Eighth International IBPSA Conference
Eindhoven, Netherlands
August 11-14, 2003

MODELING THE BUILDING ASA SYSTEM

Gerhard Zimmermann
University of Kaiserdautern
67653 Kaiserdautern

ABSTRACT

We define building systems as systems that not only
consist of the load bearing building structure and its
environment, the service systems (installations), and
the control systems, but also include building usage
and users. Our ultimate goal isavirtual building labo-
ratory for the concurrent simulation of all components
of such building systems. Thiswill be an extension of
performance simulators. In this paper we focus on an
efficient modeling process for deriving object-orient-
ed structural models for virtual building laboratories,
with the specialization towards the development, test,
and maintenance of integrated control systems. We
also focus on control systems that support individual
user environments and that can easily be adapted to
changes in the use of building systems. For the pur-
pose of efficient modeling, we dividethe building sys-
tem domain into five domains, called building,
service, control, functional unit, and user role domain.
We present corresponding domain models that pre-
define domain dependent modeling primitives for
project specific building system models. All models
are based on the notion of space and matter. In each
domain, spaces have specia semantics and build ag-
gregation hierarchies, which wecall “backbones’. The
backbones of the domain modelsarelinked by require-
ment and spatia relations, thus composing one inte-
grated building system model.

INTRODUCTION

Nowadays, building simulation is mainly used during
the planning process for improving energy efficiency.
For this purpose, specific model s have been devel oped
for computing heat flow, gains, and losses. This kind
of simulation is called performance simulation. More
advanced models allow the simulation of long wave-
length radiation, light, sound, air flow and service sys-
tems for heating and air conditioning. Simulators
based on these advanced models can also be used for
planning and improving the internal environment for
work places or living spaces and for testing building
control systems.

Performance simulators do not include the inhabitants
of buildings, more precisely the organization of the us-
ers and the user activities. New modeling approaches
have included these entities, but only for the purpose
of requirements descriptions and not for simulation.

Also, only very simple building control agorithms
have been included in performance simulators.

Control systems in contemporary buildings are more
complex than what is available in performance simu-
lators. There isademand for even more complex inte-
grated building automation systems. We have shown
how such control systems can be efficiently developed
(Queinset al., 2002). One of the difficultiesthat hasto
be solved by control systems is the increasing and
changing demand of the users to take part in the con-
trol of their individual personal environment. Another
difficulty is the fact that the use of commercia build-
ings frequently changes and control systemshaveto be
flexible enough or easy to adjust to alow for such
changes.

During the development and maintenance of building
control systems that support individually controllable
environments and change of building use, we need an
environment for validation (“Do we build the right
system?’) and verification (“Do we build the system
right?"). This requires more than performance simula
tion. It requires a view of a buildings as a system, in-
cluding the building itself (the load bearing structure),
the service systems (instal lations), the functional units
(work places, activity spaces), and the inhabitants or
users themselves (organization). To complete the
building as a system, in short building system, we in-
clude the control system. Because of the differences of
these five components of a building system, we define
five corresponding domains.

The result of our current work, which we present in
this paper, is a modeling approach that supports the
process of deriving modelsin each of thefive domains
and of connecting the five models by relations. Models
are derived on a project by project basis and thus the
modeling process has to be very efficient.

Since the goal is an environment for validating and
verifying control systems by prototyping, all models
have to be transformed into computer programs.
Therefore, we use model notations that can automati-
cally be transformed into executable programs. With
additional features that support experimentation, the
envisioned simulation environment will become avir-
tual building laboratory (Mahdavi et al., 2002). Be-
sides the testing of control systems, such a virtua
laboratory can also be used for virtual construction

- 1483 -

tasks, as defined in (Clark, 2001). Thisis agreat chal-
lenge because during the design of buildings, changes
in all domains can occur and consistency has to be
maintained. At the moment we only envision a fixed
building design with changing usage. We can aso see
a useful application of our approach in the support of
the architectural programming process.

Our object-oriented modeling approach is mainly
based on separation of concerns, hierarchical struc-
tures, and the notion of space and matter. Separation of
concerns is achieved by dividing building system
models into five domain specific models. Domain ex-
perts can derive these modelsin parallel and the prop-
agation of changes can be minimized. In each domain
a hierarchical backbone of spaces is defined. The se-
mantics of the spaces is domain dependent, but al are
geometric entities that are related to matter entities.
The spaces in the different domains are related by re-
guirements and spatial relations.

