
Abstract

The paper describes a process that efficiently supports
the early building design stage with prototype tools to
capture topological floor plan sketches, calculate ge-
ometries, explore design alternatives, and generate
data for performance simulations, for example for En-
ergyPlus. It is also shown how such data are used to
generate object-model based simulators in the Virtual
Building Laboratory environment. Examples and pre-
liminary efficiency data are presented.

Introduction

The work presented here is the result of an interdisci-
plinary research cooperation of computer scientists
and building architects. We hope, that this research
will result in new and unusual approaches to the bene-
fit of both disciplines.

The building design process can be modeled by three
stages: conceptual design, design development, and
construction design. Stages two and three are well sup-
ported by CAD-tools, whereas the early design stage,
the conceptual design, is still mainly manual work.

During the conceptual design stage, decisions of great
impact on the quality and the cost of the product are
made. Therefore, tool support for the evaluation of the
consequences of design decisions during early design
stages is of great importance. One quality aspect is the
visual appearance, supported by tools for capturing
sketches. The quality aspect we are interested in is
building performance, for example thermal properties.

Building performance is typically evaluated by simu-
lation. One open problem is the integration of sketch-
ing and simulation such that the creativity of the
designer is not restricted and the additional effort for
simulation is in the right proportion to the quality gain.
A large quantity of detailed data is required for perfor-
mance simulations. The generation of these data is one
of the reasons why existing performance simulators
are rarely used in the conceptual design stage.

Here, we will show an alternative solution to this prob-
lem. In our approach, the conceptual design process
starts with space program development and documen-
tation, floor plan sketching, manual entry of the sketch

topology with a simple graphical tool, automatic gen-
eration of resulting floor plan geometries, the refine-
ment of geometries, automatic simulation data
generation, and simulation. The geometry generation
adds wall dimensions and features like openings to the
floor plan. In our approach, the simulation phase con-
sists of a semi-automatic simulator generation and a
simulation execution phase. We call our process and
tool environment the Virtual Building Laboratory
(ViBuLab). Data for other object oriented simulator
interfaces can be generated as well.

Because of the highly efficient tool support, design al-
ternatives can be easily evaluated and compared. In
contrast to automatic layout approaches, the designer
maintains the full control over the floor plan topology
while getting analysis results that are very close to the
final geometry of the building under design. The tools
also help to maintain data consistency to free the de-
signer from tedious data checks.

In the next section, the related work is presented. In
section Process Overview, the conceptual design sup-
port is explained in more detail. The section The
Building Planner is a description of the topological
floor plan generation and geometrical transformations.
In section Simulator Interface the simulator generation
process is introduced in so far as necessary to define
the input data requirements and the interface to Ener-
gyPlus is explained. Finally, results of design experi-
ments are shown in section Results, followed by a
conclusion.

Related Work

The general building design process and especially the
early design stages are treated in many publications.
Here, we will only refer to (Polladis, S.N.,Bakos, Y.
1987) and (Rozenburg, N., Eekels, J. 1994).

Several papers deal with capturing and 3D-visualiza-
tions of sketches as for example (Lee, M.-C. 2001). In
principle, such tools could also be extended to feed
data to simulators, but since this is not their purpose,
important material data are not represented.

Another approach is the simplification of simulator
data entry by rigorously using grids, abstractions, and

Gerhard Zimmermann
Informatik, University of Kaiserslautern, Germany

FROM FLOOR PLAN DRAFTING TO BUILDING SIMULATION - AN
EFFICIENT SOFTWARE SUPPORTED PROCESS

Ninth International IBPSA Conference
Montréal, Canada

August 15-18, 2005

- 1441 -

defaults for dimensions and materials. A very efficient
implementation of this type of tools is SEMPER
(Mahdavi, A. 1996).

A different research area supports early design by au-
tomatic layout. Liggett (Liggett, R.S. 2000) gives an
excellent overview over the main methods. Although
a single criterion optimizations such as total path
length minimization show good results, many other
criteria are of equal importance during floor planning.
Therefore, most designers still prefer the manual
placement of spaces.

