for Requirement enti-
ties as well as the requires and the fulfilledBy
relation, pointing in the direction of both relations.
Starting point in our philosophy is the UserRoleMod-
el. It describes the organization and its members with
roles and functions of the users of a building or build-
ing complex. These functions require functional units
in the FunctionalUnitModel. These may already exist
or have to be provided. This requirements relation can
change with changes of usage of the building system.

Functional units require physical space that has to be
provided by spaces in the BuildingModel. If such
spaces exist, this is an assignment process leading to
spatial relations between functional unit places and
building spaces. Otherwise, the building spaces have
to be created. The relation between functional unit
places and building spaces can change with changing
usage. Additional requirements are environmental
properties, like for example air quality, light level, ac-
cessibility and security. Our idea is not to assign these
requirements to persons or user functions, but to the
corresponding functional units. Most of these proper-
ties require control. In such cases the requirement is
fulfilled primarily by control spheres that secondarily
may require services from service zones. Therefore,
we have a requirements chain from the UserRole-
Model via the FunctionalUnitModel to the Con-
trolModel and the ServiceModel. Some properties
can be directly fulfilled by service zones and service
systems may require control spheres without being re-
lated to other models. Service zones and service sys-
tems also require building spaces. These relations are
reflected in the arrows in Figure 3.

It should be noted, that Figure 3 describes possible
flows of reasoning, but no order in time. In real
projects large parts in each domain may already exist

Figure 2 Building system model

SpaceType

Requirement

MatterType

BldSpaceT

ServZoneT

FUPlaceT

CtrlSphereT

UserFctT

ServSystemT

FUInventoryT

CtrlInstallationT

UserT

BldComponentT

SystemObjectType

BldAreaTBldVolumeT

 Artifact

spatialRel

realizedBy

realizedBy

fulfilledBy

requires

requires

realizedBy

realizedBy

realizedBy

Figure 3 Process overview. The arrows indicate the re-
quires relation.

UserRole
Model

Building
Model

Control
Model

Service
Model

Functional
UnitModel

- 1478 -- 1486 -

or are already specified. In such cases, modeling can
start in all domains simultaneously and only additional
object types and relations are added in the above se-
quence of reasoning.

We will now describe the five domains in more detail
by starting with the building domain, which is gener-
ally known best.

THE BUILDING DOMAIN
All entities in the building domain model in Figure 4
are derived from the building system model in Figure
2. In principal they are specializations of building sys-
tem model entities. For example, BuildingSiteType is
a specialization of BuildingVolumeType.

Most entities are self-explaining and follow the usual
nomenclature of buildings. The BuildingSectionEn-
closureSegmentType (BldSEST) needs some expla-
nation. Objects of this type separate exactly two
BuildingSections (frontOf and behind) and are real-
izedBy BuildingEnclosureUnits. These units can be
composed of rigid elements as for example walls and
windows and of apertures. Figure 5 shows an example
of using these relations..

An application domain model for office buildings is
the Office Building Domain Model. We do not show a
graphical representation here, but an excerpt of a table
representation (Table 1). It shows specializations of
BuildingSectionTypes and of BuildingRigidEle-

mentTypes. RoomTypes are typically defined by
walls and represent factual spaces. CellTypes are used
to partition rooms or sections, often based on a grid.
CellTypes represent experiential spaces. All other new
entities should be self-explaining

All projects with office buildings use the types of ob-
ject types from the Office Building Domain Model. If,
during the modeling process, special types are miss-
ing, they can be added to this application domain mod-
el.

Figure 5 shows an example project model. The cardi-
nalities show the number of instances of each type. For
example, each SmallOfc space is defined by the front
of 2 IndSES1, 1 IndSES2 with a door, and 1
OutdSES1 with a window. During the modeling pro-
cess instance names will be given to these instances.

THE SERVICE DOMAIN
ServiceZoneTypes are defined by the space that is ser-
viced by a ServiceSystemType. This space is not al-
ways enclosed by matter, but rather an experiential
space. Within a zone, a physical value like illuminance
in a light zone may vary geometrically and over time.