The process of deriving models is based on severa
levels of model abstraction, ranging from very general
models to project specific models. The more abstract
models define domain specific model primitives and
are presented in this paper. In a project, these primi-
tives are used to create specific modelswith ahigh de-
gree of reuse capabilities. Examples are shown in
Figure 5 and Figure 10.

Our approach has been tested in several case studiesin
the control domain (Queins et al., 2002) and in one
case study in the building simulation domain (Zim-
mermann, 2002). Case studies in other domains arein
progress.

RELATED WORK

Many individual aspects of our approach have already
been published and used in the computer science and
in the building simulation communities. Here, we will
only refer to a selection.

Object-oriented modeling has a long history in com-
puter science, especialy for data bases and in software
engineering, and has been widely adopted with thein-
troduction of the UML (Booch et al., 1999). In our
work, we use UML class diagrams to specify the sys-
tem structure and SDL state transition diagrams for
modeling behavior (Olsen et al., 1997). Telelogic's
Tau SDL Suite (Telelogic) is used to generate execut-
able C-code from SDL models, including a rea-time
runtime environment. It has been successfully used in
the mentioned case studies.

Building simulators can be partitioned into three parts
and classified regarding object-orientation: The input
of building data can be object-oriented (0) or not (n)
and will be called the interface model. For example,
drawing tools can either enter and manipulate building
objects (0) or geometric primitives (n). The interna
datarepresentation is called the data model, al so either
(o) or (n). The simulation itself, called the execution

model, is typically based on the numerical solution of
large systems of equations (n), but can also be based
on assigning physical properties to objects and calcu-
lations hidden in these objects (0). With this classifica
tion, we can describe the degree of object-orientation
of simulation environments. (000) would describe a
fully object-oriented environment.

The prototype of an (nnn) environment is DOE-2
(DOE-2). But there are severa examples of building
simulation environments with object-oriented inter-
face models; e.g., ESP-r (ESP-r). COMBINE (Com-
bine), IDEA+ (Hendricx, 1997), and SEMPER
(Mahdavi, 1996) use object oriented data models. The
importance and aclear definition of spacein datamod-
els is given in (Eastman et al, 1995; Ekholm et a.,
2000). The latter also gives a good overview over oth-
er datamodels. Themodel that we present in this paper
is fully object-oriented and is closely related to the
aforementioned models.

Object-oriented execution models have been the goa
of the Energy Kernel System (Clarke et al., 1993). We
understand this as amixture between distributed prob-
lem solving and central numerical solvers. A fully dis-
tributed (object-oriented) execution model has been
shown by Riegel (Riegel et al., 1997), using design
patterns to create simulators from scratch very effi-
ciently. Another fully object-oriented execution model
has been demonstrated by the author (Zimmermann,
2001), using automatic code generation. Both ap-
proaches can be called (000).

Clarke (Clarke, 2001) has pointed out the importance
of integrating different effects in simulation environ-
ments. Current practice is till based on reentering or
reformatting the input datafor different simulation en-
vironments. The Building Design Advisor (Papam-
ichadl et al., 1997), the ESP-r, and the SEMPER
environment provide all or a subset of thermal, light,
air flow, sound, and HVA C-system simulation. We go
beyond these approaches by also integrating the simu-
lation of functional units and of users.

Functional units, also called activity spaces, have been
formally modeled by (Eastman et a., 1995) and
(Ekholm et al., 2000) to represent requirements of the
organization that will occupy a building. Activities
and organization, representing persons, are combined
in one model. Functional units are also modeled in
SEED (Flemming et d., 1995) for the generation of
space programs. In al cases, no simulation wasintend-
ed. In our approach we construct models that can be
transformed into executable software for the purpose
of dynamic simulation. We also assign functional units
and usersto separate domainsto be moreflexiblein re-
action to changes of building use.

Executable models of inhabitants of buildings are
equally rare. Human figure models that can move au-
tonomously (Armstrong et al., 1987) are good for vir-
tual reaity purposes, but not in our context of testing

- 1484 -

control systems. More to the point are abstractions of
users, as for example route analyses (Koutamanis et
al., 2001). Post-occupancy anaysisis a useful method
to define user behavior.