Tam’s approach (Tam, K. 1991) is based on creating
rectangular floor plan topologies by recursive dissec-
tion. This method does not require a grid, but is in
principle limited to rectangular floor plans that can be
represented by dissection trees. This excludes so
called pin-wheels. In (Suter, G., Mahdavi, A. 2003)
this method is extended to also create L- and U-shaped
spaces in the topology (called a schematic model) and
also to extent wall dimensions to create floor plan ge-
ometries (detailed models).

Dissection based floor plan geometries have also been
used extensively to create floor plans for VLSI (Very
Large Scale Integration) computer chips (Schürmann,
B. et al. 1992). This hierarchical layout process has
many similarities to building floor plan generation:
logic and memory cells relate to activity floor areas,
wiring spaces relate to circulation and wall areas, and
pads at the chip perimeter or on the surface relate to
openings for daylight. Therefore, the work of Fleming
on the optimization of building floor plans (Fleming,
U. 1986), that led to the SEED (Fleming, U. et al.
1994) project, is also one of the basic works in chip
floor planning. The use of shape functions in chip floor
planning (Zimmermann, G. 1988) could be transferred
to building floor plan geometries. In (Zimmermann,
G., Suter, G. 2004) we have demonstrated how dissec-
tion based topologies can be automatically trans-
formed into valid building geometries by expressing
the constraints in the form of shape functions. In sec-
tion The Building Planner we will show this process
in more detail. So far, this transformation is limited to
2 dimensions or single floors. Currently, we are ex-
tending it to 3 dimensions, the so called multi-floor
problem. Here we show how the multi-floor problem
can be solved interactively.

Another basis for our process are the advances in soft-
ware engineering, especially in the field of reactive
systems (Metzger, A., Queins, S. 2002). Building con-
trol and performance simulation are such systems. In
the past, powerful performance simulation environ-
ments have been implemented with large efforts in
manpower (EnergyPlus 2004), (Mahdavi, A. 1996).
These legacy and research systems can be adapted to
specific building instances, but this requires a large set
of parameters and is therefore time consuming. Our re-

search goal is the reduction of this time during concep-
tual design, based on the idea that during this early
design phase a quick comparisons of alternatives is
more important than the precision of results.

We have demonstrated that simulators for specific
building instances and performance questions can be
constructed on-the-fly and discarded afterwords (Zim-
mermann, G. 2002). Such a process can be made very
efficient by reusing simple object-oriented physical
models and by automatic prototype code generation.
We do not claim that such simulators are better than
the cited legacy systems. Their advantage lies in the
extreme flexibility in integrating effects or functions
as for example intelligent control systems, office user
behaviors, or workplace features.

We did not find any published design effort measure-
ments for the designs and simulations in the conceptu-
al design stage. Therefore, our efficiency results can
not be compared with others.

Process Overview
Figure 1 shows the basic activities in the proposed
conceptual design process. The resulting documents
are not shown, but are important parts of the product
documentation. The feedback loops lead to design

modify geometry

Figure 1 Conceptual design process. Light grey mea
manual, dark gray automatic activities

create space program

sketch floor plans

create topology

generate geometry

modify geometry

generate data

create simulator

simulate

next stage

other
simulator

- 1442 -

modifications or alternative design explorations as a
results of the generated geometric floor plan drawings
or of simulation results. In any case, document ver-
sions are created such that returning to former versions
is always possible. Besides versioning, the process is
also supported by an automatic time and effort record-
ing environment for our design experiments.

create space program is the traditional manual activ-
ity performed by architect and customer and results in
a textual document, listing the number of activity
space types with their net floor areas. The extended
space program also lists requirements for spaces like
circulation areas, utility rooms etc. that are traditional-
ly not part of the net area. A space requirement can
take the form of a fixed dimension instead of an area,
as in the case of hallways. In our environment this
space program is a spread sheet and supports simple
calculations for the create topology step. The space
program is based on the requirements of the stake
holders and can only be modified within defined flex-
ibility ranges or with their consent.