Figure 6 shows the specialization of ServiceZone-
Types into five subdomains that are typically realized-
By different system types. Within each of the
subdomains, which are not explained further, finer
specializations in application domain models exist.

Table 1 Office Building Domain Model (excerpt)

Object Type Parent Type System Type

RoomT BldSectionT BldVolumeT

CellT BldSectionT BldVolumeT

OutdSectT BldSectionT BldVolumeT

StoreyT BldSectionT BldVolumeT

WallElemT BldRigidElemT BldComponentT

Figure 4 Building Domain Model

BldSiteT
«BldVolumeT»

BuildingT
«BldVolumeT»

BldSectionT
«BldVolumeT»

BldSurroundT
«BldVolumeT»

BldSEST
«BldAreaT»

BldAirVolT
«BldComponentT»

LocalClimateT
«BldComponentT»

ExtElemT
«BldComponentT»

BldGroundT
«BldComponentT»

BldElementT
«BldComponentT»

BldEnclUnitT
«BldComponentT»

BldApertureT
«BldComponentT»

BldRigidElemT
«BldComponentT»

Micro
ClimateT

«BldComponentT»

frontOf

realizedBy

realizedBy

realizedBy

behind

Figure 5 Project Building Model with corresponding floor-
plan of type StoreyA.

TownSquare
«BldSiteT»

Building32
«BuildingT»

StoreyA
«StoreyT»

Basement
«StoreyT»

SmallOfc
«RoomT»

LargeOfc
«RoomT»

HallA
«HallwayT»

Outdoors
«OutdSectT»

OutdSES1
«OutdSEST»

IndSES2
«IndSEST»

IndSES1
«IndSEST»

OutdEU
«BldEnclUnitT»

IndEUDoor
«BldEnclUnitT»

IndEU
«BldEnclUnitT»

IndWallE
«WallElemT»

RmDoor
«DoorT»

W2Window
«WindowT»

OutWallE
«WallElemT»

1

1

1

5

1

1

2 1 1 1

1

1

frontOf

2

1

3 behind

realizedBy realizedBy realizedBy

1

1

1

1

11

1

1

1

1

6

behind

2

behind
1

1

4
frontOf

LargeOfc

HallA

Outdoors

Small
Ofc

Small
Ofc

1

- 1479 -- 1487 -

THE CONTROL DOMAIN
A ControlSphereType is defined in our model as the
space for which a ControlObjectType assumes the re-
sponsibility for distinct control tasks. Other alterna-
tives, like the definition by actuator or sensor
influence spheres, are not proposed, although possible.
The advantage of our definition is the direct corre-
spondence to service zones or to functional unit plac-
es.

During the requirements engineering phase, Con-
trolObjectTypes are realizedBy ControlSoftware-
Types. During the design phase of the control system,
ControllerType hardware and ControlNetwork-
Types will be added. Figure 7 shows the relations be-
tween these object types.

For offices and similar buildings, a specialization of
the ControlObjectType is not necessary. The relation
to the other domains, especially the service and the
functional unit domains, will be made through require-
ment relations.

The requirements engineering process for control sys-
tems has been studied and tested in several case stud-
ies. Several publications exist, e.g., (Queins et al.,
1999). Therefore, we do not elaborate this domain in
this paper, although test environment for control sys-
tems is the ultimate goal of the presented research.

THE FUNCTIONAL UNIT DOMAIN
The space that defines a functional unit is called Func-
tionalUnitPlaceType. The space can be factual or ex-
periential. As Figure 8 shows, we have three major
levels and additional sublevels in an aggregation hier-
archy of places. The top level OrganizationalUnit-
Type is defined by structures that correspond with
structures in the user role model. There may be re-
quirements such as security that are related to organi-
zational entities. Similarly, FunctionalUnitTypes are
FUPlaces for groups of functions that may have re-
quirements in common. Both are composed of Place-
Types that support one or more functions and that are
realizedBy the assigned InventoryTypes, for exam-
ple furniture. But there may be PlaceTypes, as for ex-
ample for circulation, that have no inventory.