Several projects are concerned with the design process
itself and its modeling. The COMBINE project uses
Combi Nets to model the control of the process. The
M.E.R.O.DE development method (Hendricx, 1997)
isaway for producing acentral computer model for all
datainvolved in the architectural design process.

MODEL ABSTRACTIONS

Computer science has a long history in abstract mod-
eling of complex systems. Physicsis strong in model-
ing real world entities and relations. On the basis of
both sciences we express the relation of the physical
entities space, time, matter, and energy with computer
science models.

Building system models deal with different types of
information and we have to communicate with experts
from different domains. Therefore, we use textual,
geometric, topological, object type, process graph,
state transition, and mathematical models, whatever is
most suitable. Thefirst three are used to describe inter-
face models, the last four describe the data and execu-
tion models. In this paper, we concentrate on object
type models.

Object types are abstractions of sets of instances (ob-
jects). As asuitable notation, we chose UML class di-
agrams (Booch et a., 1999). Consequently, in the
following object type diagrams, boxes denote types,
lines with a /A denote generalization relations, lines
with a ¢ denote aggregation relations, and normal
lines denote other relations. Names can be assigned to
relations and directed by filled arrowheads.

Throughout this paper we will abbreviate key wordsin
graphical representations and tables and use the full
words in running text. Both representations are linked
by using bold and normal fonts, as for example Bld-
SpaceT and Building Space Type.

Figure 1 showsthe model hierarchy. The three top lev-
els, the systemlevel, the domain level, and the applica-
tion domain level, define types of object types (grey
boxes). All entities in models that are types of types
have names with the postfix Type or T. In principle,
these models define a notation for object type models
at the project level. For al entities at the three top lev-
els semantics are defined. These semantics can have
the form of physical equations or of behavioral mod-
els, for example. Thus, they form arepository of reus-
able development products.

At the system level, the Building System Model (see
Figure 2) defines entities and basic relations that are
specialized in the next two levels. At the domain level,
five different domain models (e.g., Figure 4) are de-
fined. At the application domain level, further special-
izations for application domains are defined, the

system level

| BuildingSystemModel |

Ir domain level

Building Service Control FctUnit UsrRole
Domain Domain Domain Domain Domain
Model Model Model Model Model

i I application domain level
Office Home
Building Building
Domain Domain
Model Model
I project level
TaxCom University
Building Building
Model Model

Figure 1 Model hierarchy. The grey boxes denote domain
specific models, the white boxes project models. At the ap-
plication domainand the project level only examplesfor the

building domain are shown.

application domain models (e.g., Table 1). The project
level shows project models. One example is a Tax
Company project. Figure 5 shows an example. The
project models are composed of object types specific
for the project building system. They are instantiations
of types of object types of the domain and the applica
tion domain models.

To simplify the graphical representation of the models,
the generdization relations of entities at the domain
and the application domain levelsto entities at the sys-
tem level are denoted by «Type». In Tables we call
this relation System Type.

THE BUILDING SYSTEM MODEL

The model in Figure 2 shows the requires and ful-
filledBy relations between the two major Artifact
types SystemObject Type and Requirement. It hasto
be pointed out that Requirement is not atype of types
and thus is inherited by all models below the system
model. Requirement mainly occurs between entities
of different project model domains, thus linking the
domains to each other. The meaning is that one object
type has a requirement that is fulfilled by another ob-
ject type. In further stages of the design of the virtual
laboratory these relations will lead to spatial or com-
muni cation rel ationships.

As the model shows, al object types of SystemOb-
jectType are either a specialization of SpaceType or
M atter Type. Energy and time are features of the be-
havior that is not considered at this point. In regard to
the five domain models, the SpaceType object types
have different semantics and are realizedBy different
Matter Type object types. These semantics are ex-
plained in the corresponding five domain chapters.
Common to all domainsis that spaces define abstract

- 1485 -

Artifact
I requiresp |
SystemObjectType Requirement
{fulfilledBy
spatialRel | [ﬁ | requires
SpaceType MatterType
AN JAN
|| BldSpaceT realizedByp | BldComponentT
BldVolumeT BldAreaT
|| ServZoneT realizedByp | ServSystemT
| | FUPlaceT realizedByp | FUInventoryT
|| CtrlISphereT realizedByp | CtrlinstallationT
[[UserFetT]__realizedByy " ysert

Figure 2 Building system model

volumes. In the case of the building domain this in-
cludes areas (BuildingAreaType). Following the defi-
nition in (Ekholm et al., 2000), we distinguish factual
space, which is precisely defined by enclosing matter,
and experiential space, which is defined by observa-
tion and interpretation.