The spaces in the space program of a building with
several storeys are first assigned to these storeys, if
this is not already defined in the program. Then floor
plan sketches on paper are produced manually that
roughly place all spaces in the different storeys. Sev-
eral alternatives can be created. In principal, this step
can be replaced by automatic floor plan optimization
tools as reviewed in (Polladis, S.N.,Bakos, Y. 1987).

If floor plan sketches are used, create topology is a
manual step that needs some experience and prepara-
tion. First, the floor plan of a storey can be dissected
into larger sections as for example stair case shafts,
fire sections, organizational units. Figure 2 shows a
simple example with three floors and two shafts. Then,
from the sum of the net floor areas of all spaces in each
section, overall area requirements in each storey are
calculated. With a spread sheet space program this can
be done automatically. Typically, one horizontal di-

mension of the building is predefined. Together with
the total storey area this defines the other horizontal
dimension.

create topology then proceeds by planning the order of
the dissections, using the floor plan sketches. Here, we
distinguish three approaches. The most flexible ap-
proach (1) is one that starts with a 3D-dissection of the
building based on net areas. This results in a topology,
the schematic model. Wall dimensions expand this to-
pology in generate geometry to a geometry represent-
ing the gross area, the detailed model. We are currently
working on this 3D-transformation. The second ap-
proach (2) starts with 2D-dissections of each storey
separately and adding wall dimensions in generate ge-
ometry. This method is well established (Zimmer-
mann, G., Suter, G. 2004), but has the disadvantage
that the storey floor plans have to be adjusted interac-
tively to align facades and some walls as for example
load bearing and shaft walls. Both approaches allow
for modifications of all dimensions and even in the to-
pology in modify geometry. The third approach (3) is
the least flexible. The 3D-dissection starts from the
gross area and instead of a topology, the final geome-
try is fixed during create topology. In generate geom-
etry walls protrude into the spaces without changing
floor plan dimensions. modify geometry is not possi-
ble. In this paper we have used approach (2).

For efficiency purposes, wall dimensions and proper-
ties as for example thermal resistance or the glazing
percentage are already defined during create topology
and can be modified during the next two steps. De-
faults exist for exterior and interior wall types and hor-
izontal slab types. The advantage of early assignments
of different types comes from the approach to propa-
gate the types to all parts that are created during further
dissections. If, for example, a new wall type is as-
signed to a facade, all segments of this facade inherit
this type if no other type is assigned to a part of this fa-
cade. Properties of types can be changed at any time.

All three approaches use the same data structure and
and can generate the same data for the simulation. It
depends on the chosen simulation environment which
file exchange format is chosen. If no further modifica-
tions are necessary, data for graphical CAD tools for
the design development stage can also be produced.

The Building Planner
The Building Planner is a tool that was developed to
aid designers in early stages of floor planning to quick-
ly enter topologies into the computer and generate val-
id geometries. Valid in this context means that the
spaces do not overlap, the total space is completely
filled, and constraints are met. The topology is based
on net areas, whereas the geometry includes additional
wall and utility space areas and thus shows the total ar-
ea. The algorithm for the transformation from topolo-
gy to geometry relies on a limited shape flexibility of

0
10

20
30

40
50

0

5

10

15

0

2

4

6

8

Figure 2 3D floor plan topology

- 1443 -

the spaces, expressed as shape functions. Therefore,
floor plan geometries with different aspect ratios can
be produced. The shape functions express constraints.

The Building Planner can be used for different purpos-
es. In a very short time different floor plan topologies
can be created and analyzed. Incremental changes are
possible, especially changes in net areas of individual
spaces or the width of circulation areas always lead to
valid floor plans in the defined sense. With the result-
ing geometry data different analyses can be per-
formed. For the purpose of performance analysis,
simulator input data can be automatically produced.