Table 2 shows part of the application domain model
for functional units in offices. In projects an office
work place will typically be realized by a desk, chair,
cabinet, and computer. The work place will have re-
quirements for ambient and work light, for tempera-
ture control, and for air quality. All of them may
depend on occupancy.

THE USER ROLE DOMAIN
User functions and roles are strongly bound to spaces,
especially to functional units as far as this model is

Figure 6 Service Domain Model

ServiceZoneT
«ServZoneT»

HVACZoneT
«ServZoneT»

LightZoneT
«ServZoneT»

UtilityZoneT
«ServZoneT»

SecurityZoneT
«ServZoneT»

ServiceSystemT
«ServSystemT»

HVACSysT
«ServSystemT»

LightSysT
«ServSystemT»

UtilitySysT
«ServSystemT»

SecuritySysT
«ServSystemT»

Communca-
tionZoneT

«ServZoneT»

Communica-
tionSysT

«ServSystemT»

realizedBy

realizedBy

realizedBy

realizedBy

realizedBy

Figure 7 Control Domain Model

CtrlObjectT
«CtrlSphereT»

ControlUnitT
«CtrlInstallationT»

CtrlNetworkT
«CtrlInstallationT»

ControllerT
«CtrlInstallationT»

CtrlSoftwareT
«CtrlInstallationT»

realizedBy

Table 2 Office Functional Unit Domain Model (excerpt)

Object Type Parent Type System Type

WorkPlaceT PlaceT FUPlaceT

SocialPlaceT PlaceT FUPlaceT

ServicePlaceT PlaceT FUPlaceT

StoragePlaceT PlaceT FUPlaceT

FurnitureT InventoryT FUInventoryT

DeskT FurnitureT FUInventoryT

ChairT FurnitureT FUInventoryT

CabinetT FurnitureT FUInventoryT

EquipmentT InventoryT FUInventoryT

Computer EquipmentT FUInventoryT

Figure 8 Functional Unit Domain Model

OrgUnitT
«FUPlaceT»

PlaceT
«FUPlaceT»

InventoryT
«FUInventoryT»

FctUnitT
«FUPlaceT»

realizedBy

- 1480 -- 1488 -

concerned. Therefore, we have defined UserFctT as a
specialization of SpaceType, although it is not really a
space. Like in the functional unit model, we also use
an aggregation hierarchy to introduce roles that are
composed of several functions and to distinguish be-
tween group and individual roles and functions. Figure
9 shows the relations.

Roles of groups and of individuals are realizedBy
UserGroupTypes or IndividualTypes respectively.
The member relation is redundant because we can de-
rive it from the other relations. During the modeling
process it may be temporarily necessary, if we model
the user hierarchy before we model the roles and func-
tions.

As mentioned in section “THE PROCESS”, user roles
and functions are the source of most requirements. In
our approach we try to avoid defining requirements of
users directly. This gives us the freedom to exchange
assignments of users to roles without influencing the
relations to functional units. But this does not exclude
the definition of requirements of users, for example a
specific control requirement for a handicapped person.

For the application domain model we show an excerpt
in Table 3.

The selection has been made in order to explain a sim-
plified Tax Company User Role Model.

This model in Figure 10 shows different functions that
are part of a StaffRole, for example StaffWork or So-
cialFunction. The StaffRole also includes access to
the company work place and moving (circulate) within
the space in order to accomplish the different func-
tions. This fine partitioning has been made in order to
find requirements that can be fulfilled by similar parti-
tions in the functional unit model. The CustomerRole
is composed of other, but also the same functions as
the StaffRole. The Circulate function has been copied
in the diagram to simplify the layout.

The requirements are self-explaining. In this case all
requirements can be fulfilled by Places in the corre-
sponding functional unit model. This relation is not
shown in Figure 10.