Aswe will seein the domain models, spaces build ag-
gregation hierarchies, the “backbones’ of the models.
The spatialRelation of SpaceType connects the back-
bones of different domain models.

Beforewe go into the detail s of the domain models, we
look at the regquirements engineering process that cre-
ates project models.

THE PROCESS

In this paper we regard requirements engineering as
the process of creating a problem description with a
customer and of trandlating the problem description
into a requirements specification for a building sys-
tem. The first phase of the translation process is the
definition of the structure and the assignment of re-
quirementsto object types of this structure. This phase
is closely related to the architectural programming
process and our modeling approach can be used to
support and formalize this process. The functional pro-
gram would relate to the FunctionalUnitModel, the
space program to the BuildingM odel. The second
phase is the modeling of the behavior of object types

to realize the requirements. The third phaseisthe gen-
eration of an executable prototype of the system. In
this paper, we are concerned with the first phase.

UserRole Functional
Model UnitModel

Control
Model

Figure 3 Process overview. The arrows indicate the re-
quires relation.

Service
Model

Figure 3 shows the principal dependenciesin the pro-
cess. The arrows are a symbol for Requirement enti-
ties as well as the requires and the fulfilledBy
relation, pointing in the direction of both relations.
Starting point in our philosophy isthe User RoleM od-
el. It describes the organization and its members with
roles and functions of the users of a building or build-
ing complex. These functions require functional units
inthe FunctionalUnitM odel. These may aready exist
or have to be provided. This requirements relation can
change with changes of usage of the building system.

Functional units require physical space that has to be
provided by spaces in the BuildingM oddl. If such
spaces exist, this is an assignment process leading to
spatia relations between functional unit places and
building spaces. Otherwise, the building spaces have
to be created. The relation between functional unit
places and building spaces can change with changing
usage. Additional requirements are environmental
properties, like for example air quality, light level, ac-
cessibility and security. Our ideais not to assign these
requirements to persons or user functions, but to the
corresponding functional units. Most of these proper-
ties require control. In such cases the requirement is
fulfilled primarily by control spheres that secondarily
may require services from service zones. Therefore,
we have a requirements chain from the UserRole-
Model via the FunctionalUnitModel to the Con-
trolIModel and the ServiceModel. Some properties
can be directly fulfilled by service zones and service
systems may require control spheres without being re-
lated to other models. Service zones and service sys
tems also require building spaces. These relations are
reflected in the arrowsin Figure 3.

It should be noted, that Figure 3 describes possible
flows of reasoning, but no order in time. In red
projects large parts in each domain may aready exist

- 1486 -

«BldVolumeT»
BldSiteT

«BldVolumeT> «BldVolumeT» realizedBy p
BuildingT BldSurroundT
9 «BldComponentT» «BldComponentT» | [«BldComponentT»
LocalClimateT ExtElemT BldGroundT
«BIdVolumeT». realizedBy p
BldSectionT
«BldComponentT» | [«BldComponentT>» «BldComponentT>»
_9 BldAirVolT || BIdElementT Micro
ClimateT
«BldAreaT» | realizedBy p
TrontO™ | glgsesT
behindp «BldComponentT»
BIdEnclUnitT
«BldComponentT» «BldComponentT»
BldRigidElemT BldApertureT

Figure 4 Building Domain Model

or are dready specified. In such cases, modeling can
start in al domains simultaneously and only additional
object types and relations are added in the above se-
guence of reasoning.

We will now describe the five domains in more detail
by starting with the building domain, which is gener-
aly known best.

THE BUILDING DOMAIN

All entities in the building domain model in Figure 4
are derived from the building system model in Figure
2. In principal they are specializations of building sys-
tem model entities. For example, BuildingSiteTypeis
aspecialization of BuildingvVolumeType.