For the latter purpose we have to look at the Building
Planner’s data structure. A prototype tool was imple-
mented in Matlab, but here we will abstract from the
implementation language. Also, details of the shape
functions and the algorithms are of no importance for
this purpose. More details can be found in (Zimmer-
mann, G., Suter, G. 2004). We will first explain the
general dissection based floor planning process and
the resulting data structure.

To be more precise, we now define sections that are 3D
spaces and sheets that are 2D spaces. The floor plan-
ning problem and the resulting data structures are 3D
representations. Figure 3 shows a simple example. We
start with a rectangular building section B with the size
of the total net area. The aspect ratio is chosen close to
the expected final floor shape, but this does not really
matter. The first dissection sheet sB divides B into two
sections B.f and B.b. The right side of Figure 3 shows
the resulting dissection tree. After the third and forth
dissection steps, a floor plan with four sections results.

The data structure in Figure 3 does not show the pe-
rimeter walls. In reality B is not the root of the dissec-
tion tree, but a site node with seven siblings: B, the
ground and five surrounding sections (topSur, ...) as

shown in Figure 4. The six sheets (g.1, ...) that repre-
sent the perimeter walls are not created by dissection
and therefore are directly assigned to the six sections.
Figure 3 and Figure 4 together define the dissection
tree as it has been created so far.

For the purpose of performance simulation, the sheets
have to be further refined. Especially for thermal cal-
culations we need segments that uniquely define a heat
transfer object between two sections. In Figure 5 this
is shown for the first dissection sheet sB. The second
dissection divides sB into sB.l and sB.r, the third dis-
section divides sB.r into sB.r.l and sB.r.r. Similarly, the
six perimeter sheets have also been divided. This pro-
cedure guarantees that the leaves of all sheet subtrees
have exactly two surfaces facing two sections. The
leaves are called Section Enclosure Segments (SES).

It seems to be clear from Figure 5 which SES is adja-
cent to which sections. But this is only true for sB-l and
sB-r-r. During the transformation from topology to ge-
ometry or due to manual or automatic changes of net
areas or dimensions, the sheets sB.f and sB.b may
change positions and instead of sB-r-l being adjacent
to B.b.r and B.f.l in may have changed to B.b.l and
B.f.r. Therefore, the adjacency relations are added af-
ter the topology-to-geometry transformation. Experi-

Figure 3 Dissected floor plan and dissection tree.
Ovals denote spaces, rectangles denote dissection
sheets. Orientations: f front, b back, l left, r right

B

B

B.f B.b

B

B.f

B.b B

B.f B.b

B.f.l B.f.r B.f.l B.f.r

sB

sB.f sB.b
B.b.l B.b.r

B.f.l B.f.r

sB

Figure 4 Generic dissection tree root structure

site

B ground

frontSur

topSur

rigthSur

leftSur

sg

backSur

st

sl

sr

sf

sb

Figure 5 Sheet partitioning and resulting tree

B

B.f

B.b
B.f.l B.f.r

sB.f

sB.b

sB

sB-r-r

sB.l sB.r

sB.r.rsB.r.l

B

B.f

B.b
B.f.l B.f.r

B.f.l B.f.r

sB.f

sB.b

sB

sB-l
sB-r-l

sB-l sB-r

sB-r-rsB-r-l

- 1444 -

enced designers will nevertheless try to start with a
topology that correctly shows all final adjacencies.

generate geometry is the next step in the process. For
this transformation the thicknesses of the walls are
necessary. Since a building consists of a limited num-
ber of wall types, these are listed together with addi-
tional properties such as order, type, and thickness of
the wall layers (also called construction), surface
properties, glazing percentages or window types,
number and type of doors and other openings etc. The
properties depend on the type of simulation that is
planned. As already mentioned, these data are propa-
gated down the dissection tree during dissection if not
otherwise determined by the designer. Defaults are de-
fined for each building type. If the designer does not
interrupt this process, all perimeter walls will be of one
type, all internal wall of a second one. For connecting
circulation areas and for creating non-rectangular
shapes, also a virtual wall type is provided. In a first it-
eration, using the defaults is a very quick method to ar-
rive at a valid geometry.