CONCLUSION
In this paper we have shown a set of five domain mod-
els and corresponding specializations for the office ap-
plication domain. All models are based on the physical
base-types space and matter. The models cover the
building structure in its environment, the service sys-
tems that supply HVAC, light, and other services, the
integrated control systems, the functional units, and
the user roles. All models are, on the one hand, united
by kind of parent model that defines the top of a gen-
eralization hierarchy, on the other hand, the five mod-

Table 3 Office User Role Domain Model (excerpt)

Object Type Parent Type System Type

StaffRoleT IndivRoleT UserFctT

VisitorRoleT IndivRoleT UserFctT

AccessFctT IndivFctT UserFctT

WorkT IndivFctT UserFctT

SocialFctT IndivFctT UserFctT

BodilyFctT IndivFctT UserFctT

HandlingFctT IndivFctT UserFctT

CompanyUserT UserGroupT UserT

HumanUserT IndivUserT UserT

Figure 9 User Role Domain Model

GroupRoleT
«UserFctT»

IndivRoleT
«UserFctT»

GroupFctT
«UserFctT»

IndivFctT
«UserFctT»

UserGroupT
«UserT»

IndividualT
«UserT»

has

roleFct

1

1..*

roleFct

1..*

1

realizedBy

1..*

1
realizedBy

*

1..*

member

Figure 10 Tax Company User Role Model (simplified) with
requirements

TaxComp
Role

«GroupRoleT»

StaffRole
«StaffRoleT»

StaffWork
«WorkT»

SocialFct
«SocialFctT»

Circulate
«AccessFctT»

AcessFct
«AccessFctT»

BodilyFct
«BodilyFctT»

StaffPerson
«HumanUserT»

TaxCompany
«CompanyUserT»

CustomerRole
«VisitorRoleT»

Circulate
«AccessFctT»

PresentPapers
«HandlingFctT»

Customer
«HumanUserT»

realizedBy

realizedBy

requires

requires

requires

requires

requires

requires

realizedBy

requires

DeskSpace
«RequirementType»

FilingSpace
«RequirementType»

CirculSpace
«RequirementType»

PantryUse
«RequirementType»

LavatoryUse
«RequirementType»

AccessControl
«RequirementType»

- 1481 -- 1489 -

els are connected by requirements relations. To our
knowledge it has never been attempted to integrate
these five domains in one model before.

The five domain models, especially the application
domain models, define a modeling language in terms
of the application that provides a means of communi-
cation between modeling and domain experts. They
are used in project models as predefined elements and
thus provide reusable artifacts.

The next goal in our research is the introduction of be-
havior. For this purpose we will transform the object
type structures of the project models into SDL block
type structures, using patterns that have been devel-
oped for the development of control systems (Metzger
et al., 2002). This transformation can be automated as
it has been shown by Metzger (Metzger et al., 2003).
For each object type a process is generated that defines
its behavior by means of an extended finite state ma-
chine. Processes communicate by exchanging signals.
Dynamic behavior can be introduced by timers. These
models can be automatically transformed into C-code
and then be executed in a run-time environment.

The final goal is to extend this approach to create vir-
tual building laboratories on a project by project basis
and test it in a number of realistic case studies.

ACKNOWLEDGEMENTS
This modeling work could not have been done without
the support of specialists in the field of architecture
and of modeling in computer science. We learned
much from Ardeshir Mahdavi about building models
for simulation and the five submodels went through
many versions and improvements in detailed discus-
sions with Stephanie Bartos. Modeling principles, es-
pecially UML conformity, have been introduced with
the help of Stefan Queins and Andreas Metzger. Both
are also the main contributors to the underlying re-
quirements engineering process for reactive systems
with a strong prototyping component. We also have to
thank the Deutsche Forschungsgemeinschaft for fund-
ing support as part of the Sonderforschungsbereich
501 “Entwicklung großer Systeme mit generischen
Methoden”.

REFERENCES
Armstrong, W. W. et al. 1987. ”Near-Real-Time Control of

Human Figure Models”, IEEE Computer Graphics and
Applications, vol. 7, pp. 52-60.

Booch, G., Rumbaugh, J., and Jacobson, I. 1999. ”The Uni-
fied Modeling Language User Guide”, Addison-Wesley.