Most entities are self-explaining and follow the usual
nomenclature of buildings. The BuildingSectionEn-
closureSegmentType (BIASEST) needs some expla-
nation. Objects of this type separate exactly two
BuildingSections (frontOf and behind) and are real-
izedBy BuildingEnclosureUnits. These units can be
composed of rigid elements as for example walls and
windows and of apertures. Figure 5 shows an example
of using these relations..

Table 1 Office Building Domain Model (excerpt)

Object Type Parent Type System Type
RoomT BldSectionT BldVolumeT
cdIT BldSectionT BldVolumeT
OutdSectT BldSectionT BldVolumeT
StoreyT BldSectionT BldVolumeT
WallElemT BldRigidElemT | BldComponentT

An application domain model for office buildings is
the Office Building Domain Model. We do not show a
graphical representation here, but an excerpt of atable
representation (Table 1). It shows specializations of
BuildingSectionTypes and of BuildingRigidEle-

BIdSiteT»
TownSquare
1 LargeOfc
1
«BuildingT>»
Building32 Small
Ofc
¥ 1
5 I 1
Outdoors
«StoreyT» «StoreyT»
StoreyA Basement
2 I 1 I 1 I 1
«RoomT>» «RoomT>» «HallwayT» «OutdSectT>»
SmallOfc | | LargeOfc HallA Outdoors
N behi 41 frontOf '
fronto] €Behin ronto» 4| behind
v v
2 2 1I 1 3R’lﬁhind I 1 6
«IndSEST> «IndSEST> «OUtdSEST>»
IndSES1 INdSES2 OutdSES1
realizedBy realizedBy realizedBy
v v v
«BIdENcIUnitT> «BIdENCclUnitT» «BIdENclUnitT>»
IndEU IndEUDoor OutdEU
K 01 T .
1 | 1 1 1] 1
«WallElemT» «DoorT» «WindowT> «WallElemT>»
Indwallg | | RmDoor W2Window OutWallE

Figure 5 Project Building Model with corresponding floor -
plan of type SoreyA.

mentTypes. RoomTypes are typicaly defined by
walls and represent factual spaces. CellTypesare used
to partition rooms or sections, often based on a grid.
CellTypesrepresent experiential spaces. All other new
entities should be self-explaining

All projects with office buildings use the types of ob-
ject types from the Office Building Domain Moddl. If,
during the modeling process, specia types are miss-
ing, they can be added to thisapplication domain mod-
el.

Figure 5 shows an example project model. The cardi-
nalities show the number of instances of each type. For
example, each SmallOfc space is defined by the front
of 2 IndSES1, 1 IndSES2 with a door, and 1
OutdSESL with a window. During the modeling pro-
cess instance names will be given to these instances.

THE SERVICE DOMAIN

ServiceZoneTypesare defined by the spacethat isser-
viced by a ServiceSystemType. This spaceis not a-
ways enclosed by matter, but rather an experiential
space. Within azone, aphysical vauelikeilluminance
in alight zone may vary geometrically and over time.

Figure 6 shows the specidization of ServiceZone-
Typesinto five subdomainsthat are typically realized-
By different system types. Within each of the
subdomains, which are not explained further, finer
speciaizations in application domain models exist.

- 1487 -

«ServZoneT» «ServSystemT>»
ServiceZoneT ServiceSystemT

AN AN
«ServZoneT» . L] «ServSystemT>»
— HVACZoneT | _redizedByd | 1acsysT
«ServZoneT» . L «ServSystemT»
[—| LightZoneT realizedBy)p LightSysT
«ServZoneT» . —| «ServSystemT»
[—| UtilityZoneT realizedByp UtilitySysT
«ServZoneT» . | «ServSystemT»
[—| SecurityZoneT realizedBy p SecuritySysT
«ServZoneT» «ServSystemT>»
L_| Communca- realizedByp | Communica-
tionZoneT tionSysT

Figure 6 Service Domain Model

«CtrISphereT>» realized By’
CtrlObjectT
«CtrlinstallationT>» «CtrlinstallationT>»
_? ControlUnitT CtrINetworkT
[

«CitrlinstallationT>»
ControllerT

«CtrlinstallationT>
CtriSoftwareT

Figure 7 Control Domain Model

THE CONTROL DOMAIN

A ControlSphereTypeis defined in our model as the
space for which aContr olObj ect Type assumesthere-
sponsibility for distinct control tasks. Other aterna-
tives, like the definition by actuator or sensor
influence spheres, are not proposed, although possible.
The advantage of our definition is the direct corre-
spondence to service zones or to functional unit plac-
€s.