All properties can be interactively changed during
modify geometry and the transformation is automati-
cally repeated. This is a refinement process that will
lead to final geometric floor plans.

So far we have described instances of the data struc-
ture as a result of the simple example. Figure 6 shows
its abstraction as object type diagram. It is a specializa-
tion of the Building System Model we proposed in
(Zimmermann, G. 2003).

Figure 7 shows how the designer sees the example at
this point in the process. It shows the main properties
of the floor plan geometry. Now all adjacency rela-
tions are defined. For clarity we will distinguish red
and blue dimensions. The blue dimensions describe
the detailed model: the surfaces of all solid objects and
thus also the dimensions of the net sections. The red
dimensions relate to the schematic model. As Figure 7
shows, at the building envelope both models merge,
inside of the building the red sheets basically mark the
center planes of the solid objects. Thus, the red sheets

define sections that include all of the adjacent exterior
walls and the adjacent slices of interior walls.

Objects of type Section are defined by the coordinates
of the origin in the building coordinate system (x, y, z)
and the dimensions of the red and of the blue section.
Additional properties as for example thermal mass of
additional objects in the section, heat sinks and sourc-
es, or light sources can be added if necessary for a sim-
ulation. They are stored as strings and can be copied
directly into the input files of simulators.

Objects of type SES are defined by the coordinates of
the origin and the dimensions of the two surfaces
(blue) and the same set for the red sheet. Other proper-
ties include construction parameters that are necessary
for the simulation. As in the case of sections, these
properties are also stored as strings.

Adjacency relations between sections and SES in-
stances are now completely defined. Some simulators
generate these relations from the entered geometric
data. In EnergyPlus they are part of the Surface
records in the input file. In our simulation environment
ViBuLab the objects and the aggregation relations are
used to create the simulator object structure, the adja-
cency relations are used to create communication
paths between objects.

Simulator Interface
We will demonstrate for the case of the simulator En-
ergyPlus and for our Virtual Building Laboratory
which simulation data can be automatically generated.

EnergyPlus

EnergyPlus needs an input file (.idf) with all the infor-
mation about the building that is necessary for the in-
tended simulation. The format of this file is defined in
(EnergyPlus 2004) as a list of records. All records con-
sist of a keyword and a list of parameters. The file con-
tains the following sections:

simulation parameters,

Figure 6 Object type diagram of data structure. Dia-
monds denote aggregation, arrows denote adjacency

relations (front, back)

Site

Building Surrounding

Section SES SurSection Ground

WallElement Door Window

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

10.5

A.1.2

15

A.2.2

24.5

A.1.1

10

A.2.1

Figure 7 Floor plan geometry example

B.b.l B.b.lB.b.l B.b.r

B.f.l B.f.r

- 1445 -

location, climate, etc.,
schedules,
surface construction elements,
zone description/geometry,
HVAC and lighting models and equipment

Example files show a considerable length. One exam-
ple for a simple building with five rooms has about
5000 lines, each line a parameter entry. This size is
mainly due to elaborate schedules and a large HVAC
section. Both can only be the result of the design de-
velopment and construction design stages. In the con-
ceptual phase these have to be replaced by very simple
defaults that can be used as a file template. Therefore,
we have concentrated on the surface construction ele-
ments and the zone description/geometry sections.

Materials and Constructions of EnergyPlus are equiv-
alent to wallElements. Zones are equivalent to sections
and can be easily generated. The geometry is de-
scribed by surfaces that are directly generated from
SES instances and adjacency relations. Since we found
no distinction between the coordinates of the two sur-
faces of a wall in the EnergyPlus I/O description, we
use the red sheet values although the blue coordinates
would be more precise. Windows can be automatically
generated with default z-coordinates and width de-
pending on the width of the SES and the glazing per-
centage. The resulting input file for EnergyPlus can be
easily edited with the IDFEditor that is provided with
the tool set (EnergyPlus 2004).