Clarke, J.A. and Mac Randal, D.F. 1993. ”The Energy Ker-
nel System: Form and Content”, Proc. Building Simula-
tion ’93, pp. 307-315

Clark, J.A. 2001. ”Energy Simulation in Building Design”,
Butterworth-Heinemann, 2nd Edition, Oxford.

COMBINE, http://erg.ucd.ie/combine.html
DOE-2, http://gundog.lbl.gov/dirsoft/d2whatis.html
Eastman, C.M. and Siabiris, A. 1995. ”A generic building

product model incorporating building type information”,

Automation in Construction 4 (3), pp. 283-304.
Ekholm, A. and Fridquist, S. 2000. ”A concept of space for

building classification, product-modeling, and design”,
Automation in Construction 9, pp. 315-328.

ESP-r, http://www.esru.strath.ac.uk
Flemming, U. and Woodbury, R. 1995. "Software Environ-

ment to Support Early Phases in Building Design
(SEED): Overview" Journal of Architectural Engineer-
ing 1, pp. 147-152

Hendricx, A. 1997. ”Shape, Space and Building Element:
Development of a Conceptual Object Model for the De-
sign Process”, 15th eCAADe Conf. Proceedings, Vien-
na.

Koutamanis, A, et al. 2001. ”Route Analysis in Complex
Buildings”, Proceedings of the 9th Int. Conf. on Com-
puter Aided Architectural Design Futures 2001, pp. 711-
724.

Mahdavi, A. 1996. “SEMPER: A New Computational Envi-
ronment for Simulation-based Building Design Assis-
tance”, Proceedings of the 1996 International
Symposium of CIB W67 (Energy and Mass Flows in the
Life Cycle of Buildings). Vienna, Austria.

Mahdavi, A., Metzger, A., and Zimmermann, G. 2002. ” To-
wards a Virtual Laboratory for Building Performance
and Control”, in R. Trappl (Ed.) Cybernetics and Sys-
tems 2002, Vol. 1, pp. 281-286

Metzger, A., and Queins, S. 2002. ”Specifying Building Au-
tomation Systems with PROBAnD, a Method Based on
Prototyping, Reuse, and Object-Orientation”, OMER -
Object-Oriented Modeling of Embedded Real-Time
Systems, Lecture Notes in Informatics, P-5, Köllen Ver-
lag Bonn, pp. 135-140.

Metzger, A.,and Queins, S. 2003. "Model-Based Generation
of SDL Specifications for the Early Prototyping of Reac-
tive Systems" in M.E. Sherrat (Ed.) Telecommunications
and beyond: The Broader Applicability of SDL and
MSC. Springer Lecture Notes in Computer Science,
LNCS 2599. Heidelberg: Springer-Verlag. pp. 158-169.

Olsen, A. et al. 1997. ”System Engineering Using SDL-92”,
4th Edition, North Holland, Amsterdam.

Papamichael, K., LaPorta, J., and Chauvet, H. 1997. ”Build-
ing Design Advisor: Automated Integration of Multiple
Simulation Tools”, Automation in Construction 6(4), pp.
341-352.

Queins, S. and Zimmermann, G. 1999. ”A First Iteration of a
Reuse-Driven Domain-Specific System Requirements
Analysis Process”, SFB501 Report No. 13/99, Universi-
ty of Kaiserslautern.

Riegel, J. P., Schütze, M., and Zimmermann, G. 1997. ”Pat-
tern-Based Generation of Customized, Flexible Building
Simulators”, CAAD Futures 97, Kluwer Academic Pub-
lishers, Dordtrecht, pp. 285-296.

Telelogic Tau SDL Suite, http://www.telelogic.com
Zimmermann, G. 2002. ”Efficient Creation of Building Per-

formance Simulators Using Automatic Code Genera-
tion” Energy and Buildings, 34, Elsevier Science B.V.,
pp. 973-983.

Zimmermann, G. 2001. ”A New Approach to Building Sim-
ulation based on Communicating Objects”, 7th Interna-
tional IBPSA Conference Proceedings, Rio de Janeiro
pp. 707-714.

- 1482 -- 1490 -