During the requirements engineering phase, Con-
trolObjectTypes are realizedBy Control Software-
Types. During the design phase of the control system,
Controller Type hardware and ControlNetwork-
Types will be added. Figure 7 shows the relations be-
tween these object types.

For offices and similar buildings, a speciaization of
the ControlObjectTypeis not necessary. The relation
to the other domains, especialy the service and the
functional unit domains, will be made through require-
ment relations.

The requirements engineering process for control sys-
tems has been studied and tested in several case stud-
ies. Severa publications exist, e.g., (Queins et a.,
1999). Therefore, we do not elaborate this domain in
this paper, athough test environment for control sys-
temsisthe ultimate goal of the presented research.

«FUPlaceT>»

OrgUunitT
«FUPlaceT»
FctUnitT
«FUPlaceT»| realizedByp «FUInventoryT>
PlaceT Inventory T

Figure 8 Functional Unit Domain Model

THE FUNCTIONAL UNIT DOMAIN

The space that defines afunctional unit is called Func-
tionalUnitPlaceType. The space can be factual or ex-
periential. As Figure 8 shows, we have three major
levels and additional sublevelsin an aggregation hier-
archy of places. The top level OrganizationalUnit-
Type is defined by structures that correspond with
structures in the user role model. There may be re-
guirements such as security that are related to organi-
zationa entities. Similarly, FunctionalUnitTypes are
FUPIaces for groups of functions that may have re-
guirements in common. Both are composed of Place-
Types that support one or more functions and that are
realizedBy the assigned InventoryTypes, for exam-
ple furniture. But there may be PlaceTypes, as for ex-
ample for circulation, that have no inventory.

Table 2 Office Functional Unit Domain Model (excerpt)

Object Type Parent Type System Type
WorkPlaceT PlaceT FUPlaceT
SocialPlaceT PlaceT FUPlaceT
ServicePlaceT | PlaceT FUPlaceT
StoragePlaceT | PlaceT FUPlaceT
FurnitureT Inventory T FUInventoryT
DeskT FurnitureT FUlInventory T
CharT FurnitureT FUInventory T
CabinetT FurnitureT FUInventory T
EquipmentT Inventory T FUInventoryT
Computer EquipmentT FUInventory T

Table 2 shows part of the application domain model
for functional units in offices. In projects an office
work place will typically be realized by a desk, chair,
cabinet, and computer. The work place will have re-
quirements for ambient and work light, for tempera-
ture control, and for air quality. All of them may
depend on occupancy.

THE USER ROLE DOMAIN

User functions and roles are strongly bound to spaces,
especialy to functional units as far as this model is

- 1488 -

«UserFctT» 1.*
GroupRoleT

L9

realizedByp

1

roleFct Usert>
v UserGroupT
«UserFctT»
has| | | GroupFctT

member
v

«UserFctT> | 1-* realizedByp
IndivRoleT —I 1 1%
«UserT»
1 Individual T
roleFct

1“"v

«UserFctT»
IndivFctT

Figure 9 User Role Domain Model

concerned. Therefore, we have defined User FctT asa
speciaization of SpaceType, although itisnot really a
space. Like in the functional unit model, we also use
an aggregation hierarchy to introduce roles that are
composed of severa functions and to distinguish be-
tween group and individual rolesand functions. Figure
9 shows the relations.

Roles of groups and of individuals are realizedBy
UserGroupTypes or IndividualTypes respectively.
The member relation is redundant because we can de-
rive it from the other relations. During the modeling
process it may be temporarily necessary, if we model
the user hierarchy before we model the roles and func-
tions.

Asmentioned in section “ THE PROCESS”, user roles
and functions are the source of most requirements. In
our approach wetry to avoid defining requirements of
users directly. This gives us the freedom to exchange
assignments of users to roles without influencing the
relations to functional units. But this does not exclude
the definition of requirements of users, for example a
specific control requirement for ahandicapped person.

For the application domain model we show an excerpt
in Table 3.