At least for rectangular building geometries, this auto-
matic process reduces the time from sketching to sim-
ulation considerably and provides the designer with a
means to explore the design space with relatively pre-
cise performance analysis data.

The Virtual Building Laboratory

The long term goal of the ViBuLab (Mahdavi, A,
Metzger, A., Zimmermann, G. 2002), (Zimmermann,
G. 2003) is to model and simulate buildings as com-
plete systems including user behavior. This is not pos-
sible with existing simulation environments. Using the
advances in object oriented modeling, reuse, code gen-
eration, and object based simulation, simulators can be
created with reasonable effort for specific buildings,
tuned to specific analysis tasks. The special power of
this approach is the ease with which continuous and
discrete physical and logical effects and algorithms
can be combined. We plan to also integrate human ac-
tivities with control algorithms and building physics.
So far we have shown that the approach works effi-
ciently for performance simulations and control sys-
tems for buildings with up to 50 rooms and a time
resolution in the range of seconds where necessary.

Here, we will limit the application to performance
simulation during the conceptual design stage. Three
tasks have to be solved in creating software for build-

ing simulation: Structure creation, behavior creation,
and communication structure creation.

The structure of an object oriented software system is
primarily defined by object type diagrams (class dia-
gram) and secondarily by the instances (objects) that
are created at run time. The building planner exactly
contains this information. Therefore, the structure of
Figure 6 is directly translated into an html table with a
predefined syntax. The table also contains instance
names that are either the automatically created names
in Figure 7, names entered in the Building Planner
manually, or generic names such as rm1, rm2, ... This
table is read by a research tool called PROTAGOnIST
(Metzger, A. 2004) that automatically creates structure
diagrams in the modeling language SDL (Olsen, A. et
al. 1994). Additional object types that are not modeled
in the Building Planner such as light fixtures or heat-
ing equipment can be either added to the table in tex-
tual form or to the SDL diagrams in graphical form. In
either case the other representation is automatically
updated by PROTAGOnIST. More details can be
found in (Zimmermann, G., Metzger, A. 2004).

All objects in SDL are software processes that are ex-
ecuted concurrently and can communicate asynchro-
nously with each other. A typical object is a wall
segment that is modeled by 5-10 layers. Each layer is
modeled by an explicit linear equation. The behavior
of the processes are defined as extended finite state
machines in the form of state transition diagrams. This
behavior is not part of the Building Planner and has to
be entered manually for all object types. In Figure 6
we count 10 different types and for those a reuse li-
brary of behavior models exists for the typical physical
effects. With every new effect that is needed for a
building performance analysis this library is extended.

The next step is the definition of the communication
paths. There are two possibilities in SDL. Channels
with signals can be defined as part of the structure def-
inition. We do this automatically following the aggre-
gation hierarchy as shown in Figure 6. This results in
a tree structure that is similar to the dissection tree. We
mainly use this communication structure to automati-
cally instantiate all objects by assigning concatenated
instance names to all objects and by creating an index
table in a top simulator object witch links these unique
names with the unique process run-time identifiers
(id).

Using this index table the simulator can read input
files with data for named instances and send these data
directly via remote procedure calls (RPC) to the object
with the corresponding id. This is the second commu-
nication approach in SDL which is synchronous. With
a similar procedure simulation results are sent from the
objects to the simulator and supplied with time, object
and parameter names written onto an output file. This
file communication is used before the simulation time

- 1446 -

starts to send property values to all objects that are oth-
erwise equal. During run-time this communication is
used to enter weather data, or control interactions (au-
tomatic or manual).

Communication through channels can also be used to
communicate for example between sections and SES
instances. But because of our tree structure this could
mean for example sending a signal from an SES first
up to the site and the down to an external SurSection.
To simplify this path, we also use the second commu-
nication approach with RPCs. In order to make this di-
rect path from any object to any other object
asynchronous, every object aggregates a send and a re-
ceive object.