Table 3 Office User Role Domain Model (excerpt)

Object Type Parent Type System Type
StaffRoleT IndivRoleT UserFctT
VisitorRoleT IndivRoleT UserFctT
AccessFctT IndivFctT UserFctT
WorkT IndivFctT UserFctT
SocialFctT IndivFctT UserFctT
BodilyFctT IndivFctT UserFctT
HandlingFctT IndivFctT UserFctT
CompanyUsexT UserGroupT UserT
HumanUserT IndivUserT UserT

«GroupRole T> realizedByp «CompanyUserT»
TaxComp TaxCompany
Role
(4] .
<StafRoleT» | realizedBy P [«HumanUserT>
StaffRole StaffPerson
«AccessFctT» requiresp [«RequirementType»
[—| AcessFct AccessControl
«AccessFctT» requiresp [«RequirementType»
—| Circulate CirculSpace
«WOTKT> requiresp «RequirementType»
[—| StaffWork DeskSpace ||
«RequirementType»
FilingSpace
«SocialFctT>» requiresp «RequirementType»
[—| SocialFct PantryUse
«BodilyFctT» requiresp «RequirementType»
— | BodilyFct LavatoryUse
«VisitorRoleT>» realizedBy P «HumanUserT>
— | CustomerRole Customer
«HandlingFctT>» requires »
PresentPapers
«ACCessFCtT> requiresp
Circulate

Figure 10 Tax Company User Role Model (simplified) with
requirements

The selection has been made in order to explain asim-
plified Tax Company User Role Model.

Thismodel in Figure 10 shows different functions that
are part of a StaffRole, for example StaffWork or So-
cialFunction. The StaffRole also includes access to
the company work place and moving (circulate) within
the space in order to accomplish the different func-
tions. This fine partitioning has been made in order to
find requirementsthat can befulfilled by similar parti-
tionsin the functional unit model. The Customer Role
is composed of other, but also the same functions as
the SaffRole. The Circulatefunction has been copied
in the diagram to simplify the layout.

The requirements are self-explaining. In this case all
requirements can be fulfilled by Places in the corre-
sponding functional unit model. This relation is not
shown in Figure 10.

CONCLUSION

In this paper we have shown a set of five domain mod-
elsand corresponding specializations for the office ap-
plication domain. All models are based on the physical
base-types space and matter. The models cover the
building structure in its environment, the service sys-
tems that supply HVAC, light, and other services, the
integrated control systems, the functional units, and
the user roles. All models are, on the one hand, united
by kind of parent model that defines the top of a gen-
eralization hierarchy, on the other hand, the five mod-

- 1489 -

els are connected by requirements relations. To our
knowledge it has never been attempted to integrate
these five domains in one model before.

The five domain models, especialy the application
domain models, define a modeling language in terms
of the application that provides a means of communi-
cation between modeling and domain experts. They
are used in project models as predefined elements and
thus provide reusable artifacts.

The next goal in our research is the introduction of be-
havior. For this purpose we will transform the object
type structures of the project models into SDL block
type structures, using patterns that have been devel-
oped for the development of control systems (Metzger
et a., 2002). This transformation can be automated as
it has been shown by Metzger (Metzger et al., 2003).
For each object type aprocessis generated that defines
its behavior by means of an extended finite state ma-
chine. Processes communicate by exchanging signals.
Dynamic behavior can be introduced by timers. These
models can be automatically transformed into C-code
and then be executed in a run-time environment.

The fina goal isto extend this approach to create vir-
tual building laboratories on a project by project basis
and test it in a number of realistic case studies.

ACKNOWLEDGEMENTS

This modeling work could not have been done without
the support of specialists in the field of architecture
and of modeing in computer science. We learned
much from Ardeshir Mahdavi about building models
for simulation and the five submodels went through
many versions and improvements in detailed discus-
sions with Stephanie Bartos. Modeling principles, es-
pecially UML conformity, have been introduced with
the help of Stefan Queins and Andreas Metzger. Both
are aso the main contributors to the underlying re-
guirements engineering process for reactive systems
with astrong prototyping component. We a so have to
thank the Deutsche Forschungsgemeinschaft for fund-
ing support as part of the Sonderforschungsbereich
501 “Entwicklung grof3er Systeme mit generischen
Methoden”.

REFERENCES

Armstrong, W. W. et a. 1987. " Near-Real-Time Control of
Human Figure Models’, IEEE Computer Graphics and
Applications, vol. 7, pp. 52-60.