The send objects have to know the ids of the receivers
of signals that are sent by the parent. Since for exam-
ple all instances of Sections are equal at the time of the
simulator start, this information has to be entered from
a file before the simulation time starts and is stored in
tables in the individual send objects. The Building
Planner provides this information using the adjacency
relation.

As we have seen, most of the information for creating
a specific simulator for a building instance is either
provided automatically by the Building Planner or tak-
en from a library of behavior models. Still, some man-
ual interaction is necessary to complete the SDL
model. This interaction is supported by the PROTAG-
OnIST tool set and by an SDL environment SDT
(Telelogic). SDT also provides a code generator to
translate SDL models directly into executable code
and a run-time environment for the scheduling of the
concurrent processes. The SDT run-time environment
does not map processes and communication on the op-
erating system, but provides a very efficient imple-
mentation as one total process.

Results
We claimed that the conceptual design process as
shown in Figure 1 is so efficient that the creativity of
designers is not reduced but increased. Since we found
no data on the time it takes an experienced EnergyPlus
user to create the input files for this tool, we can not do
a comparison. Therefore, we can only support our
claim with data from case studies. The case studies
range from a simple 1-storey building with six rooms
to a complex 3-storey building, as listed in Table 1.
CS2 is a floor of an office building with two stair cases
and a central hallway. CS3 is the second floor of
Gaudi’s Casa Calvet in Barcelona, taken from a floor
plan without dimensions. Figure 8 shows the resultant
floor plan geometry. CS4 is similar to CS2 in structure,
but with three different storeys that were manually
adapted by changing room areas until the outer dimen-
sions matched. CS5 is not as regular as CS4.

To support our claim we measured the time needed for
the manual steps create topology and modify geometry.

The steps create space program and sketch floor plan
sketches are standard tasks in any design process and
not part of our improvement. We have recorded the
time for the mechanical parts of it, excluding the cre-
ative tasks. For the task create simulator we only have
data for the object structure generation step.

If we assume that the creative task of creating space
programs and floor plan topologies is in the order of
several hours or even days, all reported efforts in
Table 2 are within a reasonable range for extra time re-
sulting from using the proposed tools. On the other
hand, the advantage of getting valid floor plan geome-
tries with the possibility to make changes for example
to net areas, dimensions, aspect ratios, and material
data with little extra effort more than compensates the
spent time. The sum of the times in the three left col-
umns also presents the time to create surface construc-
tion and zone geometry data for EnergyPlus
simulations.

Conclusion
We presented as a result of interdisciplinary research a
new idea for generating the input data from space pro-
grams and floor plan sketches for performance simula-
tions during the conceptual design stage. We also
demonstrated how prototype tools for this purpose can

Table 1: Case studies

Study Storeys
Activ.
spaces

Total net

area/m2 Type

CS1 1 6 100 regular

CS2 1 24 400 regular

CS3 1 29 460 irregul.

CS4 3 61 1500 regular

CS5 3 60 1200 irregul.

Table 2: Efforts in minutes

Case
Study

Space
Prog.,
sketch

Topol.
create

Geom.
create

Object
Struct.
gener.

CS1 5 3 2 23

CS2 20 8 7 25

CS3 30 27 42 26

CS4 20 48 39 38

CS5 45 62 59 55

- 1447 -

be interfaced with legacy tools like EnergyPlus or with
another result of our research, an object-based simula-
tor generation environment ViBuLab. We have shown
preliminary performance data that indicate a suffi-
ciently small overhead for using performance simula-
tion during the conceptual design is possible. This
allows architects to interactively modify early designs
or explore design alternatives under the control of sim-
ulation. Further research and case studies are neces-
sary to compare our results with traditional processes
and to extent our simulation environment to additional
effects and functions and to find the complexity limits.

References
EnergyPlus 2004. Input Output Reference, US De-

partment of Energy, www.aenergyplus.gov

Fleming, U. 1986. On the representation and genera-
tion of loosely-packed arrangements of rectan-
gles, Environment and Planning B (13) 189-205.

Fleming, U. et al. 1994. SEED-software environment
to support early phases in building design, Proc.
IKM94, Weimar, 5-10.

Lee, M.-C. 2001. SpaceMaker: A Symbol-based
Three-dimensional Computer Modeling Tool for
Early Schematic Development of the Architectur-
al Design, http://depts.washington.edu/spmaker/

Liggett, R.S. 2000. Automated facility layout: past,
present and future, Automation in Construction 9
(2000) 197-215.

Mahdavi, A. 1996. SEMPER: a new computational
environment for simulation-based building design
assistance, Proc. Int. Symp. of CIB W67, Vienna,
Austria.

Mahdavi, A, Metzger, A., Zimmermann, G. 2002. To-
wards a Virtual Laboratory for Building Perfor-
mance and Control, Cybernetics and Systems Vol.
1, Vienna, Austria, 281-286.

Metzger, A., Queins, S. 2002. Specifying building au-
tomation systems with PROBAnD, a method
based on prototyping, reuse, and object-orienta-
tion, in OMER: Object-Oriented Modeling of Em-
bedded Real-Time Systems, Koellen Verlag,
Bonn, 135-140.

Metzger, A. 2004. Software-Qualitätssicherung durch
Automatisierung – Ein modellbasierter Ansatz.

Ph.D. Thesis. Department of Computer Science.
University of Kaiserslautern.

Olsen, A. et al. 1994. System engineering using SDL-
92, Elsevier, Amsterdam.

Polladis, S.N.,Bakos, Y. 1987. A framework for the
design process, Havard Univ., Report LCT-87-2.

Rozenburg, N., Eekels, J. 1994. Product design: fun-
damentals and methods, John Wiley.

Suter, G., Mahdavi, A. 2003. Aspects of a representa-
tion framework for performance-based design.
Proc. of the Eight International IBPSA Confer-
ence, Eindhoven, Netherlands, 1257-1264.

Schürmann, B. et al. 1992. Three-phase chip planning
- an improved top-down chip planning strategy,
Proc. 25th Design Automation Conference
(DAC), Anaheim, USA, 60-65.

Tam, K. 1991. Simulated annealing algorithm for al-
locating space to manufacturing cells, Int. J. Prod.
Res. 30 (1991) 63-87.

Telelogic. http://www.telelogic.com

Zimmermann, G. 1988. A new area shape function es-
timation technique for VLSI layouts, Proc. 25th
Design Automation Conference, Anaheim, USA,
60-65

Zimmermann, G. 2002. Efficient creation of building
performance simulators using automatic code
generation, Energy and Building 34 (2002) 973-
983.

Zimmermann, G. 2003. Modeling the building as a
system, Proc. of the Eight International IBIPSA
Conference, Einhoven, Netherlands

Zimmermann, G., Metzger, A. 2004. A software gen-
eration process for user-centered dynamic build-
ing system models, Proc. ECPPM 2004, 5th
European Conference of Product and Process
Modelling. Instanbul, Turkey.

Zimmermann, G., Suter, G. 2004. A Model for hierar-
chical floor plan generation based on shape func-
tions, Proc. ECPPM 2004, 5th European
Conference of Product and Process Modelling. In-
stanbul, Turkey.

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

10

18.75

10

4.5

15

15

12.5

12.5

6.875

3.75

3.75

6.875

26

20

4.5

4.5

4.875

4.375

4.375

13

8.75

12

8.75

12

8.75

4.5

15

15

4.375

4.375

4.875

4.5

4.5

20

26

3.75

3.75

6.875

12.5

12.5

6.875

15

15

4.5

10

18.75

10

Figure 8 Floor plan geometry of CS3. Numbers are
net area/m2.

- 1448 -