Booch, G, Rumbaugh, J., and Jacobson, I. 1999. " The Uni-
fied Modeling Language User Guide’, Addison-Wesley.

Clarke, JA. and Mac Randd, D.F. 1993. " The Energy Ker-
nel System: Form and Content”, Proc. Building Simula-
tion’93, pp. 307-315

Clark, JA. 2001. "Energy Simulation in Building Design”,
Butterworth-Heinemann, 2nd Edition, Oxford.

COMBINE, http://erg.ucd.ie/combine.html

DOE-2, http://gundog.lbl.gov/dirsoft/d2whatis.html

Eastman, C.M. and Siabiris, A. 1995. " A generic building
product model incorporating building typeinformation”,

Automation in Construction 4 (3), pp. 283-304.

Ekholm, A. and Fridquist, S. 2000. " A concept of space for
building classification, product-modeling, and design”,
Automation in Construction 9, pp. 315-328.

ESP-r, http://www.esru.strath.ac.uk

Flemming, U. and Woodbury, R. 1995. "Software Environ-
ment to Support Early Phases in Building Design
(SEED): Overview" Journal of Architectural Engineer-
ing 1, pp. 147-152

Hendricx, A. 1997. ” Shape, Space and Building Element:
Development of a Conceptual Object Modd for the De-
sign Process’, 15th eCAADe Conf. Proceedings, Vien-
na.

Koutamanis, A, et al. 2001. " Route Analysisin Complex
Buildings’, Proceedings of the Sth Int. Conf. on Com-
puter Aided Architectural Design Futures 2001, pp. 711-
724.

Mahdavi, A. 1996. “ SEMPER: A New Computational Envi-
ronment for Simulation-based Building Design Assis-
tance”, Proceedings of the 1996 International
Symposium of CIB W67 (Energy and Mass Flowsinthe
Life Cycle of Buildings). Vienna, Austria.

Mahdavi, A., Metzger, A., and Zimmermann, G. 2002. " To-
wards a Virtua Laboratory for Building Performance
and Control”, in R. Trappl (Ed.) Cybernetics and Sys-
tems 2002, Vol. 1, pp. 281-286

Metzger, A., and Queins, S. 2002. " Specifying Building Au-
tomation Systemswith PROBAND, a M ethod Based on
Prototyping, Reuse, and Object-Orientation”, OMER -
Object-Oriented Modeling of Embedded Rea-Time
Systems, Lecture Notes in Informatics, P-5, Kéllen Ver-
lag Bonn, pp. 135-140.

Metzger, A.,and Queins, S. 2003. "Model-Based Generation
of SDL Specificationsfor the Early Prototyping of Reac-
tive Systems' in M.E. Sherrat (Ed.) Telecommunications
and beyond: The Broader Applicability of SDL and
MSC. Springer Lecture Notesin Computer Science,
LNCS 2599. Heidel berg: Springer-Verlag. pp. 158-169.

Olsen, A. etal. 1997.” System Engineering Using SDL-92",
4th Edition, North Holland, Amsterdam.

Papamichael, K., LaPorta, J., and Chauvet, H. 1997. "Build-
ing Design Advisor: Automated Integration of Multiple
Simulation Tools”, Automation in Construction 6(4), pp.
341-352.

Queins, S. and Zimmermann, G. 1999. " A First Iteration of a
Reuse-Driven Domain-Specific System Requirements
Analysis Process’, SFB501 Report No. 13/99, Universi-
ty of Kaiserslautern.

Riegel, J. P, Schiitze, M., and Zimmermann, G. 1997. " Peat-
tern-Based Generation of Customized, Flexible Building
Simulators”, CAAD Futures 97, Kluwer Academic Pub-
lishers, Dordtrecht, pp. 285-296.

Telelogic Tau SDL Suite, http://www.telelogic.com

Zimmermann, G. 2002. ”Efficient Creation of Building Per-
formance Simulators Using Automatic Code Genera-
tion” Energy and Buildings, 34, Elsevier Science B.V.,
pp. 973-983.

Zimmermann, G. 2001. ” A New Approach to Building Sim-
ulation based on Communicating Objects’, 7th Interna-
tiona IBPSA Conference Proceedings, Rio de Janeiro
pp. 707-714.

- 1490 -

